
Package ‘freealg’
August 27, 2022

Type Package

Title The Free Algebra

Version 1.0-8

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Depends R (>= 3.5.0), methods

Description The free algebra in R; multivariate polynomials with
non-commuting indeterminates. Uses 'disordR' discipline.

License GPL (>= 2)

LazyData yes

Imports Rcpp (>= 1.0-7), partitions (>= 1.9-22), mathjaxr, disordR (>= 0.0-8)

LinkingTo Rcpp

SystemRequirements C++11

Suggests knitr,testthat,magrittr,markdown,rmarkdown

VignetteBuilder knitr

URL https://github.com/RobinHankin/freealg

BugReports https://github.com/RobinHankin/freealg/issues

RdMacros mathjaxr

R topics documented:
freealg-package . 2
accessor . 3
adjoint . 4
constant . 5
deriv . 6
dot-class . 8
freealg . 9
grade . 11
horner . 12
linear . 13
nterms . 14
Ops.freealg . 15
pepper . 16
print . 17

1

https://github.com/RobinHankin/freealg
https://github.com/RobinHankin/freealg/issues

2 freealg-package

rfalg . 18
subs . 18
zero . 20

Index 21

freealg-package The Free Algebra

Description

The free algebra in R; multivariate polynomials with non-commuting indeterminates. Uses ’dis-
ordR’ discipline.

Details

The DESCRIPTION file:

Package: freealg
Type: Package
Title: The Free Algebra
Version: 1.0-8
Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="hankin.robin@gmail.com", comment = c(ORCID = "0000-0001-5982-0415"))
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
Depends: R (>= 3.5.0), methods
Description: The free algebra in R; multivariate polynomials with non-commuting indeterminates. Uses ’disordR’ discipline.
License: GPL (>= 2)
LazyData: yes
Imports: Rcpp (>= 1.0-7), partitions (>= 1.9-22), mathjaxr, disordR (>= 0.0-8)
LinkingTo: Rcpp
SystemRequirements: C++11
Suggests: knitr,testthat,magrittr,markdown,rmarkdown
VignetteBuilder: knitr
URL: https://github.com/RobinHankin/freealg
BugReports: https://github.com/RobinHankin/freealg/issues
RdMacros: mathjaxr
Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Index of help topics:

Ops.freealg Arithmetic Ops methods for the the free algebra
accessor Accessor methods for freealg objects
adjoint The adjoint map
constant The constant term
deriv Differentiation of 'freealg' objects
dot-class Class "dot"
freealg The free algebra
freealg-package The Free Algebra
grade The grade (or degree) of terms in a 'freealg'

object
horner Horner's method

accessor 3

linear A simple free algebra object
nterms Number of terms in a freealg object
pepper Combine variables in every possible order
print.freealg Print freealg objects
rfalg Random free algebra objects
subs Substitution
zero The zero algebraic object

Author(s)

NA

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

Examples

a <- as.freealg("x+xyx")
b <- as.freealg("4x +XyX") # upper-case interpreted as inverse

a+b
stopifnot(a+b==b+a) # should be TRUE

a*b ==b*a # FALSE; noncommutative algebra

as.freealg("1+X+xy")^3

rfalg()
rfalg()^2

accessor Accessor methods for freealg objects

Description

Accessor methods for free algebra objects

Usage

words(x)
coeffs(x)
coeffs(x) <- value

Arguments

x Object of class freealg

value Numeric vector of length 1

Details

Access or set the different parts of an freealg object. The constant term is technically a coefficient
but is documented under constant.Rd.

4 adjoint

Note

There is an extended discussion of this issue in the mvp object at accessor.Rd.

