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Abstract

flexsurv is an R package for fully-parametric modelling of survival data. Any para-
metric time-to-event distribution may be fitted if the user supplies a probability density
or hazard function, and ideally also their cumulative versions. Standard survival distri-
butions are built in, including the three and four-parameter generalized gamma and F
distributions. Any parameter of any distribution can be modelled as a linear or log-linear
function of covariates. The package also includes the spline model of Royston and Par-
mar (2002), in which both baseline survival and covariate effects can be arbitrarily flexible
parametric functions of time. The main model-fitting function, flexsurvreg, uses the fa-
miliar syntax of survreg from the standard survival package (Therneau 2014). Censoring
or left-truncation are specified in Surv objects. The models are fitted by maximising the
full log-likelihood, and estimates and confidence intervals for any function of the model
parameters can be printed or plotted. flexsurv also provides functions for fitting and pre-
dicting from fully-parametric multi-state models, and connects with the mstate package
(de Wreede et al. 2011). This article explains the methods and design principles of the
package, giving several worked examples of its use. [Note: A version of this vignette is
published as Jackson (2016) in Journal of Statistical Software. All content there is in-
cluded here. There have been no substantial changes in the survival modelling parts since
then. Version 2.0 of flexsurv added new features for multi-state modelling, and since that
version, multi-state modelling with flexsurv has been described in a separate vignette.]

Keywords: survival, multi-state models, multistate models.

1. Motivation and design

The Cox model for survival data is ubiquitous in medical research, since the effects of predic-
tors can be estimated without needing to supply a baseline survival distribution that might
be inaccurate. However, fully-parametric models have many advantages, and even the origi-
nator of the Cox model has expressed a preference for parametric modelling (see Reid 1994).
Fully-specified models can be more convenient for representing complex data structures and
processes (Aalen et al. 2008), e.g. hazards that vary predictably, interval censoring, frailties,
multiple responses, datasets or time scales, and can help with out-of-sample prediction. For
example, the mean survival E(T ) =

∫

∞

0
S(t)dt, used in health economic evaluations (Latimer

2013), needs the survivor function S(t) to be fully-specified for all times t, and parametric
models that combine data from multiple time periods can facilitate this (Benaglia et al. 2014).

flexsurv for R (R Core Team 2014) allows parametric distributions of arbitrary complexity to
be fitted to survival data, gaining the convenience of parametric modelling, while avoiding
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the risk of model misspecification. Built-in choices include spline-based models with any
number of knots (Royston and Parmar 2002) and 3–4 parameter generalized gamma and F
distribution families. Any user-defined model may be employed by supplying at minimum an
R function to compute the probability density or hazard, and ideally also its cumulative form.
Any parameters may be modelled in terms of covariates, and any function of the parameters
may be printed or plotted in model summaries.

flexsurv is intended as a general platform for survival modelling in R. The survreg function
in the R package survival (Therneau 2014) only supports two-parameter (location/scale)
distributions, though users can supply their own distributions if they can be parameterised
in this form. Some other contributed R packages can fit survival models, e.g., eha (Broström
2014) and VGAM (Yee and Wild 1996), though these are either limited to specific distribution
families, or not specifically designed for survival analysis. Others, e.g. ActuDistns (Nadarajah
and Bakar 2013), contain only the definitions of distribution functions. flexsurv enables such
functions to be used in survival models.

It is similar in spirit to the Stata packages stpm2 (Lambert and Royston 2009) for spline-based
survival modelling, and stgenreg (Crowther and Lambert 2013) for fitting survival models with
user-defined hazard functions using numerical integration. Though in flexsurv, slow numerical
integration can be avoided if the analytic cumulative distribution or hazard can be supplied,
and optimisation can also be speeded by supplying analytic derivatives. flexsurv also has
features for multi-state modelling and interval censoring, and general output reporting. It
employs functional programming to work with user-defined or existing R functions.

§2 explains the general model that flexsurv is based on. §3 gives examples of its use for
fitting built-in survival distributions with a fixed number of parameters, and §4 explains how
users can define new distributions. §5 concentrates on classes of models where the number
of parameters can be chosen arbitrarily, such as splines. §6 mentions the use of flexsurv for
fitting and predicting from fully-parametric multi-state models, which is described more fully
in a separate vignette. Finally §7 suggests some potential future extensions.

2. General parametric survival model

The general model that flexsurv fits has probability density for death at time t:

f(t|µ(z), α(z)), t ≥ 0 (1)

The cumulative distribution function F (t), survivor function S(t) = 1 − F (t), cumulative
hazard H(t) = − log S(t) and hazard h(t) = f(t)/S(t) are also defined (suppressing the
conditioning for clarity). µ = α0 is the parameter of primary interest, which usually governs
the mean or location of the distribution. Other parameters α = (α1, . . . , αR) are called
“ancillary” and determine the shape, variance or higher moments.

Covariates All parameters may depend on a vector of covariates z through link-transformed
linear models g0(µ(z)) = γ0 + β⊤

0 z and gr(αr(z)) = γr + β⊤
r z. g() will typically be log() if the

parameter is defined to be positive, or the identity function if the parameter is unrestricted.

Suppose that the location parameter, but not the ancillary parameters, depends on covariates.
If the hazard function factorises as h(t|α, µ(z)) = µ(z)h0(t|α), then this is a proportional
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hazards (PH) model, so that the hazard ratio between two groups (defined by two different
values of z) is constant over time t.

Alternatively, if S(t|µ(z), α) = S0(µ(z)t|α) then it is an accelerated failure time (AFT) model,
so that the effect of covariates is to speed or slow the passage of time. For example, doubling
the value of a covariate with coefficient β = log(2) would give half the expected survival time.

Data and likelihood Let ti : i = 1, . . . , n be a sample of times from individuals i. Let
ci = 1 if ti is an observed death time, or ci = 0 if this is censored. Most commonly, ti may be
right-censored, thus the true death time is known only to be greater than ti. More generally,
the survival time may be interval-censored on (tmin

i , tmax
i ).

Also let si be corresponding left-truncation (or delayed-entry) times, meaning that the ith
survival time is only observed conditionally on the individual having survived up to si, thus
si = 0 if there is no left-truncation. Time-dependent covariates (§3.1) and some multi-state
models (§6) can be represented through left-truncation.

