
Package ‘genlasso’
August 22, 2022

Type Package
Title Path Algorithm for Generalized Lasso Problems
Version 1.6.1
Date 2022-08-19
Author Taylor B. Arnold [aut, cre],

Ryan J. Tibshirani [aut]
Maintainer Taylor B. Arnold <tarnold2@richmond.edu>

Description Computes the solution path for generalized lasso problems. Impor-
tant use cases are the fused lasso over an arbitrary graph, and trend fitting of any given polyno-
mial order. Specialized implementations for the latter two subproblems are given to improve sta-
bility and speed. See Taylor Arnold and Ryan Tibshi-
rani (2016) <doi:10.1080/10618600.2015.1008638>.

License GPL (>= 2.0)
Depends Matrix, igraph, R (>= 3.1.0)
ByteCompile TRUE

URL https://github.com/glmgen/genlasso

NeedsCompilation yes
Repository CRAN
Date/Publication 2022-08-22 08:10:10 UTC

R topics documented:
genlasso-package . 2
coef.genlasso . 3
cv.trendfilter . 4
fusedlasso . 7
genlasso . 11
getDxx . 14
iterate . 15
plot.genlasso . 16
predict.genlasso . 18
softthresh . 19
trendfilter . 20

1

https://doi.org/10.1080/10618600.2015.1008638
https://github.com/glmgen/genlasso

2 genlasso-package

Index 24

genlasso-package Package to compute the solution path of generalized lasso problems

Description

This package is centered around computing the solution path of the generalized lasso problem,
which minimizes the criterion

1/2‖y −Xβ‖22 + λ‖Dβ‖1.

The solution path is computed by solving the equivalent Lagrange dual problem. The dimension of
the dual variable u is the number of rows of the penalty matrix D, and the primal (original) and dual
solutions are related by

β̂ = y −DT û

when the predictor matrix X is the identity, and

β̂ = (XTX)−1(XT y −DT û)

for a full column rank predictor matrix X. For column rank deficient matrices X, the solution path
is not unique and not computed by this package. However, one can add a small ridge penalty to the
above criterion, which can be re-expressed as a generalized lasso problem with full column rank
predictor matrix X and hence yields a unique solution path.

Important use cases include the fused lasso, where D is the oriented incidence matrix of some under-
lying graph (the orientations being arbitrary), and trend filtering, where D is the discrete difference
operator of any given order k.

The general function genlasso computes a solution path for any penalty matrix D and full column
rank predictor matrix X (adding a ridge penalty when X is rank deficient). For the fused lasso and
trend filtering problems, the specialty functions fusedlasso and trendfilter should be used as
they deliver a significant increase in speed and numerical stability.

For a walk-through of using the package for statistical modelling see the included package vignette;
for the appropriate background material see the generalized lasso paper referenced below.

Author(s)

Taylor B. Arnold and Ryan J. Tibshirani

References

Tibshirani, R. J. and Taylor, J. (2011), "The solution path of the generalized lasso", Annals of
Statistics 39 (3) 1335–1371.

Arnold, T. B. and Tibshirani, R. J. (2014), "Efficient implementations of the generalized lasso dual
path algorithm", arXiv: 1405.3222.

See Also

genlasso, fusedlasso, trendfilter

coef.genlasso 3

coef.genlasso Extract cefficients from a genlasso object

Description

This function extracts coefficients from a generalized lasso solution path object, for any set of tuning
parameter values along the path. It can return dual coefficients. The requested coefficients can also
be parametrized by degrees of freedom value instead of tuning parameter value.

Usage

S3 method for class 'genlasso'
coef(object, lambda, nlam, df,

type = c("primal", "dual", "both"), ...)

Arguments

object an object of class "genlasso", or an object which inherits this class (i.e., "fused-
lasso", "trendfilter").

lambda a numeric vector of tuning parameter values at which coefficients should be
calculated. The user can choose to specify one of lambda, nlam, or df; if none
are specified, then coefficients are returned at every knot in the solution path.

nlam an integer indicating a number of tuning parameters values at which coefficients
should be calculated. The tuning parameter values are then chosen to be equally
spaced on the log scale over the first half of the solution path (this is if the full
solution path has been computed; if only a partial path has been computed, the
tuning parameter values are spaced over the entirety of the computed path).

df an integer vector of degrees of freedom values at which coefficients should be
calculated. In the case that a single degrees of freedom value appears multiple
times throughout the solution path, the least regularized solution (corresponding
to the smallest value of lambda) is chosen. If a degrees of freedom value does
not appear at all in the solution path, this function chooses the solution whose
degrees of freedom is largest, subject to being less than or equal to the specified
value.

type a character string, one of "primal", "dual", or "both", indicating whether primal
coefficients, dual coefficients, or both, should be returned. Default is "primal",
which corresponds to the solution of the original problem.

... additional arguments passed to coef.

Value

Returns a list with the following components:

beta if the type is "primal" or "both", a matrix containing the primal coefficients, each
column corresponding to a value of lambda.

4 cv.trendfilter

u if the type is "dual" or "both", a matrix containing the dual coefficients, each
column corresponding to a value of lambda.

lambda a numeric vector containing the sequence of tuning parameter values, corre-
sponding to the columns of beta and u.

df an integer vector containing the sequence of degrees of freedom values corre-
sponding to the columns of beta and u.