Author(s)

Robin K. S. Hankin

See Also

constant

Examples

a <- rfalg()
a
coeffs(a)
words(a) # Note hash is identical to that of coeffs(a)

coeffs(a) <- 7 # replacement methods work
a
coeffs(a) #

adjoint The adjoint map

Description

The adjoint adX of X is a map from a Lie group G to the endomorphism group of G defined by

adX(Y) = [X,Y]

Usage

ad(x)

Arguments

x Object nominally of class freealg but other classes accepted where they make
sense

Details

details here

Note

Vignette adjoint gives more description

Author(s)

Robin K. S. Hankin

constant 5

Examples

x <- rfalg()
y <- rfalg()

f <- ad(x)
f(y)

f(f(f(y))) # [x,[x,[x,y]]]

constant The constant term

Description

Get and set the constant term of a freealg object

Usage

S3 method for class 'freealg'
constant(x)
S3 method for class 'numeric'
constant(x)
S3 replacement method for class 'freealg'
constant(x) <- value
is.constant(x)

Arguments

x Object of class freealg

value Scalar value for the constant

Details

The constant term in a free algebra object is the coefficient of the empty term. In a freealg object,
the map including {} -> v implies that v is the constant.

If x is a freealg object, constant(x) returns the value of the constant in the multivariate polyno-
mial; if x is numeric, it returns a constant freealg object with value x.

Function is.constant() returns TRUE if its argument has no variables and FALSE otherwise.

Setting the coefficients of the empty freealg returns the zero (empty) object.

Author(s)

Robin K. S. Hankin

6 deriv

Examples

p <- as.freealg("1+X+Y+xy")

constant(p)
constant(p^5)

constant(p) <- 1000
p

deriv Differentiation of freealg objects

Description

Differentiation of freealg objects

Usage

S3 method for class 'freealg'
deriv(expr, r, ...)

Arguments

expr Object of class freealg

r Integer vector. Elements denote variables to differentiate with respect to. If r is
a character vector, it is interpreted as a=1,b=2,...,z=26; if of length 1, “aab”
is interpreted as c("a","a","b")

... Further arguments, currently ignored

Details

Experimental function deriv(S,v) returns ∂rS
∂v1∂v2...∂vr

. The Leibniz product rule

(u · v)′ = uv′ + u′v

operates even if (as here) u, v do not commute. For example, if we wish to differentiate aaba with
respect to a, we would write f(a) = aaba and then

f(a+ δa) = (a+ δa)(a+ δa)b(a+ δa)

and working to first order we have

f(a+ δa)− f(a) = (δa)aba+ a(δa)ba+ aab(δa).

In the package:

deriv 7

> deriv(as.freealg("aaba"),"a")
free algebra element algebraically equal to
+ 1*aab(da) + 1*a(da)ba + 1*(da)aba

A term of a freealg object can include negative values which correspond to negative powers of
variables. Thus:

> deriv(as.freealg("AAAA"),"a")
free algebra element algebraically equal to
- 1*AAAA(da)A - 1*AAA(da)AA - 1*AA(da)AAA - 1*A(da)AAAA

(see also the examples). Vector r may include negative integers which mean to differentiate with
respect to the inverse of the variable:

> deriv(as.freealg("3abcbCC"),"C")
free algebra element algebraically equal to
+ 3*abcbC(dC) + 3*abcb(dC)C - 3*abc(dC)cbCC

It is possible to perform repeated differentiation by passing a suitable value of r. For ∂2

∂a∂c :

> deriv(as.freealg("aaabAcx"),"ac")
free algebra element algebraically equal to
- 1*aaabA(da)A(dc)x + 1*aa(da)bA(dc)x + 1*a(da)abA(dc)x + 1*(da)aabA(dc)x

The infinitesimal indeterminates (“da” etc) are represented by SHRT_MAX+r, where r is the integer
for the symbol, and SHRT_MAX is the maximum short integer. This includes negative r. So the
maximum number for any symbol is SHRT_MAX. Inverse elements such as A, being represented by
negative integers, have differentials that are SHRT_MAX-r.

Function deriv() calls helper function lowlevel_diffn() which is documented at Ops.freealg.Rd.