With at most right-censoring, the likelihood for the parameters θ = {γ, β} in Equation 1,
given the corresponding data vectors, is

l(θ|t, c, s) =







∏

i: ci=1

fi(ti)
∏

i: ci=0

Si(ti)







/
∏

i

Si(si) (2)

where fi(ti) is shorthand for f(ti|µ(zi), α(zi)), Si(ti) is S(ti|µ(zi), α(zi)), and µ, α are related
to γ, β and zi via the link functions defined above. The log-likelihood also has a concise form
in terms of hazards and cumulative hazards, as

log l(θ|t, c, s) =
∑

i: ci=1

{log(hi(ti)) − Hi(ti)} −
∑

i: ci=0

Hi(ti) +
∑

i

Hi(si)

With interval-censoring, the likelihood is

l(θ|tmin, t
max, c, s) =







∏

i: ci=1

fi(ti)
∏

i: ci=0

(

Si(t
min
i ) − Si(t

max
i )

)







/
∏

i

Si(si) (3)

These likelihoods assume that the times of censoring are fixed or otherwise distributed inde-
pendently of the parameters θ that govern the survival times (see, e.g. Aalen et al. (2008)).
The individual survival times are also independent, so that flexsurv does not currently support
shared frailty, clustered or random effects models (see §7).

The parameters are estimated by maximising the full log-likelihood with respect to θ, as
detailed further in §3.6.

3. Fitting standard parametric survival models

An example dataset used throughout this paper is from 686 patients with primary node
positive breast cancer, available in the package as bc. This was originally provided with stpm

(Royston 2001), and analysed in much more detail by Sauerbrei and Royston (1999) and
Royston and Parmar (2002) 1 . The first two records are shown by:

1A version of this dataset, including more covariates but excluding the prognostic group, is also provided
as GBSG2 in the package TH.data (Hothorn 2015).
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R> library("flexsurv")

R> head(bc, 2)

censrec rectime group recyrs age agedays

1 0 1342 Good 3.676712 64.38839 23517

2 0 1578 Good 4.323288 67.31488 24586

diag sex group2 attained.age.yr attained.year

1 1986-09-15 female Good 68 1990

2 1986-08-12 female Good 71 1990

exprate

1 0.01723772

2 0.02264446

The main model-fitting function is called flexsurvreg. Its first argument is an R formula
object. The left hand side of the formula gives the response as a survival object, using the
Surv function from the survival package.

R> fs1 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+ dist = "weibull")

Here, this indicates that the response variable is recyrs. This represents the time (in years)
of death or cancer recurrence when censrec is 1, or (right-)censoring when censrec is 0.
The covariate group is a factor representing a prognostic score, with three levels "Good" (the
baseline), "Medium" and "Poor". All of these variables are in the data frame bc. If the
argument dist is a string, this denotes a built-in survival distribution. In this case we fit a
Weibull survival model.

Printing the fitted model object gives estimates and confidence intervals for the model param-
eters and other useful information. Note that these are the same parameters as represented by
the R distribution function dweibull: the shape α and the scale µ of the survivor function
S(t) = exp(−(t/µ)α), and group has a linear effect on log(µ).

R> fs1

Call:

flexsurvreg(formula = Surv(recyrs, censrec) ~ group, data = bc,

dist = "weibull")

Estimates:

data mean est L95% U95% se

shape NA 1.3797 1.2548 1.5170 0.0668

scale NA 11.4229 9.1818 14.2110 1.2728

groupMedium 0.3338 -0.6136 -0.8623 -0.3649 0.1269

groupPoor 0.3324 -1.2122 -1.4583 -0.9661 0.1256

exp(est) L95% U95%

shape NA NA NA

scale NA NA NA
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groupMedium 0.5414 0.4222 0.6943

groupPoor 0.2975 0.2326 0.3806

N = 686, Events: 299, Censored: 387

Total time at risk: 2113.425

Log-likelihood = -811.9419, df = 4

AIC = 1631.884

For the Weibull (and exponential, log-normal and log-logistic) distribution, flexsurvreg

simply acts as a wrapper for survreg: the maximum likelihood estimates are obtained by
survreg, checked by flexsurvreg for optimisation convergence, and converted to flexsurvreg’s
preferred parameterisation. Therefore the same model can be fitted more directly as

R> survreg(Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")

Call:

survreg(formula = Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")

Coefficients:

(Intercept) groupMedium groupPoor

2.4356168 -0.6135892 -1.2122137

Scale= 0.7248206

Loglik(model)= -811.9 Loglik(intercept only)= -873.2

Chisq= 122.53 on 2 degrees of freedom, p= <2e-16

n= 686

The maximised log-likelihoods are the same, however the parameterisation is different: the
first coefficient (Intercept) reported by survreg is log(µ), and survreg’s "scale" is
dweibull’s (thus flexsurvreg)’s 1 / shape. The covariate effects β, however, have the
same “accelerated failure time” interpretation, as linear effects on log(µ). The multiplicative
effects exp(β) are printed in the output as exp(est).

The same model can be fitted in eha, also by maximum likelihood, as

R> library(eha)

R> aftreg(Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")

The results are presented in the same parameterisation as flexsurvreg, except that the
shape and scale parameters are log-transformed, and (unless the argument param="lifeExp"

is supplied) the covariate effects have the opposite sign.

3.1. Additional modelling features

Truncation and time-dependent covariates

If we also had left-truncation times in a variable called start, the response would
be Surv(start, recyrs, censrec). Or if all responses were interval-censored between



6 flexsurv: A Platform for Parametric Survival Modelling in R

lower and upper bounds tmin and tmax, then we would write Surv(tmin, tmax, type =

"interval2").

Time-dependent covariates can be represented in “counting process” form — as a series of
left-truncated survival times, which may also be right-censored. For each individual there
would be multiple records, each corresponding to an interval where the covariate is assumed
to be constant. The response would be of the form Surv(start, stop, censrec), where
start and stop are the limits of each interval, and censrec indicates whether a death was
observed at stop.

