
Package ‘fellov’
February 21, 2020

Type Package

Title Feasible Ellipse Overlap

Version 0.1

Author Anna Laksafoss

Maintainer Anna Laksafoss <vbs190@alumni.ku.dk>

Description A small package for determining if n-dimensional ellipses overlap.

Depends R (>= 3.6.0)

License GPL

Encoding UTF-8

LazyData true

Suggests testthat

RoxygenNote 7.0.2

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-21 14:10:05 UTC

R topics documented:

feasible_overlap . 2
feasible_point . 3
is_feasible_point . 4
marginal_overlap . 5
pairwise_overlap . 7
wrangle_ellipse . 8

Index 10

1

2 feasible_overlap

feasible_overlap Find Smallest Feasible Ellipse Overlap

Description

feasible_overlap will find the smallest radius such that the ellipses have a non-empty intersec-
tion.

Usage

feasible_overlap(ell, ...)

Arguments

ell a list of at least two (non degenerate) ellipses; see wrangle_ellipse.

... additional arguments to be passed to internal functions.

Details

Given a list of ellipses ell the function feasible_overlap will find the smallest radius such that
the ellipses from ell overlap. This is done by solving the following quadratically constrained
problem

min(x,s) s
s.t. (x− ci)

TPi(x− ci)− ri ≤ s for all i = 1, ..., d

To solve this convex problem the logarithmic barrier method is used.

Note that it is not necessary to specify ellipse radii in ell.

Value

feasible_overlap returns an object of class "feasible_overlap". This object is a list with the
following entries:

radii the smallest ellipse radii resulting in a non-empty intersection.

x The limiting common point.

distance The ellipse specific distances.

call The matched call.

See Also

wrangle_ellipse for detailed on ellipse parameterization.

feasible_point 3

Examples

two dimensional ellipses
e1 <- list("c" = c(1,1), "P" = matrix(c(2,0,0,0.5), ncol = 2))
e2 <- list("c" = c(0,0), "S" = matrix(c(1, 0.2, 0.2, 2), ncol = 2), "r" = 1)
note: it is not necessary to specify an ellipse radius "r"

feasible_overlap(list(e1, e2))

regression example
generate data
n <- 100
E <- rbinom(n, 1, 0.5)
X <- rnorm(n, E * 3, 1)
Y <- rnorm(n, 2 + 1.5 * X, 1)

create confidence region ellipses
m0 <- lm(Y ~ X, data = data.frame(Y, X), subset = (E == 0))
m1 <- lm(Y ~ X, data = data.frame(Y, X), subset = (E == 1))
ConfRegion0 <- list(c = coefficients(m0), S = vcov(m0))
ConfRegion1 <- list(c = coefficients(m0), S = vcov(m0))

find smallest radius
res <- feasible_overlap(list(ConfRegion0, ConfRegion1))
this radius now corresponds to the chisq quantile at which
the confidence regions intersect non-emptily.
In other words the (1 - alpha)-confidence intervals intersect for alpha:
alpha <- pchisq(res$radii, 2)

feasible_point Find Feasible Point in Ellipse Overlap

Description

feasible_point will find a point in the interior of the intersection of two or more fully specified
ellipses. If the intersections is empty NA is returned.

Usage

feasible_point(ell, ...)

Arguments

ell a list of at least two (non degenerate) ellipses; see wrangle_ellipse.

... additional arguments to be passed to internal functions.

4 is_feasible_point

Details

feasible_point will find a point in the interior of the intersection of two or more fully specified
ellipses ell. If the intersections is empty NA is returned.

Value

feasible_point returns an object of class "feasible_point" with the following entries

x An interior point.
distance A data.frame with the ellipse specific distances.
optim The final internal optimization value.
call The matched call.

See Also

wrangle_ellipse for detailed on ellipse parameterization.

Examples

two dimensional ellipses
e1 <- list("c" = c(1,2), "P" = matrix(c(2,0,0,1), ncol = 2), "r" = 3)
e2 <- list("c" = c(0,0), "S" = matrix(c(1, 0.2, 0.2, 2), ncol = 2), "r" = 1)

find point in intersection
feasible_point(list(e1, e2))

make new ellipse
e3 <- list("c" = c(2,2), "P" = matrix(c(1,0,0,1), ncol = 2), "r" = 0.5)

now there is no overlap
feasible_point(list(e1, e2, e3))

is_feasible_point Determine If A Point Is In Ellipse Overlap

Description

is_feasible_point will determine if a given point is in the interior of the intersection of one or
more fully specified ellipes.

Usage

is_feasible_point(point, ell)

Arguments

point a numeric of length equal to the dimensions of the ellipses in ell.
ell a list of at least one ellipse; see wrangle_ellipse.

marginal_overlap 5

Details

Given a point is_feasible_point will check if this point is in the intersection of the list of ellipses
ell. Note that this function will not check if the intersection is non-empty.