See Also

genlasso, predict.genlasso, plot.genlasso

Examples

Constant trend filtering (the 1d fused lasso)
set.seed(0)
n = 20
beta0 = rep(sample(1:10,5),each=n/5)
y = beta0 + rnorm(n,sd=0.5)
a = fusedlasso1d(y)

Get the coefficients that use 3, 4, and 5 degrees
of freedom
coef(a,df=3:5)

cv.trendfilter Perform k-fold cross-validation to choose a trend filtering model

Description

This function performs k-fold cross-validation to choose the value of the regularization parameter
lambda for a trend filtering problem, given the computed solution path. This function only applies
to trend filtering objects with identity predictor matrix (no X passed).

Usage

cv.trendfilter(object, k = 5, mode = c("lambda", "df"),
approx = FALSE, rtol = 1e-07, btol = 1e-07,
verbose = FALSE)

Arguments

object the solution path object, of class "trendfilter", as returned by the trendfilter
function.

k an integer indicating the number of folds to split the data into. Must be between
2 and n-2 (n being the number of observations), default is 5. It is generally not
a good idea to pass a value of k much larger than 10 (say, on the scale of n); see
"Details" below.

cv.trendfilter 5

mode a character string, either "lambda" or "df". Specifying "lambda" means that the
cross-validation error will be computed and reported at each value of lambda
that appears as a knot in the solution path. Specifying "df" means that the cross-
validation error will be computed and reported for every of degrees of freedom
value (actually, estimate) incurred along the solution path. In the case that the
same degrees of freedom value is visited multiple times, the model with the most
regularization (smallest value of lambda) is considered. Default is "lambda".

approx a logical variable indicating if the approximate solution path should be used
(with no dual coordinates leaving the boundary). Default is FALSE.

rtol a numeric variable giving the relative tolerance used in the calculation of the
hitting and leaving times. A larger value is more conservative, and may cause
the algorithm to miss some hitting or leaving events (do not change unless you
know what you’re getting into!). Defaultis 1e-7.

btol similar to rtol but in absolute terms. If numerical instability is detected, first
change rtol; then adjust btol if problems persist.

verbose a logical variable indicating if progress should be reported after each knot in the
path.

Details

For trend filtering (with an identity predictor matrix), the folds for k-fold cross-validation are chosen
by placing every kth point into the same fold. (Here the points are implicitly ordered according to
their underlying positions—either assumed to be evenly spaced, or explicitly passed through the
pos argument.) The first and last points are not included in any fold and are always included in
building the predictive model. As an example, with n=15 data points and k=4 folds, the points are
assigned to folds in the following way:

x 1 2 3 4 1 2 3 4 1 2 3 4 1 x

where x indicates no assignment. Therefore, the folds are not random and running cv.trendfilter
twice will give the same result. In the calculation of the cross-validated error, the predicted value
at a point is given by the average of the fits at this point’s two neighbors (guaranteed to be in a
different fold).

Running cross-validation in modes "lambda" and "df" often yields very similar results. The mode
"df" simply gives an alternative parametrization for the sequence of cross-validated models and can
be more convenient for some applications; if you are confused about its function, simply leave the
mode equal to "lambda".

Value

Returns and object of class "cv.trendfilter", a list with the following components:

err a numeric vector of cross-validated errors.

se a numeric vector of standard errors (standard deviations of the cross-validation
error estimates).

mode a character string indicating the mode, either "lambda" or "df".

lambda if mode="lambda", the values of lambda at which the cross-validation errors in
err were computed.

6 cv.trendfilter

lambda.min if mode="lambda", the value of lambda at which the cross-validation error is
minimized.

lambda.1se if mode="lambda", the value of lambda chosen by the one standard error rule
(the largest value of lambda such that the cross-validation error is within one
standard error of the minimum).

df if mode="df", the degrees of freedom values at which the cross-validation errors
in err were computed.

df.min if mode="df", the degrees of freedom value at which the cross-validation error
is minimized.

df.1se if mode="df", the degrees of freedom value chosen by the one standard error
rule (the smallest degrees of freedom value such that cross-validation error is
within one standard error of the minimum).

i.min the index of the model minimizing the cross-validation error.

i.1se the index of the model chosen by the one standard error rule.

call the matched call.

See Also

trendfilter, plot.cv.trendfilter, plot.trendfilter

Examples

Constant trend filtering (the 1d fused lasso)
set.seed(0)
n = 50
beta0 = rep(sample(1:10,5),each=n/5)
y = beta0 + rnorm(n,sd=0.8)
a = fusedlasso1d(y)
plot(a)

Choose lambda by 5-fold cross-validation
cv = cv.trendfilter(a)
plot(cv)
plot(a,lambda=cv$lambda.min,main="Minimal CV error")
plot(a,lambda=cv$lambda.1se,main="One standard error rule")

Cubic trend filtering
set.seed(0)
n = 100
beta0 = numeric(100)
beta0[1:40] = (1:40-20)^3
beta0[40:50] = -60*(40:50-50)^2 + 60*100+20^3
beta0[50:70] = -20*(50:70-50)^2 + 60*100+20^3
beta0[70:100] = -1/6*(70:100-110)^3 + -1/6*40^3 + 6000
beta0 = -beta0
beta0 = (beta0-min(beta0))*10/diff(range(beta0))
y = beta0 + rnorm(n)
a = trendfilter(y,ord=3,maxsteps=150)

fusedlasso 7

plot(a,nlam=5)

Choose lambda by 5-fold cross-validation
cv = cv.trendfilter(a)
plot(cv)
plot(a,lambda=cv$lambda.min,main="Minimal CV error")
plot(a,lambda=cv$lambda.1se,main="One standard error rule")

fusedlasso Compute the fused lasso solution path for a general graph, or a 1d or
2d grid

Description

These functions produce the solution path for a general fused lasso problem. The fusedlasso func-
tion takes either a penalty matrix or a graph object from the igraph package. The fusedlasso1d
and fusedlasso2d functions are convenience functions that construct the penalty matrix over a 1d
or 2d grid.

