
Package ‘diseq’
June 1, 2022

Title Estimation Methods for Markets in Equilibrium and Disequilibrium

Version 0.4.6

Date 2022-06-01

Description Superseded by package markets. Provides estimation methods for
markets in equilibrium and disequilibrium. Supports the estimation of an
equilibrium and four disequilibrium models with both correlated and
independent shocks. Also provides post-estimation analysis tools, such
as aggregation, marginal effect, and shortage calculations. The estimation
methods are based on full information maximum likelihood techniques given
in Maddala and Nelson (1974) <doi:10.2307/1914215>. They are implemented
using the analytic derivative expressions calculated in
Karapanagiotis (2020) <doi:10.2139/ssrn.3525622>. Standard
errors can be estimated by adjusting for heteroscedasticity or clustering.
The equilibrium estimation constitutes a case of a system of linear,
simultaneous equations. Instead, the disequilibrium models replace the
market-clearing condition with a non-linear,
short-side rule and allow for different specifications of price dynamics.

Language en-US

URL https://github.com/pi-kappa-devel/diseq/,

https://diseq.pikappa.eu/

BugReports https://github.com/pi-kappa-devel/diseq/issues

Depends R (>= 3.5.0)

Imports bbmle (>= 1.0.20), dplyr (>= 0.7.6), Formula, magrittr (>=
1.5), MASS (>= 7.3-50), methods, rlang (>= 0.2.1), systemfit
(>= 1.1), tibble (>= 1.4.2), tidyr (>= 1.0.2), Rcpp, RcppGSL,
RcppParallel

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.0

Suggests ggplot2 (>= 3.0.0), knitr (>= 1.20), numDeriv (>=
2016.8.1.1), rmarkdown (>= 1.10), testthat (>= 2.0.0)

1

https://doi.org/10.2307/1914215
https://doi.org/10.2139/ssrn.3525622
https://github.com/pi-kappa-devel/diseq/
https://diseq.pikappa.eu/
https://github.com/pi-kappa-devel/diseq/issues

2 R topics documented:

VignetteBuilder knitr

Collate 'data.R' 'diseq.R' 'equation_base.R' 'system_base.R'
'model_logger.R' 'market_model.R' 'disequilibrium_model.R'
'diseq_basic.R' 'diseq_deterministic_adjustment.R'
'diseq_directional.R' 'diseq_stochastic_adjustment.R'
'equation_basic.R' 'equation_deterministic_adjustment.R'
'equation_directional.R' 'equation_stochastic_adjustment.R'
'equilibrium_model.R' 'system_basic.R' 'gradient_basic.R'
'system_deterministic_adjustment.R'
'gradient_deterministic_adjustment.R' 'system_directional.R'
'gradient_directional.R' 'system_equilibrium.R'
'gradient_equilibrium.R' 'system_stochastic_adjustment.R'
'gradient_stochastic_adjustment.R' 'hessian_basic.R'
'hessian_directional.R' 'likelihood_basic.R'
'likelihood_deterministic_adjustment.R'
'likelihood_directional.R' 'likelihood_equilibrium.R'
'likelihood_stochastic_adjustment.R' 'market_fit.R'
'model_simulation.R' 'zzz.R'

LinkingTo Rcpp, RcppGSL

SystemRequirements C++11

NeedsCompilation yes

Author Pantelis Karapanagiotis [aut, cre]
(<https://orcid.org/0000-0001-9871-1908>)

Maintainer Pantelis Karapanagiotis <pikappa.devel@gmail.com>

Repository CRAN

Date/Publication 2022-06-01 21:30:12 UTC

R topics documented:
coef,market_fit-method . 3
diseq . 4
equation_classes . 5
estimate . 7
formula,market_model-method . 8
gradient . 10
hessian . 11
houses . 11
initialize_market_model . 13
logLik,market_fit-method . 18
marginal_effects . 19
market_aggregation . 21
market_descriptives . 22
market_models . 24
market_quantities . 26
market_simulation . 28

https://orcid.org/0000-0001-9871-1908

coef,market_fit-method 3

maximize_log_likelihood . 31
minus_log_likelihood . 32
model_logger-class . 33
model_name . 34
nobs,market_model-method . 34
plot,market_fit,ANY-method . 35
scores . 36
shortage_analysis . 37
show,market_model-method . 40
single_call_estimation . 41
summaries . 43
system_classes . 45
variable_names . 50
vcov,market_fit-method . 52

Index 53

coef,market_fit-method

Estimated coefficients of a fitted market model.

Description

Returns the coefficients of the fitted model.

Usage

S4 method for signature 'market_fit'
coef(object)

Arguments

object A fitted model object.

Value

A vector of estimated model coefficients.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+6)))

4 diseq

access the estimated coefficients
coef(fit)

diseq Estimation of models for markets in equilibrium and disequilibrium

Description

The diseq package provides tools to estimate and analyze an equilibrium and four disequilibrium
models. The equilibrium model can be estimated with either two-stage least squares or with full
information maximum likelihood. The methods are asymptotically equivalent. The disequilib-
rium models are estimated using full information maximum likelihood. All maximum likelihood
models can be estimated both with independent and correlated demand and supply shocks. The
disequilibrium estimation is based on Maddala and Nelson (1974) doi:10.2307/1914215. The pack-
age is using the expressions of the gradients of the likelihoods derived in Karapanagiotis (2020)
doi:10.2139/ssrn.3525622.

Details

Overview

This page gives an overview of the market model classes and the available documentation options
of the package.

Usage: The easiest way to get accustomed with the functionality of the package is to check the
accompanying vignettes and the README file. These can be found in the following links:

basic_usage vignette("basic_usage", package = "diseq")

equilibrium_assessment vignette("market_clearing_assessment", package = "diseq")

Additionally, one can use the documentation examples. Some of them illustrate the package
functionality using the houses dataset.

Market model classes: The model hierarchy is described in the README file. See the docu-
mentation of the classes for initialization details.
Equilibrium model classes:

equilibrium_model Equilibrium model that can be estimated using full information maximum
likelihood or two-stage least squares.

Disequilibrium model classes:

diseq_basic Disequilibrium model only with a basic short side rule.
diseq_directional Disequilibrium model with directional sample separation.
diseq_deterministic_adjustment Disequilibrium model with deterministic price dynamics.
diseq_stochastic_adjustment Disequilibrium model with stochastic price dynamics.

https://doi.org/10.2307/1914215
https://doi.org/10.2139/ssrn.3525622
../README.html
../doc/basic_usage.html
../doc/market_clearing_assessment.html
../README.html

equation_classes 5

equation_classes Equation classes

Description

Equation classes

Details

Classes with data and functionality describing equations of model systems.

Functions

• equation_base-class: Equation base class

• equation_basic-class: Basic disequilibrium model equation class

• equation_deterministic_adjustment-class: Deterministic adjustment disequilibrium model
equation class

• equation_directional-class: Directional disequilibrium model equation class

• equation_stochastic_adjustment-class: Stochastic adjustment disequilibrium model equa-
tion class

Slots

formula The equation formula using prefixed variables.

name The name of the equation.

variable_prefix A prefix string for the variables of the equation.

dependent_vector The vector of the response.

independent_matrix A model data matrix with columns corresponding to the set of independent
variables.

price_vector The vector of prices.

control_matrix A model data matrix with columns corresponding to the set of independent vari-
ables without prices.

alpha_beta A vector of right hand side coefficients.

alpha The price coefficient.

beta A vector of right hand side coefficient without the price coefficient.

var The variance of the equation’s shock.

sigma The standard deviation of the equation’s shock.
h

hx =
x− Ex√

Varx

6 equation_classes

z

zxy =
hx − ρxyhy√

1− ρ2xy

psi

ψx = φ(hx)

Psi

Ψx = 1− Φ(zxy)

mu_Q

µQ = EQ

var_Q

VQ = VarQ

sigma_Q

σQ =
√

VarQ

rho_QP

ρQ =
Cov(Q,P)√
VarQVarP

rho_1QP

ρ1,QP =
1√

1− ρQP

rho_2QP

ρ2,QP = ρQP ρ1,QP

sigma_QP

σQP = Cov(Q,P)

h_Q As in slot h

z_PQ As in slot z

z_QP As in slot z

separation_subset A vector of indicators specifying the observations of the sample described by
this equation according to the separation rule of the model.

estimate 7

estimate Model estimation.

Description

All models are estimated using full information maximum likelihood. The equilibrium_model
can also be estimated using two-stage least squares. The maximum likelihood estimation is based
on mle2. If no starting values are provided, the function uses linear regression estimates as ini-
tializing values. The default optimization method is BFGS. For other alternatives see mle2. The
implementation of the two-stage least square estimation of the equilibrium_model is based on
systemfit.

