
Package ‘dtrackr’
July 5, 2022

Title Track your Data Pipelines

Version 0.2.4

Description Track and
document 'dplyr' data pipelines. As you filter, mutate, and join your
way through a data set, 'dtrackr' seamlessly keeps track of your data
flow and makes publication ready documentation of a data pipeline simple.

License MIT + file LICENSE

Language en-GB

Imports dplyr, glue, htmltools, magrittr, rlang, rsvg, stringr,
tibble, tidyr, utils, V8, fs, purrr, base64enc

Suggests here, knitr, magick, rmarkdown, staplr, tidyverse, devtools,
testthat (>= 2.1.0), rstudioapi

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Depends R (>= 2.10)

NeedsCompilation no

Author Robert Challen [aut, cre] (<https://orcid.org/0000-0002-5504-7768>)

Maintainer Robert Challen <rc538@exeter.ac.uk>

Repository CRAN

Date/Publication 2022-07-05 21:00:09 UTC

R topics documented:
add_count . 3
add_tally . 5
anti_join.trackr_df . 6
arrange.trackr_df . 7
bind_rows . 8

1

https://orcid.org/0000-0002-5504-7768

2 R topics documented:

capture_exclusions . 9
comment . 10
count_subgroup . 11
distinct.trackr_df . 12
dot2svg . 13
excluded . 13
exclude_all . 14
filter.trackr_df . 15
flowchart . 16
full_join.trackr_df . 18
group_by.trackr_df . 19
group_modify.trackr_df . 20
history . 22
ILPD . 23
include_any . 24
inner_join.trackr_df . 25
landscape . 26
left_join.trackr_df . 27
mutate.trackr_df . 28
pause . 29
pivot_longer.trackr_df . 29
pivot_wider.trackr_df . 32
plot.trackr_graph . 34
print.trackr_graph . 35
p_add_count . 36
p_add_tally . 37
p_anti_join . 38
p_arrange . 39
p_bind_rows . 40
p_capture_exclusions . 41
p_clear . 42
p_comment . 43
p_copy . 44
p_count_if . 44
p_count_subgroup . 45
p_distinct . 46
p_excluded . 47
p_exclude_all . 48
p_filter . 49
p_flowchart . 50
p_full_join . 51
p_get . 52
p_get_as_dot . 53
p_group_by . 54
p_group_modify . 55
p_include_any . 56
p_inner_join . 58
p_left_join . 59

add_count 3

p_mutate . 60
p_pause . 61
p_pivot_longer . 62
p_pivot_wider . 65
p_relocate . 67
p_rename . 68
p_rename_with . 69
p_resume . 70
p_right_join . 70
p_select . 72
p_semi_join . 73
p_set . 74
p_status . 75
p_summarise . 76
p_tagged . 77
p_track . 78
p_transmute . 79
p_ungroup . 80
p_untrack . 81
relocate.trackr_df . 81
rename.trackr_df . 82
rename_with.trackr_df . 83
resume . 84
right_join.trackr_df . 84
save_dot . 86
select.trackr_df . 87
semi_join.trackr_df . 88
status . 89
std_size . 90
summarise.trackr_df . 91
tagged . 92
track . 93
transmute.trackr_df . 94
ungroup.trackr_df . 95
untrack . 96

Index 97

add_count Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),

4 add_count

dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

add_count(
.data,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will error,
and require you to specify the name.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::add_count()

add_tally 5

add_tally Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

add_tally(
.data,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will error,
and require you to specify the name.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

6 anti_join.trackr_df

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::add_tally()

anti_join.trackr_df Anti join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::anti_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
anti_join(
x,
y,
by = NULL,
copy = FALSE,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} not matched"),

.headline = "Semi join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector

arrange.trackr_df 7

to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

... Other parameters passed onto methods.

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::anti_join()

arrange.trackr_df Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

S3 method for class 'trackr_df'
arrange(
.data,
...,
.by_group = FALSE,
.messages = "",
.headline = "",
.tag = NULL

)

8 bind_rows

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.by_group If TRUE, will sort first by grouping variable. Applies to grouped data frames
only.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::arrange()

bind_rows Union of two or more data sets

Description

This merges the history of 2 dataframes and binds the rows. It calculates the total number of result-
ing rows as .count.out in other terms it performs exactly the same operation as dplyr::bind_rows.
See dplyr::bind_rows().

Usage

bind_rows(
...,
.id = NULL,
.messages = "{.count.out} in union",
.headline = "Union"

)

Arguments

... the data frames to bind

capture_exclusions 9

.id Data frame identifier.
When .id is supplied, a new column of identifiers is created to link each row
to its original data frame. The labels are taken from the named arguments to
bind_rows(). When a list of data frames is supplied, the labels are taken from
the names of the list. If no names are found a numeric sequence is used instead.

.messages • a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline • a glue spec. The glue code can use any global variable, or {.count.out}

Value

the logical union of the dataframes with the history graph updated.

See Also

dplyr::bind_rows()

Examples

library(dplyr)
bind_rows(iris %>% comment("one"), iris %>% comment("two")) %>% history()

capture_exclusions Start capturing exclusions on a tracked dataframe.

Description

Start capturing exclusions on a tracked dataframe.

Usage

capture_exclusions(.data, .capture = TRUE)

Arguments

.data • a tracked dataframe

.capture • Should we capture exclusions (things removed from the data set). This is
useful for debugging data issues but comes at a significant cost. Defaults to
the value of getOption("dtrackr.exclusions") or FALSE.

Value

the .data dataframe with the exclusions flag set (or cleared if .capture=FALSE).

Examples

library(dplyr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% filter(Species!="versicolor") %>% history()

10 comment

comment Add a generic comment to the dtrackr history graph

Description

A comment can be any kind fo note and is added once for every current grouping as defined by the
.message field. It can be made context specific by including variables such as {.count} and {.total}
in .message which refer to the grouped and ungrouped counts at this current stage of the pipeline
for example. It can also pull in any global variable.

Usage

comment(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = (.type == "exclusion"),
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

.messages • a character vector of glue specifications. A glue specification can refer
to any grouping variables of .data, or any variables defined in the calling
environment, the {.total} of all rows, the {.count} variable which is the
count in each group and {.strata} a description of the group

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment, or the {.total} variable which
is nrow(.data)and {.strata}

.type • one of "info","...,"exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
FALSE).

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the same .data dataframe with the history graph updated with the comment

Examples

library(dplyr)
iris %>% track() %>% comment("hello {.total} rows") %>% history()

count_subgroup 11

count_subgroup Add a subgroup count to the dtrackr history graph

Description

A frequent use case for more detailed description is to have a subgroup count within a flowchart.
This works best for factor subgroup columns but other data will be converted to a factor automati-
cally. The count of the items in each subgroup is added as a new stage in the flowchart.

Usage

count_subgroup(
.data,
.subgroup,
...,
.messages = .defaultCountSubgroup(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL,
.maxsubgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data • a dataframe which may be grouped

.subgroup • a column with a small number of levels (e.g.)

... • additional parameters will be passed to factor(subgroup,...) to control lev-
els, ordering, etc.

.messages • a character vector of glue specifications. A glue specification can refer to
anything from the calling environment and .name for the subgroup name,
.count for the subgroup count, .subtotal for the current grouping count and
.total for the whole count

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment

.type • one of "info","exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
FALSE).

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

.maxsubgroups • the maximum number of discrete values allowed is configurable with options("dtrackr.max_supported_groupings"=XX).
The default is 16.

Value

the same .data dataframe with the history graph updated with a subgroup count as a new stage

12 distinct.trackr_df

Examples

library(dplyr)
ILPD %>% track() %>% group_by(Case_or_Control) %>% count_subgroup(Gender) %>% history()

distinct.trackr_df Distinct values of data

Description

Distinct acts in the same way as in dplyr::distinct. Prior to the operation the size of the group
is calculated {.count.in} and after the operation the output size {.count.out} The group {.strata} is
also available (if grouped) for reporting See dplyr::distinct().

Usage

S3 method for class 'trackr_df'
distinct(
.data,
.f,
...,
.keep = FALSE,
.messages = "removing {.count.in-.count.out} duplicates",
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

.f a function as expected by dplyr::group_modify e.g. function(d,g,...) ...do some-
thing with d and return a dataframe...

... additional parameters for .f.

.keep • are the grouping variables kept in d, or split out to g (the default)

.messages • a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline • a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with distinct values and history graph updated.

dot2svg 13

See Also

dplyr::distinct()

Examples

library(dplyr)
tmp = bind_rows(iris %>% track(), iris %>% track() %>% filter(Petal.Length > 5))
tmp %>% group_by(Species) %>% distinct() %>% history()

dot2svg Convert Graphviz dot content to a SVG

Description

Convert a graphviz dot digraph as string to SVG as string

Usage

dot2svg(dot)

Arguments

dot • a graphviz dot string

Value

the SVG as a string

Examples

dot2svg("digraph { A->B }")

excluded Get the dtrackr excluded data record

Description

Get the dtrackr excluded data record

Usage

excluded(.data, simplify = TRUE)

Arguments

.data • a dataframe which may be grouped

simplify • return a single summary dataframe of all exclusions.