Usage

fusedlasso(y, X, D, graph, gamma = 0, approx = FALSE, maxsteps = 2000,
minlam = 0, rtol = 1e-07, btol = 1e-07, eps = 1e-4,

verbose = FALSE)
fusedlasso1d(y, pos, X, gamma = 0, approx = FALSE, maxsteps = 2000,

minlam = 0, rtol = 1e-07, btol = 1e-07, eps = 1e-4,
verbose = FALSE)

fusedlasso2d(y, X, dim1, dim2, gamma = 0, approx = FALSE, maxsteps = 2000,
minlam = 0, rtol = 1e-07, btol = 1e-07, eps = 1e-4,
verbose = FALSE)

Arguments

y a numeric response vector. Alternatively, for fusedlasso2d with no matrix X
passed, y can be a matrix (its dimensions corresponding to the underlying 2d
grid). Note that when y is given as a vector in fusedlasso2d, with no X passed,
it should be in column major order.

pos only for fusedlasso1d, these are the optional positions of the positions in the
1d grid. If missing, the 1d grid is assumed to have unit spacing.

X an optional matrix of predictor variables, with observations along the rows, and
variables along the columns. If the passed X has more columns than rows, then
a warning is given, and a small ridge penalty is added to the generalized lasso
criterion before the path is computed. If X has less columns than rows, then
its rank is not checked for efficiency, and (unlike the genasso function) a ridge
penalty is not automatically added if it is rank deficient. Therefore, a tall, rank
deficient X may cause errors.

8 fusedlasso

D only for fusedlasso, this is the penalty matrix, i.e., the oriented incidence ma-
trix over the underlying graph (the orientation of each edge being arbitrary).
Only one of D or graph needs to be specified.

graph only for fusedlasso, this is the underlying graph as an igraph object from the
igraph package. Only one of D or graph needs to be specified.

dim1 only for fusedlasso2d, this is the number of rows in the underlying 2d grid. If
missing and y is given as a matrix, it is assumed to be the number of rows of y.

dim2 only for fusedlasso2d, this is the number of columns in the underlying 2d grid.
If missing and y is given as a matrix, it is assumed to be the number of columns
of y.

gamma a numeric variable greater than or equal to 0, indicating the ratio of the two tun-
ing parameters, one for the fusion penalty, and the other for the pure `1 penalty.
Default is 0. See "Details" for more information.

approx a logical variable indicating if the approximate solution path should be used
(with no dual coordinates leaving the boundary). Default is FALSE. Note that for
the 1d fused lasso, with identity predicor matrix, this approximate path is the
same as the exact solution path.

maxsteps an integer specifying the maximum number of steps for the algorithm to take
before termination. Default is 2000.

minlam a numeric variable indicating the value of lambda at which the path should ter-
minate. Default is 0.

rtol a numeric variable giving the tolerance for determining the rank of a matrix:
if a diagonal value in the R factor of a QR decomposition is less than R, in
absolute value, then it is considered zero. Hence making rtol larger means being
less stringent with determination of matrix rank. In general, do not change this
unless you know what you are getting into! Default is 1e-7.

btol a numeric variable giving the tolerance for accepting "late" hitting and leaving
times: future hitting times and leaving times should always be less than the cur-
rent knot in the path, but sometimes for numerical reasons they are larger; any
computed hitting or leaving time larger than the current knot + btol is thrown
away. Hence making btol larger means being less stringent withthe determina-
tion of hitting and leaving times. Again, in general, do not change this unless
you know what you are getting into! Default is 1e-7.

eps a numeric variable indicating the multiplier for the ridge penalty, in the case
that X is wide (more columns than rows). If numeric problems occur, make eps
larger. Default is 1e-4.

verbose a logical variable indicating if progress should be reported after each knot in the
path.

Details

The fused lasso estimate minimizes the criterion

1/2

n∑
i=1

(yi − xTi βi)2 + λ
∑

(i,j)∈E

|βi − βj |+ γ · λ
p∑

i=1

|βi|,

fusedlasso 9

where xi is the ith row of the predictor matrix and E is the edge set of the underlying graph. The
solution β̂ is computed as a function of the regularization parameter λ, for a fixed value of γ. The
default is to set γ = 0, which corresponds to pure fusion of the coefficient vector β. A choice
γ > 0 introduces both sparsity and fusion in the coefficient vector, with a higher value placing more
priority on sparsity.

If the predictor matrix is the identity, and the primal solution path β is desired at several levels of
the ratio parameter γ, it is much more efficient to compute the solution path once with γ = 0, and
then use soft-thresholding via the softthresh function.

Finally, for the image denoising problem, i.e., the fused lasso over a 2d grid with identity predictor
matrix, it is easy to specify a huge graph with a seemingly small amount of data. For instance,
running the 2d fused lasso (with identity predictor matrix) on an image at standard 1080p HD
resolution yields a graph with over 2 million edges. Moreover, in image denoising problems—
somewhat unlike most other applications of the fused lasso (and generalized lasso)—a solution is
often desired near the dense end of the path (λ = 0) as opposed to the regularized end (λ = ∞).
The dual path algorithm implemented by the fusedlasso2d function begins at the fully regularized
end and works its way down to the dense end. For a problem with many edges (dual variables), if a
solution at the dense is desired, then it must usually pass through a huge number knots in the path.
Hence it is not advisable to run fusedlasso2d on image denoising problems of large scale, as the
dual solution path is computationally infeasible. It should be noted that a faster algorithm for the
2d fused lasso solution path (when the predictor matrix is the identity), which begins at the dense
end of the path, is available in the flsa package.

