Package 'highs'

August 30, 2022
Type Package
Title 'HiGHS' Optimization Solver
Version 0.1-2
Description R interface to 'HiGHS', an optimization solver for solving mixed integer optimization problems with quadratic or linear objective and linear constraints.

License GPL (>=2)
Imports Rcpp (>=1.0.7), checkmate
SystemRequirements Bash, PkgConfig, ZLIB ($>=1.2 .3$), CMAKE ($>=3.15$), C++11

Suggests tinytest
LinkingTo Rcpp
RoxygenNote 7.2.0
NeedsCompilation yes
Author Florian Schwendinger [aut, cre], Dirk Schumacher [aut], Julian Hall [cph], Ivet Galabova [cph], Leona Gottwald [cph], Michael Feldmeier [cph]

Maintainer Florian Schwendinger florianschwendinger@gmx.at
Repository CRAN
Date/Publication 2022-08-30 15:00:02 UTC

R topics documented:

highs_available_solver_options 2
highs_solve 2
Index 5
highs_available_solver_options
Available Solver Options

Description

Reference for the available solver options.

Usage

highs_available_solver_options()

Value

A data. frame containing the available solver options.

Examples

highs_available_solver_options()
highs_solve Solve an Optimization Problems

Description

Solve linear and quadratic mixed integer optimization problems.

Usage

highs_solve(Q = NULL, L, lower, upper,
A,
lhs,
rhs,
types,
maximum = FALSE,
offset = 0,
control = list(),
dry_run = FALSE
)

Arguments

Q
L
lower a numeric vector giving the lower bounds of the variables.
upper a numeric vector giving the upper bounds of the variables.
A
lhs
rhs
types $\quad a$ integer vector or character vector giving the variable types. ' C ' or ' 1 ' for continuous, 'I' or '2' for integer, 'SC' or '3' for semi continuous, 'SI' or '4' for semi integer and 'II' or '5' for implicit integer.
maximum a logical if TRUE the solver searches for a maximum, if FALSE the solver searches for a minimum.
offset a numeric value giving the offset (default is 0).
control a list giving additional options for the solver, see highs_available_solver_options or the README file for a list of all available options.
dry_run a logical if true only the model is returned.

Value

A list containing the result provided by the solver, containing the following named objects:

```
primal_solution
```

a numeric vector giving the primal solution.
objective_value
a numeric giving the objective value.
status an integer giving the status code
status_message a character string giving the status message (explaination of the status_code).
solver_msg a list giving the original (not canonicalized) solver message.
info a list giving additional information provided by the solver.
Additional information on can be found in the README file.

Examples

```
library("highs")
# Minimize:
# x_0 + x_1 + 3
# Subject to:
# x_1 <= 7
# 5 <= x_0 + 2x_1 <= 15
# 6 <= 3x_0 + 2x_1
# 0 <= x_0 <= 4
# 1 <= x_1
A <- rbind(c(0, 1), c(1, 2), c(3, 2))
```

```
s <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
                                    A = A, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
                                    offset = 3)
s[["objective_value"]]
s[["primal_solution"]]
# Minimize:
# -x_2 - 3x_3 + (1/2) * (2 x_1^2 - 2 x_1x_3 + 0.2 x_2^2 + 2 x_3^2)
# Subject to:
# x_1 + x_3 <= 2
# 0 <= x
L <- c(0, -1, -3)
Q <- rbind(c(2, 0.0, -1), c(0, 0.2, 0), c(-1, 0.0, 2))
A <- cbind(1, 0, 1)
s <- highs_solve(Q = Q, L = L, lower = 0, A = A, rhs = 2)
s[["objective_value"]]
s[["primal_solution"]]
```


Index

highs_available_solver_options, 2, 3
highs_solve, 2