Value

is_feasible_point returns an object of class "is_feasible_point". This object is a list con-
taining the following components:

point the inputted point.

fasible logical; is TRUE when the point x is in the interior of all ellipses.

distance a data.frame with the distance from x to the center of each ellipse, the radius of
each ellipse and a logical indicator, which is TRUE when x is an element in the
ellipse.

call the match call.

See Also

wrangle_ellipse for detailed on ellipse parameterization.

Examples

e1 <- list("c" = c(1,1), "P" = matrix(c(3,1,1,2), ncol = 2), "r" = 2)
e2 <- list("c" = c(0,2), "S" = matrix(c(4,1,1,1), ncol = 2), "r" = 3)

is_feasible_point(c(1.1,0.9), e1)
is_feasible_point(c(1,0), list(e1, e2))

marginal_overlap Feasibility of all Marginal Ellipse Overlaps

Description

Determin if the projections of ellipses onto each margin overlap.

Usage

marginal_overlap(ell, margins = "all")

Arguments

ell a list of at least two (non degenerate) ellipses; see wrangle_ellipse.

margins either "all" or a vector indicating the margins to project the ellipses onto and
take intersections.

6 marginal_overlap

Details

The ellipses are projected onto the specified margins. For each margin the intersection of the
projected ellipses is found. The Lower and Upper endpoints of the intersection interval is reported.
If the intersection along a margin is empty then Lower and Upper is reported as NA.

Note that if the ellipses overlap when projected onto each margin this does not imply that the ellipses
themselves intersect non-emptily. The example below is constructed to illustrate this.

Value

marginal_overlap returns an object of class "marginal_overlap" which contains a data.frame
where the coloumns descibe the following

Margin Intputted margins.
Overlap Whether the ellipses overlap when projected onto corresponding margin.
Lower Lower endpoint of intersection interval. NA if the intersection is empty.
Upper Upper endpoint of intersection interval. NA if the intersection is empty.

See Also

wrangle_ellipse for detailed on ellipse parameterization.

Examples

two dimensional ellipses
e1 <- list(c = c(0.1, 0), P = matrix(c(3, 0, 0, 1), ncol = 2), r = 1)
e2 <- list(c = c(1, 1), P = matrix(c(3, 1.2, 1.2, 1), ncol = 2), r = 0.8)
e3 <- list(c = c(2, 1.5), P = matrix(c(1, 0.6, 0.6, 1), ncol = 2), r = 0.4)
Note: These three ellipses have been chosen so (some of) the marginal
projections intersect, but the actual ellipses do not intersect.

Ellipses e1 and e2 overlap when projected onto margin 1 and 2 respectivly.
marginal_overlap(list(e1, e2))

Adding ellipse e3:
Then there is no overlap when projecting onto margin 1
marginal_overlap(list(e1, e2, e3), margins = c(1))

regression example
n <- 100
E <- rbinom(n, 1, 0.5)
X <- rnorm(n, E * 3, 1)
Y <- rnorm(n, 2 + X, 1)
lm_E0 <- lm(Y ~ X, data = data.frame(Y, X), subset = (E == 0))
lm_E1 <- lm(Y ~ X, data = data.frame(Y, X), subset = (E == 1))

create 95% confidence ellipses and check marginal overlap
q <- qchisq(0.95, 2) # df = 2, as there are two covariates (1, X)
ell0 <- list(c = coefficients(lm_E0), S = vcov(lm_E0), r = q)
ell1 <- list(c = coefficients(lm_E1), S = vcov(lm_E1), r = q)
marginal_overlap(list(ell0, ell1))

pairwise_overlap 7

pairwise_overlap Feasibility of all Pairwise Ellipse Overlaps

Description

Determin if pairs of ellipses intersect non-emptily..

Usage

pairwise_overlap(ell, ...)

Arguments

ell a list of at least two (non degenerate) ellipses; see wrangle_ellipse.

... additional arguments to be passed to the low level funcitons.

Details

The pairwise_overlap functions goes through all pairs of ellipses from ell and checks if their
intersection is non-empty.

Note that if all pairs of ellipses intersect this does not mean that the intersection of all the ellipses is
non-empty. The example below is constructed to illustrate this.

Value

The pairwise_overlap function returns an object of class "pairwise_overlap" with the follow-
ing components:

intersection a data.frame where the two first columns specify the two ellipses intersected and
the last coloumn indicate if they have a non-empty intersection.

call the matched call.

See Also

wrangle_ellipse for detailed on ellipse parameterization.