In versions of flexsurv since April 2020, models with individual-specific right-truncation times
are also supported. These are used for situations with “retrospective ascertainment”, where
cases are only included in the data if they have died by a specific time. These models are
specified through an argument rtrunc to flexsurvreg that names the variable with the
truncation times. See the Supplementary Examples vignette for a worked example.

Relative survival

In relative survival models (Nelson et al. 2007), the survivor function is expressed as S(t) =
S∗(t)R(t), where S∗(t) is the “expected" or “baseline" survival, and R(t) is the relative sur-
vival. Equivalently, the hazard is defined as h(t) = h∗(t) + λ(t), where h∗() is the baseline
hazard function, and λ(t) is the excess mortality rate associated with the disease of inter-
est. The baseline represents a reference population, and is typically obtained from national
routinely-collected mortality statistics, adjusted (e.g. by age/sex) to represent the population
under study. The parametric model is defined and estimated for R(t).

These models are implemented in flexsurv by supplying the variable in the data that represents
the expected mortality rate h∗(t) in the bhazard argument to flexsurvreg. This is only used
for the individuals in the data who die, and bhazard describes the expected hazard at the
death time. The values of bhazard for censored individuals are ignored.

Note that the parameters returned in the model fitted by flexsurvreg refer to the relative
survival R(t), rather than the absolute survival. The likelihood returned by flexsurvreg

here is a partial likelihood defined (as in Nelson et al. 2007, equations 4–5) by omitting the
term

∑

i log(S∗(ti)) (summed over all individuals i in the data, including both censored and
uncensored times ti) from the full likelihood. This term is equivalent to minus the sum of
the cumulative hazards. It can be omitted from the likelihood for the purpose of estimating
the parameters of the relative survival model, since it does not depend on these parameters.
Hence if a full likelihood is required, (e.g. for model comparison) then this term should be
added to the partial likelihood.

Similarly, the predicted survival or hazard (e.g. as returned by summary.flexsurvreg, see
Section 3.4) from a relative survival model refers to R(t) or h(t). Hence if the overall survival
or hazard is required, the predictions of relative survival should be converted to the “absolute"
scale by combining with the baseline, though no specific tools for doing this are provided by
flexsurv.

Weighting and subsetting

Case weights and data subsets can also be specified, as in standard R modelling functions,
using weights or subset arguments.
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3.2. Built-in models

flexsurvreg’s currently built-in distributions are listed in Table 1. In each case, the proba-
bility density f() and parameters of the fitted model are taken from an existing R function of
the same name but beginning with the letter d. For the Weibull, exponential (dexp), gamma
(dgamma) and log-normal (dlnorm), the density functions are provided with standard installa-
tions of R. These density functions, and the corresponding cumulative distribution functions
(with first letter p instead of d) are used internally in flexsurvreg to compute the likelihood.

flexsurv provides some additional survival distributions, including a Gompertz distribution
with unrestricted shape parameter, Weibull with proportional hazards parameterisation, log-
logistic, and the three- and four-parameter families described below. For all built-in distri-
butions, flexsurv also defines functions beginning with h giving the hazard, and H for the
cumulative hazard.

A package vignette “Distributions reference” lists the survivor function and parameterisation
of covariate effects used by each built-in distribution.

Generalized gamma This three-parameter distribution includes the Weibull, gamma and
log-normal as special cases. The original parameterisation from Stacy (1962) is available as
dist = "gengamma.orig", however the newer parameterisation (Prentice 1974) is preferred:
dist = "gengamma". This has parameters (µ,σ,q), and survivor function

1 − I(γ, u) (q > 0)
1 − Φ(z) (q = 0)

where I(γ, u) =
∫ u

0
xγ−1 exp(−x)/Γ(γ) is the incomplete gamma function (the cumulative

gamma distribution with shape γ and scale 1), Φ is the standard normal cumulative distribu-
tion, u = γ exp(|q|z), z = (log(t) − µ)/σ, and γ = q−2. The Prentice (1974) parameterisation
extends the original one to include a further class of models with negative q, and survivor
function I(γ, u), where z is replaced by −z. This stabilises estimation when the distribution
is close to log-normal, since q = 0 is no longer near the boundary of the parameter space. In
R notation, 2 the parameter values corresponding to the three special cases are

dgengamma(x, mu, sigma, Q=0) == dlnorm(x, mu, sigma)

dgengamma(x, mu, sigma, Q=1) == dweibull(x, shape = 1 / sigma,

scale = exp(mu))

dgengamma(x, mu, sigma, Q=sigma) == dgamma(x, shape = 1 / sigma^2,

rate = exp(-mu) / sigma^2)

Generalized F This four-parameter distribution includes the generalized gamma, and
also the log-logistic, as special cases. The variety of hazard shapes that can be repre-
sented is discussed by Cox (2008). It is provided here in alternative “original” (dist =

"genf.orig") and “stable” parameterisations (dist = "genf") as presented by Prentice
(1975). See help(GenF) and help(GenF.orig) in the package documentation for the ex-
act definitions.

2The parameter called q here and in previous literature is called Q in dgengamma and related functions,
since the first argument of a cumulative distribution function is conventionally named q, for quantile, in R.
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Parameters Density R function dist

(location in red)

Exponential rate dexp "exp"

Weibull (accelerated failure
time)

shape, scale dweibull "weibull"

Weibull (proportional haz-
ards)

shape, scale dweibullPH "weibullPH"

Gamma shape, rate dgamma "gamma"

Log-normal meanlog, sdlog dlnorm "lnorm"

Gompertz shape, rate dgompertz "gompertz"

Log-logistic shape, scale dllogis "llogis"

Generalized gamma (Pren-
tice 1975)

mu, sigma, Q dgengamma "gengamma"

Generalized gamma (Stacy
1962)

shape, scale, k dgengamma.orig "gengamma.orig"

Generalized F (stable) mu, sigma, Q, P dgenf "genf"

Generalized F (original) mu, sigma, s1, s2 dgenf.orig "genf.orig"

Table 1: Built-in parametric survival distributions in flexsurv.