Usage

estimate(object, ...)

S4 method for signature 'market_model'
estimate(
object,
gradient = "calculated",
hessian = "calculated",
standard_errors = "homoscedastic",
...

)

S4 method for signature 'equilibrium_model'
estimate(object, method = "BFGS", ...)

Arguments

object A model object.

... Named parameter used in the model’s estimation. These are passed further down
to the estimation call. For the equilibrium_model model, the parameters are
passed to systemfit, if the method is set to 2SLS, or to mle2 for any other
method. For the rest of the models, the parameters are passed to mle2.

gradient One of two potential options: "numerical" and "calculated". By default,
all the models are estimated using the analytic expressions of their likelihoods’
gradients.

hessian One of three potential options: "skip", "numerical", and "calculated". The
default is to use the "calculated" Hessian for the model that expressions are
available and the "numerical" Hessian in other cases. Calculated Hessian ex-
pressions are available for the basic and directional models.

standard_errors

One of three potential options: "homoscedastic", "heteroscedastic", or a
vector with variables names for which standard error clusters are to be cre-
ated. The default value is "homoscedastic". If the option "heteroscedastic"

8 formula,market_model-method

is passed, the variance-covariance matrix is calculated using heteroscedasticity
adjusted (Huber-White) standard errors. If the vector is supplied, the variance-
covariance matrix is calculated by grouping the score matrix based on the passed
variables.

method A string specifying the estimation method. When the passed value is among
Nelder-Mead, BFGS, CG, L-BFGS-B, SANN, and Brent, the model is estimated
using full information maximum likelihood based on mle2 functionality. When
2SLS is supplied, the model is estimated using two-stage least squares based
on systemfit. In this case, the function returns a list containing the first and
second stage estimates. The default value is BFGS.

Value

The object that holds the estimation result.

Functions

• estimate,market_model-method: Full information maximum likelihood estimation.

• estimate,equilibrium_model-method: Equilibrium model estimation.

Examples

initialize the model using the houses dataset
model <- new(

"diseq_deterministic_adjustment", # model type
subject = ID, time = TREND, quantity = HS, price = RM,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), # data
correlated_shocks = FALSE # let shocks be independent

)

estimate the model object (BFGS is used by default)
fit <- estimate(model)

estimate the model by specifying the optimization details passed to the optimizer.
fit <- estimate(model, control = list(maxit = 1e+6))

summarize results
summary(fit)

formula,market_model-method

Market model formula.

formula,market_model-method 9

Description

Market model formula.

Usage

S4 method for signature 'market_model'
formula(x)

Arguments

x A market model object.

Details

Market model formulas adhere to the following specification:

quantity | price | subject | time ~ demand | supply

where

• quantity The model’s traded (observed) quantity variable.

• price The model’s price variable.

• quantity The model’s subject (e.g. firm) identification variable.

• quantity The model’s time identification variable.

• demand The right hand side of the model’s demand equation.

• supply The right hand side of the model’s supply equation.

The diseq_stochastic_adjustment additionally specify price dynamics by appending the right
hand side of the equation at the end of the formula, i.e.

quantity | price | subject | time ~ demand | supply | price_dynamics

The left hand side part of the model formula specifies the elements that are needed for initializing
the model. The market models of the package prepare the data based on these four variables using
their respective identification assumptions. See market model classes for more details.

The function provides access to the formula used in model initialization.

Value

The model’s formula

Examples

model <- simulate_model(
"diseq_stochastic_adjustment", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.1, beta_d0 = 9.8, beta_d = c(0.3, -0.2), eta_d = c(0.6, -0.1),
supply coefficients

10 gradient

alpha_s = 0.1, beta_s0 = 6.1, beta_s = c(0.9), eta_s = c(-0.5, 0.2),
price equation coefficients
gamma = 1.2, beta_p0 = 3.1, beta_p = c(0.8)

),
seed = 31

)

access the model's formula
formula(model)

gradient Gradient

Description

Returns the gradient of the opposite of the log-likelihood evaluated at the passed parameters.

Usage

gradient(object, parameters)

S4 method for signature 'diseq_basic'
gradient(object, parameters)

S4 method for signature 'diseq_deterministic_adjustment'
gradient(object, parameters)

S4 method for signature 'diseq_directional'
gradient(object, parameters)

S4 method for signature 'diseq_stochastic_adjustment'
gradient(object, parameters)

S4 method for signature 'equilibrium_model'
gradient(object, parameters)

Arguments

object A model object.

parameters A vector of parameters at which the gradient is to be evaluated.

Value

The opposite of the model log likelihood’s gradient.

hessian 11

hessian Hessian

Description

Returns the hessian of the opposite of the log-likelihood evaluated at the passed parameters.

Usage

hessian(object, parameters)

S4 method for signature 'diseq_basic'
hessian(object, parameters)

S4 method for signature 'diseq_directional'
hessian(object, parameters)

Arguments

object A model object.

parameters A vector of parameters at which the hessian is to be evaluated.

Value

The opposite of the model log likelihood’s hessian.

houses Credit market data for US housing starts

Description

Credit market data for US housing starts

Usage

data(houses)

fair_houses()

Format

A data frame with 138 rows and 7 columns

12 houses

Details

The basic houses dataset (houses):
A dataset containing the monthly mortgage rates and other attributes of the US market for new,
non-farm houses from July 1958 to December 1969. The variables are as follows:

• DATE The date of the record.
• HS Private non-farm housing starts in thousands of units (Not seasonally adjusted).
• RM FHA Mortgage rate series on new homes in units of 100 (beginning-of-month Data).
• DSLA Savings capital (deposits) of savings and loan associations in millions of dollars.
• DMSB Deposits of mutual savings banks in millions of dollars.
• DHLB Advances of the federal home loan bank to savings and loan associations in million of

dollars.
• W Number of working days in month.

Generate the variables of the Fair & Jaffee (1972) dataset. (fair_houses):
Loads the houses dataset and creates the additional variables used by Fair & Jaffee (1972)
doi:10.2307/1913181. These are

• ID A dummy entity identifier that is always equal to one since the houses data have only a
time series component.

• DSF Flow of deposits in savings and loan associations and mutual savings banks in million of
dollars. Equal to

DSLAt +DMSBt − (DSLAt−1 +DMSBt−1).

• DHF Flow of advances of the federal home loan bank to savings and loan associations in
million of dollars. Equal to

DHLBt −DHLBt−1.

• MONTH The month of the date of the observation.
• L1RM FHA Mortgage rate series on new homes in units of 100, lagged by one date.
• L2RM FHA Mortgage rate series on new homes in units of 100, lagged by two dates.
• L1HS Private non-farm housing starts in thousands of units (Not seasonally adjusted), lagged

by one date.
• CSHS The cumulative sum of past housing starts. Used to proxy the stock of houses
• MA6DSF Moving average of order 6 of the flow of deposits in savings associations and loan

associations and mutual savings banks.
• MA3DHF Moving average of order 3 of the flow of advances of the federal home loan bank to

savings and loan associations.
• TREND A time trend variable.

Returns A modified version of the houses dataset.

Functions

• fair_houses: Generate Fair & Jaffee (1972) dataset

https://doi.org/10.2307/1913181

initialize_market_model 13

Source

• HS Economic Reports of the President

• RM Fair (1971)

• DSLA Federal Reserve Bulletins

• DMSB Federal Reserve Bulletins

• DHLB Federal Reserve Bulletins

• W Manually calculated

References

• Fair, R. C. (1971). A short-run forecasting model of the United States economy. Heath Lex-
ington Books.