14 exclude_all

Value

a new dataframe of the excluded data up to this point in the workflow. This dataframe is by default
flattened, but if .simplify=FALSE has a nested structure containing records excluded at each part
of the pipeline.

Examples

library(dplyr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% exclude_all(

Petal.Length > 5.8 ~ "{.excluded} long ones",
Petal.Length < 1.3 ~ "{.excluded} short ones",
.stage = "petal length exclusion"

) %>% excluded()

exclude_all Exclude all items matching one or more criteria

Description

Apply a set of filters and summarise the actions of the filter to the dtrackr history graph Because
of the ... filter specification, all parameters MUST BE NAMED. The filters work in an additive
manner, i.e. the results excluding all things that match any of the criteria. If na.rm = TRUE they
also remove anything that cannot be evaluated by a criteria.

Usage

exclude_all(
.data,
...,
.headline = .defaultHeadline(),
na.rm = FALSE,
.type = "exclusion",
.asOffshoot = TRUE,
.stage = ""

)

Arguments

.data • a dataframe which may be grouped

... • a dplyr filter specification as a formula where the RHS is a glue specifi-
cation, defining the message. This can refer to grouping variables vari-
ables from the environment and {.excluded} and {.matched} or {.missing}
(excluded = matched+missing), {.count} and {.total} - group and overall
counts respectively, e.g. "excluding {.matched} items and {.missing} with
missing values".

filter.trackr_df 15

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment

na.rm • (default FALSE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type • default "exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
TRUE).

.stage • a name for this step in the pathway

Value

the filtered .data dataframe with the history graph updated with the summary of excluded items as
a new offshoot stage

Examples

library(dplyr)
iris %>% track() %>% capture_exclusions() %>% exclude_all(

Petal.Length > 5 ~ "{.excluded} long ones",
Petal.Length < 2 ~ "{.excluded} short ones"

) %>% history()

filter.trackr_df Filtering data

Description

Filter acts in the same way as DPLYR. Prior to the operation the size of the group is calculated
{.count.in} and after the operation the output size {.count.out}. The group {.strata} is also available
(if grouped) for reporting. See dplyr::filter().

Usage

S3 method for class 'trackr_df'
filter(
.data,
...,
.preserve = FALSE,
.messages = "excluded {.excluded} items",
.headline = .defaultHeadline(),
.type = "exclusion",
.asOffshoot = (.type == "exclusion"),
.stage = "",
.tag = NULL

)

16 flowchart

Arguments

.data • a dataframe which may be grouped

... the filter criteria

.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

.messages • a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline • a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type • the format type of the action - typically an exclusion

.asOffshoot • if the type is exclusion, asOffshoot places the information box outside of
the main flow, as an exclusion.

.stage • a name for this step in the pathway

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with history graph updated

See Also

dplyr::filter()

Examples

library(dplyr)
tmp = iris %>% track() %>% group_by(Species)
tmp %>% filter(Petal.Length > 5) %>% history()

flowchart Flowchart output

Description

Generate a flowchart of the history of the dataframe, with all the transformations as stages in the
flowchart.

flowchart 17

Usage

flowchart(
.data,
filename = NULL,
size = std_size$half,
maxWidth = size$width,
maxHeight = size$height,
rot = size$rot,
formats = c("dot", "png", "pdf", "svg"),
defaultToHTML = TRUE,
...

)

Arguments

.data • the tracked dataframes

filename • a filename (without extension) which will be where the formatted flowcharts
are saved

size • a list of length and width in inches e.g. a std_size

maxWidth • a width in inches is size is not defined

maxHeight • a height in inches if size is not defined

rot • an angle of rotation for the saved file if size is not defined

formats • some of "pdf","dot","svg","png","ps"

defaultToHTML • if the correct output format is not easy to determine from the context, default
providing HTML or to embedding the PNG

... • other params passed onto p_get_as_dot, notable ones are fill, fontsize, colour,
size, maxWidth and maxHeight

Value

the nature of the flowchart output depends on the context in which the function is called. It will be
some form of browse-able html output if called from an interactive session or a PNG/PDG link if in
knitr and knitting latex or word type outputs,

Examples

library(dplyr)
tmp = iris %>% track() %>% comment(.tag = "step1") %>% filter(Species!="versicolor")
tmp %>% group_by(Species) %>% comment(.tag="step2") %>% flowchart()

18 full_join.trackr_df

full_join.trackr_df Full join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::full_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Full join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

group_by.trackr_df 19

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::full_join()

group_by.trackr_df Stratifying your analysis

Description

Grouping a data set acts in the normal way. When tracking a dataframe sometimes a group_by()
operation will create a lot of groups. This happens for example if you are doing a group_by(),
summarise() step that is aggregating data on a fine scale, e.g. by day in a timeseries. This is
generally a terrible idea when tracking a dataframe as the resulting flowchart will have many many
branches. dtrackr will detect this issue and pause tracking the dataframe with a warning. It is up to
the user to the resume() tracking when the large number of groups have been resolved e.g. using a
dplyr::ungroup(). This limit is configurable with options("dtrackr.max_supported_groupings"=XX).
The default is 16. See dplyr::group_by().

Usage

S3 method for class 'trackr_df'
group_by(
.data,
...,
.add = FALSE,
.drop = dplyr::group_by_drop_default(.data),
.messages = "stratify by {.cols}",
.headline = NULL,
.tag = NULL,
.maxgroups = .defaultMaxSupportedGroupings()

)

20 group_modify.trackr_df

Arguments

.data • a dataframe which may be grouped

... a set of dplyr column expressions.

.add When FALSE, the default, group_by() will override existing groups. To add to
the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

.drop Drop groups formed by factor levels that don’t appear in the data? The default
is TRUE except when .data has been previously grouped with .drop = FALSE.
See group_by_drop_default() for details.

.messages • a set of glue specs. The glue code can use any global variable, or {.cols}
which is the columns that are being grouped by.

.headline • a headline glue spec. The glue code can use any global variable, or {.cols}.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

.maxgroups • the maximum number of subgroups allowed before the tracking is paused.

Value

the .data but grouped.

See Also

dplyr::group_by()

Examples

library(dplyr)
tmp = iris %>% track() %>% group_by(Species, .messages="stratify by {.cols}")
tmp %>% comment("{.strata}") %>% history()

group_modify.trackr_df

Group-wise modification of data and complex operations

Description

Group modifying a data set acts in the normal way. The internal mechanics of the modify func-
tion are opaque to the history. This means these can be used to wrap any unsupported opera-
tion without losing the history (e.g. df %>% track() %>% group_modify(function(d,...) { d
%>% unsupported_operation() })) Prior to the operation the size of the group is calculated
{.count.in} and after the operation the output size {.count.out} The group {.strata} is also avail-
able (if grouped) for reporting See dplyr::group_modify().

group_modify.trackr_df 21

Usage

S3 method for class 'trackr_df'
group_modify(
.data,
.f,
...,
.keep = FALSE,
.messages = NULL,
.headline = .defaultHeadline(),
.type = "modify",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

.f a function as expected by dplyr::group_modify e.g. function(d,g,...) ...do some-
thing with d and return a dataframe...

... additional parameters for .f.

.keep • are the grouping variables kept in d, or split out to g (the default)

.messages • a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline • a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type • default "modify": used to define formatting

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the transformed .data dataframe with the history graph updated.

See Also

dplyr::group_modify()

Examples

library(dplyr)
tmp = iris %>% track() %>% group_by(Species)
tmp %>% group_modify(

function(d,g,...) { return(tibble::tibble(x=runif(10))) },
.messages="{.count.in} in, {.count.out} out"

) %>% history()

22 history

history Get the dtrackr history graph

Description

This provides the raw history graph and is not really intended for mainstream use. The internal
structure of the graph is explained below. print and plot S3 methods exist for the dtrackr history
graph.

Usage

history(.data)

Arguments

.data • a dataframe which may be grouped

Value

the history graph. This is a list, of class trackr_graph, containing the following named items:

• excluded - the data items that have been excluded thus far as a nested dataframe

• tags - a dataframe of tag-value pairs containing the summary of the data at named points in
the data flow (see tagged())

• nodes - a dataframe of the nodes of the flow chart

• edges - an edgelist (as a dataframe) of the relationships between the nodes in the flow chart

• head - the current most recent nodes added into the graph as a dataframe.

The format of this data may grow over time but these fields are unlikely to be changed.