3.3. Covariates on ancillary parameters

The generalized gamma model is fitted to the breast cancer survival data. fs2 is an AFT
model, where only the parameter µ depends on the prognostic covariate group. In a second
model fs3, the first ancillary parameter sigma (α1) also depends on this covariate, giving
a model with a time-dependent effect that is neither PH nor AFT. The second ancillary
parameter Q is still common between prognostic groups.

R> fs2 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+ dist = "gengamma")

R> fs3 <- flexsurvreg(Surv(recyrs, censrec) ~ group + sigma(group), data = bc,

+ dist = "gengamma")

Ancillary covariates can alternatively be supplied using the anc argument to flexsurvreg.
This syntax is required if any parameter names clash with the names of functions used in
model formulae (e.g., factor() or I()).

R> fs3 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+ anc = list(sigma = ~ group), dist = "gengamma")

Table 3 compares all the models fitted to the breast cancer data, showing absolute fit to
the data as measured by the maximised -2×log likelihood −2LL, number of parameters p,
and Akaike’s information criterion −2LL + 2p (AIC). The model fs2 has the lowest AIC,
indicating the best estimated predictive ability.

3.4. Plotting outputs

The plot() method for flexsurvreg objects is used as a quick check of model fit. By default,
this draws a Kaplan-Meier estimate of the survivor function S(t), one for each combination of
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categorical covariates, or just a single “population average” curve if there are no categorical
covariates (Figure 1). The corresponding estimates from the fitted model are overlaid. Fitted
values from further models can be added with the lines() method.
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Figure 1: Survival by prognostic group from the breast cancer data: fitted from alternative
parametric models and Kaplan-Meier estimates.

The argument type = "hazard" can be set to plot hazards from parametric models against
kernel density estimates obtained from muhaz (Hess 2010; Mueller and Wang 1994). Figure
2 shows more clearly that the Weibull model is inadequate for the breast cancer data: the
hazard must be increasing or decreasing — while the generalized gamma can represent the
increase and subsequent decline in hazard seen in the data. Similarly, type = "cumhaz" plots
cumulative hazards.

The numbers plotted are available from the summary.flexsurvreg() method. Confidence
intervals are produced by simulating a large sample from the asymptotic normal distribution
of the maximum likelihood estimates of {βr : r = 0, . . . , R} (Mandel 2013), via the function
normboot.flexsurvreg. This very general method allows confidence intervals to be obtained
for arbitrary functions of the parameters, as described in the next section.

In this example, there is only a single categorical covariate, and the plot and summary methods
return one observed and fitted trajectory for each level of that covariate. For more complicated
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Figure 2: Hazards by prognostic group from the breast cancer data: fitted from alternative
parametric models and kernel density estimates.

models, users should specify what covariate values they want summaries for, rather than
relying on the default 3. This is done by supplying the newdata argument, a data frame
or list containing covariate values, just as in standard R functions like predict.lm. Time-
dependent covariates are not understood by these functions.

This plot() method is only for casual exploratory use. For publication-standard figures, it
is preferable to set up the axes beforehand (plot(..., type = "n")), and use the lines()

methods for flexsurvreg objects, or construct plots by hand using the data available from
summary.flexsurvreg().

3.5. Custom model summaries

Any function of the parameters of a fitted model can be summarised or plotted by supplying

3If there are only factor covariates, all combinations are plotted. If there are any continuous covariates,
these methods by default return a “population average” curve, with the linear model design matrix set to
its average values, including the 0/1 contrasts defining factors, which doesn’t represent any specific covariate
combination.
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the argument fn to summary.flexsurvreg or plot.flexsurvreg. This should be an R

function, with optional first two arguments t representing time, and start representing a
left-truncation point (if the result is conditional on survival up to that time). Any remaining
arguments must be the parameters of the survival distribution. For example, median survival
under the Weibull model fs1 can be summarised as follows

R> median.weibull <- function(shape, scale) {

+ qweibull(0.5, shape = shape, scale = scale)

+ }

R> summary(fs1, fn = median.weibull, t = 1, B = 10000)

group=Good

time est lcl ucl

1 1 8.75794 7.124893 10.77381

group=Medium

time est lcl ucl

1 1 4.741585 4.125668 5.444501

group=Poor

time est lcl ucl

1 1 2.605819 2.309161 2.940374

Although the median of the Weibull has an analytic form as µ log(2)1/α, the form of the code
given here generalises to other distributions. The argument t (or start) can be omitted from
median.weibull, because the median is a time-constant function of the parameters, unlike
the survival or hazard.

10000 random samples are drawn to produce a slightly more precise confidence interval than
the default — users should adjust this until the desired level of precision is obtained. A useful
future extension of the package would be to employ user-supplied (or built-in) derivatives of
summary functions if possible, so that the delta method can be used to obtain approximate
confidence intervals without simulation.

3.6. Computation

The likelihood is maximised in flexsurvreg using the optimisation methods available through
the standard R optim function. By default, this is the "BFGS" method (Nash 1990) using the
analytic derivatives of the likelihood with respect to the model parameters, if these are avail-
able, to improve the speed of convergence to the maximum. These derivatives are built-in for
the exponential, Weibull, Gompertz, log-logistic, and hazard- and odds-based spline models
(see §5.1). For custom distributions (see §4), the user can optionally supply functions with
names beginning "DLd" and "DLS" respectively (e.g., DLdweibull, DLSweibull) to calculate
the derivatives of the log density and log survivor functions with respect to the transformed
baseline parameters γ (then the derivatives with respect to β are obtained automatically).
Arguments to optim can be passed to flexsurvreg — in particular, control options, such
as convergence tolerance, iteration limit or function or parameter scaling, may need to be
adjusted to achieve convergence.
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4. Custom survival distributions

flexsurv is not limited to its built-in distributions. Any survival model of the form (1–3) can
be fitted if the user can provide either the density function f() or the hazard h(). Many
contributed R packages provide probability density and cumulative distribution functions for
positive distributions. Though survival models may be more naturally characterised by their
hazard function, representing the changing risk of death through time. For example, for
survival following major surgery we may want a “U-shaped” hazard curve, representing a
high risk soon after the operation, which then decreases, but increases naturally as survivors
grow older.