Value

The function returns an object of class "fusedlasso", and subclass "genlasso". This is a list with at
least following components:

lambda values of lambda at which the solution path changes slope, i.e., kinks or knots.
beta a matrix of primal coefficients, each column corresponding to a knot in the so-

lution path.
fit a matrix of fitted values, each column corresponding to a knot in the solution

path.
u a matrix of dual coefficients, each column corresponding to a knot in the solution

path.
hit a vector of logical values indicating if a new variable in the dual solution hit

the box contraint boundary. A value of FALSE indicates a variable leaving the
boundary.

df a vector giving an unbiased estimate of the degrees of freedom of the fit at each
knot in the solution path.

y the observed response vector. Useful for plotting and other methods.
completepath a logical variable indicating whether the complete path was computed (termi-

nating the path early with the maxsteps or minlam options results in a value of
FALSE).

bls the least squares solution, i.e., the solution at lambda = 0. This can be NULL
when completepath is FALSE.

gamma the value of the lambda ratio.
call the matched call.

10 fusedlasso

Author(s)

Taylor B. Arnold and Ryan J. Tibshirani

References

Tibshirani, R. J. and Taylor, J. (2011), "The solution path of the generalized lasso", Annals of
Statistics 39 (3) 1335–1371.

Arnold, T. B. and Tibshirani, R. J. (2014), "Efficient implementations of the generalized lasso dual
path algorithm", arXiv: 1405.3222.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005), "Sparsity and smoothness
via the fused lasso", Journal of the Royal Statistics Society: Series B 67(1), 91–108.

See Also

softthresh, genlasso

Examples

Fused lasso on a custom graph
set.seed(0)
edges = c(1,2,1,3,1,5,2,4,2,5,3,6,3,7,3,8,6,7,6,8)
gr = graph(edges=edges,directed=FALSE)
plot(gr)
y = c(1,1,0,1,1,0,0,0) + rnorm(8,0.1)

Can either pass the graph object directly, or
first construct the penalty matrix, and then
pass this
a1 = fusedlasso(y,graph=gr)
D = getDgSparse(gr)
a2 = fusedlasso(y,D=D)

plot(a1,numbers=TRUE)

The 2d fused lasso with a predictor matrix X
set.seed(0)
dim1 = dim2 = 16
p = dim1*dim2
n = 300
X = matrix(rnorm(n*p),nrow=n)
beta0 = matrix(0,dim1,dim2)
beta0[(row(beta0)-dim1/2)^2 + (col(beta0)-dim2/2)^2 <=
(min(dim1,dim2)/3)^2] = 1
y = X %*% as.numeric(beta0) + rnorm(n)

Takes about 30 seconds for the full solution path
out = fusedlasso2d(y,X,dim1=dim1,dim2=dim2)

Grab the solution at 8 values of lambda over the path
a = coef(out,nlam=8)

genlasso 11

Plot these against the true coefficients
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
par(mar=c(1,1,2,1),mfrow=c(3,3))

cols = terrain.colors(30)
zlim = range(c(range(beta0),range(a$beta)))
image(beta0,col=cols,zlim=zlim,axes=FALSE)

for (i in 1:8) {
image(matrix(a$beta[,i],nrow=dim1),col=cols,zlim=zlim,
axes=FALSE)
mtext(bquote(lambda==.(sprintf("%.3f",a$lambda[i]))))

}

genlasso Compute the generalized lasso solution path for arbitrary penalty ma-
trix

Description

This function computes the solution path of the generalized lasso problem for an arbitrary penalty
matrix. Speciality functions exist for the trend filtering and fused lasso problems; see trendfilter
and fusedlasso.

Usage

genlasso(y, X, D, approx = FALSE, maxsteps = 2000, minlam = 0,
rtol = 1e-07, btol = 1e-07, eps = 1e-4, verbose = FALSE,
svd = FALSE)

Arguments

y a numeric response vector.

X an optional matrix of predictor variables, with observations along the rows, and
variables along the columns. If missing, X is assumed to be the identity matrix.
If the passed X does not have full column rank, then a warning is given, and a
small ridge penalty is added to the generalized lasso criterion before the path is
computed.

D a penalty matrix. Its number of columns must be equal to the number of columns
of X, or if no X is given, the length of y. This can be a sparse matrix from Matrix
package, but this will be ignored (converted to a dense matrix) if D is row rank
deficient or if X is specified. See "Details" below.

approx a logical variable indicating if the approximate solution path should be used
(with no dual coordinates leaving the boundary). Default is FALSE.

12 genlasso

maxsteps an integer specifying the maximum number of steps for the algorithm to take
before termination. Default is 2000.

minlam a numeric variable indicating the value of lambda at which the path should ter-
minate. Default is 0.

rtol a numeric variable giving the tolerance for determining the rank of a matrix:
if a diagonal value in the R factor of a QR decomposition is less than R, in
absolute value, then it is considered zero. Hence making rtol larger means being
less stringent with determination of matrix rank. In general, do not change this
unless you know what you are getting into! Default is 1e-7.

btol a numeric variable giving the tolerance for accepting "late" hitting and leaving
times: future hitting times and leaving times should always be less than the cur-
rent knot in the path, but sometimes for numerical reasons they are larger; any
computed hitting or leaving time larger than the current knot + btol is thrown
away. Hence making btol larger means being less stringent withthe determina-
tion of hitting and leaving times. Again, in general, do not change this unless
you know what you are getting into! Default is 1e-7.

eps a numeric variable indicating the multiplier for the ridge penalty, in the case that
X is column rank deficient. Default is 1e-4.

verbose a logical variable indicating if progress should be reported after each knot in the
path.

svd a logical variable indicating if the genlasso function should use singular value
decomposition to solve least squares problems at each path step, which is slower,
but should be more stable.