Examples

library(dplyr)
graph = iris %>% track() %>% comment("A comment") %>% history()
ls(graph)

ILPD 23

ILPD Indian Liver Patient Dataset

Description

This data set contains 416 liver patient records and 167 non liver patient records. The data set was
collected from north east of Andhra Pradesh, India. Selector is a class label used to divide into
groups(liver patient or not). This data set contains 441 male patient records and 142 female patient
records.

Usage

ILPD

Format

A data frame with 583 rows and 11 variables:

Age
Gender
Total_Bilirubin
Direct_Bilirubin
Alkaline_Phosphatase
Alamine_Aminotransferase
Aspartate_Aminotransferase
Total_Protein
Albumin
Albumin_Globulin_Ratio
Case_or_Control Selector field used to split the data into two sets (labeled by the experts)

Details

1. Bendi Venkata Ramana, Prof. M. S. Prasad Babu and Prof. N. B. Venkateswarlu, A Crit-
ical Comparative Study of Liver Patients from USA and INDIA: An Exploratory Analysis,
International Journal of Computer Science Issues, ISSN :1694-0784, May 2012.

2. Bendi Venkata Ramana, Prof. M. S. Prasad Babu and Prof. N. B. Venkateswarlu, A Critical
Study of Selected Classification Algorithms for Liver Disease Diagnosis, International Journal
of Database Management Systems (IJDMS), Vol.3, No.2, ISSN : 0975-5705, PP 101-114,
May 2011.

3. Dua, D. and Graff, C. (2019). UCI Machine Learning Repository http://archive.ics.
uci.edu/ml/. Irvine, CA: University of California, School of Information and Computer
Science.

Source

http://archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset)

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset)

24 include_any

include_any Include any items matching a criteria

Description

Apply a set of inclusion criteria and dplyr::summarise the actions of the filter to the dtrackr history
graph Because of the ... filter specification, all parameters MUST BE NAMED. The criteria work
in an alternative manner, i.e. the results include anything that match any of the criteria. If na.rm =
TRUE they also keep anything that cannot be evaluated by a criteria - that may be true.

Usage

include_any(
.data,
...,
.headline = .defaultHeadline(),
na.rm = TRUE,
.type = "inclusion",
.asOffshoot = FALSE

)

Arguments

.data • a dataframe which may be grouped

... • a dplyr filter specification as a formula where the RHS is a glue specifi-
cation, defining the message. This can refer to grouping variables, vari-
ables from the environment and {.included} and {.matched} or {.missing}
(included = matched+missing), {.count} and {.total} - group and overall
counts respectively, e.g. "excluding {.matched} items and {.missing} with
missing values".

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment

na.rm • (default FALSE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type • default "exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
TRUE).

Value

the filtered .data dataframe with the history graph updated with the summary of included items as a
new stage

inner_join.trackr_df 25

Examples

library(dplyr)
iris %>% track() %>% include_any(

Petal.Length > 5 ~ "{.included} long ones",
Petal.Length < 2 ~ "{.included} short ones"

) %>% history()

inner_join.trackr_df Inner joins

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::inner_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Inner join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector

26 landscape

to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::inner_join()

landscape Convert page size from portrait to landscape

Description

Convert page size from portrait to landscape

Usage

landscape(size)

Arguments

size • list of width and height in inches, e.g. a std_size

Value

a landscape size

left_join.trackr_df 27

left_join.trackr_df Left join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::left_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Left join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

28 mutate.trackr_df

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::left_join()

mutate.trackr_df Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

S3 method for class 'trackr_df'
mutate(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

pause 29

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::mutate()

pause Pause tracking the dataframe

Description

Pause tracking the dataframe

Usage

pause(.data)

Arguments

.data • a tracked dataframe

Value

the .data dataframe with history graph tracking paused

Examples

library(dplyr)
iris %>% track() %>% pause() %>% history()

pivot_longer.trackr_df

Reshaping data using tidyr::pivot_longer

Description

A drop in replacement for tidyr::pivot_longer which optionally takes a message and headline to
store in the history graph. See tidyr::pivot_longer().

30 pivot_longer.trackr_df

Usage

S3 method for class 'trackr_df'
pivot_longer(
data,
cols,
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
names_ptypes = list(),
names_transform = list(),
names_repair = "check_unique",
values_to = "value",
values_drop_na = FALSE,
values_ptypes = list(),
values_transform = list(),
...,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

data A data frame to pivot.

cols <tidy-select> Columns to pivot into longer format.

names_to A character vector specifying the new column or columns to create from the
information stored in the column names of data specified by cols.

• If length 0, or if NULL is supplied, no columns will be created.
• If length 1, a single column will be created which will contain the column

names specified by cols.
• If length >1, multiple columns will be created. In this case, one of names_sep

or names_pattern must be supplied to specify how the column names
should be split. There are also two additional character values you can
take advantage of:

– NA will discard the corresponding component of the column name.
– ".value" indicates that the corresponding component of the column

name defines the name of the output column containing the cell values,
overriding values_to entirely.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep If names_to contains multiple values, these arguments control how the column
name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).

pivot_longer.trackr_df 31

names_pattern takes the same specification as extract(), a regular expression
containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_pattern If names_to contains multiple values, these arguments control how the column
name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).
names_pattern takes the same specification as extract(), a regular expression
containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_ptypes Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype
(or ptype for short) is a zero-length vector (like integer() or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.
For backwards compatibility reasons, supplying list() is interpreted as being
identical to NULL rather than as using a list prototype on all columns. Expect this
to change in the future.

names_transform

Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.
If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_to A string specifying the name of the column to create from the data stored in cell
values. If names_to is a character containing the special .value sentinel, this
value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the value_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its struc-
ture.

values_ptypes Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype

32 pivot_wider.trackr_df

(or ptype for short) is a zero-length vector (like integer() or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.

For backwards compatibility reasons, supplying list() is interpreted as being
identical to NULL rather than as using a list prototype on all columns. Expect this
to change in the future.

values_transform

Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.

If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.

... Additional arguments passed on to methods.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the result of the tidyr::pivot_wider but with a history graph updated.

See Also

tidyr::pivot_longer()

pivot_wider.trackr_df Reshaping data using tidyr::pivot_wider

Description

A drop in replacement for tidyr::pivot_wider which optionally takes a message and headline to
store in the history graph. See tidyr::pivot_wider().

pivot_wider.trackr_df 33

Usage

S3 method for class 'trackr_df'
pivot_wider(
data,
id_cols = NULL,
names_from = as.symbol("name"),
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_repair = "check_unique",
values_from = as.symbol("value"),
values_fill = NULL,
values_fn = NULL,
...,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

data A data frame to pivot.

id_cols <tidy-select> A set of columns that uniquely identifies each observation. De-
faults to all columns in data except for the columns specified in names_from and
values_from. Typically used when you have redundant variables, i.e. variables
whose values are perfectly correlated with existing variables.

names_from <tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns (and special .value) to create custom col-
umn names.

names_sort Should the column names be sorted? If FALSE, the default, column names are
ordered by first appearance.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

34 plot.trackr_graph

values_from <tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

values_fn Optionally, a function applied to the value in each cell in the output. You will
typically use this when the combination of id_cols and names_from columns
does not uniquely identify an observation.
This can be a named list if you want to apply different aggregations to different
values_from columns.

... Additional arguments passed on to methods.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the data dataframe result of the tidyr::pivot_wider function but with a history graph updated with a
.message if requested.

See Also

tidyr::pivot_wider()

plot.trackr_graph Plots a history graph as html

Description

Plots a history graph as html

Usage

S3 method for class 'trackr_graph'
plot(x, fill = "lightgrey", fontsize = "8", colour = "black", ...)

print.trackr_graph 35

Arguments

x a dtrackr history graph (e.g. output from history())

fill • the default node fill colour

fontsize • the default font size

colour • the default font colour

... not used

Value

HTML displayed

Examples

library(dplyr)
iris %>% comment("hello {.total} rows") %>% history() %>% plot()

print.trackr_graph Print a history graph to the console

Description

Print a history graph to the console

Usage

S3 method for class 'trackr_graph'
print(x, ...)

Arguments

x a dtrackr history graph (e.g. output from p_get())

... not used

Value

nothing

Examples

library(dplyr)
iris %>% comment("hello {.total} rows") %>% history() %>% print()

36 p_add_count

p_add_count Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

p_add_count(
.data,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will error,
and require you to specify the name.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

p_add_tally 37

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::add_count()

p_add_tally Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

p_add_tally(
.data,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will error,
and require you to specify the name.

38 p_anti_join

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::add_tally()

p_anti_join Anti join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::anti_join()
for more details on the underlying functions.

Usage

p_anti_join(
x,
y,
by = NULL,
copy = FALSE,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} not matched"),

.headline = "Semi join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

p_arrange 39

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

... Other parameters passed onto methods.