A vignette illustrating this concept and furnishing numerical verification of the code in the context
of matrix algebra is given at inst/freealg_matrix.Rmd.

Author(s)

Robin K. S. Hankin

Examples

deriv(as.freealg("4*aaaabaacAc"),1)

x <- rfalg()
deriv(x,1:3)

y <- rfalg(7,7,17,TRUE)

deriv(y,1:5)-deriv(y,sample(1:5)) # should be zero

8 dot-class

dot-class Class “dot”

Description

The dot object is defined so that idiom like .[x,y] returns the commutator, that is, xy-yx or the
Lie bracket [x, y]. It would have been nice to use [x,y] (that is, without the dot) but although this
is syntactically consistent, it cannot be done in R.

The “meat” of the package is:

setClass("dot", slots = c(ignore='numeric'))
`.` <- new("dot")
setMethod("[",signature(x="dot",i="ANY",j="ANY"),function(x,i,j,drop){i*j-j*i})

The package code includes other bits and pieces such as informative error messages for idiom
such as .[]. The package defines a matrix method for the dot object. This is because “*” returns
(incorrectly, in my view) the elementwise product, not the matrix product.

The Jacobi identity, satisfied by any associative algebra, is

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

and the left hand side is returned by jacobi(), which should be zero (for some definition of “zero”).

Function ad() returns the adjoint operator. The adjoint vignette provides details and examples of
the adjoint operator.

The dot object is generated by running script inst/dot.Rmd, which includes some further discus-
sion and technical documentation, and creates file dot.rda which resides in the data/ directory.

Value

Always returns an object of the same class as xy.

Slots

ignore: Object of class "numeric", just a formal placeholder

Methods

[signature(x = "dot", i = "ANY", j = "ANY"): ...

[signature(x = "dot", i = "ANY", j = "missing"): ...

[signature(x = "dot", i = "function", j = "function"): ...

[signature(x = "dot", i = "matrix", j = "matrix"): ...

[signature(x = "dot", i = "missing", j = "ANY"): ...

[signature(x = "dot", i = "missing", j = "missing"): ...

Author(s)

Robin K. S. Hankin

freealg 9

Examples

.[as.freealg("x"),as.freealg("y")]

.[as.freealg("x"),as.freealg("y+2z")]

.[as.freealg("x+y+2xYx"),as.freealg("x+y+2xYx")]

x <- rfalg()
y <- rfalg()
z <- rfalg()

jacobi(x,y,z) # Jacobi identity
.[x,.[y,z]] + .[y,.[z,x]] + .[z,.[x,y]] # Jacobi, expanded

f <- ad(x)
f(y)

rM <- function(...){matrix(sample(1:9,9),3,3)} # a random matrix

M <- rM()
N <- rM()
O <- rM()

.[M,N]
jacobi(M,N,O)

freealg The free algebra

Description

Create, test for, and coerce to, freealg objects

Usage

freealg(words, coeffs)
is_ok_free(words,coeffs)
is.freealg(x)
as.freealg(x,...)
char_to_freealg(ch)
natural_char_to_freealg(string)
string_to_freealg(string)
vector_to_free(v,coeffs)

Arguments

words Terms of the algebra object, eg c(1,2,-1,-3,-2) corresponds to abACB because
a = 1, b = 2 etc; uppercase, or negative number, means inverse

coeffs Numeric vector corresponding to the coefficients of each element of the word
list

10 freealg

string Character string

ch Character vector

v Vector of integers

x Object possibly of class freealg

... Further arguments, passed to the methods

Details

Function freealg() is the formal creation mechanism for freealg objects. However, it is not very
user-friendly; it is better to use as.freealg() in day-to-day use.

Function is_ok_freealg() checks for consistency of its arguments.