Details

The generalized lasso estimate minimizes the criterion

1/2‖y −Xβ‖22 + λ‖Dβ‖1.

The solution β̂ is computed as a function of the regularization parameter λ. The advantage of
the genlasso function lies in its flexibility, i.e., the user can specify any penalty matrix D of their
choosing. However, for a trend filtering problem or a fused lasso problem, it is strongly recom-
mended to use one of the speciality functions, trendfilter or fusedlasso. When compared to
these functions, genlasso is not as numerically stable and much less efficient.

Note that, when D is passed as a sparse matrix, the linear systems that arise at each step of the
path algorithm are solved separately via a sparse solver. The usual strategy (when D is simply a
matrix) is to maintain a matrix factorization of D, and solve these systems by (or downdating) this
factorization, as these linear systems are highly related. Therefore, when D is sufficiently sparse and
structured, it can be advantageous to pass it as a sparse matrix; but if D is truly dense, passing it as
a sparse matrix will be highly inefficient.

Value

Returns an object of class "genlasso", a list with at least following components:

lambda values of lambda at which the solution path changes slope, i.e., kinks or knots.

genlasso 13

beta a matrix of primal coefficients, each column corresponding to a knot in the so-
lution path.

fit a matrix of fitted values, each column corresponding to a knot in the solution
path.

u a matrix of dual coefficients, each column corresponding to a knot in the solution
path.

hit a vector of logical values indicating if a new variable in the dual solution hit
the box contraint boundary. A value of FALSE indicates a variable leaving the
boundary.

df a vector giving an unbiased estimate of the degrees of freedom of the fit at each
knot in the solution path.

y the observed response vector. Useful for plotting and other methods.

completepath a logical variable indicating whether the complete path was computed (termi-
nating the path early with the maxsteps or minlam options results in a value of
FALSE).

bls the least squares solution, i.e., the solution at lambda = 0.

call the matched call.

Author(s)

Taylor B. Arnold and Ryan J. Tibshirani

References

Tibshirani, R. J. and Taylor, J. (2011), "The solution path of the generalized lasso", Annals of
Statistics 39 (3) 1335–1371.

Arnold, T. B. and Tibshirani, R. J. (2014), "Efficient implementations of the generalized lasso dual
path algorithm", arXiv: 1405.3222.

See Also

trendfilter, fusedlasso, coef.genlasso, predict.genlasso, plot.genlasso

Examples

Using the generalized lasso to run a standard lasso regression
(for example purposes only! for pure lasso problems, use LARS
instead)
set.seed(1)
n = 100
p = 10
X = matrix(rnorm(n*p),nrow=n)
y = 3*X[,1] + rnorm(n)
D = diag(1,p)
out = genlasso(y,X,D)
coef(out, lambda=sqrt(n*log(p)))

14 getDxx

getDxx Helper functions for constructing generalized lasso penalty matrices

Description

These are utility functions for creating penalty matrices for the fused lasso and trend filtering prob-
lems. Most users will not need to explicitly construct these as they are created internally by the
fusedlasso or trendfilter functions. The sparse variants output sparse matrices, which should
be used whenever possible because of a significant savings in both construction speed and memory
usage.

The function getGraph is an inverse function for fused lasso problems, returning an igraph object
(from the igraph package), the graph corresponding to the passed penalty matrix.

Usage

getD1d(n)
getD1dSparse(n)
getD2d(dim1, dim2)
getD2dSparse(dim1, dim2)
getDg(graph)
getDgSparse(graph)
getDtf(n, ord)
getDtfSparse(n, ord)
getDtfPos(n, ord, pos)
getDtfPosSparse(n, ord, pos)
getGraph(D)

Arguments

The arguments for the sparse variants are identical to those for the regular vari-
ants, which are described below.

for getD1d, getDtf, and getDtfPos, the number of points in the 1d sequence.

ndim1, dim2 for getD2d, the number of rows and columns in the 2d grid, respectively.

graph for getDg, an igraph object from the igraph package, upon which the penalty
matrix should be based (the penalty matrix is the oriented incidence matrix of
the graph, with arbitrary orientations assigned to each edge).

ord for getDtf, and getDtfPos, the order of the polynomial. E.g., ord=0 is the 1d
fused lasso and ord=1 is linear trend filtering. Hence the returned matrix is the
discrete (ord+1)st derivative operator.

pos for getDtfPos, a numeric vector giving the positions of points in the 1d se-
quence. Must have length n.

D for getGraph, a fused lasso penalty matrix, the incidence matrix of an undi-
rected graph, with arbitrary edge orientations.

iterate 15

Value

All functions except getGraph return a penalty matrix, either in standard R matrix format or as
a sparse matrix of class dgCMatrix via the Matrix package. The function getGraph returns an
igraph object from the igraph package.

See Also

fusedlasso, trendfilter

Examples

getD1d(9)
getDtfSparse(10,2)

graph = getGraph(getD2dSparse(4,4))
plot(graph)

iterate Iterate a genlasso object

Description

Given an incomplete genlasso path object, this function continues the path computation from the
last computed knot, either until the complete path has been computed or the step limit specified by
moresteps has been reached. All options are assumed to be the same as those in the initial call to
a genlasso function (as in genlasso, fusedlasso, or trendfilter), with the exception of minlam
and verbose, which can be changed with a call to iterate.