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::anti_join()

p_arrange Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

40 p_bind_rows

Usage

p_arrange(
.data,
...,
.by_group = FALSE,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.by_group If TRUE, will sort first by grouping variable. Applies to grouped data frames
only.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::arrange()

p_bind_rows Union of two or more data sets

Description

This merges the history of 2 dataframes and binds the rows. It calculates the total number of result-
ing rows as .count.out in other terms it performs exactly the same operation as dplyr::bind_rows.
See dplyr::bind_rows().

p_capture_exclusions 41

Usage

p_bind_rows(
...,
.id = NULL,
.messages = "{.count.out} in union",
.headline = "Union"

)

Arguments

... the data frames to bind

.id Data frame identifier.
When .id is supplied, a new column of identifiers is created to link each row
to its original data frame. The labels are taken from the named arguments to
bind_rows(). When a list of data frames is supplied, the labels are taken from
the names of the list. If no names are found a numeric sequence is used instead.

.messages • a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline • a glue spec. The glue code can use any global variable, or {.count.out}

Value

the logical union of the dataframes with the history graph updated.

See Also

dplyr::bind_rows()

Examples

library(dplyr)
bind_rows(iris %>% comment("one"), iris %>% comment("two")) %>% history()

p_capture_exclusions Start capturing exclusions on a tracked dataframe.

Description

Start capturing exclusions on a tracked dataframe.

Usage

p_capture_exclusions(.data, .capture = TRUE)

42 p_clear

Arguments

.data • a tracked dataframe

.capture • Should we capture exclusions (things removed from the data set). This is
useful for debugging data issues but comes at a significant cost. Defaults to
the value of getOption("dtrackr.exclusions") or FALSE.

Value

the .data dataframe with the exclusions flag set (or cleared if .capture=FALSE).

Examples

library(dplyr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% filter(Species!="versicolor") %>% history()

p_clear Clear the dtrackr history graph

Description

Clear the dtrackr history graph

Usage

p_clear(.data)

Arguments

.data • a dataframe which may be grouped

Value

the .data dataframe with the history graph removed

Examples

library(dplyr)
mtcars %>% track() %>% comment("A comment") %>% p_clear() %>% history()

p_comment 43

p_comment Add a generic comment to the dtrackr history graph

Description

A comment can be any kind fo note and is added once for every current grouping as defined by the
.message field. It can be made context specific by including variables such as {.count} and {.total}
in .message which refer to the grouped and ungrouped counts at this current stage of the pipeline
for example. It can also pull in any global variable.

Usage

p_comment(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = (.type == "exclusion"),
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

.messages • a character vector of glue specifications. A glue specification can refer
to any grouping variables of .data, or any variables defined in the calling
environment, the {.total} of all rows, the {.count} variable which is the
count in each group and {.strata} a description of the group

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment, or the {.total} variable which
is nrow(.data)and {.strata}

.type • one of "info","...,"exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
FALSE).

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the same .data dataframe with the history graph updated with the comment

Examples

library(dplyr)
iris %>% track() %>% comment("hello {.total} rows") %>% history()

44 p_count_if

p_copy Copy the dtrackr history graph from one df to another

Description

Copy the dtrackr history graph from one df to another

Usage

p_copy(.data, from)

Arguments

.data • a dataframe which may be grouped

from • the dataframe to copy the history graph from

Value

the .data dataframe with the history graph of "from"

Examples

library(dplyr)
mtcars %>% p_copy(iris %>% comment("A comment")) %>% history()

p_count_if Simple count_if dplyr summary function

Description

Simple count_if dplyr summary function

Usage

p_count_if(..., na.rm = TRUE)

Arguments

... • expression to be evaluated

na.rm • ignore NA values?

Value

a count of the number of times the expression evaluated to true, in the current context

p_count_subgroup 45

Examples

library(dplyr)
tmp = iris %>% dplyr::group_by(Species)
tmp %>% dplyr::summarise(long_ones = p_count_if(Petal.Length > 4))

p_count_subgroup Add a subgroup count to the dtrackr history graph

Description

A frequent use case for more detailed description is to have a subgroup count within a flowchart.
This works best for factor subgroup columns but other data will be converted to a factor automati-
cally. The count of the items in each subgroup is added as a new stage in the flowchart.

Usage

p_count_subgroup(
.data,
.subgroup,
...,
.messages = .defaultCountSubgroup(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL,
.maxsubgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data • a dataframe which may be grouped

.subgroup • a column with a small number of levels (e.g.)

... • additional parameters will be passed to factor(subgroup,...) to control lev-
els, ordering, etc.

.messages • a character vector of glue specifications. A glue specification can refer to
anything from the calling environment and .name for the subgroup name,
.count for the subgroup count, .subtotal for the current grouping count and
.total for the whole count

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment

.type • one of "info","exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
FALSE).

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

.maxsubgroups • the maximum number of discrete values allowed is configurable with options("dtrackr.max_supported_groupings"=XX).
The default is 16.

46 p_distinct

Value

the same .data dataframe with the history graph updated with a subgroup count as a new stage

Examples

library(dplyr)
ILPD %>% track() %>% group_by(Case_or_Control) %>% count_subgroup(Gender) %>% history()

p_distinct Distinct values of data

Description

Distinct acts in the same way as in dplyr::distinct. Prior to the operation the size of the group
is calculated {.count.in} and after the operation the output size {.count.out} The group {.strata} is
also available (if grouped) for reporting See dplyr::distinct().

Usage

p_distinct(
.data,
.f,
...,
.keep = FALSE,
.messages = "removing {.count.in-.count.out} duplicates",
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

.f a function as expected by dplyr::group_modify e.g. function(d,g,...) ...do some-
thing with d and return a dataframe...

... additional parameters for .f.

.keep • are the grouping variables kept in d, or split out to g (the default)

.messages • a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline • a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with distinct values and history graph updated.

p_excluded 47

See Also

dplyr::distinct()

Examples

library(dplyr)
tmp = bind_rows(iris %>% track(), iris %>% track() %>% filter(Petal.Length > 5))
tmp %>% group_by(Species) %>% distinct() %>% history()

p_excluded Get the dtrackr excluded data record

Description

Get the dtrackr excluded data record

Usage

p_excluded(.data, simplify = TRUE)

Arguments

.data • a dataframe which may be grouped

simplify • return a single summary dataframe of all exclusions.

Value

a new dataframe of the excluded data up to this point in the workflow. This dataframe is by default
flattened, but if .simplify=FALSE has a nested structure containing records excluded at each part
of the pipeline.

Examples

library(dplyr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% exclude_all(

Petal.Length > 5.8 ~ "{.excluded} long ones",
Petal.Length < 1.3 ~ "{.excluded} short ones",
.stage = "petal length exclusion"

) %>% excluded()

48 p_exclude_all

p_exclude_all Exclude all items matching one or more criteria

Description

Apply a set of filters and summarise the actions of the filter to the dtrackr history graph Because
of the ... filter specification, all parameters MUST BE NAMED. The filters work in an additive
manner, i.e. the results excluding all things that match any of the criteria. If na.rm = TRUE they
also remove anything that cannot be evaluated by a criteria.

Usage

p_exclude_all(
.data,
...,
.headline = .defaultHeadline(),
na.rm = FALSE,
.type = "exclusion",
.asOffshoot = TRUE,
.stage = ""

)

Arguments

.data • a dataframe which may be grouped

... • a dplyr filter specification as a formula where the RHS is a glue specifi-
cation, defining the message. This can refer to grouping variables vari-
ables from the environment and {.excluded} and {.matched} or {.missing}
(excluded = matched+missing), {.count} and {.total} - group and overall
counts respectively, e.g. "excluding {.matched} items and {.missing} with
missing values".

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment

na.rm • (default FALSE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type • default "exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
TRUE).

.stage • a name for this step in the pathway

Value

the filtered .data dataframe with the history graph updated with the summary of excluded items as
a new offshoot stage

p_filter 49

Examples

library(dplyr)
iris %>% track() %>% capture_exclusions() %>% exclude_all(

Petal.Length > 5 ~ "{.excluded} long ones",
Petal.Length < 2 ~ "{.excluded} short ones"

) %>% history()

p_filter Filtering data

Description

Filter acts in the same way as DPLYR. Prior to the operation the size of the group is calculated
{.count.in} and after the operation the output size {.count.out}. The group {.strata} is also available
(if grouped) for reporting. See dplyr::filter().

Usage

p_filter(
.data,
...,
.preserve = FALSE,
.messages = "excluded {.excluded} items",
.headline = .defaultHeadline(),
.type = "exclusion",
.asOffshoot = (.type == "exclusion"),
.stage = "",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... the filter criteria

.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

.messages • a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline • a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type • the format type of the action - typically an exclusion

.asOffshoot • if the type is exclusion, asOffshoot places the information box outside of
the main flow, as an exclusion.