• Fair, R. C., & Jaffee, D. M. (1972). Methods of Estimation for Markets in Disequilibrium.
Econometrica, 40(3), 497. doi:10.2307/1913181

• Maddala, G. S., & Nelson, F. D. (1974). Maximum Likelihood Methods for Models of Mar-
kets in Disequilibrium. Econometrica, 42(6), 1013. doi:10.2307/1914215

• Hwang, H. (1980). A test of a disequilibrium model. Journal of Econometrics, 12(3), 319–333.
doi:10.1016/03044076(80)900597

Examples

data(houses)
head(houses)
head(fair_houses())

initialize_market_model

Model initialization

Description

Model initialization

Usage

S4 method for signature 'diseq_basic'
initialize(
.Object,
quantity,
price,
demand,
supply,
subject,
time,
data,

https://fraser.stlouisfed.org/title/economic-report-president-45?browse=1940s
https://fairmodel.econ.yale.edu/RAYFAIR/pdf/1971EI.PDF
https://fraser.stlouisfed.org/title/federal-reserve-bulletin-62?browse=1910s
https://fraser.stlouisfed.org/title/federal-reserve-bulletin-62?browse=1910s
https://fraser.stlouisfed.org/title/federal-reserve-bulletin-62?browse=1910s
https://www.timeanddate.com/date/workdays.html
https://doi.org/10.2307/1913181
https://doi.org/10.2307/1914215
https://doi.org/10.1016/0304-4076%2880%2990059-7

14 initialize_market_model

correlated_shocks = TRUE,
verbose = 0

)

S4 method for signature 'diseq_deterministic_adjustment'
initialize(
.Object,
quantity,
price,
demand,
supply,
subject,
time,
data,
correlated_shocks = TRUE,
verbose = 0

)

S4 method for signature 'diseq_directional'
initialize(
.Object,
quantity,
price,
demand,
supply,
subject,
time,
data,
correlated_shocks = TRUE,
verbose = 0

)

S4 method for signature 'diseq_stochastic_adjustment'
initialize(
.Object,
quantity,
price,
demand,
supply,
price_dynamics,
subject,
time,
data,
correlated_shocks = TRUE,
verbose = 0

)

S4 method for signature 'equilibrium_model'

initialize_market_model 15

initialize(
.Object,
quantity,
price,
demand,
supply,
subject,
time,
data,
correlated_shocks = TRUE,
verbose = 0

)

Arguments

.Object The object to be Constructed.

quantity The quantity variable of the system.

price The price variable of the system.

demand A formula representation of the right hand side of the demand equation.

supply A formula representation of the right hand side of the supply equation.

subject The subject identifier of the data set.

time The time identifier of the data set.

data The data set.
correlated_shocks

Should the model be estimated using correlated shocks?

verbose Verbosity level.

price_dynamics A formula representation of the price equation.

Details

The following two subsections describe the common initialization steps of all market model classes.

Variable construction: The constructor prepares the model’s variables using the passed spec-
ifications. The specification variables are expected to be of type language. The right hand
side specifications of the system are expected to follow the syntax of formula. The construc-
tion of the model’s data uses the variables extracted by these specification. The demand vari-
ables are extracted by a formula that uses the quantity on the left hand side and the demand
on the right hand side of the formula. The supply variables are constructed by the quantity
and the supply inputs. In the case of the diseq_stochastic_adjustment model, the price dy-
namics’ variables are extracted using the price dynamics input. The price dynamics for the
diseq_stochastic_adjustment should contain only terms other than that of excess demand.
The excess demand term of the price equation is automatically generated by the constructor.

Data preparation: 1. If the passed data set contains rows with NA values, they are dropped. If
the verbosity level allows warnings, a warning is emitted reporting how many rows were dropped.

16 initialize_market_model

2. After dropping the rows, factor levels may be invalidated. If needed, the constructor readjusts
the factor variables by removing the unobserved levels. Factor indicators and interaction terms
are automatically created.
3. The primary key column is constructed by pasting the values of the columns of the subject and
time variables.
4. In the cases of the diseq_directional, diseq_deterministic_adjustment, and the diseq_stochastic_adjustment
models, a column with lagged prices is constructed. Since lagged prices are unavailable for the
observations of the first time point, these observations are dropped. If the verbosity level allows
the emission of information messages, the constructor prints the number of dropped observations.
5. In the cases of the diseq_directional and the diseq_stochastic_adjustment models, a
column with price differences is created.

Value

The initialized model.

Functions

• initialize,diseq_basic-method: Basic disequilibrium model base constructor

• initialize,diseq_deterministic_adjustment-method: Disequilibrium model with de-
terministic price adjustment constructor

• initialize,diseq_directional-method: Directional disequilibrium model base construc-
tor

• initialize,diseq_stochastic_adjustment-method: Disequilibrium model with stochas-
tic price adjustment constructor

• initialize,equilibrium_model-method: Equilibrium model constructor

Examples

simulated_data <- simulate_data(
"diseq_basic", 500, 3, # model type, observed entities, observed time points
-0.9, 8.9, c(0.3, -0.2), c(-0.03, -0.01), # demand coefficients
0.9, 6.2, c(0.03), c(-0.05, 0.02) # supply coefficients

)

initialize the model
model <- new(

"diseq_basic", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = P + Xs1 + X1 + X2,
simulated_data, # data
correlated_shocks = FALSE # use independent shocks

)

show(model)
simulated_data <- simulate_data(

model type, observed entities and time points
"diseq_deterministic_adjustment", 500, 3,
demand coefficients

initialize_market_model 17

-0.9, 8.9, c(0.03, -0.02), c(-0.03, -0.01),
supply coefficients
0.9, 4.2, c(0.03), c(0.05, 0.02),
price adjustment coefficient
1.4

)

initialize the model
model <- new(

"diseq_deterministic_adjustment", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = P + Xs1 + X1 + X2,
simulated_data, # data
correlated_shocks = TRUE # allow shocks to be correlated

)

show(model)

simulated_data <- simulate_data(
"diseq_directional", 500, 3, # model type, observed entities, observed time points
-0.2, 4.3, c(0.03, 0.02), c(0.03, 0.01), # demand coefficients
0.0, 4.0, c(0.03), c(0.05, 0.02) # supply coefficients

)

in the directional model prices cannot be included in both demand and supply
model <- new(

"diseq_directional", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = Xs1 + X1 + X2,
simulated_data, # data
correlated_shocks = TRUE # allow shocks to be correlated

)

show(model)

simulated_data <- simulate_data(
model type, observed entities and time points
"diseq_stochastic_adjustment", 500, 3,
demand coefficients
-0.1, 9.8, c(0.3, -0.2), c(0.6, 0.1),
supply coefficients
0.1, 7.1, c(0.9), c(-0.5, 0.2),
price adjustment coefficient
1.4, 3.1, c(0.8)

)

initialize the model
model <- new(

"diseq_stochastic_adjustment", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = P + Xs1 + X1 + X2,
price_dynamics = Xp1,
simulated_data, # data

18 logLik,market_fit-method

correlated_shocks = TRUE # allow shocks to be correlated
)

show(model)
simulated_data <- simulate_data(

"equilibrium_model", 500, 3, # model type, observed entities and time points
-0.9, 14.9, c(0.3, -0.2), c(-0.03, -0.01), # demand coefficients
0.9, 3.2, c(0.3), c(0.5, 0.02) # supply coefficients

)

initialize the model
model <- new(

"equilibrium_model", # model type
subject = id, time = date, quantity = Q, price = P,
demand = P + Xd1 + Xd2 + X1 + X2, supply = P + Xs1 + X1 + X2,
simulated_data, # data
correlated_shocks = TRUE # allow shocks to be correlated

)

show(model)

logLik,market_fit-method

Log likelihood of a fitted market model.

Description

Specializes the logLik function for the market models of the package estimated with full informa-
tion minimum likelihood. It returns NULL for the equilibrium model estimated with systemfit.

Usage

S4 method for signature 'market_fit'
logLik(object)

Arguments

object A fitted model object.

Value

A logLik object.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~

marginal_effects 19

RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+6)))

get the log likelihood object
logLik(fit)

marginal_effects Marginal effects

Description

Returns the estimated effect of a variable.

Usage

shortage_marginal(fit, variable, model, parameters)

shortage_probability_marginal(
fit,
variable,
aggregate = "mean",
model,
parameters

)

S4 method for signature 'missing,ANY,market_model,ANY'
shortage_marginal(variable, model, parameters)

S4 method for signature 'missing,ANY,ANY,market_model,ANY'
shortage_probability_marginal(variable, aggregate, model, parameters)

S4 method for signature 'missing,ANY,market_model,ANY'
shortage_marginal(variable, model, parameters)

S4 method for signature 'market_fit,ANY,missing,missing'
shortage_marginal(fit, variable)

S4 method for signature 'market_fit,ANY,ANY,missing,missing'
shortage_probability_marginal(fit, variable, aggregate)

Arguments

fit A fitted market model.

variable Variable name for which the effect is calculated.

20 marginal_effects

model A market model object.
parameters A vector of parameters.
aggregate Mode of aggregation. Valid options are "mean" (the default) and "at_the_mean".

Value

The estimated effect of the passed variable.

Functions

• shortage_marginal: Marginal effect on market system
Returns the estimated marginal effect of a variable on the market system. For a system variable
x with demand coefficient βd,x and supply coefficient βs,x, the marginal effect on the market
system is given by

Mx =
βd,x − βs,x√

σ2
d + σ2

s − 2ρdsσdσs
.

