hystreet is a company collecting pedestrains in german cities. After registering you can download the data for free from 19 cities.
Until now the package is not on CRAN but you can download it via GitHub with the following command:
To use this package, you will first need to get a hystreet API key. To do so, you first need to set up an account on https://hystreet.com/. After that you can request an API key via e-mail. Once your request has been granted, you will find you key in your hystreet account profile.
Now you have three options:
usethis::edit_r_environ()
by adding the line to your .Renviron
:HYSTREET_API_TOKEN = PASTE YOUR API TOKEN HERE
API_token
parameter.Function name | Description | Example |
---|---|---|
get_hystreet_stats() | request common statistics about the hystreet project | get_hystreet_stats() |
get_hystreet_locations() | request all qvailable locations | get_hystreet_locations() |
get_hystreet_station_data() | request data from a stations | get_hystreet_station_data(71) |
set_hystreet_token() | set your API token | set_hystreet_token(123456789) |
The function ‘get_hystreet_stats()’ summarises the number of available stations and the sum of all counted pedestrians.
The function ‘get_hystreet_locations()’ requests all available stations of the project.
id | name | city |
---|---|---|
57 | Schlösserstraße | Erfurt |
68 | Petersstraße | Leipzig |
256 | Kirchgasse (Nord) | Wiesbaden |
86 | Löhrstraße (Mitte) | Koblenz |
59 | Goethestraße | Frankfurt a.M. |
107 | Krahnstraße (Süd) | Osnabrück |
206 | Kröpeliner Straße (West) | Rostock |
77 | Königstraße (Süd) | Stuttgart |
150 | Zeil (Mitte) | Frankfurt a.M. |
53 | Schadowstraße (West) | Düsseldorf |
The (probably) most interesting function is ‘get_hystreet_station_data()’. With the hystreetID it is possible to request a specific station. By default, all the data from the current day are received. With the ‘query’ argument it is possible to set the received data more precise: * from: datetime of earliest measurement (default: today 00:00:00:): e.g. “2018-10-01 12:00:00” or “2018-10-01” * to : datetime of latest measurement (default: today 23:59:59): e.g. “2018-12-01 12:00:00” or “2018-12-01” * resoution: Resultion for the measurement grouping (default: hour): “day”, “hour”, “month”, “week”
Let´s see if we can see the most frequent days before christmas … I think it could be saturday ;-). Also nice to see the 24th and 25th of December … holidays in Germany :-).
location_71 <- get_hystreet_station_data(
hystreetId = 71,
query = list(from = "2018-12-01", to = "2019-01-01", resolution = "hour"))
ggplot(location_71$measurements, aes(x = timestamp, y = pedestrians_count, colour = weekdays(timestamp))) +
geom_path(group = 1) +
scale_x_datetime(date_breaks = "7 days") +
scale_x_datetime(labels = date_format("%d.%m.%Y")) +
labs(x = "Date",
y = "Pedestrians",
colour = "Day")
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
Now let´s compare different stations:
location_73 <- get_hystreet_station_data(
hystreetId = 73,
query = list(from = "2019-01-01", to = "2019-01-31", resolution = "day"))$measurements %>%
select(pedestrians_count, timestamp) %>%
mutate(station = 73)
location_74 <- get_hystreet_station_data(
hystreetId = 74,
query = list(from = "2019-01-01", to = "2019-01-31", resolution = "day"))$measurements %>%
select(pedestrians_count, timestamp) %>%
mutate(station = 74)
data_73_74 <- bind_rows(location_73, location_74)
ggplot(data_73_74, aes(x = timestamp, y = pedestrians_count, fill = weekdays(timestamp))) +
geom_bar(stat = "identity") +
scale_x_datetime(labels = date_format("%d.%m.%Y")) +
facet_wrap(~station, scales = "free_y") +
theme(legend.position = "bottom",
axis.text.x = element_text(angle = 45, hjust = 1))
Now a little bit of big data analysis. Let´s find the station with the highest pedestrians per day ratio:
hystreet_ids <- get_hystreet_locations()
all_data <- lapply(hystreet_ids[,"id"], function(ID){
temp <- get_hystreet_station_data(
hystreetId = ID,
query = list(from = "2019-01-01", to = today(), resolution = "day"))
lifetime_count <- temp$statistics$timerange_count
days_counted <- as.numeric(temp$metadata$latest_measurement_at - temp$metadata$earliest_measurement_at)
return(data.frame(
id = ID,
station = paste0(temp$city, " (",temp$name,")"),
ratio = lifetime_count/days_counted))
})
ratio <- bind_rows(all_data)
What stations have the highest ratio?
## id station ratio
## 1 165 München (Kaufingerstraße) 64469.29
## 2 150 Frankfurt a.M. (Zeil (Mitte)) 52520.83
## 3 159 Köln (Schildergasse (Mitte)) 50318.07
## 4 73 München (Neuhauser Straße) 49996.25
## 5 158 Köln (Hohe Straße (Süd)) 39806.93
Now let´s visualise the top 10 cities:
The Hystreet-API is a great source of analysing the social effects of the Corona pandemic in 2020. Let´s collect all german stations since March 2020 and analyse the pedestrian count until 10th June 2020.
corona_data <- lapply(hystreet_ids[,"id"], function(ID){
temp <- get_hystreet_station_data(
hystreetId = ID,
query = list(from = "2020-03-01", to = "2020-06-10", resolution = "day")
)
return(data.frame(
name = temp$name,
city = temp$city,
timestamp = format(as.POSIXct(temp$measurements$timestamp), "%Y-%m-%d"),
pedestrians_count = temp$measurements$pedestrians_count,
legend = paste(temp$city, temp$name, sep = " - ")
))
})
corona_data_all <- bind_rows(data)
corona_data_all %>%
ggplot(aes(ymd(timestamp), pedestrians_count, colour = legend)) +
geom_line(alpha = 0.2) +
scale_x_date(labels = date_format("%d.%m.%Y"),
breaks = date_breaks("7 days")
) +
theme(legend.position = "none",
legend.title = element_text("Legende"),
axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Date",
y = "Persons/Day")