To supply a custom distribution, the dist argument to flexsurvreg is defined to be an R

list object, rather than a character string. The list has the following elements.

name Name of the distribution. In the first example below, we use a log-logistic distribution,
and the name is "llogis" 4. Then there is assumed to be at least either

• a function to compute the probability density, which would be called dllogis here,
or

• a function to compute the hazard, called hllogis.

There should also be a function called pllogis for the cumulative distribution (if d is
given), or H for the cumulative hazard (to complement h), if analytic forms for these are
available. If not, then flexsurv can compute them internally by numerical integration, as
in stgenreg (Crowther and Lambert 2013). The default options of the built-in R routine
integrate for adaptive quadrature are used, though these may be changed using the
integ.opts argument to flexsurvreg. Models specified this way will take an order of
magnitude more time to fit, and the fitting procedure may be unstable. An example is
given in §5.2.

These functions must be vectorised, and the density function must also accept an argu-
ment log, which when TRUE, returns the log density. See the examples below.

In some cases, R’s scoping rules may not find the functions in the working environment.
They may then be supplied through the dfns argument to flexsurvreg.

pars Character vector naming the parameters of the distribution µ, α1, ..., αR. These must
match the arguments of the R distribution function or functions, in the same order.

location Character: quoted name of the location parameter µ. The location parameter will
not necessarily be the first one, e.g., in dweibull the scale comes after the shape.

transforms A list of functions g() which transform the parameters from their natural ranges
to the real line, for example, c(log, identity) if the first is positive and the second
unrestricted. 5

inv.transforms List of corresponding inverse functions.

4though since version 0.5.1, this distribution is built into flexsurv as dist="llogis"
5This is a list, not an atomic vector of functions, so if the distribution only has one parameter, we should

write transforms = c(log) or transforms = list(log), not transforms = log.
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inits A function which provides plausible initial values of the parameters for maximum like-
lihood estimation. This is optional, but if not provided, then each call to flexsurvreg

must have an inits argument containing a vector of initial values, which is inconve-
nient. Implausible initial values may produce a likelihood of zero, and a fatal error
message (initial value in ‘vmmin’ is not finite) from the optimiser.

Each distribution will ideally have a heuristic for initialising parameters from summaries
of the data. For example, since the median of the Weibull is µ log(2)1/α, a sensible
estimate of µ might be the median log survival time divided by log(2), with α = 1,
assuming that in practice the true value of α is not far from 1. Then we would define
the function, of one argument t giving the survival or censoring times, returning the
initial values for the Weibull shape and scale respectively 6.

inits = function(t) c(1, median(t[t > 0]) / log(2))

More complicated initial value functions may use other data such as the covariate values
and censoring indicators: for an example, see the function flexsurv.splineinits in
the package source that computes initial values for spline models (§5.1).

Example: Using functions from a contributed package The following custom model
uses the log-logistic distribution functions (dllogis and pllogis) available in the package
eha. The survivor function is S(t|µ, α) = 1/(1 + (t/µ)α), so that the log odds log((1 −
S(t))/S(t)) of having died are a linear function of log time.

R> custom.llogis <- list(name = "llogis", pars = c("shape", "scale"),

+ location = "scale",

+ transforms = c(log, log),

+ inv.transforms = c(exp, exp),

+ inits = function(t){ c(1, median(t)) })

R> fs4 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+ dist = custom.llogis)

This fits the breast cancer data better than the Weibull, since it can represent a peaked
hazard, but less well than the generalized gamma (Table 3).

Example: Wrapping functions from a contributed package Sometimes there may
be probability density and similar functions in a contributed package, but in a different
format. For example, eha also provides a three-parameter Gompertz-Makeham distribution
with hazard h(t|µ, α1, α2) = α2 + α1 exp(t/µ). The shape parameters α1, α2 are provided to
dmakeham as a vector argument of length two. However, flexsurvreg expects distribution
functions to have one argument for each parameter. Therefore we write our own functions
that wrap around the third-party functions.

R> dmakeham3 <- function(x, shape1, shape2, scale, ...) {

+ dmakeham(x, shape = c(shape1, shape2), scale = scale, ...)

+ }

6though Weibull models in flexsurvreg are “initialised” by fitting the model with survreg, unless there is
left-truncation.
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R> pmakeham3 <- function(q, shape1, shape2, scale, ...) {

+ pmakeham(q, shape = c(shape1, shape2), scale = scale, ...)

+ }

flexsurvreg also requires these functions to be vectorized, as the standard distribution func-
tions in R are. That is, we can supply a vector of alternative values for one or more arguments,
and expect a vector of the same length to be returned. The R base function Vectorize can
be used to do this here.

R> dmakeham3 <- Vectorize(dmakeham3)

R> pmakeham3 <- Vectorize(pmakeham3)

and this allows us to write, for example,

R> pmakeham3(c(0, 1, 1, Inf), 1, c(1, 1, 2, 1), 1)

We could then use dist = list(name = "makeham3", pars = c("shape1", "shape2",

"scale"), ...) in a flexsurvreg model, though in the breast cancer example, the second
shape parameter is poorly identifiable.

Example: Changing the parameterisation of a distribution We may want to fit a
Weibull model like fs1, but with the proportional hazards (PH) parameterisation S(t) =
exp(−µtα), so that the covariate effects reported in the printed flexsurvreg object can be
interpreted as hazard ratios or log hazard ratios without any further transformation. Here
instead of the density and cumulative distribution functions, we provide the hazard and
cumulative hazard. (Note that since version 0.7, the "weibullPH" distribution is built in to
flexsurvreg — but this example has been kept here for illustrative purposes.) 7

R> hweibullPH <- function(x, shape, scale = 1, log = FALSE){

+ hweibull(x, shape = shape, scale = scale ^ {-1 / shape}, log = log)

+ }

R> HweibullPH <- function(x, shape, scale = 1, log = FALSE){

+ Hweibull(x, shape = shape, scale = scale ^ {-1 / shape}, log = log)

+ }

R> custom.weibullPH <- list(name = "weibullPH",

+ pars = c("shape", "scale"), location = "scale",

+ transforms = c(log, log),

+ inv.transforms = c(exp, exp),

+ inits = function(t){

+ c(1, median(t[t > 0]) / log(2))

+ })

R> fs6 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,

+ dist = custom.weibullPH)

R> fs6$res["scale", "est"] ^ {-1 / fs6$res["shape", "est"]}

7The eha package may need to be detached first so that flexsurv’s built-in hweibull is used, which returns
NaN if the parameter values are zero, rather than failing as eha’s currently does.
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[1] 11.42287

R> - fs6$res["groupMedium", "est"] / fs6$res["shape", "est"]

[1] -0.61359

R> - fs6$res["groupPoor", "est"] / fs6$res["shape", "est"]

[1] -1.212215

The fitted model is the same as fs1, therefore the maximised likelihood is the same. The
parameter estimates of fs6 can be transformed to those of fs1 as shown. The shape α is
common to both models, the scale µ′ in the AFT model is related to the PH scale µ as µ′

= µ−1/α. The effects β′ on life expectancy in the AFT model are related to the log hazard
ratios β as β′ = −β/α.