• shortage_probability_marginal: Marginal effect on shortage probabilities
Returns the estimated marginal effect of a variable on the probability of observing a shortage
state. The mean marginal effect on the shortage probability is given by

MxEφ

(
D − S√

σ2
d + σ2

s − 2rhoσdσs

)
and the marginal effect at the mean by

Mxφ

(
E

D − S√
σ2
d + σ2

s − 2rhoσdσs

)
where Mx is the marginal effect on the system, D is the demanded quantity, S the supplied
quantity, and φ is the standard normal density.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+5)))

mean marginal effect of variable "RM" on the shortage probabilities
#' shortage_probability_marginal(fit, "RM")

marginal effect at the mean of variable "RM" on the shortage probabilities
shortage_probability_marginal(fit, "CSHS", aggregate = "at_the_mean")

marginal effect of variable "RM" on the system
shortage_marginal(fit, "RM")

market_aggregation 21

market_aggregation Market side aggregation.

Description

Market side aggregation.

Usage

aggregate_demand(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
aggregate_demand(model, parameters)

aggregate_supply(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
aggregate_supply(model, parameters)

S4 method for signature 'market_fit,missing,missing'
aggregate_demand(fit)

S4 method for signature 'market_fit,missing,missing'
aggregate_supply(fit)

Arguments

fit A fitted market model object.

model A model object.

parameters A vector of model’s parameters.

Details

Calculates the sample’s aggregate demand or supply using the estimated coefficients of a fitted
model. Alternatively, the function calculates aggregates using a model and a set of parameters
passed separately. If the model’s data have multiple distinct subjects at each date, aggregation is
calculated over subjects per unique date. If the model has time series data, namely a single subject
per time point, aggregation is ululated over all time pints.

Value

The sum of the estimated demanded or supplied quantities evaluated at the given parameters.

Functions

• aggregate_demand: Demand aggregation.

• aggregate_supply: Supply aggregation.

22 market_descriptives

See Also

demanded_quantities, supplied_quantities

Examples

fit <- diseq_basic(
HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,

fair_houses(),
correlated_shocks = FALSE

)

get estimated aggregate demand
aggregate_demand(fit)

simulate the deterministic adjustment model
model <- simulate_model(

"diseq_deterministic_adjustment", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.6, beta_d0 = 9.8, beta_d = c(0.3, -0.2), eta_d = c(0.6, -0.1),
supply coefficients
alpha_s = 0.2, beta_s0 = 4.1, beta_s = c(0.9), eta_s = c(-0.5, 0.2),
price equation coefficients
gamma = 0.9

),
seed = 1356

)

estimate the model object
fit <- estimate(model)

get estimated aggregate demand
aggregate_demand(fit)

get estimated aggregate demand
aggregate_supply(fit)

market_descriptives Market side descriptive statistics

Description

Market side descriptive statistics

market_descriptives 23

Usage

demand_descriptives(object)

supply_descriptives(object)

S4 method for signature 'market_model'
demand_descriptives(object)

S4 method for signature 'market_model'
supply_descriptives(object)

Arguments

object A model object.

Details

Calculates and returns basic descriptive statistics for the model’s demand or supply side data. Factor
variables are excluded from the calculations. The function calculates and returns:

• nobs Number of observations.

• nmval Number of missing values.

• min Minimum observation.

• max Maximum observation.

• range Observations’ range.

• sum Sum of observations.

• median Median observation.

• mean Mean observation.

• mean_se Mean squared error.

• mean_ce Confidence interval bound.

• var Variance.

• sd Standard deviation.

• coef_var Coefficient of variation.

Value

A data tibble containing descriptive statistics.

Functions

• demand_descriptives: Demand descriptive statistics.

• supply_descriptives: Supply descriptive statistics.

24 market_models

Examples

initialize the basic model using the houses dataset
model <- new(

"diseq_basic", # model type
subject = ID, time = TREND, quantity = HS, price = RM,
demand = RM + TREND + W + CSHS + L1RM + L2RM + MONTH,
supply = RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), # data
correlated_shocks = FALSE # allow shocks to be correlated

)

get descriptive statistics of demand side variables
demand_descriptives(model)

get descriptive statistics of supply side variables
supply_descriptives(model)

market_models Market model classes

Description

diseq_basic: The basic disequilibrium model consists of three equations. Two of them are the
demand and supply equations. In addition, the model replaces the market clearing condition with
the short side rule. The model is estimated using full information maximum likelihood.

Dnt = X ′d,ntβd + ud,nt,

Snt = X ′s,ntβs + us,nt,

Qnt = min{Dnt, Snt}.

diseq_deterministic_adjustment: The disequilibrium model with deterministic price adjust-
ment consists of four equations. The two market equations, the short side rule and price evolution
equation. The first two equations are stochastic. The price equation is deterministic. The sample
is separated based on the sign of the price changes as in the diseq_directional model. The
model is estimated using full information maximum likelihood.

Dnt = X ′d,ntβd + Pntαd + ud,nt,

Snt = X ′s,ntβs + Pntαs + us,nt,

Qnt = min{Dnt, Snt},

∆Pnt =
1

γ
(Dnt − Snt) .

market_models 25

diseq_directional: The directional disequilibrium model consists of three equations and a sep-
aration rule. The market is described by a linear demand, a linear supply equation and the short
side rule. The separation rule splits the sample into states of excess supply and excess demand.
If a price change is positive at the time point of the observation, then the observation is classified
as being in an excess demand state. Otherwise, it is assumed that it represents an excess supply
state. The model is estimated using full information maximum likelihood.

Dnt = X ′d,ntβd + ud,nt,

Snt = X ′s,ntβs + us,nt,

Qnt = min{Dnt, Snt},

∆Pnt ≥ 0 =⇒ Dnt ≥ Snt.

diseq_stochastic_adjustment: The disequilibrium model with stochastic price adjustment is de-
scribed by a system of four equations. Three of of them form a stochastic linear system of market
equations equations coupled with a stochastic price evolution equation. The fourth equation is
the short side rule. In contrast to the deterministic counterpart, the model does not impose any
separation rule on the sample. It is estimated using full information maximum likelihood.

Dnt = X ′d,ntβd + Pntαd + ud,nt,

Snt = X ′s,ntβs + Pntαs + us,nt,

Qnt = min{Dnt, Snt},

∆Pnt =
1

γ
(Dnt − Snt) +X ′p,ntβp + up,nt.

equilibrium_model: The equilibrium model consists of thee equations. The demand, the sup-
ply and the market clearing equations. The model can be estimated using both full information
maximum likelihood and two-stage least squares.

Dnt = X ′d,ntβd + Pntαd + ud,nt,

Snt = X ′s,ntβs + Pntαs + us,nt,

Qnt = Dnt = Snt.

A necessary identification condition is that there is at least one control that is exclusively part of
the demand and one control that is exclusively part of the supply equation. In the first stage of
the two-stage least square estimation, prices are regressed on remaining controls from both the
demand and supply equations. In the second stage, the demand and supply equation is estimated
using the fitted prices instead of the observed.

26 market_quantities

Functions

• market_model-class: Base class for market models

• disequilibrium_model-class: Base class for disequilibrium models

• diseq_basic-class: Basic disequilibrium model with unknown sample separation.

• diseq_deterministic_adjustment-class: Disequilibrium model with deterministic price
dynamics.

• diseq_directional-class: Directional disequilibrium model with sample separation.

• diseq_stochastic_adjustment-class: Disequilibrium model with stochastic price dynam-
ics.

• equilibrium_model-class: Equilibrium model

Slots

logger Logger object.

subject_columns Column name for the subject identifier.

time_column Column name for the time point identifier.

explanatory_columns Vector of explanatory column names for all model’s equations.

data_columns Vector of model’s data column names. This is the union of the quantity, price and
explanatory columns.

columns Vector of primary key and data column names for all model’s equations.

model_tibble Model data tibble.

model_type_string Model type string description.

system Model’s system of equations.

See Also

initialize_market_model

market_quantities Estimated market quantities.

Description

Estimated market quantities.

market_quantities 27

Usage

demanded_quantities(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
demanded_quantities(model, parameters)

supplied_quantities(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
supplied_quantities(model, parameters)

S4 method for signature 'market_fit,missing,missing'
demanded_quantities(fit)

S4 method for signature 'market_fit,missing,missing'
supplied_quantities(fit)

Arguments

fit A fitted model object.

model A model object.

parameters A vector of model’s parameters.

Details

Calculates and returns the estimated demanded or supplied quantities for each observation at the
passed vector of parameters.