.stage • a name for this step in the pathway

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

50 p_flowchart

Value

the filtered .data dataframe with history graph updated

See Also

dplyr::filter()

Examples

library(dplyr)
tmp = iris %>% track() %>% group_by(Species)
tmp %>% filter(Petal.Length > 5) %>% history()

p_flowchart Flowchart output

Description

Generate a flowchart of the history of the dataframe, with all the transformations as stages in the
flowchart.

Usage

p_flowchart(
.data,
filename = NULL,
size = std_size$half,
maxWidth = size$width,
maxHeight = size$height,
rot = size$rot,
formats = c("dot", "png", "pdf", "svg"),
defaultToHTML = TRUE,
...

)

Arguments

.data • the tracked dataframes

filename • a filename (without extension) which will be where the formatted flowcharts
are saved

size • a list of length and width in inches e.g. a std_size

maxWidth • a width in inches is size is not defined

maxHeight • a height in inches if size is not defined

rot • an angle of rotation for the saved file if size is not defined

formats • some of "pdf","dot","svg","png","ps"

p_full_join 51

defaultToHTML • if the correct output format is not easy to determine from the context, default
providing HTML or to embedding the PNG

... • other params passed onto p_get_as_dot, notable ones are fill, fontsize, colour,
size, maxWidth and maxHeight

Value

the nature of the flowchart output depends on the context in which the function is called. It will be
some form of browse-able html output if called from an interactive session or a PNG/PDG link if in
knitr and knitting latex or word type outputs,

Examples

library(dplyr)
tmp = iris %>% track() %>% comment(.tag = "step1") %>% filter(Species!="versicolor")
tmp %>% group_by(Species) %>% comment(.tag="step2") %>% flowchart()

p_full_join Full join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::full_join()
for more details on the underlying functions.

Usage

p_full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Full join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

52 p_get

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::full_join()

p_get Get the dtrackr history graph

Description

This provides the raw history graph and is not really intended for mainstream use. The internal
structure of the graph is explained below. print and plot S3 methods exist for the dtrackr history
graph.

Usage

p_get(.data)

p_get_as_dot 53

Arguments

.data • a dataframe which may be grouped

Value

the history graph. This is a list, of class trackr_graph, containing the following named items:

• excluded - the data items that have been excluded thus far as a nested dataframe

• tags - a dataframe of tag-value pairs containing the summary of the data at named points in
the data flow (see tagged())

• nodes - a dataframe of the nodes of the flow chart

• edges - an edgelist (as a dataframe) of the relationships between the nodes in the flow chart

• head - the current most recent nodes added into the graph as a dataframe.

The format of this data may grow over time but these fields are unlikely to be changed.

Examples

library(dplyr)
graph = iris %>% track() %>% comment("A comment") %>% history()
ls(graph)

p_get_as_dot DOT output

Description

(advance usage) outputs a dtrackr history graph as a DOT string for rendering with Graphviz

Usage

p_get_as_dot(.data, fill = "lightgrey", fontsize = "8", colour = "black", ...)

Arguments

.data • the tracked dataframe

fill • the default node fill colour

fontsize • the default font size

colour • the default font colour

... • not used

Value

a representation of the history graph in Graphviz dot format.

54 p_group_by

Examples

library(dplyr)
tmp = iris %>% track() %>% comment(.tag = "step1") %>% filter(Species!="versicolor")
dot = tmp %>% group_by(Species) %>% comment(.tag="step2") %>% p_get_as_dot()
cat(dot)

p_group_by Stratifying your analysis

Description

Grouping a data set acts in the normal way. When tracking a dataframe sometimes a group_by()
operation will create a lot of groups. This happens for example if you are doing a group_by(),
summarise() step that is aggregating data on a fine scale, e.g. by day in a timeseries. This is
generally a terrible idea when tracking a dataframe as the resulting flowchart will have many many
branches. dtrackr will detect this issue and pause tracking the dataframe with a warning. It is up to
the user to the resume() tracking when the large number of groups have been resolved e.g. using a
dplyr::ungroup(). This limit is configurable with options("dtrackr.max_supported_groupings"=XX).
The default is 16. See dplyr::group_by().

Usage

p_group_by(
.data,
...,
.add = FALSE,
.drop = dplyr::group_by_drop_default(.data),
.messages = "stratify by {.cols}",
.headline = NULL,
.tag = NULL,
.maxgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr column expressions.

.add When FALSE, the default, group_by() will override existing groups. To add to
the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

.drop Drop groups formed by factor levels that don’t appear in the data? The default
is TRUE except when .data has been previously grouped with .drop = FALSE.
See group_by_drop_default() for details.

.messages • a set of glue specs. The glue code can use any global variable, or {.cols}
which is the columns that are being grouped by.

p_group_modify 55

.headline • a headline glue spec. The glue code can use any global variable, or {.cols}.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

.maxgroups • the maximum number of subgroups allowed before the tracking is paused.

Value

the .data but grouped.

See Also

dplyr::group_by()

Examples

library(dplyr)
tmp = iris %>% track() %>% group_by(Species, .messages="stratify by {.cols}")
tmp %>% comment("{.strata}") %>% history()

p_group_modify Group-wise modification of data and complex operations

Description

Group modifying a data set acts in the normal way. The internal mechanics of the modify func-
tion are opaque to the history. This means these can be used to wrap any unsupported opera-
tion without losing the history (e.g. df %>% track() %>% group_modify(function(d,...) { d
%>% unsupported_operation() })) Prior to the operation the size of the group is calculated
{.count.in} and after the operation the output size {.count.out} The group {.strata} is also avail-
able (if grouped) for reporting See dplyr::group_modify().

Usage

p_group_modify(
.data,
.f,
...,
.keep = FALSE,
.messages = NULL,
.headline = .defaultHeadline(),
.type = "modify",
.tag = NULL

)

56 p_include_any

Arguments

.data • a dataframe which may be grouped

.f a function as expected by dplyr::group_modify e.g. function(d,g,...) ...do some-
thing with d and return a dataframe...

... additional parameters for .f.

.keep • are the grouping variables kept in d, or split out to g (the default)

.messages • a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline • a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type • default "modify": used to define formatting

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the transformed .data dataframe with the history graph updated.

See Also

dplyr::group_modify()

Examples

library(dplyr)
tmp = iris %>% track() %>% group_by(Species)
tmp %>% group_modify(

function(d,g,...) { return(tibble::tibble(x=runif(10))) },
.messages="{.count.in} in, {.count.out} out"

) %>% history()

p_include_any Include any items matching a criteria

Description

Apply a set of inclusion criteria and dplyr::summarise the actions of the filter to the dtrackr history
graph Because of the ... filter specification, all parameters MUST BE NAMED. The criteria work
in an alternative manner, i.e. the results include anything that match any of the criteria. If na.rm =
TRUE they also keep anything that cannot be evaluated by a criteria - that may be true.

p_include_any 57

Usage

p_include_any(
.data,
...,
.headline = .defaultHeadline(),
na.rm = TRUE,
.type = "inclusion",
.asOffshoot = FALSE

)

Arguments

.data • a dataframe which may be grouped

... • a dplyr filter specification as a formula where the RHS is a glue specifi-
cation, defining the message. This can refer to grouping variables, vari-
ables from the environment and {.included} and {.matched} or {.missing}
(included = matched+missing), {.count} and {.total} - group and overall
counts respectively, e.g. "excluding {.matched} items and {.missing} with
missing values".

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment

na.rm • (default FALSE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type • default "exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
TRUE).

Value

the filtered .data dataframe with the history graph updated with the summary of included items as a
new stage

Examples

library(dplyr)
iris %>% track() %>% include_any(

Petal.Length > 5 ~ "{.included} long ones",
Petal.Length < 2 ~ "{.included} short ones"

) %>% history()

58 p_inner_join

p_inner_join Inner joins

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::inner_join()
for more details on the underlying functions.

Usage

p_inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Inner join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

p_left_join 59

... Other parameters passed onto methods.

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::inner_join()

p_left_join Left join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::left_join()
for more details on the underlying functions.

Usage

p_left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Left join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

60 p_mutate

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::left_join()

p_mutate Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

p_pause 61

Usage

p_mutate(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::mutate()

p_pause Pause tracking the dataframe

Description

Pause tracking the dataframe

Usage

p_pause(.data)

Arguments

.data • a tracked dataframe

Value

the .data dataframe with history graph tracking paused

Examples

library(dplyr)
iris %>% track() %>% pause() %>% history()

62 p_pivot_longer

p_pivot_longer Reshaping data using tidyr::pivot_longer

Description

A drop in replacement for tidyr::pivot_longer which optionally takes a message and headline to
store in the history graph. See tidyr::pivot_longer().

Usage

p_pivot_longer(
data,
cols,
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
names_ptypes = list(),
names_transform = list(),
names_repair = "check_unique",
values_to = "value",
values_drop_na = FALSE,
values_ptypes = list(),
values_transform = list(),
...,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

data A data frame to pivot.

cols <tidy-select> Columns to pivot into longer format.

names_to A character vector specifying the new column or columns to create from the
information stored in the column names of data specified by cols.