A slightly more complicated example is given in the package vignette flexsurv-examples of
constructing a proportional hazards generalized gamma model. Note that phreg in eha also
fits the Weibull and other proportional hazards models, though again the parameterisation is
slightly different.

5. Arbitrary-dimension models

flexsurv also supports models where the number of parameters is arbitrary. In the models
discussed previously, the number of parameters in the model family is fixed (e.g., three for
the generalized gamma). In this section, the model complexity can be chosen by the user,
given the model family. We may want to represent more irregular hazard curves by more
flexible functions, or use bigger models if a bigger sample size makes it feasible to estimate
more parameters.

5.1. Royston and Parmar spline model

In the spline-based survival model of Royston and Parmar (2002), a transformation g(S(t, z))
of the survival function is modelled as a natural cubic spline function of log time: g(S(t, z)) =
s(x, γ) where x = log(t). This model can be fitted in flexsurv using the function
flexsurvspline, and is also available in the Stata package stpm2 (Lambert and Royston
2009) (historically stpm, Royston (2001, 2004)).

Typically we use g(S(t, z)) = log(− log(S(t, z))) = log(H(t, z)), the log cumulative hazard,
giving a proportional hazards model.

Spline parameterisation The complexity of the model, thus the dimension of γ, is gov-
erned by the number of knots in the spline function s(). Natural cubic splines are piecewise
cubic polynomials defined to be continuous, with continuous first and second derivatives at
the knots, and also constrained to be linear beyond boundary knots kmin, kmax. As well as
the boundary knots there may be up to m ≥ 0 internal knots k1, . . . , km. Various spline
parameterisations exist — the one used here is from Royston and Parmar (2002).

s(x, γ) = γ0 + γ1x + γ2v1(x) + . . . + γm+1vm(x) (4)
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Model g(S(t, z)) In flexsurvspline With m = 0

Proportional hazards log(− log(S(t, z)))
(log cumulative hazard)

scale = "hazard" Weibull shape γ1,

scale exp(−γ0/γ1)

Proportional odds log(S(t, z)−1 − 1)
(log cumulative odds)

scale = "odds" Log-logistic shape γ1,

scale exp(−γ0/γ1)

Normal / probit Φ−1(S(t, z))
(inverse normal CDF,

qnorm)

scale = "normal" Log-normal meanlog

−γ0/γ1, sdlog 1/γ1

Table 2: Alternative modelling scales for flexsurvspline, and equivalent distributions for
m = 0 (with parameter definitions as in the R d functions referred to elsewhere in the paper).

where vj(x) is the jth basis function

vj(x) = (x − kj)3
+ − λj(x − kmin)3

+ − (1 − λj)(x − kmax)3
+, λj =

kmax − kj

kmax − kmin

and (x − a)+ = max(0, x − a). If m = 0 then there are only two parameters γ0, γ1, and
this is a Weibull model if g() is the log cumulative hazard. Table 2 explains two further
choices of g(), and the parameter values and distributions they simplify to for m = 0. The
probability density and cumulative distribution functions for all these models are available as
dsurvspline and psurvspline. A model with an absolute time scale (x = t) is also available
through timescale="identity".

Covariates on spline parameters Covariates can be placed on any parameter γ through
a linear model (with identity link function). Most straightforwardly, we can let the intercept
γ0 vary with covariates z, giving a proportional hazards or odds model (depending on g()).

g(S(t, z)) = s(log(t), γ) + β⊤
z

The spline coefficients γj : j = 1, 2 . . ., the “ancillary” parameters, may also be modelled as
linear functions of covariates z, as

γj(z) = γj0 + γj1z1 + γj2z2 + . . .

giving a model where the effects of covariates are arbitrarily flexible functions of time: a
non-proportional hazards or odds model.

Spline models in flexsurv The argument k to flexsurvspline defines the number of
internal knots m. Knot locations are chosen by default from quantiles of the log uncensored
death times, or users can supply their own locations in the knots argument. Initial values
for numerical likelihood maximisation are chosen using the method described by Royston and
Parmar (2002) of Cox regression combined with transforming an empirical survival estimate.

For example, the best-fitting model for the breast cancer dataset identified in Royston and
Parmar (2002), a proportional odds model with one internal spline knot, is



Christopher Jackson, MRC Biostatistics Unit 17

R> sp1 <- flexsurvspline(Surv(recyrs, censrec) ~ group, data = bc, k = 1,

+ scale = "odds")

A further model where the first ancillary parameter also depends on the prognostic group,
giving a time-varying odds ratio, is fitted as

R> sp2 <- flexsurvspline(Surv(recyrs, censrec) ~ group + gamma1(group),

+ data = bc, k = 1, scale = "odds")

These models give qualitatively similar results to the generalized gamma in this dataset
(Figure 3), and have similar predictive ability as measured by AIC (Table 3). Though in
general, an advantage of spline models is that extra flexibility is available where necessary.
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Figure 3: Comparison of spline and generalized gamma fitted hazards for the breast cancer
survival data by prognostic group.

In this example, proportional odds models (scale = "odds") are better-fitting than propor-
tional hazards models (scale = "hazard") (Table 3). Note also that under a proportional
hazards spline model with one internal knot (sp3), the log hazard ratios, and their standard
errors, are substantively the same as under a standard Cox model (cox3). This illustrates
that this class of flexible fully-parametric models may be a reasonable alternative to the
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(semi-parametric) Cox model. See Royston and Parmar (2002) for more discussion of these
issues.