Value

A vector with the demanded quantities evaluated at the given parameter vector.

Functions

• demanded_quantities: Estimated demanded quantities.

• supplied_quantities: Estimated supplied quantities.

Examples

fit <- diseq_basic(
HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,

fair_houses(),
correlated_shocks = FALSE

)

get estimated demanded and supplied quantities

28 market_simulation

head(cbind(
demanded_quantities(fit),
supplied_quantities(fit)

))

market_simulation Market model simulation

Description

Market data and model simulation functionality based on the data generating process induced by
the market model specifications.

simulate_data: Returns a data tibble with simulated data from a generating process that
matches the passed model string. By default, the simulated observations of the controls are drawn
from a normal distribution.

simulate_model: Simulates a data tibble based on the generating process of the passed model
and uses it to initialize a model object. Data are simulated using the simulate_data function.

Usage

simulate_data(
model_type_string,
nobs = NA_integer_,
tobs = NA_integer_,
alpha_d = NA_real_,
beta_d0 = NA_real_,
beta_d = NA_real_,
eta_d = NA_real_,
alpha_s = NA_real_,
beta_s0 = NA_real_,
beta_s = NA_real_,
eta_s = NA_real_,
gamma = NA_real_,
beta_p0 = NA_real_,
beta_p = NA_real_,
sigma_d = 1,
sigma_s = 1,
sigma_p = 1,
rho_ds = 0,
rho_dp = 0,
rho_sp = 0,
seed = NA_integer_,
price_generator = function(n) stats::rnorm(n = n),
control_generator = function(n) stats::rnorm(n = n),
verbose = 0

market_simulation 29

)

S4 method for signature 'ANY'
simulate_data(
model_type_string,
nobs = NA_integer_,
tobs = NA_integer_,
alpha_d = NA_real_,
beta_d0 = NA_real_,
beta_d = NA_real_,
eta_d = NA_real_,
alpha_s = NA_real_,
beta_s0 = NA_real_,
beta_s = NA_real_,
eta_s = NA_real_,
gamma = NA_real_,
beta_p0 = NA_real_,
beta_p = NA_real_,
sigma_d = 1,
sigma_s = 1,
sigma_p = 1,
rho_ds = 0,
rho_dp = 0,
rho_sp = 0,
seed = NA_integer_,
price_generator = function(n) stats::rnorm(n = n),
control_generator = function(n) stats::rnorm(n = n),
verbose = 0

)

simulate_model(
model_type_string,
simulation_parameters,
seed = NA,
verbose = 0,
...

)

S4 method for signature 'ANY'
simulate_model(
model_type_string,
simulation_parameters,
seed = NA,
verbose = 0,
...

)

30 market_simulation

Arguments

model_type_string

Model type. It should be among equilibrium_model, diseq_basic, diseq_directional,
diseq_deterministic_adjustment, and diseq_stochastic_adjustment.

nobs Number of simulated entities.

tobs Number of simulated dates.

alpha_d Price coefficient of demand.

beta_d0 Constant coefficient of demand.

beta_d Coefficients of exclusive demand controls.

eta_d Demand coefficients of common controls.

alpha_s Price coefficient of supply.

beta_s0 Constant coefficient of supply.

beta_s Coefficients of exclusive supply controls.

eta_s Supply coefficients of common controls.

gamma Price equation’s stability factor.

beta_p0 Price equation’s constant coefficient.

beta_p Price equation’s control coefficients.

sigma_d Demand shock’s standard deviation.

sigma_s Supply shock’s standard deviation.

sigma_p Price equation shock’s standard deviation.

rho_ds Demand and supply shocks’ correlation coefficient.

rho_dp Demand and price shocks’ correlation coefficient.

rho_sp Supply and price shocks’ correlation coefficient.

seed Pseudo random number generator seed.
price_generator

Pseudo random number generator callback for prices. The default generator is
N(2.5, 0.25).

control_generator

Pseudo random number generator callback for non-price controls. The default
generator is N(2.5, 0.25).

verbose Verbosity level.
simulation_parameters

List of parameters used in model simulation. See the simulate_data function
for details.

... Additional parameters to be passed to the model’s constructor.

Value

simulate_data: The simulated data.

simulate_model: The simulated model.

maximize_log_likelihood 31

Functions

• simulate_data: Simulate model data.
• simulate_model: Simulate model.

maximize_log_likelihood

Maximize the log-likelihood.

Description

Maximizes the log-likelihood using the GSL implementation of the BFGS algorithm. This function
is primarily intended for advanced usage. The estimate functionality is a fast, analysis-oriented
alternative. If the GSL is not available, the function returns a trivial result list with status set equal
to -1. If the C++17 execution policies are available, the implementation of the optimization is
parallelized.

Usage

maximize_log_likelihood(
object,
start,
step,
objective_tolerance,
gradient_tolerance,
max_it

)

S4 method for signature 'equilibrium_model'
maximize_log_likelihood(
object,
start,
step,
objective_tolerance,
gradient_tolerance,
max_it

)

Arguments

object A model object.
start Initializing vector.
step Optimization step.
objective_tolerance

Objective optimization tolerance.
gradient_tolerance

Gradient optimization tolerance.
max_it Maximum allowed number of iterations.

https://www.gnu.org/software/gsl/doc/html/multimin.html
https://www.gnu.org/software/gsl/doc/html/multimin.html
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t

32 minus_log_likelihood

Value

A list with the optimization output.

See Also

estimate

Examples

model <- simulate_model(
"equilibrium_model", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.9, beta_d0 = 14.9, beta_d = c(0.3, -0.2), eta_d = c(-0.03, -0.01),
supply coefficients
alpha_s = 0.9, beta_s0 = 3.2, beta_s = c(0.03), eta_s = c(0.05, 0.02)

),
seed = 99

)

maximize the model's log-likelihood
mll <- maximize_log_likelihood(

model,
start = NULL, step = 1e-5,
objective_tolerance = 1e-4, gradient_tolerance = 1e-3, max_it = 1e+3

)
mll

minus_log_likelihood Minus log-likelihood.

Description

Returns the opposite of the log-likelihood. The likelihood functions are based on Maddala and
Nelson (1974) doi:10.2307/1914215. The likelihoods expressions that the function uses are derived
in Karapanagiotis (2020) doi:10.2139/ssrn.3525622. The function calculates the model’s log likeli-
hood by evaluating the log likelihood of each observation in the sample and summing the evaluation
results.

Usage

minus_log_likelihood(object, parameters)

S4 method for signature 'diseq_basic'
minus_log_likelihood(object, parameters)

https://doi.org/10.2307/1914215
https://doi.org/10.2139/ssrn.3525622

model_logger-class 33

S4 method for signature 'diseq_deterministic_adjustment'
minus_log_likelihood(object, parameters)

S4 method for signature 'diseq_directional'
minus_log_likelihood(object, parameters)

S4 method for signature 'diseq_stochastic_adjustment'
minus_log_likelihood(object, parameters)

S4 method for signature 'equilibrium_model'
minus_log_likelihood(object, parameters)

Arguments

object A model object.

parameters A vector of parameters at which the function is to be evaluated.

Value

The opposite of the sum of the likelihoods evaluated for each observation.

model_logger-class Logger class

Description

Logger class

Slots

verbosity Controls the intensity of output messages. Errors are always printed. Other than this, a
value of

1 prints warnings,

2 prints basic information,

3 prints verbose information and,

4 prints debug information.

34 nobs,market_model-method

model_name Model description.

Description

A unique identifying string for the model.

Usage

model_name(object)

S4 method for signature 'market_model'
model_name(object)

Arguments

object A model object.

Value

A string representation of the model.

nobs,market_model-method

Number of observations.

Description

Returns the number of observations that are used by an initialized model. The number of used
observations may differ from the numbers of observations of the data set that was passed to the
model’s initialization.

Usage

S4 method for signature 'market_model'
nobs(object)

Arguments

object A model object.

Value

The number of used observations.

plot,market_fit,ANY-method 35

plot,market_fit,ANY-method

Plots the fitted model.

Description

Displays a graphical illustration of the passed fitted model object. The function creates a scatter
plot of quantity-price pairs for the records corresponding to the given subject and time identifiers.
Then, it plots the average fitted demand and supply quantities for the same data subset letting prices
vary between the minimum and maximum price points observed in the data subset.

Usage

S4 method for signature 'market_fit,ANY'
plot(x, subject, time, ...)

Arguments

x A model object.

subject A vector of subject identifiers to be used in the visualization.

time A vector of time identifiers to be used in the visualization.