• If length 0, or if NULL is supplied, no columns will be created.
• If length 1, a single column will be created which will contain the column

names specified by cols.
• If length >1, multiple columns will be created. In this case, one of names_sep

or names_pattern must be supplied to specify how the column names
should be split. There are also two additional character values you can
take advantage of:

– NA will discard the corresponding component of the column name.

p_pivot_longer 63

– ".value" indicates that the corresponding component of the column
name defines the name of the output column containing the cell values,
overriding values_to entirely.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep If names_to contains multiple values, these arguments control how the column
name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).
names_pattern takes the same specification as extract(), a regular expression
containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_pattern If names_to contains multiple values, these arguments control how the column
name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).
names_pattern takes the same specification as extract(), a regular expression
containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_ptypes Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype
(or ptype for short) is a zero-length vector (like integer() or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.
For backwards compatibility reasons, supplying list() is interpreted as being
identical to NULL rather than as using a list prototype on all columns. Expect this
to change in the future.

names_transform

Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.
If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

64 p_pivot_longer

values_to A string specifying the name of the column to create from the data stored in cell
values. If names_to is a character containing the special .value sentinel, this
value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the value_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its struc-
ture.

values_ptypes Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype
(or ptype for short) is a zero-length vector (like integer() or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.
For backwards compatibility reasons, supplying list() is interpreted as being
identical to NULL rather than as using a list prototype on all columns. Expect this
to change in the future.

values_transform

Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.
If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.

... Additional arguments passed on to methods.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the result of the tidyr::pivot_wider but with a history graph updated.

See Also

tidyr::pivot_longer()

p_pivot_wider 65

p_pivot_wider Reshaping data using tidyr::pivot_wider

Description

A drop in replacement for tidyr::pivot_wider which optionally takes a message and headline to
store in the history graph. See tidyr::pivot_wider().

Usage

p_pivot_wider(
data,
id_cols = NULL,
names_from = as.symbol("name"),
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_repair = "check_unique",
values_from = as.symbol("value"),
values_fill = NULL,
values_fn = NULL,
...,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

data A data frame to pivot.

id_cols <tidy-select> A set of columns that uniquely identifies each observation. De-
faults to all columns in data except for the columns specified in names_from and
values_from. Typically used when you have redundant variables, i.e. variables
whose values are perfectly correlated with existing variables.

names_from <tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

66 p_pivot_wider

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns (and special .value) to create custom col-
umn names.

names_sort Should the column names be sorted? If FALSE, the default, column names are
ordered by first appearance.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_from <tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).

If values_from contains multiple values, the value will be added to the front of
the output column.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.

This can be a named list if you want to apply different fill values to different
value columns.

values_fn Optionally, a function applied to the value in each cell in the output. You will
typically use this when the combination of id_cols and names_from columns
does not uniquely identify an observation.

This can be a named list if you want to apply different aggregations to different
values_from columns.

... Additional arguments passed on to methods.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the data dataframe result of the tidyr::pivot_wider function but with a history graph updated with a
.message if requested.

See Also

tidyr::pivot_wider()

p_relocate 67

p_relocate Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

p_relocate(
.data,
...,
.before = NULL,
.after = NULL,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.before <tidy-select> Destination of columns selected by Supplying neither will
move columns to the left-hand side; specifying both is an error.

.after <tidy-select> Destination of columns selected by Supplying neither will
move columns to the left-hand side; specifying both is an error.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::relocate()

68 p_rename

p_rename Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

p_rename(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::rename()

p_rename_with 69

p_rename_with Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

p_rename_with(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::rename_with()

70 p_right_join

p_resume Resume tracking the dataframe. This may reset the grouping of the
tracked data

Description

Resume tracking the dataframe. This may reset the grouping of the tracked data

Usage

p_resume(.data)

Arguments

.data • a tracked dataframe

Value

the .data dataframe with history graph tracking resumed

Examples

library(dplyr)
iris %>% track() %>% pause() %>% resume() %>% history()

p_right_join Right join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::right_join()
for more details on the underlying functions.

Usage

p_right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Right join by {.keys}"
)

p_right_join 71

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.

To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.

To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.

To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::right_join()

72 p_select

p_select Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

p_select(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::select()

p_semi_join 73

p_semi_join Semi join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::semi_join()
for more details on the underlying functions.

Usage

p_semi_join(
x,
y,
by = NULL,
copy = FALSE,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in intersection"),

.headline = "Semi join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

... Other parameters passed onto methods.

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

74 p_set

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::semi_join()

p_set Set the dtrackr history graph

Description

This is unlikely to be useful to an end user and is called automatically by many of the other functions
here. On the off chance you need to copy history metadata from one dataframe to another

Usage

p_set(.data, .graph)

Arguments

.data • a dataframe which may be grouped

.graph • a history graph list (consisting of nodes, edges, and head) see examples

Value

the .data dataframe with the history graph metadata set to the provided value

Examples

library(dplyr)
mtcars %>% p_set(iris %>% comment("A comment") %>% p_get()) %>% history()

p_status 75

p_status Add a summary to the dtrackr history graph

Description

In the middle of a pipeline you may wish to document something about the data that is more complex
than the simple counts. status is essentially a dplyr summarisation step which is connected to a
glue specification output, that is recorded in the data frame history. This means you can do an
arbitrary summarisation and put the result into the flowchart.

Usage

p_status(
.data,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... • any normal dplyr::summarise specification, e.g. count=n() or av=mean(x)
etc.

.messages • a character vector of glue specifications. A glue specification can refer to
the summary outputs, any grouping variables of .data, the {.strata}, or any
variables defined in the calling environment

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment

.type • one of "info","exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
FALSE).

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Details

Because of the ... summary specification parameters MUST BE NAMED.

Value

the same .data dataframe with the history metadata updated with the status inserted as a new stage

76 p_summarise

Examples

library(dplyr)
tmp = iris %>% track() %>% group_by(Species)
tmp %>% status(

long = p_count_if(Petal.Length>5),
short = p_count_if(Petal.Length<2),
.messages="{Species}: {long} long ones & {short} short ones"

) %>% history()

p_summarise Summarise a data set

Description

Summarising a data set acts in the normal way. Any columns resulting form the summary can be
added to the history graph In the history this joins any stratified branches and acts as a specific type
of p_summary, allowing you to generate some summary statistics about the un-grouped data. See
dplyr::summarise().

Usage

p_summarise(
.data,
...,
.groups = NULL,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.groups • Experimental lifecycle Grouping structure of the result.

.messages • a set of glue specs. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.headline • a headline glue spec. The glue code can use any summary variable defined
in the ... parameter, or any global variable, or {.strata}

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

p_tagged 77

See Also

dplyr::summarise()

Examples

library(dplyr)
tmp = iris %>% group_by(Species)
tmp %>% summarise(avg = mean(Petal.Length), .messages="{avg} length") %>% history()

p_tagged Retrieve tagged data in the history graph

Description

Any counts at the individual stages that was stored with a .tag option in a pipeline step can be
recovered here. The idea here is to provide a quick way to access a single value for the counts or
other details tagged in a pipeline into a format that can be reported in text of a document. (e.g. for
a results section). For more examples the consort statement vignette has some examples of use.

Usage

p_tagged(.data, .tag = NULL, .strata = NULL, .glue = NULL, ...)

Arguments

.data the tracked dataframe.

.tag (optional) the tag to retrieve.

.strata (optional) filter the tagged data by the strata. set to "" to filter just the top level
ungrouped data.

.glue (optional) a glue specification which will be applied to the tagged content to
generate a .label for the tagged content.

... (optional) any other named parameters will be passed to glue::glue and can
be used to generate a label.

Value

various things depending on what is requested.

By default a tibble with a .tag column and all associated summary values in a nested .content
column.

If a .strata column is specified the results are filtered to just those that match a given .strata
grouping (i.e. this will be the grouping label on the flowchart). Ungrouped content will have an
empty "" as .strata

If .tag is specified the result will be for a single tag and .content will be automatically un-nested
to give a single un-nested dataframe of the content captured at the .tag tagged step. This could be
single or multiple rows depending on whether the original data was grouped at the point of tagging.

78 p_track

If both the .tag and .glue is specified a .label column will be computed from .glue and the
tagged content. If the result of this is a single row then just the string value of .label is returned.

If just the .glue is specified, an un-nested dataframe with .tag,.strata and .label columns with
a label for each tag in each strata.

If this seems complex then the best thing is to experiment until you get the output you want, leaving
any .glue options until you think you know what you are doing. It made sense at the time.