A freealg object is a two-element list. The first element is a list of integer vectors representing the
indices and the second is a numeric vector of coefficients. Thus, for example:

> as.freealg("a+4bd+3abbbbc")
free algebra element algebraically equal to
+ 1*a + 3*abbbbc + 4*bd

> dput(as.freealg("a+4bd+3abbbbc"))
structure(list(indices = list(1L, c(1L, 2L, 2L, 2L, 2L, 3L),

c(2L, 4L)), coeffs = c(1, 3, 4)), class = "freealg")

Observe that the order of the terms is not preserved and indeed is undefined (implementation-
specific). Zero entries are stripped out.

Character strings may be coerced to freealg objects; as.freealg() calls natural_char_to_freealg(),
which is user-friendly. Functions char_to_freealg() and string_to_freealg() are low-level
helper functions. These functions assume that upper-case letters are the multiplicative inverses of
the lower-case equivalents; so for example as.freealg("aA") and as.freealg(aBcCbA) evaluate
to one. This can be confusing with the default print method.

Even though individual symbols have multiplicative inverses, a general element of the free algebra
will not have a multiplicative inverse. For example, 1+x does not have an inverse. The free algebra
is not a division algebra, in general.

Note

Internally, the package uses signed integers and as such can have .Machine$integer.max different
symbols; on my machine this is 2147483647. Of course the print method cannot deal with this as it
only has 26 symbols for letters a-z (and A-Z for the inverses), but the objects themselves do not care
about the print method. Note also that the experimental calculus facility (as per deriv()) reserves
numbers in the range SHRT_MAX ± r for infinitesimals, where r is the integer for a symbol. This
system might change in the future.

Author(s)

Robin K. S. Hankin

Examples

freealg(list(1:2, 2:1,numeric(0),1:6),1:4)

freealg(sapply(1:5,seq_len),1:5)

grade 11

freealg(replicate(5,sample(-5:5,rgeom(1,1/5),replace=TRUE)),1:5)

as.freealg("1+xaX")^5

grade The grade (or degree) of terms in a freealg object

Description

The free algebra B is a graded algebra: that is, for each integer n ≥ 0 there is a homogeneous
subspace Bn with B0 = R and

B =

∞⊕
n=0

Bn, and BnBm ⊆ Bn+m for all m,n ≥ 0.

The elements of ∪n≥0Bn are called homogeneous and those of Bn are called homogenous of degree
(or grade) n.

The grade of a term is the number of symbols in it. Thus the grade of xxx and 4xxy is 3; the grade
of a constant is zero. Because the terms are stored in an implementation-specific way, the grade of
a multi-term object is a disord object.

Usage

grades(x)
grade(x,n)
grade(x,n) <- value

Arguments

x Freealg object

n Integer vector

value Replacement value, a numeric vector

Details

grades(x) returns the grade (number of symbols) in each term of a freealg object x.

grade(x,n) returns the freealg object comprising terms with grade n (which may be a vector). Note
that this function is considerably less efficient than clifford::grade().

grade(x,n) <- value sets the coefficients of terms with grade n. For value, a length-one numeric
vector is accepted (notably zero, which kills terms of grade n) and also a freealg object comprising
terms of grade coden.

Value

Returns a disord object

12 horner

Note

A similar concept grade is discussed in the clifford package

Author(s)

Robin K. S. Hankin

References

H. Munthe-Kaas and B. Owren 1999. “Computations in a free Lie algebra”, Phil. Trans. R. Soc.
Lond. A, 357:957–981 (theorem 3.8)

Examples

X <- as.freealg("1 -x + 5*y + 6*x*y -8*x*x*x*x*y*x")
X
grades(X)

a <- rfalg(30)
a
grades(a)
grade(a,2)
grade(a,2) <- 0 # kill all grade-2 terms
a

grade(a,1) <- grade(a,1) * 888
a

horner Horner’s method

Description

Horner’s method for multivariate polynomials

Usage

horner(P,v)

Arguments

P Free algebra polynomial

v Numeric vector of coefficients

Details

This function is (almost) the same as mvp::horner().