Usage

iterate(object, moresteps=200, minlam=0, verbose=FALSE)

Arguments

object a genlasso object with an incomplete path.

moresteps an integer specifying the number of additional steps to take, starting from termi-
nation point of the passed (incomplete) path object.

minlam a numeric variable indicating the value of lambda at which the path should ter-
minate. Default is 0.

verbose a logical variable indicating if progress should be reported after each knot in the
path.

Value

Returns an list of the same class typing and same structure as the passed object.

16 plot.genlasso

See Also

genlasso, trendfilter, fusedlasso

Examples

Sparse 2d fused lasso
library(genlasso)
set.seed(1)
dim1 = dim2 = 10
n = 100
y = as.numeric(row(diag(dim1)) > 5 & col(diag(dim2)) > 5) * 3 + rnorm(n)

a10 = fusedlasso2d(y, dim1=dim1, dim2=dim2, gamma=0.5, maxsteps=10)
a20 = fusedlasso2d(y, dim1=dim1, dim2=dim2, gamma=0.5, maxsteps=20)
a30 = fusedlasso2d(y, dim1=dim1, dim2=dim2, gamma=0.5, maxsteps=30)
b20 = iterate(a10, moresteps=10)
b30 = iterate(b20, moresteps=10)

Check for equality; should match on all but 'call'
b20$call = a20$call
b30$call = a30$call
all.equal(target=a20, current=b20)
all.equal(target=a30, current=b30)

plot.genlasso Plotting methods for generalized lasso objects

Description

The function plot.genlasso produces a plot of the coordinate paths for objects of class "gen-
lasso". This can be helpful for visualizing the full solution path for small problems; however, for
moderate or large problems, the plot produced can be quite dense and difficult to interpret. The
function plot.trendfilter applies to objects of class "trendfilter", and plots trend filtering coef-
ficients at a single value of lambda (or multiple values, as specified by the user) as a function of
the input positions (which, recall, are assumed to be evenly spaced if not specified). The function
plot.cv.trendfilter plots the output of cv.trendfilter.

Usage

S3 method for class 'genlasso'
plot(x, type = c("primal", "dual", "both"), numbers = FALSE,

vlines = TRUE, xlab, ylab, ...)
S3 method for class 'trendfilter'
plot(x, style = c("trend", "path"), lambda, nlam, df, xlab,

ylab, ...)
S3 method for class 'cv.trendfilter'
plot(x, legendpos = "top", xlab, ylab, ...)

plot.genlasso 17

Arguments

x an object of the appropriate class ("genlasso" or anything class inherits this for
plot.genlasso, "trendfilter" for plot.trendfilter, and "cv.trendfilter" for
plot.cv.trendfilter).

type for plot.genlasso, a character string, one of "primal", "dual", or "both", indi-
cating which solution path system(s) should be plotted. Default is "primal".

numbers for plot.genlasso, a logical variable indicating if coordinate paths should be
labeled by their numbers. Default is FALSE.

vlines for plot.genlasso, a logical variable indicating if dashed lines should be drawn
at knots in the path, with black lines for hitting events, and red lines for leaving
events. Default is TRUE.

style for plot.trendfilter, a character string, either "trend" or "path". If "trend",
then trend filtering coefficients are plotted according to their underlying posi-
tions. If "path", then a plot of the coordinate paths is produced with the function
plot.genlasso. Default is "trend".

lambda, nlam, df

for plot.trendfilter, these arguments work exactly as they do in coef.genlasso,
and they are used to specify which solutions should be extracted and plotted
from the computed solution path stored in x. The only difference is, if all three
are missing, then nlam is set to 10 (whereas in coef.genlasso, the default is to
set lambda equal to the full set of knots along the solution path).

legendpos for plot.cv.trendfilter, a character string indicating the position of the leg-
end. Default is "top".

xlab an optional character string label for the x-axis.

ylab an optional character string label for the y-axis.

... additional arguments.

Value

For plot.trendfilter, with style set to "trend", a coefficient object is silently returned as speci-
fied by lambda, nlam, or df.

See Also

genlasso, trendfilter, cv.trendfilter

Examples

Constant trend filtering (the 1d fused lasso)
set.seed(0)
n = 100
beta0 = rep(sample(1:10,5),each=n/5)
y = beta0 + rnorm(n,sd=0.8)
a = fusedlasso1d(y)
cv = cv.trendfilter(a)

plot(a,style="path")

18 predict.genlasso

plot(cv)
plot(a,lambda=cv$lambda.1se)

predict.genlasso Make predictions given a genlasso object

Description

This predict method for the genlasso class makes a prediction for the fitted values at new predictor
measurements. Hence it is really only useful when the generalized lasso model has been fit with a
nonidentity predictor matrix. In the case that the predictor matrix is the identity, it does the same
thing as coef.genlasso.

Usage

S3 method for class 'genlasso'
predict(object, lambda, nlam, df, Xnew, ...)

Arguments

object object of class "genlasso", or an object which inherits this class (i.e., "fused-
lasso", "trendfilter").

lambda a numeric vector of tuning parameter values at which coefficients should be
calculated. The user can choose to specify one of lambda, nlam, or df; if none
are specified, then coefficients are returned at every knot in the solution path.

nlam an integer indicating a number of tuning parameters values at which coefficients
should be calculated. The tuning parameter values are then chosen to be equally
spaced on the log scale over the first half of the solution path (this is if the full
solution path has been computed; if only a partial path has been computed, the
tuning parameter values are spaced over the entirety of the computed path).

df an integer vector of degrees of freedom values at which coefficients should be
calculated. In the case that a single degrees of freedom value appears multiple
times throughout the solution path, the least regularized solution (corresponding
to the smallest value of lambda) is chosen. If a degrees of freedom value does
not appear at all in the solution path, the least regularized solution at which this
degrees of freedom value is not exceeded is chosen.