Examples

library(dplyr)
tmp = iris %>% track() %>% comment(.tag = "step1")
tmp = tmp %>% filter(Species!="versicolor") %>% group_by(Species)
tmp %>% comment(.tag="step2") %>% tagged(.glue = "{.count}/{.total}")

p_track Start tracking the dtrackr history graph

Description

Start tracking the dtrackr history graph

Usage

p_track(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

.messages • a character vector of glue specifications. A glue specification can refer to
any grouping variables of .data, or any variables defined in the calling en-
vironment, the {.total} variable which is the count of all rows, the {.count}
variable which is the count of rows in the current group and the {.strata}
which describes the current group. Defaults to the value of getOption("dtrackr.default_message").

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment, or the {.total} variable which
is nrow(.data), or {.strata} a summary of the current group. Defaults to the
value of getOption("dtrackr.default_headline").

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

p_transmute 79

Value

the .data dataframe with additional history graph metadata, to allow tracking.

Examples

library(dplyr)
iris %>% track() %>% history()

p_transmute Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

p_transmute(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::transmute()

80 p_ungroup

p_ungroup Remove a stratification from a data set

Description

Un-grouping a data set logically combines the different arms. In the history this joins any strati-
fied branches and acts as a specific type of p_summary, allowing you to generate some summary
statistics about the un-grouped data. See dplyr::ungroup().

Usage

p_ungroup(
x,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

x • a dataframe which may be grouped (why not .data?)

... • passed to dplyr::ungroup()

.messages • a set of glue specs. The glue code can use any any global variable, or
{.count}. the default is "total {.count} items"

.headline • a headline glue spec. The glue code can use {.count} and {.strata}.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe but dplyr::ungrouped with the history graph updated showing the ungroup op-
eration as a new stage.

See Also

dplyr::ungroup()

Examples

library(dplyr)
tmp = iris %>% group_by(Species) %>% comment("A test")
tmp %>% ungroup(.messages="{.count} items") %>% history()

p_untrack 81

p_untrack Remove tracking from the dataframe

Description

Remove tracking from the dataframe

Usage

p_untrack(.data)

Arguments

.data • a tracked dataframe

Value

the .data dataframe with history graph metadata removed.

Examples

library(dplyr)
iris %>% track() %>% untrack() %>% class()

relocate.trackr_df Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

S3 method for class 'trackr_df'
relocate(
.data,
...,
.before = NULL,
.after = NULL,
.messages = "",
.headline = "",
.tag = NULL

)

82 rename.trackr_df

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.before <tidy-select> Destination of columns selected by Supplying neither will
move columns to the left-hand side; specifying both is an error.

.after <tidy-select> Destination of columns selected by Supplying neither will
move columns to the left-hand side; specifying both is an error.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::relocate()

rename.trackr_df Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

S3 method for class 'trackr_df'
rename(.data, ..., .messages = "", .headline = "", .tag = NULL)

rename_with.trackr_df 83

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::rename()

rename_with.trackr_df Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

S3 method for class 'trackr_df'
rename_with(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

84 right_join.trackr_df

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::rename_with()

resume Resume tracking the dataframe. This may reset the grouping of the
tracked data

Description

Resume tracking the dataframe. This may reset the grouping of the tracked data

Usage

resume(.data)

Arguments

.data • a tracked dataframe

Value

the .data dataframe with history graph tracking resumed

Examples

library(dplyr)
iris %>% track() %>% pause() %>% resume() %>% history()

right_join.trackr_df Right join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::right_join()
for more details on the underlying functions.

right_join.trackr_df 85

Usage

S3 method for class 'trackr_df'
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Right join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

86 save_dot

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::right_join()

save_dot Save DOT content to a file

Description

Convert a digraph in dot file to SVG and save it to an output file

Usage

save_dot(
dot,
filename,
size = std_size$half,
maxWidth = size$width,
maxHeight = size$height,
rot = size$rot,
formats = c("dot", "png", "pdf", "svg")

)

Arguments

dot • a graphviz dot string

filename • the full path of the filename (minus extension for multiple formats)

size • a list of length and width in inches e.g. a std_size

maxWidth • a width in inches is size is not defined

maxHeight • a height in inches if size is not defined

rot • an angle of rotation for the saved file if size is not defined

formats • some of "pdf","dot","svg","png","ps"

Value

a list with items paths with the absolute paths of the saved files, and svg as the SVG string of the
rendered dot file.

Examples

dot2svg("digraph {A->B} ")

select.trackr_df 87

select.trackr_df Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

S3 method for class 'trackr_df'
select(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::select()

88 semi_join.trackr_df

semi_join.trackr_df Semi join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::semi_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
semi_join(
x,
y,
by = NULL,
copy = FALSE,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in intersection"),

.headline = "Semi join by {.keys}"
)

Arguments

x A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

... Other parameters passed onto methods.

status 89

.messages • a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input
and output dataframes sizes respectively

.headline • a glue spec. The glue code can use any global variable, {.keys} for the
joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::semi_join()

status Add a summary to the dtrackr history graph

Description

In the middle of a pipeline you may wish to document something about the data that is more complex
than the simple counts. status is essentially a dplyr summarisation step which is connected to a
glue specification output, that is recorded in the data frame history. This means you can do an
arbitrary summarisation and put the result into the flowchart.

Usage

status(
.data,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... • any normal dplyr::summarise specification, e.g. count=n() or av=mean(x)
etc.

.messages • a character vector of glue specifications. A glue specification can refer to
the summary outputs, any grouping variables of .data, the {.strata}, or any
variables defined in the calling environment

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment

90 std_size

.type • one of "info","exclusion": used to define formatting

.asOffshoot • do you want this comment to be an offshoot of the main flow (default =
FALSE).

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Details

Because of the ... summary specification parameters MUST BE NAMED.

Value

the same .data dataframe with the history metadata updated with the status inserted as a new stage

Examples

library(dplyr)
tmp = iris %>% track() %>% group_by(Species)
tmp %>% status(

long = p_count_if(Petal.Length>5),
short = p_count_if(Petal.Length<2),
.messages="{Species}: {long} long ones & {short} short ones"

) %>% history()

std_size Standard paper sizes

Description

A list of standard paper sizes

Usage

std_size

Format

An object of class list of length 8.

summarise.trackr_df 91

summarise.trackr_df Summarise a data set

Description

Summarising a data set acts in the normal way. Any columns resulting form the summary can be
added to the history graph In the history this joins any stratified branches and acts as a specific type
of p_summary, allowing you to generate some summary statistics about the un-grouped data. See
dplyr::summarise().

Usage

S3 method for class 'trackr_df'
summarise(
.data,
...,
.groups = NULL,
.messages = "",
.headline = "",
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.groups • Experimental lifecycle Grouping structure of the result.

.messages • a set of glue specs. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.headline • a headline glue spec. The glue code can use any summary variable defined
in the ... parameter, or any global variable, or {.strata}

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

See Also

dplyr::summarise()

92 tagged

Examples

library(dplyr)
tmp = iris %>% group_by(Species)
tmp %>% summarise(avg = mean(Petal.Length), .messages="{avg} length") %>% history()

tagged Retrieve tagged data in the history graph

Description

Any counts at the individual stages that was stored with a .tag option in a pipeline step can be
recovered here. The idea here is to provide a quick way to access a single value for the counts or
other details tagged in a pipeline into a format that can be reported in text of a document. (e.g. for
a results section). For more examples the consort statement vignette has some examples of use.

Usage

tagged(.data, .tag = NULL, .strata = NULL, .glue = NULL, ...)

Arguments

.data the tracked dataframe.

.tag (optional) the tag to retrieve.

.strata (optional) filter the tagged data by the strata. set to "" to filter just the top level
ungrouped data.

.glue (optional) a glue specification which will be applied to the tagged content to
generate a .label for the tagged content.

... (optional) any other named parameters will be passed to glue::glue and can
be used to generate a label.

Value

various things depending on what is requested.

By default a tibble with a .tag column and all associated summary values in a nested .content
column.

If a .strata column is specified the results are filtered to just those that match a given .strata
grouping (i.e. this will be the grouping label on the flowchart). Ungrouped content will have an
empty "" as .strata

If .tag is specified the result will be for a single tag and .content will be automatically un-nested
to give a single un-nested dataframe of the content captured at the .tag tagged step. This could be
single or multiple rows depending on whether the original data was grouped at the point of tagging.

If both the .tag and .glue is specified a .label column will be computed from .glue and the
tagged content. If the result of this is a single row then just the string value of .label is returned.

If just the .glue is specified, an un-nested dataframe with .tag,.strata and .label columns with
a label for each tag in each strata.

track 93

If this seems complex then the best thing is to experiment until you get the output you want, leaving
any .glue options until you think you know what you are doing. It made sense at the time.

Examples

library(dplyr)
tmp = iris %>% track() %>% comment(.tag = "step1")
tmp = tmp %>% filter(Species!="versicolor") %>% group_by(Species)
tmp %>% comment(.tag="step2") %>% tagged(.glue = "{.count}/{.total}")

track Start tracking the dtrackr history graph

Description

Start tracking the dtrackr history graph

Usage

track(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data • a dataframe which may be grouped

.messages • a character vector of glue specifications. A glue specification can refer to
any grouping variables of .data, or any variables defined in the calling en-
vironment, the {.total} variable which is the count of all rows, the {.count}
variable which is the count of rows in the current group and the {.strata}
which describes the current group. Defaults to the value of getOption("dtrackr.default_message").