Examples

three different two dimensional ellipses
e1 <- list(c = c(0, 0.7), P = matrix(c(0.2, 0, 0, 3), ncol = 2), r = 0.5)
e2 <- list(c = c(0, 1), P = matrix(c(3, -1.5, -1.5, 1), ncol = 2), r = 1)
e3 <- list(c = c(1.5, 1), P = matrix(c(3, 1.2, 1.2, 1), ncol = 2), r = 1.2)
Note: These ellipses have been chosen so all pairs intersect,
but the intersection of all three is empty.

test pairwise overlaps
pairwise_overlap(list(e1, e2, e3))

8 wrangle_ellipse

regression example
generate data
n <- 100
E <- rbinom(n, 2, 0.5)
X <- rnorm(n, 3 * E, 1)
Y <- rnorm(n, 2 + 1.5 * E, 1)
m0 <- lm(Y ~ X, data = data.frame(Y,X), subset = (E == 0))
m1 <- lm(Y ~ X, data = data.frame(Y,X), subset = (E == 1))
m2 <- lm(Y ~ X, data = data.frame(Y,X), subset = (E == 2))

create 95% confidence ellipses and check pairwise intersection
q <- qchisq(0.95, 2) # df = 2, as there are two covariates (1, X)
E0 <- list(c = coefficients(m0), S = vcov(m0), r = q)
E1 <- list(c = coefficients(m1), S = vcov(m1), r = q)
E2 <- list(c = coefficients(m2), S = vcov(m2), r = q)
pairwise_overlap(list("model 0" = E0, "model 1" = E1, "model 2" = E2))

wrangle_ellipse Ellipse Wrangeler

Description

wrangle_ellipse is used to wrangle one or more ellipses from one parametrization to another.

Usage

wrangle_ellipse(ell, out_params = c("c", "P", "r"))

Arguments

ell a list of (non degenerate) ellipses to be wrangled. An ellipse is a named list
and each entry corresponds to a parameter. To ensure all out_params can be
calculated one of the parametrizations listed below in the description must be
specified. Some out_params do not require a fully parametrized ellipse and so
partially specified ellipses can be used.

out_params a vector of names of the output parameters. A list of possible parameters is given
below in the details.

Details

Takes ellipse parameters and and calculates the wanted out_params. A parameterization is a named
list, where each named entry is a parameter. The following parameters are accepted both input and
output:

• n : dimension of ellipse; an integer.

• c : center of the ellipse; a vector.

• P : precision matrix - inverse of S; a positive definit, symmetric matrix.

wrangle_ellipse 9

• S : deviation matrix - inverse of P; a positive definit, symmetric matrix.

• r : radius; a positive number.

• q : cross term -Pc; a vector.

• L : Cholesky decomposition of P

• e : eigen values of P; a vector of eigenvalues.

• U : eigen vectors of P; a matrix, where each column is an eigen vector.

• D : diagnonal matrix with sqrt(e) as diagonal entries.

An ellipse E may be fully parameterized using the above parameters in the following ways:

E = {x ∈ Rp : (x− c)TP (x− c) ≤ r}

E = {x ∈ Rp : (x− c)TS−1(x− c) ≤ r}

E = {x ∈ Rp : (x− c)TLLT (x− c) ≤ r}

E = {x ∈ Rp : (x− c)TUD2UT (x− c) ≤ r}

E = {x ∈ Rp : ||LT (x− c)||2 ≤ r}

E = {x ∈ Rp : ||DUT (x− c)||2 ≤ r}

E = {x ∈ Rp : c+ L−Tw, ||w|| ≤ r}

E = {x ∈ Rp : c+ UD−1w, ||w|| ≤ r}

To ensure that all of the above parameters can be calculated it is advised (but in some cases not
needed) that the input ellipses are fully parameterized.

Value

A list of wrangled ellipses. The wrangled ellipses are now given by the out_params.

Examples

two dimensional unite ball
e2d <- list(c = c(0,0), S = matrix(c(1,0,0,1), ncol = 2), r = 1)

three dimensional ellipse
e3d <- list(c = c(3,2,1), P = matrix(c(3,1,2,1,5,0,2,0,2), ncol = 3))

f1 <- wrangle_ellipse(e2d) # (c,P,r) parameterization
f2 <- wrangle_ellipse(e2d, out_params = c("c", "e", "U", "r"))
f3 <- wrangle_ellipse(list("ellipse1" = e2d, "ellipse2" = e3d),

c("n", "c", "U", "D"))

Index

class, 2, 4–7

feasible_overlap, 2
feasible_point, 3

is_feasible_point, 4

marginal_overlap, 5

pairwise_overlap, 7

wrangle_ellipse, 2–7, 8

10

	feasible_overlap
	feasible_point
	is_feasible_point
	marginal_overlap
	pairwise_overlap
	wrangle_ellipse
	Index