Xnew a numeric matrix X, containing new predictor measurements at which predic-
tions should be made. If missing, it is assumed to be the same as the existing
predictor measurements in object.

... additional arguments passed to predict.

softthresh 19

Value

Returns a list with the following components:

fit a numeric matrix of predictor values, one column for each value of lambda.

lambda a numeric vector containing the sequence of tuning parameter values, corre-
sponding to the columns of fit.

df if df was specified, an integer vector containing the sequence of degrees of
freedom values corresponding to the columns of fit.

See Also

coef.genlasso

softthresh Fit a sparse variant of the fused lasso

Description

This function computes solution path to a fused lasso problem of the form

1/2

n∑
i=1

(yi − βi)2 + λ
∑

(i,j)∈E

|βi − βj |+ γ · λ
p∑

i=1

|βi|,

given the solution path corresponding to γ = 0. Note that the predictor matrix here is the identity,
and in this case the new solution path is given by a simple soft-thresholding operation (Friedman et
al. 2007).

Usage

softthresh(object, lambda, gamma)

Arguments

object an object of class "fusedlasso", fit with no predictor matrix X (taken to mean that
the predictor matrix is the identity) and with gamma set to 0. Other objects will
issue a warning that soft-thresholding does not give the exact primal solution
path to a sparsified generalized lasso problem.

lambda a numeric vector giving the values of lambda at which the solution should be
computed and returned; if missing, defaults to the knots in the solution path
stored in object.

gamma a numeric variable giving the ratio of the fusion and sparsity tuning parameters,
must be greater than or equal to 0.

Value

Returns a numeric matrix of primal solutions, one column for each value of lambda.

20 trendfilter

References

Friedman J., Hastie T., Hoefling H. and Tibshirani, R. (2007), "Pathwise coordinate optimization",
Annals of Applied Statistics 1 (2) 302–332.

See Also

fusedlasso

Examples

The 1d fused lasso
set.seed(0)
n = 100
beta0 = rep(sample(1:10,5),each=n/5)
beta0 = beta0-mean(beta0)
y = beta0 + rnorm(n,sd=0.8)
a = fusedlasso1d(y)

lambda = 4
b1 = coef(a,lambda=lambda)$beta

gamma = 0.5
b2 = softthresh(a,lambda=lambda,gamma=gamma)

plot(1:n,y)
lines(1:n,b1)
lines(1:n,b2,col="red")
legend("topright",lty=1,col=c("black","red"),

legend=c(expression(gamma==0),expression(gamma==0.5)))

trendfilter Compute the trend filtering solution path for any polynomial order

Description

This function computes the solution path for the trend filtering problem of an arbitrary polyno-
mial order. When the order is set to zero, trend filtering is equivalent to the 1d fused lasso, see
fusedlasso1d.

Usage

trendfilter(y, pos, X, ord = 1, approx = FALSE, maxsteps = 2000,
minlam = 0, rtol = 1e-07, btol = 1e-07, eps = 1e-04,
verbose = FALSE)

trendfilter 21

Arguments

y a numeric response vector.
pos an optional numeric vector specifying the positions of the observations, and

missing pos is assumed to mean unit spacing.
X an optional matrix of predictor variables, with observations along the rows, and

variables along the columns. If the passed X has more columns than rows, then
a warning is given, and a small ridge penalty is added to the generalized lasso
criterion before the path is computed. If X has less columns than rows, then
its rank is not checked for efficiency, and (unlike the genasso function) a ridge
penalty is not automatically added if it is rank deficient. Therefore, a tall, rank
deficient X may cause errors.

ord an integer specifying the desired order of the piecewise polyomial produced by
the solution of the trend filtering problem. Must be non-negative, and the default
to 1 (linear trend filtering).

approx a logical variable indicating if the approximate solution path should be used
(with no dual coordinates leaving the boundary). Default is FALSE. Note that for
the 1d fused lasso (zeroth order trend filtering), with identity predictor matrix,
this approximate path is the same as the exact solution path.

maxsteps an integer specifying the maximum number of steps for the algorithm to take
before termination. Default is 2000.

minlam a numeric variable indicating the value of lambda at which the path should ter-
minate. Default is 0.

rtol a numeric variable giving the tolerance for determining the rank of a matrix:
if a diagonal value in the R factor of a QR decomposition is less than R, in
absolute value, then it is considered zero. Hence making rtol larger means being
less stringent with determination of matrix rank. In general, do not change this
unless you know what you are getting into! Default is 1e-7.

btol a numeric variable giving the tolerance for accepting "late" hitting and leaving
times: future hitting times and leaving times should always be less than the cur-
rent knot in the path, but sometimes for numerical reasons they are larger; any
computed hitting or leaving time larger than the current knot + btol is thrown
away. Hence making btol larger means being less stringent withthe determina-
tion of hitting and leaving times. Again, in general, do not change this unless
you know what you are getting into! Default is 1e-7.

eps a numeric variable indicating the multiplier for the ridge penalty, in the case
that X is wide (more columns than rows). If numeric problems occur, make eps
larger. Default is 1e-4.

verbose a logical variable indicating if progress should be reported after each knot in the
path.

Details

When the predictor matrix is the identity, trend filtering fits a piecewise polynomial to linearly or-
dered observations. The result is similar to that of a polynomial regression spline or a smoothing
spline, except the knots in the piecewise polynomial (changes in the (k+1)st derivative, if the poly-
nomial order is k) are chosen adaptively based on the observations. This is in contrast to regression

22 trendfilter

splines, where the knots are prespecified, and smoothing splines, which place a knot at every data
point.