R> sp3 <- flexsurvspline(Surv(recyrs, censrec) ~ group, data = bc, k = 1,

+ scale = "hazard")

R> sp3$res[c("groupMedium", "groupPoor"), c("est", "se")]

est se

groupMedium 0.8345026 0.1712764

groupPoor 1.6120990 0.1641750

R> cox3 <- coxph(Surv(recyrs, censrec) ~ group, data = bc)

R> coef(summary(cox3))[ , c("coef", "se(coef)")]

coef se(coef)

groupMedium 0.8401002 0.1713926

groupPoor 1.6180720 0.1645443

An equivalent of a “stratified" Cox model may be obtained by allowing all the spline pa-
rameters to vary with the categorical covariate that defines the strata. In this case, this
covariate might be group. With k=m internal knots, the formula should then include group,
representing γ0, and m + 1 further terms representing the parameters γ1, . . . , γm+1, named as
follows.

R> sp4 <- flexsurvspline(Surv(recyrs, censrec) ~ group + gamma1(group) +

+ gamma2(group), data = bc, k = 1, scale = "hazard")

Other covariates might be added to this formula — if placed on the intercept, these will
be modelled through proportional hazards, as in sp1. If placed on higher-order parameters,
these will represent time-varying hazard ratios. For example, if there were a covariate treat

representing treatment, then

R> flexsurvspline(Surv(recyrs, censrec) ~ group + gamma1(group) +

+ gamma2(group) + treat + gamma1(treat),

+ data = bc, k = 1, scale = "hazard")

would represent a model stratified by group, where the hazard ratio for treatment is time-
varying, but the model is not fully stratified by treatment.

R> res <- t(sapply(list(fs1, fs2, fs3, sp1, sp2, sp3, sp4),

+ function(x)rbind(-2 * round(x$loglik,1), x$npars,

+ round(x$AIC,1))))

R> rownames(res) <- c("Weibull (fs1)", "Generalized gamma (fs2)",

+ "Generalized gamma (fs3)",

+ "Spline (sp1)", "Spline (sp2)", "Spline (sp3)",

+ "Spline (sp4)")

R> colnames(res) <- c("-2 log likelihood", "Parameters", "AIC")
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R> res

-2 log likelihood Parameters AIC

Weibull (fs1) 1623.8 4 1631.9

Generalized gamma (fs2) 1575.2 5 1585.1

Generalized gamma (fs3) 1572.4 7 1586.4

Spline (sp1) 1578.0 5 1588.0

Spline (sp2) 1574.8 7 1588.8

Spline (sp3) 1585.8 5 1595.7

Spline (sp4) 1571.4 9 1589.3

Table 3: Comparison of parametric survival models fitted to the breast cancer data.

5.2. Implementing new general-dimension models

The spline model above is an example of the general parametric form (Equation 1), but the
number of parameters, R + 1 in Equation 1, m + 2 in Equation 4, is arbitrary. flexsurv has
the tools to deal with any model of this form. flexsurvspline works internally by building a
custom distribution and then calling flexsurvreg. Similar models may in principle be built
by users using the same method. This relies on a functional programming trick.

Creating distribution functions dynamically The R distribution functions supplied to
custom models are expected to have a fixed number of arguments, including one for each scalar
parameter. However, the distribution functions for the spline model (e.g., dsurvspline) have
an argument gamma representing the vector of parameters γ, whose length is determined by
choosing the number of knots. Just as the scalar parameters of conventional distribution
functions can be supplied as vector arguments (as explained in §4), similarly, the vector
parameters of spline-like distribution functions can be supplied as matrix arguments, repre-
senting alternative parameter values.

To convert a spline-like distribution function into the correct form, flexsurv provides the utility
unroll.function. This converts a function with one (or more) vector parameters (matrix
arguments) to a function with an arbitrary number of scalar parameters (vector arguments).
For example, the 5-year survival probability for the baseline group under the model sp1 is

R> gamma <- sp1$res[c("gamma0", "gamma1", "gamma2"), "est"]

R> 1 - psurvspline(5, gamma = gamma, knots = sp1$knots)

[1] 0.6897025

An alternative function to compute this can be built by unroll.function. We tell it that the
vector parameter gamma should be provided instead as three scalar parameters named gamma0,
gamma1, gamma2. The resulting function pfn is in the correct form for a custom flexsurvreg

distribution.

R> pfn <- unroll.function(psurvspline, gamma = 0:2)

R> 1 - pfn(5, gamma0 = gamma[1], gamma1 = gamma[2], gamma2 = gamma[3],

+ knots = sp1$knots)
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[1] 0.6897025

Users wishing to fit a new spline-like model with a known number of parameters could just
as easily write distribution functions specific to that number of parameters, and use the
methods in §4. However the unroll.function method is intended to simplify the process of
extending the flexsurv package to implement new model families, through wrappers similar
to flexsurvspline.

Example: splines on alternative scales An alternative to the Royston-Parmar spline
model is to model the log hazard as a spline function of (log) time instead of the log cumula-
tive hazard. Crowther and Lambert (2013) demonstrate this model using the Stata stgenreg

package. An advantage explained by Royston and Lambert (2011) is that when there are mul-
tiple time-dependent effects, time-dependent hazard ratios can be interpreted independently
of the values of other covariates.

This can also be implemented in flexsurvreg using unroll.function. A disadvantage of
this model is that the cumulative hazard (hence the survivor function) has no analytic form,
therefore to compute the likelihood, the hazard function needs to be integrated numerically.
This is done automatically in flexsurvreg (just as in stgenreg) if the cumulative hazard is
not supplied.

Firstly, a function must be written to compute the hazard as a function of time x, the vector
of parameters gamma (which can be supplied as a matrix argument so the function can give
a vector of results), and a vector of knot locations. This uses flexsurv’s function basis to
compute the natural cubic spline basis (Equation 4), and replicates x and gamma to the length
of the longest one.