Given a polynomial

p(x) = a0 + a1 + a2x
2 + · · ·+ anx

n

linear 13

it is possible to express p(x) in the algebraically equivalent form

p(x) = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·))

which is much more efficient for evaluation, as it requires only n multiplications and n additions,
and this is optimal. Function horner() will take a freealg object for its first argument.

Author(s)

Robin K. S. Hankin

Examples

horner("x", 1:4) # note constant term is 1.

horner("x+y",1:3) # note presence of xy and yx terms

horner("1+x+xyX",1:3)

linear A simple free algebra object

Description

Create simple free algebra objects including linear expressions, for example

> linear(1:3)
free algebra element algebraically equal to
+ 1*a + 2*b + 3*c
> linear(1:3,power=5)
free algebra element algebraically equal to
+ 1*aaaaa + 2*bbbbb + 3*ccccc
>

Usage

linear(x,power=1)

Arguments

x Numeric vector of terms

power Integer vector of powers

Note

Many of the functions documented at mvp::special.Rd do not make sense in the context of the
free algebra. Function mvp::product(), for example, imposes an order on the expansion.

Function constant() is documented at constant.Rd, but is listed below for convenience.

Author(s)

Robin K. S. Hankin

14 nterms

See Also

constant, zero

Examples

linear(1:3)
linear(1:3,power=5)
linear(1:3,power=3:1)

nterms Number of terms in a freealg object

Description

Number of terms in a freealg object; number of coefficients

Usage

nterms(x)

Arguments

x Freealg object

Value

Returns a non-negative integer

Author(s)

Robin K. S. Hankin

Examples

(a <- freealg(list(1:3,4:7,1:10),1:3))
nterms(a)
nterms(a+1)
nterms(a*0)

Ops.freealg 15

Ops.freealg Arithmetic Ops methods for the the free algebra

Description

Arithmetic operators for manipulation of freealg objects such as addition, multiplication, powers,
etc

Usage

S3 method for class 'freealg'
Ops(e1, e2)
free_negative(S)
free_power_scalar(S,n)
free_eq_free(e1,e2)
free_plus_numeric(S,x)
free_plus_free(e1,e2)
lowlevel_simplify(words,coeffs)
lowlevel_free_prod(words1,coeffs1,words2,coeffs2)
lowlevel_free_sum(words1,coeffs1,words2,coeffs2)
lowlevel_free_power(words,coeffs,n)
lowlevel_diffn(words,coeffs,r)
lowlevel_subs(words1, coeffs1, words2, coeffs2, r)
inv(S)

Arguments

S,e1,e2 Objects of class freealg

n Integer, possibly non-positive

r Integer vector indicating variables to differentiate with respect to

x Scalar value
words,words1,words2

A list of words, that is, a list of integer vectors representing the variables in each
term

coeffs,coeffs1,coeffs2

Numeric vector representing the coefficients of each word

Details

The function Ops.freealg() passes binary arithmetic operators (“+”, “-”, “*”, “^”, and “==”) to
the appropriate specialist function.

The caret, as in a^n, denotes arithmetic exponentiation, as in x^3==x*x*x. The only comparison
operators are equality and inequality; x==y is defined as is.zero(x-y).

Functions lowlevel_foo() are low-level functions that interface directly with the C routines in the
src/ directory and are not intended for the end-user.

Function inv() is defined only for freealg objects with a single term. If x has a single term we
have inv(x)*x=x*inv(x)=1. There is no corresponding division in the package because a/b may
be either a*inv(b) or inv(b)*a.

16 pepper

Author(s)

Robin K. S. Hankin

Examples

rfalg()
as.freealg("1+x+xy+yx") # variables are non-commutative
as.freealg("x") * as.freealg("X") # upper-case letters are lower-case inverses

constant(as.freealg("x+y+X+Y")^6) # OEIS sequence A035610

inv(as.freealg("2aaabAAAAx"))

pepper Combine variables in every possible order

Description

Given a list of variables, construct every term comprising only those variables; function pepper()
returns a free algebra object equal to the sum of these terms.