With a nonidentity predictor matrix, the trend filtering problem enforces piecewise polynomial
smoothness along successive components of the coefficient vector. This can be used to fit a kind of
varying coefficient model.

We note that, in the signal approximator (identity predictor matrix) case, fitting trend filtering esti-
mate with arbitrary positions pos is theoretically no harder than doing so on an evenly spaced grid.
However in practice, with differing gaps between points, the algorithm can become numerically
unstable even for large (or moderately large) problems. This is especially true as the polynomial
order increases. Hence, use the positions argument pos with caution.

Value

Returns an object of class "trendfilter", a subclass of "genlasso". This is a list with at least following
components:

lambda values of lambda at which the solution path changes slope, i.e., kinks or knots.

beta a matrix of primal coefficients, each column corresponding to a knot in the so-
lution path.

fit a matrix of fitted values, each column corresponding to a knot in the solution
path.

u a matrix of dual coefficients, each column corresponding to a knot in the solution
path.

hit a vector of logical values indicating if a new variable in the dual solution hit
the box contraint boundary. A value of FALSE indicates a variable leaving the
boundary.

df a vector giving an unbiased estimate of the degrees of freedom of the fit at each
knot in the solution path.

y the observed response vector. Useful for plotting and other methods.

completepath a logical variable indicating whether the complete path was computed (termi-
nating the path early with the maxsteps or minlam options results in a value of
FALSE).

bls the least squares solution, i.e., the solution at lambda = 0. This can be NULL
when completepath is FALSE.

ord the order of the piecewise polyomial that has been fit.

call the matched call.

Author(s)

Taylor B. Arnold and Ryan J. Tibshirani

References

Tibshirani, R. J. and Taylor, J. (2011), "The solution path of the generalized lasso", Annals of
Statistics 39 (3) 1335–1371.

trendfilter 23

Tibshirani, R. J. (2014), "Adaptive piecewise polynomial estimation via trend filtering", Annals of
Statistics 42 (1): 285–323.

Arnold, T. B. and Tibshirani, R. J. (2014), "Efficient implementations of the generalized lasso dual
path algorithm", arXiv: 1405.3222.

Kim, S.-J., Koh, K., Boyd, S. and Gorinevsky, D. (2009), "l1 trend filtering", SIAM Review 51 (2),
339–360.

See Also

fusedlasso1d, genlasso, cv.trendfilter, plot.trendfilter

Examples

Constant trend filtering (the 1d fused lasso)
set.seed(0)
n = 100
beta0 = rep(sample(1:10,5),each=n/5)
y = beta0 + rnorm(n,sd=0.8)
a = fusedlasso1d(y)
plot(a)

Linear trend filtering
set.seed(0)
n = 100
beta0 = numeric(n)
beta0[1:20] = (0:19)*4/19+2
beta0[20:45] = (25:0)*3/25+3
beta0[45:80] = (0:35)*9/35+3
beta0[80:100] = (20:0)*4/20+8
y = beta0 + rnorm(n)
a = trendfilter(y,ord=1)
plot(a,df=c(2,3,4,10))

Cubic trend filtering
set.seed(0)
n = 100
beta0 = numeric(100)
beta0[1:40] = (1:40-20)^3
beta0[40:50] = -60*(40:50-50)^2 + 60*100+20^3
beta0[50:70] = -20*(50:70-50)^2 + 60*100+20^3
beta0[70:100] = -1/6*(70:100-110)^3 + -1/6*40^3 + 6000
beta0 = -beta0
beta0 = (beta0-min(beta0))*10/diff(range(beta0))
y = beta0 + rnorm(n)
a = trendfilter(y,ord=3)
plot(a,nlam=5)

Index

∗ hplot
plot.genlasso, 16

∗ methods
coef.genlasso, 3
predict.genlasso, 18

∗ models
fusedlasso, 7
genlasso, 11
iterate, 15
trendfilter, 20

∗ package
genlasso-package, 2

∗ utilities
cv.trendfilter, 4
getDxx, 14
softthresh, 19

coef.genlasso, 3, 13, 17–19
cv.trendfilter, 4, 17, 23

fusedlasso, 2, 7, 11–13, 15, 16, 20
fusedlasso1d, 20, 23
fusedlasso1d (fusedlasso), 7
fusedlasso2d (fusedlasso), 7

genlasso, 2, 4, 10, 11, 15–17, 23
genlasso-package, 2
getD1d (getDxx), 14
getD1dSparse (getDxx), 14
getD2d (getDxx), 14
getD2dSparse (getDxx), 14
getDg (getDxx), 14
getDgSparse (getDxx), 14
getDtf (getDxx), 14
getDtfPos (getDxx), 14
getDtfPosSparse (getDxx), 14
getDtfSparse (getDxx), 14
getDxx, 14
getGraph (getDxx), 14

iterate, 15

plot.cv.trendfilter, 6
plot.cv.trendfilter (plot.genlasso), 16
plot.genlasso, 4, 13, 16
plot.trendfilter, 6, 23
plot.trendfilter (plot.genlasso), 16
predict.genlasso, 4, 13, 18
print.genlasso (genlasso), 11
print.summary.genlasso (genlasso), 11

softthresh, 9, 10, 19
summary.genlasso (genlasso), 11

trendfilter, 2, 4, 6, 11–13, 15–17, 20

24

	genlasso-package
	coef.genlasso
	cv.trendfilter
	fusedlasso
	genlasso
	getDxx
	iterate
	plot.genlasso
	predict.genlasso
	softthresh
	trendfilter
	Index