R> hsurvspline.lh <- function(x, gamma, knots){

+ if(!is.matrix(gamma)) gamma <- matrix(gamma, nrow = 1)

+ lg <- nrow(gamma)

+ nret <- max(length(x), lg)

+ gamma <- apply(gamma, 2, function(x)rep(x, length = nret))

+ x <- rep(x, length = nret)

+ loghaz <- rowSums(basis(knots, log(x)) * gamma)

+ exp(loghaz)

+ }

The equivalent function is then created for a three-knot example of this model (one internal
and two boundary knots) that has arguments gamma0, gamma1 and gamma2 corresponding to
the three columns of gamma,

R> hsurvspline.lh3 <- unroll.function(hsurvspline.lh, gamma = 0:2)

To complete the model, the custom distribution list is formed, the internal knot is placed at the
median uncensored log survival time, and the boundary knots are placed at the minimum and
maximum. These are passed to hsurvspline.lh through the aux argument of flexsurvreg.

R> custom.hsurvspline.lh3 <- list(

+ name = "survspline.lh3",
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+ pars = c("gamma0", "gamma1", "gamma2"),

+ location = c("gamma0"),

+ transforms = rep(c(identity), 3), inv.transforms = rep(c(identity), 3)

+ )

R> dtime <- log(bc$recyrs)[bc$censrec == 1]

R> ak <- list(knots = quantile(dtime, c(0, 0.5, 1)))

Initial values must be provided in the call to flexsurvreg, since the custom distribution list
did not include an inits component. For this example, “default” initial values of zero suffice,
but the permitted values of γ2 are fairly tightly constrained (from -0.5 to 0.5 here) using
the "L-BFGS-B" bounded optimiser from R’s optim (Nash 1990). Without the constraint,
extreme values of γ2, visited by the optimiser, cause the numerical integration of the hazard
function to fail.

R> sp5 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc, aux = ak,

+ inits = c(0, 0, 0, 0, 0),

+ dist = custom.hsurvspline.lh3,

+ method = "L-BFGS-B", lower = c(-Inf, -Inf, -0.5),

+ upper = c(Inf, Inf, 0.5),

+ control = list(trace = 1, REPORT = 1))

This takes around ten minutes to converge, so is not presented here, though the fit is poorer
than the equivalent spline model for the cumulative hazard. The 95% confidence interval for
γ2 of (0.16, 0.37) is firmly within the constraint. Crowther and Lambert (2014) present a
combined analytic / numerical integration method for this model that may make fitting it
more stable.

Other arbitrary-dimension models Another potential application is to fractional poly-
nomials (Royston and Altman 1994). These are of the form

∑M
m=1 αmxpm log(x)n where the

power pm is in the standard set {2, −1, −0.5, 0, 0.5, 1, 2, 3} (except that log(x) is used instead
of x0), and n is a non-negative integer. They are similar to splines in that they can give
arbitrarily close approximations to a nonlinear function, such as a hazard curve, and are par-
ticularly useful for expressing the effects of continuous predictors in regression models. See
e.g., Sauerbrei et al. (2007), and several other publications by the same authors, for appli-
cations and discussion of their advantages over splines. The R package gamlss (Rigby and
Stasinopoulos 2005) has a function to construct a fractional polynomial basis that might be
employed in flexsurv models.

Polyhazard models (Louzada-Neto 1999) are another potential use of this technique. These
express an overall hazard as a sum of latent cause-specific hazards, each one typically from
the same class of distribution, e.g., a poly-Weibull model if they are all Weibull. For example,
a U-shaped hazard curve following surgery may be the sum of early hazards from surgical
mortality and later deaths from natural causes. However, such models may not always be
identifiable without external information to fix or constrain the parameters of particular
hazards (Demiris et al. 2011).

6. Multi-state models
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A multi-state model represents how an individual moves between multiple states in continuous
time. Survival analysis is a special case with two states, “alive” and “dead”. Competing risks
are a further special case, where there are multiple causes of death, that is, one starting state
and multiple possible destination states.

Multi-state modelling with flexsurv was previously described in this section of the current
vignette. Version 2.0 of flexsurv added several new features for multi-state modelling, in-
cluding multi-state modelling using mixtures, and transition-specific distribution families in
cause-specific hazards models. These models are now fully described in a separate flexsurv

vignette, “Flexible parametric multi-state modelling with the flexsurv package”.

7. Potential extensions

Multi-state modelling is still an area of ongoing work, and while version 2.0 extended flexsurv

in this area, more tools and documentation in this area would still be useful. The msm package
arguably has a more accessible interface for fitting and summarising multi-state models, but
it was designed mainly for panel data rather than event time data, and therefore the event
time distributions it fits are relatively inflexible.

Models where multiple survival times are assumed to be correlated within groups, sometimes
called (shared) frailty models (Hougaard 1995), would also be a useful development. See,
e.g., Crowther et al. (2014) for a recent application based on parametric models. These might
be implemented by exploiting tractability for specific distributions, such as gamma frailties,
or by adjusting standard errors to account for clustering, as implemented in survreg. More
complex random effects models would require numerical integration, for example, Crowther
et al. (2014) provide Stata software based on Gauss-Hermite quadrature. Alternatively, a
probabilistic modelling language such as Stan (Stan Development Team 2014) or BUGS (Lunn
et al. 2012) would be naturally suited to complex extensions such as random effects on multiple
parameters or multiple hierarchical levels.

flexsurv is intended as a platform for parametric survival modelling. Extensions of the soft-
ware to deal with different models may be written by users themselves, through the facilities
described in §4 and §5.2. These might then be included in the package as built-in distribu-
tions, or at least demonstrated in the package’s other vignette flexsurv-examples. Each
new class of models would ideally come with

• guidance on what situations the model is useful for, e.g., what shape of hazards it can
represent

• some intuitive interpretation of the model parameters, their plausible values in typical
situations, and potential identifiability problems. This would also help with choosing
initial values for numerical maximum likelihood estimation, ideally through an inits

function in the custom distribution list (§4).

flexsurv is available from http://CRAN.R-project.org/package=flexsurv. Development
versions are available on https://github.com/chjackson/flexsurv-dev, and contributions
are welcome.

http://CRAN.R-project.org/package=flexsurv
https://github.com/chjackson/flexsurv-dev
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