The function is named for a query from an exam question set by Sarah Marshall in which she
asked how many ways there are to arrange the letters of word “pepper”, the answer being

(
6

1 2 3

)
=

6!
1!2!3! = 60.

Function multiset() in the partitions package gives related functionality.

Usage

pepper(v)

Arguments

v Variables to combine. If a character string, coerce to variable numbers

Author(s)

Robin K. S. Hankin

See Also

linear

Examples

pepper(c(1,2,2,2,3))
pepper("pepper")

print 17

print Print freealg objects

Description

Print methods for free algebra objects

Usage

S3 method for class 'freealg'
print(x,...)

Arguments

x Object of class freealg in the print method

... Further arguments, currently ignored

Note

The print method does not change the internal representation of a freealg object, which is a two-
element list, the first of which is a list of integer vectors representing words, and the second is a
numeric vector of coefficients.

The print method has special dispensation for length-zero freealg objects but these are not handled
entirely consistently.

The print method is sensitive to the value of getOption("usecaret"), defaulting to “no”. The
default is to use uppercase letters to represent multiplicative inverses, but if TRUE, inverses are
indicated using “^-1”. This becomes cumbersome for powers above the first. For example, the
default notation for aba−2 is abAA but becomes aba^-1a^-1 if usecaret is TRUE.

Integers exceeding SHRT_MAX are reserved for infinitesimals, which are printed as “da”; see the note
at deriv.Rd for details.

Author(s)

Robin K. S. Hankin

See Also

freealg,deriv

Examples

rfalg()

x <- rfalg(inc=TRUE)
x # default
options("usecaret" = TRUE) # use caret
x
options("usecaret" = FALSE) # back to the default
x

18 subs

rfalg Random free algebra objects

Description

Random elements of the free algebra, intended as quick “get you going” examples of freealg
objects

Usage

rfalg(n=7, distinct=3, maxsize=4, include.negative=FALSE)

Arguments

n Number of terms to generate

distinct Number of distinct symbols to use

maxsize Maximum number of symbols in any word
include.negative

Boolean, with default FALSE meaning to use only positive symbols (lower-case
letters) and TRUE meaning to use upper-case letters as well, corresponding to the
inverse of the lower-case symbols

Details

What you see is what you get, basically. A term such as aaBaAbaC will be simplified to aaaC.

Author(s)

Robin K. S. Hankin

Examples

rfalg()
rfalg(include.negative=TRUE)^2

constant(rfalg())

subs Substitution

Description

Substitute symbols in a freealg object for numbers or other freealg objects

Usage

subs(S, ...)
subsu(S1,S2,r)

subs 19

Arguments

S,S1,S2 Objects of class freealg

r Integer specifying symbol to substitute (a = 1, b = 2 etc)

... named arguments corresponding to variables to substitute

Details

Function subs() substitutes variables for freealg objects (coerced if necessary) using a natural R
idiom. Observe that this type of substitution is sensitive to order:

> subs("ax",a="1+x",x="1+a")
free algebra element algebraically equal to
+ 2 + 3*a + 1*aa

> subs("ax",x="1+a",a="1+x")
free algebra element algebraically equal to
+ 2 + 3*x + 1*xx

Functions subsu() is a lower-level formal function, not really intended for the end-user. Function
subsu() takes S1 and substitutes occurrences of symbol r with S2.

No equivalent to mvp::subvec() is currently implemented.

Value

Returns a freealg object.

Author(s)

Robin K. S. Hankin

Examples

subs("abccc",b="1+3x")
subs("aaaa",a="1+x") # binomial

subs("abA",b=31)

subs("1+a",a="A") # can substitute for an inverse
subs("A",a="1+x") # inverses are not substituted for

Sequential substitution works:

subs("abccc",b="1+3x",x="1+d+2e")
subs(rfalg(),a=rfalg())

20 zero

zero The zero algebraic object

Description

Test for a freealg object’s being zero

Usage

is.zero(x)

Arguments

x Object of class freealg

Details

Function is.zero() returns TRUE if x is indeed the zero free algebra object. It is defined as
length(coeffs(x))==0 for reasons of efficiency, but conceptually it returns x==constant(0).