... Additional parameter to be used for styling the figure. Specifically xlab, ylab,
and main are currently handled by the function.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+6)))

show model's illustration plot
plot(fit)

36 scores

scores Likelihood scores.

Description

It calculates the gradient of the likelihood at the given parameter point for each observation in the
sample. It, therefore, returns an n x k matrix, where n denotes the number of observations in the
sample and k the number of estimated parameters. The ordering of the parameters is the same as
the one that is used in the summary of the results. The method can be called either using directly a
fitted model object, or by separately providing a model object and a parameter vector.

Usage

scores(object, parameters, fit = missing())

S4 method for signature 'diseq_basic,ANY,ANY'
scores(object, parameters)

S4 method for signature 'diseq_deterministic_adjustment,ANY,ANY'
scores(object, parameters)

S4 method for signature 'diseq_directional,ANY,ANY'
scores(object, parameters)

S4 method for signature 'diseq_stochastic_adjustment,ANY,ANY'
scores(object, parameters)

S4 method for signature 'equilibrium_model,ANY,ANY'
scores(object, parameters)

S4 method for signature 'missing,missing,market_fit'
scores(fit)

Arguments

object A model object.

parameters A vector with model parameters.

fit A fitted model object.

Value

The score matrix.

Examples

model <- simulate_model(

shortage_analysis 37

"diseq_basic", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.9, beta_d0 = 8.9, beta_d = c(0.6), eta_d = c(-0.2),
supply coefficients
alpha_s = 0.9, beta_s0 = 7.9, beta_s = c(0.03, 1.2), eta_s = c(0.1)

),
seed = 7523

)

estimate the model object (BFGS is used by default)
fit <- estimate(model)

Calculate the score matrix
head(scores(model, coef(fit)))

shortage_analysis Analysis of shortages

Description

Analysis of shortages

Usage

shortages(fit, model, parameters)

normalized_shortages(fit, model, parameters)

relative_shortages(fit, model, parameters)

shortage_probabilities(fit, model, parameters)

shortage_indicators(fit, model, parameters)

shortage_standard_deviation(fit, model, parameters)

S4 method for signature 'missing,market_model,ANY'
shortages(model, parameters)

S4 method for signature 'missing,market_model,ANY'
normalized_shortages(model, parameters)

S4 method for signature 'missing,market_model,ANY'
relative_shortages(model, parameters)

38 shortage_analysis

S4 method for signature 'missing,market_model,ANY'
shortage_probabilities(model, parameters)

S4 method for signature 'missing,market_model,ANY'
shortage_indicators(model, parameters)

S4 method for signature 'missing,market_model,ANY'
shortage_standard_deviation(model, parameters)

S4 method for signature 'missing,diseq_stochastic_adjustment,ANY'
shortage_standard_deviation(model, parameters)

S4 method for signature 'market_fit,missing,missing'
shortages(fit)

S4 method for signature 'market_fit,missing,missing'
normalized_shortages(fit)

S4 method for signature 'market_fit,missing,missing'
relative_shortages(fit)

S4 method for signature 'market_fit,missing,missing'
shortage_probabilities(fit)

S4 method for signature 'market_fit,missing,missing'
shortage_indicators(fit)

S4 method for signature 'market_fit,missing,missing'
shortage_standard_deviation(fit)

Arguments

fit A fitted model object.

model A market model object.

parameters A vector of parameters at which the shortages are evaluated.

Details

The following methods offer functionality for analyzing estimated shortages of the market models.
The methods can be called either using directly a fitted model object, or by separately providing a
model object and a parameter vector.

shortages: Returns the predicted shortages at a given point.

normalized_shortages: Returns the shortages normalized by the variance of the difference of
the shocks at a given point.

relative_shortages: Returns the shortages normalized by the supplied quantity at a given point.

shortage_analysis 39

shortage_probabilities: Returns the shortage probabilities, i.e. the probabilities of an observa-
tion coming from an excess demand state, at the given point.

shortage_indicators: Returns a vector of indicators (Boolean values) for each observation. An
element of the vector is TRUE for observations at which the estimated shortages are non-negative,
i.e. the market at in an excess demand state. The remaining elements are FALSE. The evaluation
of the shortages is performed using the passed parameter vector.

shortage_standard_deviation: Returns the variance of excess demand.

Value

A vector with the (estimated) shortages.

Functions

• shortages: Shortages.

• normalized_shortages: Normalized shortages.

• relative_shortages: Relative shortages.

• shortage_probabilities: Shortage probabilities.

• shortage_indicators: Shortage indicators.

• shortage_standard_deviation: Shortage variance.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+5)))

get estimated normalized shortages
head(normalized_shortages(fit))

get estimated relative shortages
head(relative_shortages(fit))

get the estimated shortage probabilities
head(shortage_probabilities(fit))

get the estimated shortage indicators
head(shortage_indicators(fit))

get the estimated shortages
head(shortages(fit))

get the estimated shortage variance

40 show,market_model-method

shortage_standard_deviation(fit)

show,market_model-method

Prints a short description of the model.

Description

Sends basic information about the model to standard output.

Usage

S4 method for signature 'market_model'
show(object)

Arguments

object A model object.

Examples

model <- simulate_model(
"diseq_stochastic_adjustment", list(

observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.1, beta_d0 = 9.8, beta_d = c(0.3, -0.2), eta_d = c(0.6, -0.1),
supply coefficients
alpha_s = 0.1, beta_s0 = 7.1, beta_s = c(0.9), eta_s = c(-0.5, 0.2),
price equation coefficients
gamma = 1.2, beta_p0 = 3.1, beta_p = c(0.8)

),
seed = 31

)

print short model information
show(model)

single_call_estimation 41

single_call_estimation

Single call estimation

Description

Single call estimation

Usage

diseq_basic(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

S4 method for signature 'formula'
diseq_basic(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

diseq_deterministic_adjustment(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

S4 method for signature 'formula'
diseq_deterministic_adjustment(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

diseq_directional(
specification,
data,

42 single_call_estimation

correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

S4 method for signature 'formula'
diseq_directional(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

diseq_stochastic_adjustment(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

S4 method for signature 'formula'
diseq_stochastic_adjustment(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

equilibrium_model(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

S4 method for signature 'formula'
equilibrium_model(
specification,
data,
correlated_shocks = TRUE,
verbose = 0,
estimation_options = list()

)

summaries 43

Arguments

specification The model’s formula.

data The data to be used with the model.
correlated_shocks

Should the model’s system entail correlated shocks? By default the argument is
set to TRUE.

verbose The verbosity with which operations on the model print messages. By default
the value is set to 0, which prints only errors.

estimation_options

A list with options to be used in the estimation call. See estimate for the
available options.

Details

The functions of this section combine model initialization and estimation into a single call. They
also provide a less verbose interface to the functionality of the package. The functions expect a for-
mula following the specification described in formula, a dataset, and optionally further initialization
(see model initialization) and estimation (see model estimation) options.

Each of these functions parses the passed formula, initializes the model specified by the function’s
name, fit the model to the passed data using the estimation options and returns fitted model.

Value

The fitted model.

Functions

• diseq_basic: Basic disequilibrium model.

• diseq_deterministic_adjustment: Disequilibrium model with deterministic price adjust-
ments.

• diseq_directional: Directional disequilibrium model.

• diseq_stochastic_adjustment: Disequilibrium model with stochastic price adjustments.

• equilibrium_model: Equilibrium model

summaries Model and fit summaries

Description

Methods that summarize models and their estimates.

market_model: Prints basic information about the passed model object. In addition to the output
of the show method, summary prints

• the number of observations,

44 summaries

• the number of observations in each equation for models with sample separation, and

• various categories of variables.

market_fit: Prints basic information about the passed model fit. In addition to the output of the
model’s summary method, the function prints basic estimation results. For a maximum likelihood
estimation, the function prints

• the used optimization method,

• the maximum number of allowed iterations,

• the relative convergence tolerance (see optim),

• the convergence status,

• the initializing parameter values,

• the estimated coefficients, their standard errors, Z values, and P values, and

• −2 logL evaluated at the maximum.

For a linear estimation of the equilibrium system, the function prints the estimation summary pro-
vided by systemfit in addition to the model’s summary output.

Usage

S4 method for signature 'market_model'
summary(object)

S4 method for signature 'market_fit'
summary(object)

Arguments

object An object to be summarized.

Functions

• summary,market_model-method: Summarizes the model.

• summary,market_fit-method: Summarizes the model’s fit.