.headline • a glue specification which can refer to grouping variables of .data, or any
variables defined in the calling environment, or the {.total} variable which
is nrow(.data), or {.strata} a summary of the current group. Defaults to the
value of getOption("dtrackr.default_headline").

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with additional history graph metadata, to allow tracking.

Examples

library(dplyr)
iris %>% track() %>% history()

94 transmute.trackr_df

transmute.trackr_df Standard dplyr modifying operations

Description

Equivalent Dplyr functions for mutating, selecting and renaming a data set act in the normal way.
mutates / selects / rename generally don’t add anything in documentation so the default behaviour
is to miss these out of the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment() See dplyr::mutate(), dplyr::add_count(),
dplyr::add_tally(), dplyr::transmute(), dplyr::select(), dplyr::relocate(), dplyr::rename()
dplyr::rename_with(), dplyr::arrange() for more details.

Usage

S3 method for class 'trackr_df'
transmute(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data • a dataframe which may be grouped

... a set of dplyr summary expressions.

.messages • a set of glue specs. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.headline • a headline glue spec. The glue code can use any global variable, grouping
variable, or {.strata}. Defaults to nothing.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history graph
updated with a new stage if the .messages field is not empty

See Also

dplyr::transmute()

ungroup.trackr_df 95

ungroup.trackr_df Remove a stratification from a data set

Description

Un-grouping a data set logically combines the different arms. In the history this joins any strati-
fied branches and acts as a specific type of p_summary, allowing you to generate some summary
statistics about the un-grouped data. See dplyr::ungroup().

Usage

S3 method for class 'trackr_df'
ungroup(
x,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

x • a dataframe which may be grouped (why not .data?)

... • passed to dplyr::ungroup()

.messages • a set of glue specs. The glue code can use any any global variable, or
{.count}. the default is "total {.count} items"

.headline • a headline glue spec. The glue code can use {.count} and {.strata}.

.tag • if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe but dplyr::ungrouped with the history graph updated showing the ungroup op-
eration as a new stage.

See Also

dplyr::ungroup()

Examples

library(dplyr)
tmp = iris %>% group_by(Species) %>% comment("A test")
tmp %>% ungroup(.messages="{.count} items") %>% history()

96 untrack

untrack Remove tracking from the dataframe

Description

Remove tracking from the dataframe

Usage

untrack(.data)

Arguments

.data • a tracked dataframe

Value

the .data dataframe with history graph metadata removed.

Examples

library(dplyr)
iris %>% track() %>% untrack() %>% class()

Index

∗ datasets
ILPD, 23
std_size, 90

add_count, 3
add_tally, 5
anti_join.trackr_df, 6
arrange.trackr_df, 7

bind_rows, 8

capture_exclusions, 9
comment, 10
count_subgroup, 11

distinct.trackr_df, 12
dot2svg, 13
dplyr::add_count(), 3, 5, 7, 28, 36, 37, 39,

60, 67–69, 72, 79, 81–83, 87, 94
dplyr::add_tally(), 4, 5, 7, 28, 36, 37, 39,

60, 67–69, 72, 79, 81–83, 87, 94
dplyr::anti_join(), 6, 38
dplyr::arrange(), 4, 5, 7, 28, 36, 37, 39, 60,

67–69, 72, 79, 81–83, 87, 94
dplyr::bind_rows(), 8, 40
dplyr::distinct(), 12, 46
dplyr::filter(), 15, 49
dplyr::full_join(), 18, 51
dplyr::group_by(), 19, 54
dplyr::group_modify(), 20, 55
dplyr::inner_join(), 25, 58
dplyr::left_join(), 27, 59
dplyr::mutate(), 3, 5, 7, 28, 36, 37, 39, 60,

67–69, 72, 79, 81–83, 87, 94
dplyr::relocate(), 4, 5, 7, 28, 36, 37, 39,

60, 67–69, 72, 79, 81–83, 87, 94
dplyr::rename(), 4, 5, 7, 28, 36, 37, 39, 60,

67–69, 72, 79, 81–83, 87, 94
dplyr::rename_with(), 4, 5, 7, 28, 36, 37,

39, 60, 67–69, 72, 79, 81–83, 87, 94

dplyr::right_join(), 70, 84
dplyr::select(), 4, 5, 7, 28, 36, 37, 39, 60,

67–69, 72, 79, 81–83, 87, 94
dplyr::semi_join(), 73, 88
dplyr::summarise(), 76, 91
dplyr::transmute(), 4, 5, 7, 28, 36, 37, 39,

60, 67–69, 72, 79, 81–83, 87, 94
dplyr::ungroup(), 80, 95

exclude_all, 14
excluded, 13
extract(), 31, 63

filter.trackr_df, 15
flowchart, 16
full_join.trackr_df, 18

group_by.trackr_df, 19
group_by_drop_default(), 20, 54
group_modify.trackr_df, 20

history, 22
history(), 35

ILPD, 23
include_any, 24
inner_join.trackr_df, 25

landscape, 26
left_join.trackr_df, 27

mutate.trackr_df, 28

p_add_count, 36
p_add_tally, 37
p_anti_join, 38
p_arrange, 39
p_bind_rows, 40
p_capture_exclusions, 41
p_clear, 42
p_comment, 43

97

98 INDEX

p_copy, 44
p_count_if, 44
p_count_subgroup, 45
p_distinct, 46
p_exclude_all, 48
p_excluded, 47
p_filter, 49
p_flowchart, 50
p_full_join, 51
p_get, 52
p_get(), 35
p_get_as_dot, 53
p_group_by, 54
p_group_modify, 55
p_include_any, 56
p_inner_join, 58
p_left_join, 59
p_mutate, 60
p_pause, 61
p_pivot_longer, 62
p_pivot_wider, 65
p_relocate, 67
p_rename, 68
p_rename_with, 69
p_resume, 70
p_right_join, 70
p_select, 72
p_semi_join, 73
p_set, 74
p_status, 75
p_summarise, 76
p_tagged, 77
p_track, 78
p_transmute, 79
p_ungroup, 80
p_untrack, 81
pause, 29
pivot_longer.trackr_df, 29
pivot_wider.trackr_df, 32
plot.trackr_graph, 34
print.trackr_graph, 35

relocate.trackr_df, 81
rename.trackr_df, 82
rename_with.trackr_df, 83
resume, 84
right_join.trackr_df, 84

save_dot, 86

select.trackr_df, 87
semi_join.trackr_df, 88
separate(), 30, 31, 63
status, 89
std_size, 90
summarise.trackr_df, 91

tagged, 92
tagged(), 22, 53
tidyr::pivot_longer(), 29, 62
tidyr::pivot_wider(), 32, 65
track, 93
transmute.trackr_df, 94

ungroup.trackr_df, 95
untrack, 96

vctrs::vec_as_names(), 31, 33, 63, 66

	add_count
	add_tally
	anti_join.trackr_df
	arrange.trackr_df
	bind_rows
	capture_exclusions
	comment
	count_subgroup
	distinct.trackr_df
	dot2svg
	excluded
	exclude_all
	filter.trackr_df
	flowchart
	full_join.trackr_df
	group_by.trackr_df
	group_modify.trackr_df
	history
	ILPD
	include_any
	inner_join.trackr_df
	landscape
	left_join.trackr_df
	mutate.trackr_df
	pause
	pivot_longer.trackr_df
	pivot_wider.trackr_df
	plot.trackr_graph
	print.trackr_graph
	p_add_count
	p_add_tally
	p_anti_join
	p_arrange
	p_bind_rows
	p_capture_exclusions
	p_clear
	p_comment
	p_copy
	p_count_if
	p_count_subgroup
	p_distinct
	p_excluded
	p_exclude_all
	p_filter
	p_flowchart
	p_full_join
	p_get
	p_get_as_dot
	p_group_by
	p_group_modify
	p_include_any
	p_inner_join
	p_left_join
	p_mutate
	p_pause
	p_pivot_longer
	p_pivot_wider
	p_relocate
	p_rename
	p_rename_with
	p_resume
	p_right_join
	p_select
	p_semi_join
	p_set
	p_status
	p_summarise
	p_tagged
	p_track
	p_transmute
	p_ungroup
	p_untrack
	relocate.trackr_df
	rename.trackr_df
	rename_with.trackr_df
	resume
	right_join.trackr_df
	save_dot
	select.trackr_df
	semi_join.trackr_df
	status
	std_size
	summarise.trackr_df
	tagged
	track
	transmute.trackr_df
	ungroup.trackr_df
	untrack
	Index

