Package 'highs'

August 30, 2022

Type Package	
Title 'HiGHS' Optimization Solver	
Version 0.1-2	
Description R interface to 'HiGHS', an optimization solver for solving mixed integer optimization problems with quadratic or linear objective and linear constraints.	
License GPL (>= 2)	
Imports Rcpp (>= 1.0.7), checkmate	
SystemRequirements Bash, PkgConfig, ZLIB (>=1.2.3), CMAKE (>=3.15), C++11	
Suggests tinytest	
LinkingTo Rcpp	
RoxygenNote 7.2.0	
NeedsCompilation yes	
Author Florian Schwendinger [aut, cre], Dirk Schumacher [aut], Julian Hall [cph], Ivet Galabova [cph], Leona Gottwald [cph], Michael Feldmeier [cph]	
Maintainer Florian Schwendinger <florianschwendinger@gmx.at></florianschwendinger@gmx.at>	
Repository CRAN	
Date/Publication 2022-08-30 15:00:02 UTC	
R topics documented:	
C 1	2 2
Index	5

2 highs_solve

```
\label{lem:constraints} highs\_available\_solver\_options \\ Available\ Solver\ Options
```

Description

Reference for the available solver options.

Usage

```
highs_available_solver_options()
```

Value

A data. frame containing the available solver options.

Examples

```
highs_available_solver_options()
```

highs_solve

Solve an Optimization Problems

Description

Solve linear and quadratic mixed integer optimization problems.

Usage

```
highs_solve(
  Q = NULL,
  L,
  lower,
  upper,
  A,
  lhs,
  rhs,
  types,
  maximum = FALSE,
  offset = 0,
  control = list(),
  dry_run = FALSE
)
```

highs_solve 3

Arguments

Q a numeric symatric matrix giving the quadratic part of the objective. L a numeric vector giving the linear part of the objective function. lower a numeric vector giving the lower bounds of the variables. upper a numeric vector giving the upper bounds of the variables. a numeric matrix giving the quadratic part of the objective. a numeric vector giving the left hand-side of the linear constraints. lhs a numeric vector giving the right hand-side of the linear constraints. rhs types a integer vector or character vector giving the variable types. 'C' or '1' for continuous, 'I' or '2' for integer, 'SC' or '3' for semi continuous, 'SI' or '4' for semi integer and 'II' or '5' for implicit integer. a logical if TRUE the solver searches for a maximum, if FALSE the solver searches maximum for a minimum. offset a numeric value giving the offset (default is 0). a list giving additional options for the solver, see highs_available_solver_options control or the README file for a list of all available options. dry_run a logical if true only the model is returned.

Value

A list containing the result provided by the solver, containing the following named objects:

primal_solution

a numeric vector giving the primal solution.

objective_value

a numeric giving the objective value.

status an integer giving the status code

status_message a character string giving the status message (explaination of the status_code).

solver_msg a list giving the original (not canonicalized) solver message.

info a list giving additional information provided by the solver.

Additional information on can be found in the README file.

Examples

highs_solve

```
s \leftarrow highs\_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
                  A = A, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
                  offset = 3)
s[["objective_value"]]
s[["primal_solution"]]
# Minimize:
\# -x_2 - 3x_3 + (1/2) * (2 x_1^2 - 2 x_1x_3 + 0.2 x_2^2 + 2 x_3^2)
# Subject to:
# x_1 + x_3 <= 2
# 0 <= x
L \leftarrow c(0, -1, -3)
Q <- rbind(c(2, 0.0, -1), c(0, 0.2, 0), c(-1, 0.0, 2))
A \leftarrow cbind(1, 0, 1)
s \leftarrow highs\_solve(Q = Q, L = L, lower = 0, A = A, rhs = 2)
s[["objective_value"]]
s[["primal_solution"]]
```

Index

 $\label{linear_solver_options} \begin{subarray}{l} highs_available_solver_options, 2, 3 \\ highs_solve, 2 \end{subarray}$