Examples

model <- simulate_model(
"diseq_stochastic_adjustment", list(
observed entities, observed time points
nobs = 500, tobs = 3,
demand coefficients
alpha_d = -0.1, beta_d0 = 9.8, beta_d = c(0.3, -0.2), eta_d = c(0.6, -0.1),
supply coefficients
alpha_s = 0.1, beta_s0 = 5.1, beta_s = c(0.9), eta_s = c(-0.5, 0.2),
price equation coefficients
gamma = 1.2, beta_p0 = 3.1, beta_p = c(0.8)

),

system_classes 45

seed = 556
)

print model summary
summary(model)

system_classes System classes

Description

System classes

Details

Classes with data and functionality describing systems of models.

Functions

• system_base-class: System base class

• system_basic-class: Basic model’s system class

• system_deterministic_adjustment-class: Deterministic adjustment model’s system class

• system_directional-class: Directional system class

• system_equilibrium-class: Equilibrium model’s system class

• system_stochastic_adjustment-class: Stochastic adjustment model’s system class

Slots

demand Demand equation.

supply Supply equation.

correlated_shocks Boolean indicating whether the shock of the equations of the system are cor-
related.

sample_separation Boolean indicating whether the sample of the system is separated.

quantity_vector A vector with the system’s observed quantities.

price_vector A vector with the system’s observed prices.

rho Correlation coefficient of demand and supply shocks.
rho1

ρ1 =
1√

1− ρ

rho2

ρ2 = ρρ1

46 system_classes

lh Likelihood values for each observation.

gamma Excess demand coefficient.
delta

δ = γ + αd − αs

mu_P

µP = EP

var_P

VP = VarP

sigma_P

σP =
√
VP

h_P

hP =
P − µP

σP

lagged_price_vector A vector with the system’s observed prices lagged by one date.
mu_Q

µQ = EQ

var_Q

VQ = VarQ

sigma_Q

σQ =
√
VQ

h_Q

hQ =
Q− µQ

σQ

rho_QP

ρQP =
Cov(Q,P)√
VarQVarP

rho_1QP

ρ1,QP =
1√

1− ρ2QP

rho_2QP

ρ2,QP = ρQP ρ1,QP

system_classes 47

z_QP

zQP =
hQ − ρQPhP√

1− ρ2QP

z_PQ

zPQ =
hP − ρPQhQ√

1− ρ2PQ

price_equation Price equation.
zeta

ζ =
√

1− ρ2DS − ρ2DP − ρ2SP + 2ρDPρDSρSP

zeta_DD

ζDD = 1− ρ2SP

zeta_DS

ζDS = ρDS − ρDP ρSP

zeta_DP

ζDP = ρDP − ρDSρSP

zeta_SS

ζSS = 1− ρ2DP

zeta_SP

ζSP = ρSP − ρDSρDP

zeta_PP

ζPP = 1− ρ2DS

mu_D

µD = ED

var_D

VD = VarD

sigma_D

σD =
√
VD

mu_S

µS = ES

48 system_classes

var_S

VS = VarS

sigma_S

σS =
√
VS

sigma_DP

σDP = Cov(D,P)

sigma_DS

σDS = Cov(D,S)

sigma_SP

σSP = Cov(S, P)

rho_DS

ρDS =
Cov(D,S)√
VarDVarS

rho_DP

ρDP =
Cov(D,P)√
VarDVarP

rho_SP

ρSP =
Cov(S, P)√
VarSVarP

h_D

hD =
D − µD

σD

h_S

hS =
S − µS

σS

z_DP

zDP =
hD − ρDPhP√

1− ρ2DP

z_PD

zPD =
hP − ρPDhD√

1− ρ2PD

system_classes 49

z_SP

zSP =
hS − ρSPhP√

1− ρ2SP

z_PS

zPS =
hP − ρPShS√

1− ρ2PS

omega_D

ωD =
hDζDD − hSζDS − hP ζDP

ζDD

omega_S

ωS =
hSζSS − hSζSS − hP ζSP

ζSS

w_D

wD = −h
2
D − 2hDhP ρDP + h2P

2ζSS

w_S

wS = −h
2
S − 2hShP ρSP + h2P

2ζDD

psi_D

ψD = φ

(
ωD

ζ

)
psi_S

ψS = φ

(
ωS

ζ

)
Psi_D

ΨD = 1− Φ

(
ωD

ζ

)
Psi_S

ΨS = 1− Φ

(
ωS

ζ

)
g_D

gD =
ψD

ΨD

50 variable_names

g_S

gS =
ψS

ΨS

rho_ds Shadows rho in the diseq_stochastic_adjustment model

rho_dp Correlation of demand and price equations’ shocks.

rho_sp Correlation of supply and price equations’ shocks.

L_D Likelihood conditional on excess supply.

L_S Likelihood conditional on excess demand.

variable_names Variable name access

Description

Methods that provide access to the prefixed variable names that the package uses.

prefixed_const_variable: The constant coefficient name is constructed by concatenating the
equation prefix with CONST.

prefixed_independent_variables: The names of the independent variables are constructed by
concatenating the equation prefix with the column names of the data tibble.

prefixed_price_variable: The price variable name is constructed by concatenating the equation
prefix with the name of the price column.

prefixed_control_variables: The controls of the equation are the independent variables without
the price variable. Their names are constructed by concatenating the equation prefix with the name
of the price column.

prefixed_control_variables: The variance variable is constructed by concatenating the equa-
tion prefix with VARIANCE.

prefixed_quantity_variable: The quantity variable name is constructed by concatenating the
equation prefix with the name of the quantity column.

lagged_price_variable: The lagged price variable name is constructed by concatenating LAGGED
with the price variable name.

price_differences_variable: The price difference variable name is constructed by concatenat-
ing the price variable name with DIFF.

Usage

prefixed_const_variable(object)

prefixed_independent_variables(object)

prefixed_price_variable(object)

prefixed_control_variables(object)

variable_names 51

prefixed_variance_variable(object)

prefixed_quantity_variable(object)

S4 method for signature 'equation_base'
prefixed_const_variable(object)

S4 method for signature 'equation_base'
prefixed_independent_variables(object)

S4 method for signature 'equation_base'
prefixed_price_variable(object)

S4 method for signature 'equation_base'
prefixed_control_variables(object)

S4 method for signature 'equation_base'
prefixed_variance_variable(object)

S4 method for signature 'equation_base'
prefixed_quantity_variable(object)

lagged_price_variable(object)

price_differences_variable(object)

S4 method for signature 'system_base'
lagged_price_variable(object)

S4 method for signature 'system_base'
price_differences_variable(object)

Arguments

object An equation object.

Value

The prefixed variable name(s).

Functions

• prefixed_const_variable: Constant coefficient variable name.

• prefixed_independent_variables: Independent variable names.

• prefixed_price_variable: Price coefficient variable name.

• prefixed_control_variables: Control variable names.

• prefixed_variance_variable: Variance variable name.

52 vcov,market_fit-method

• prefixed_quantity_variable: Quantity variable name.

• lagged_price_variable: Lagged price variable name.

• price_differences_variable: Price differences variable name.

vcov,market_fit-method

Variance-covariance matrix for a fitted market model.

Description

Returns the variance-covariance matrix of the estimated coefficients for the fitted model. Specializes
the vcov function for fitted market models.

Usage

S4 method for signature 'market_fit'
vcov(object)

Arguments

object A fitted model object.

Value

A matrix of covariances for the estimated model coefficients.