(Use constant(0) to create the zero object).

Author(s)

Robin K. S. Hankin

See Also

constant

Examples

stopifnot(is.zero(constant(0)))

Index

∗ package
freealg-package, 2

∗ symbolmath
deriv, 6
horner, 12
linear, 13
pepper, 16
subs, 18
zero, 20

. (dot-class), 8
[,dot,ANY,ANY,ANY-method (dot-class), 8
[,dot,ANY,ANY-method (dot-class), 8
[,dot,ANY,missing,ANY-method

(dot-class), 8
[,dot,ANY,missing-method (dot-class), 8
[,dot,function,function,ANY-method

(dot-class), 8
[,dot,function,function-method

(dot-class), 8
[,dot,matrix,matrix,ANY-method

(dot-class), 8
[,dot,matrix,matrix-method (dot-class),

8
[,dot,missing,ANY,ANY-method

(dot-class), 8
[,dot,missing,ANY-method (dot-class), 8
[,dot,missing,missing,ANY-method

(dot-class), 8
[,dot,missing,missing-method

(dot-class), 8
[,dot-method (dot-class), 8
[.dot (dot-class), 8

accessor, 3
accessors (accessor), 3
ad (adjoint), 4
aderiv (deriv), 6
adjoint, 4
as.freealg (freealg), 9

char_to_freealg (freealg), 9
coefficients (accessor), 3
coeffs (accessor), 3
coeffs<- (accessor), 3

commutator (dot-class), 8
constant, 4, 5, 14, 20
constant<- (constant), 5

degree (grade), 11
degrees (grade), 11
deriv, 6, 17
deriv_freealg (deriv), 6
dot (dot-class), 8
dot-class, 8
dot_error (dot-class), 8

extract (dot-class), 8

free_eq_free (Ops.freealg), 15
free_equal_free (Ops.freealg), 15
free_negative (Ops.freealg), 15
free_plus_free (Ops.freealg), 15
free_plus_numeric (Ops.freealg), 15
free_power_scalar (Ops.freealg), 15
free_times_free (Ops.freealg), 15
free_times_scalar (Ops.freealg), 15
freealg, 9, 17
freealg-package, 2
freealg_negative (Ops.freealg), 15

grade, 11
grade<- (grade), 11
grades (grade), 11

horner, 12

inv (Ops.freealg), 15
is.constant (constant), 5
is.freealg (freealg), 9
is.zero (zero), 20
is_ok_free (freealg), 9

jacobi (dot-class), 8

length (nterms), 14
linear, 13, 16
lowlevel_deriv (Ops.freealg), 15
lowlevel_diff (Ops.freealg), 15
lowlevel_diffn (Ops.freealg), 15

21

22 INDEX

lowlevel_free_power (Ops.freealg), 15
lowlevel_free_prod (Ops.freealg), 15
lowlevel_free_sum (Ops.freealg), 15
lowlevel_simplify (Ops.freealg), 15
lowlevel_subs (Ops.freealg), 15

namechanger (subs), 18
natural_char_to_freealg (freealg), 9
nterms, 14
numeric_to_free (freealg), 9

ops (Ops.freealg), 15
Ops.freealg, 15

pepper, 16
print, 17

rfalg, 18
rfree (rfalg), 18
rfreealg (rfalg), 18

string_to_freealg (freealg), 9
subs, 18
substitute (subs), 18
subsu (subs), 18

vector_to_free (freealg), 9

words (accessor), 3

zero, 14, 20

	freealg-package
	accessor
	adjoint
	constant
	deriv
	dot-class
	freealg
	grade
	horner
	linear
	nterms
	Ops.freealg
	pepper
	print
	rfalg
	subs
	zero
	Index