Examples

estimate a model using the houses dataset
fit <- diseq_deterministic_adjustment(

HS | RM | ID | TREND ~
RM + TREND + W + CSHS + L1RM + L2RM + MONTH |
RM + TREND + W + L1RM + MA6DSF + MA3DHF + MONTH,
fair_houses(), correlated_shocks = FALSE,
estimation_options = list(control = list(maxit = 1e+6)))

access the variance-covariance matrix
head(vcov(fit))

Index

∗ datasets
houses, 11

aggregate_demand (market_aggregation),
21

aggregate_demand,market_fit,missing,missing-method
(market_aggregation), 21

aggregate_demand,missing,market_model,ANY-method
(market_aggregation), 21

aggregate_supply (market_aggregation),
21

aggregate_supply,market_fit,missing,missing-method
(market_aggregation), 21

aggregate_supply,missing,market_model,ANY-method
(market_aggregation), 21

coef,market_fit-method, 3

demand_descriptives
(market_descriptives), 22

demand_descriptives,market_model-method
(market_descriptives), 22

demanded_quantities
(market_quantities), 26

demanded_quantities,market_fit,missing,missing-method
(market_quantities), 26

demanded_quantities,missing,market_model,ANY-method
(market_quantities), 26

diseq, 4
diseq_basic, 4
diseq_basic (single_call_estimation), 41
diseq_basic,formula-method

(single_call_estimation), 41
diseq_basic-class (market_models), 24
diseq_deterministic_adjustment, 4, 16
diseq_deterministic_adjustment

(single_call_estimation), 41
diseq_deterministic_adjustment,formula-method

(single_call_estimation), 41

diseq_deterministic_adjustment-class
(market_models), 24

diseq_directional, 4, 16, 24
diseq_directional

(single_call_estimation), 41
diseq_directional,formula-method

(single_call_estimation), 41
diseq_directional-class

(market_models), 24
diseq_stochastic_adjustment, 4, 9, 15, 16,

50
diseq_stochastic_adjustment

(single_call_estimation), 41
diseq_stochastic_adjustment,formula-method

(single_call_estimation), 41
diseq_stochastic_adjustment-class

(market_models), 24
disequilibrium_model-class

(market_models), 24

equation_base-class (equation_classes),
5

equation_basic-class
(equation_classes), 5

equation_classes, 5
equation_deterministic_adjustment-class

(equation_classes), 5
equation_directional-class

(equation_classes), 5
equation_stochastic_adjustment-class

(equation_classes), 5
equilibrium_model, 4, 7
equilibrium_model

(single_call_estimation), 41
equilibrium_model,formula-method

(single_call_estimation), 41
equilibrium_model-class

(market_models), 24
estimate, 7, 31, 43

53

54 INDEX

estimate,equilibrium_model-method
(estimate), 7

estimate,market_model-method
(estimate), 7

fair_houses (houses), 11
formula, 15, 43
formula,market_model-method, 8

gradient, 10
gradient,diseq_basic-method (gradient),

10
gradient,diseq_deterministic_adjustment-method

(gradient), 10
gradient,diseq_directional-method

(gradient), 10
gradient,diseq_stochastic_adjustment-method

(gradient), 10
gradient,equilibrium_model-method

(gradient), 10

hessian, 11
hessian,diseq_basic-method (hessian), 11
hessian,diseq_directional-method

(hessian), 11
houses, 4, 11, 12

initialize,diseq_basic-method
(initialize_market_model), 13

initialize,diseq_deterministic_adjustment-method
(initialize_market_model), 13

initialize,diseq_directional-method
(initialize_market_model), 13

initialize,diseq_stochastic_adjustment-method
(initialize_market_model), 13

initialize,equilibrium_model-method
(initialize_market_model), 13

initialize_market_model, 13

lagged_price_variable (variable_names),
50

lagged_price_variable,system_base-method
(variable_names), 50

logLik, 18
logLik,market_fit-method, 18

marginal_effects, 19
market model classes, 9
market_aggregation, 21
market_descriptives, 22

market_model-class (market_models), 24
market_model_formula

(formula,market_model-method),
8

market_models, 24
market_quantities, 26
market_simulation, 28
maximize_log_likelihood, 31
maximize_log_likelihood,equilibrium_model-method

(maximize_log_likelihood), 31
minus_log_likelihood, 32
minus_log_likelihood,diseq_basic-method

(minus_log_likelihood), 32
minus_log_likelihood,diseq_deterministic_adjustment-method

(minus_log_likelihood), 32
minus_log_likelihood,diseq_directional-method

(minus_log_likelihood), 32
minus_log_likelihood,diseq_stochastic_adjustment-method

(minus_log_likelihood), 32
minus_log_likelihood,equilibrium_model-method

(minus_log_likelihood), 32
mle2, 7, 8
model estimation, 43
model initialization, 43
model_logger-class, 33
model_name, 34
model_name,market_model-method

(model_name), 34

nobs,market_model-method, 34
normalized_shortages

(shortage_analysis), 37
normalized_shortages,market_fit,missing,missing-method

(shortage_analysis), 37
normalized_shortages,missing,market_model,ANY-method

(shortage_analysis), 37

optim, 44

plot,market_fit,ANY-method, 35
prefixed_const_variable

(variable_names), 50
prefixed_const_variable,equation_base-method

(variable_names), 50
prefixed_control_variables

(variable_names), 50
prefixed_control_variables,equation_base-method

(variable_names), 50

INDEX 55

prefixed_independent_variables
(variable_names), 50

prefixed_independent_variables,equation_base-method
(variable_names), 50

prefixed_price_variable
(variable_names), 50

prefixed_price_variable,equation_base-method
(variable_names), 50

prefixed_quantity_variable
(variable_names), 50

prefixed_quantity_variable,equation_base-method
(variable_names), 50

prefixed_variance_variable
(variable_names), 50

prefixed_variance_variable,equation_base-method
(variable_names), 50

price_differences_variable
(variable_names), 50

price_differences_variable,system_base-method
(variable_names), 50

relative_shortages (shortage_analysis),
37

relative_shortages,market_fit,missing,missing-method
(shortage_analysis), 37

relative_shortages,missing,market_model,ANY-method
(shortage_analysis), 37

scores, 36
scores,diseq_basic,ANY,ANY-method

(scores), 36
scores,diseq_deterministic_adjustment,ANY,ANY-method

(scores), 36
scores,diseq_directional,ANY,ANY-method

(scores), 36
scores,diseq_stochastic_adjustment,ANY,ANY-method

(scores), 36
scores,equilibrium_model,ANY,ANY-method

(scores), 36
scores,missing,missing,market_fit-method

(scores), 36
shortage_analysis, 37
shortage_indicators

(shortage_analysis), 37
shortage_indicators,market_fit,missing,missing-method

(shortage_analysis), 37
shortage_indicators,missing,market_model,ANY-method

(shortage_analysis), 37
shortage_marginal (marginal_effects), 19

shortage_marginal,market_fit,ANY,missing,missing-method
(marginal_effects), 19

shortage_marginal,missing,ANY,market_model,ANY-method
(marginal_effects), 19

shortage_probabilities
(shortage_analysis), 37

shortage_probabilities,market_fit,missing,missing-method
(shortage_analysis), 37

shortage_probabilities,missing,market_model,ANY-method
(shortage_analysis), 37

shortage_probability_marginal
(marginal_effects), 19

shortage_probability_marginal,market_fit,ANY,ANY,missing,missing-method
(marginal_effects), 19

shortage_probability_marginal,missing,ANY,ANY,market_model,ANY-method
(marginal_effects), 19

shortage_standard_deviation
(shortage_analysis), 37

shortage_standard_deviation,market_fit,missing,missing-method
(shortage_analysis), 37

shortage_standard_deviation,missing,diseq_stochastic_adjustment,ANY-method
(shortage_analysis), 37

shortage_standard_deviation,missing,market_model,ANY-method
(shortage_analysis), 37

shortages (shortage_analysis), 37
shortages,market_fit,missing,missing-method

(shortage_analysis), 37
shortages,missing,market_model,ANY-method

(shortage_analysis), 37
show, 43
show,market_model-method, 40
simulate_data, 28, 30
simulate_data (market_simulation), 28
simulate_data,ANY-method

(market_simulation), 28
simulate_model (market_simulation), 28
simulate_model,ANY-method

(market_simulation), 28
single_call_estimation, 41
summaries, 43
summary,market_fit-method (summaries),

43
summary,market_model-method

(summaries), 43
supplied_quantities

(market_quantities), 26
supplied_quantities,market_fit,missing,missing-method

(market_quantities), 26

56 INDEX

supplied_quantities,missing,market_model,ANY-method
(market_quantities), 26

supply_descriptives
(market_descriptives), 22

supply_descriptives,market_model-method
(market_descriptives), 22

system_base-class (system_classes), 45
system_basic-class (system_classes), 45
system_classes, 45
system_deterministic_adjustment-class

(system_classes), 45
system_directional-class

(system_classes), 45
system_equilibrium-class

(system_classes), 45
system_stochastic_adjustment-class

(system_classes), 45
systemfit, 7, 8, 18, 44

variable_names, 50
vcov, 52
vcov,market_fit-method, 52

	coef,market_fit-method
	diseq
	equation_classes
	estimate
	formula,market_model-method
	gradient
	hessian
	houses
	initialize_market_model
	logLik,market_fit-method
	marginal_effects
	market_aggregation
	market_descriptives
	market_models
	market_quantities
	market_simulation
	maximize_log_likelihood
	minus_log_likelihood
	model_logger-class
	model_name
	nobs,market_model-method
	plot,market_fit,ANY-method
	scores
	shortage_analysis
	show,market_model-method
	single_call_estimation
	summaries
	system_classes
	variable_names
	vcov,market_fit-method
	Index

