
Package ‘innsight’
August 29, 2022

Type Package

Title Get the Insights of your Neural Network

Version 0.1.1

Description Interpretability methods to analyze the behavior and
individual predictions of modern neural networks. Implemented methods
are: 'Connection Weights' described by Olden et al. (2004)
<doi:10.1016/j.ecolmodel.2004.03.013>, Layer-wise Relevance
Propagation ('LRP') described by Bach et al. (2015)
<doi:10.1371/journal.pone.0130140>, Deep Learning Important Features
('DeepLIFT') described by Shrikumar et al. (2017) <arXiv:1704.02685>
and gradient-based methods like 'SmoothGrad' described by Smilkov et
al. (2017) <arXiv:1706.03825>, 'Gradient x Input' described by
Baehrens et al. (2009) <arXiv:0912.1128> or 'Vanilla Gradient'.

License MIT + file LICENSE

URL https://bips-hb.github.io/innsight/,

https://github.com/bips-hb/innsight/

BugReports https://github.com/bips-hb/innsight/issues/

Depends R (>= 3.5.0)

Imports checkmate, ggplot2, R6, torch

Suggests covr, keras, knitr, neuralnet, plotly, rmarkdown, tensorflow,
testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.1

Collate 'ConnectionWeights.R' 'Convert_keras.R' 'Convert_neuralnet.R'
'Convert_torch.R' 'Converter.R' 'DeepLift.R' 'GradienBased.R'
'InterpretingLayer.R' 'InterpretingMethod.R' 'LRP.R'
'Layer_conv1d.R' 'Layer_conv2d.R' 'Layer_dense.R'
'Layer_other.R' 'Layer_pooling.R' 'innsight.R' 'utils.R'

1

https://doi.org/10.1016/j.ecolmodel.2004.03.013
https://doi.org/10.1371/journal.pone.0130140
https://arxiv.org/abs/1704.02685
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/0912.1128
https://bips-hb.github.io/innsight/
https://github.com/bips-hb/innsight/
https://github.com/bips-hb/innsight/issues/

2 innsight-package

NeedsCompilation no

Author Niklas Koenen [aut, cre] (<https://orcid.org/0000-0002-4623-8271>),
Raphael Baudeu [ctb]

Maintainer Niklas Koenen <niklas.koenen@gmail.com>

Repository CRAN

Date/Publication 2022-08-29 15:10:02 UTC

R topics documented:
innsight-package . 2
ConnectionWeights . 3
ConvertedModel . 7
Converter . 9
DeepLift . 15
Gradient . 21
GradientBased . 25
InterpretingMethod . 28
LRP . 30
SmoothGrad . 37

Index 42

innsight-package Get the Insight of your Neural Network

Description

innsight is an R package that interprets the behavior and explains individual predictions of modern
neural networks. Many methods for explaining individual predictions already exist, but hardly any
of them are implemented or available in R. Most of these so-called ’Feature Attribution’ methods are
only implemented in Python and thus difficult to access or use for the R community. In this sense,
the package innsight provides a common interface for various methods for the interpretability of
neural networks and can therefore be considered as an R analogue to ’iNNvestigate’ for Python.

Details

This package implements several model-specific interpretability (Feature Attribution) methods based
on neural networks in R, e.g.,

• Layer-wise Relevance Propagation (LRP)

– Including propagation rules: ε-rule and α-β-rule

• Deep Learning Important Features (DeepLift)

– Including propagation rules for non-linearities: rescale rule and reveal-cancel rule

• Gradient-based methods:

– Vanilla Gradient, including ’Gradient x Input’

https://orcid.org/0000-0002-4623-8271

ConnectionWeights 3

– Smoothed gradients (SmoothGrad), including ’SmoothGrad x Input’
• ConnectionWeights

The package innsight aims to be as flexible as possible and independent of a specific deep learning
package in which the passed network has been learned. Basically, a Neural Network of the libraries
torch::nn_sequential, keras::keras_model_sequential, keras::keras_model and neuralnet::neuralnet
can be passed to the main building block Converter, which converts and stores the passed model as
a torch model (ConvertedModel) with special insights needed for interpretation. It is also possible
to pass an arbitrary net in form of a named list (see details in Converter).

Author(s)

Maintainer: Niklas Koenen <niklas.koenen@gmail.com> (ORCID)

Other contributors:

• Raphael Baudeu <raphael.baudeu@gmail.com> [contributor]

See Also

Useful links:

• https://bips-hb.github.io/innsight/

• https://github.com/bips-hb/innsight/

• Report bugs at https://github.com/bips-hb/innsight/issues/

ConnectionWeights Connection Weights Method

Description

This class implements the Connection Weights method investigated by Olden et al. (2004) which
results in a feature relevance score for each input variable. The basic idea is to multiply up all
path weights for each possible connection between an input feature and the output node and then
calculate the sum over them. Besides, it is a global interpretation method and independent of the
input data. For a neural network with 3 hidden layers with weight matrices W1, W2 and W3 this
method results in a simple matrix multiplication

W1 ∗W2 ∗W3.

Public fields

converter The converter of class Converter with the stored and torch-converted model.
channels_first The data format of the result, i.e. channels on last dimension (FALSE) or on the

first dimension (TRUE). If the data has no channels, use the default value TRUE.
dtype The type of the data and parameters (either 'float' for torch::torch_float or 'double' for

torch::torch_double).
result The methods result as a torch tensor of size (dim_in, dim_out) and with data type dtype.
output_idx This vector determines for which outputs the method will be applied. By default

(NULL), all outputs (but limited to the first 10) are considered.

https://orcid.org/0000-0002-4623-8271
https://bips-hb.github.io/innsight/
https://github.com/bips-hb/innsight/
https://github.com/bips-hb/innsight/issues/

4 ConnectionWeights

Methods

Public methods:
• ConnectionWeights$new()

• ConnectionWeights$get_result()

• ConnectionWeights$plot()

• ConnectionWeights$clone()

Method new():
Usage:
ConnectionWeights$new(
converter,
output_idx = NULL,
channels_first = TRUE,
dtype = "float"

)

Arguments:
converter The converter of class Converter with the stored and torch-converted model.
output_idx This vector determines for which output indices the method will be applied. By

default (NULL), all outputs (but limited to the first 10) are considered.
channels_first The data format of the result, i.e. channels on last dimension (FALSE) or on

the first dimension (TRUE). If the data has no channels, use the default value TRUE.
dtype The data type for the calculations. Use either 'float' for torch::torch_float or 'double'

for torch::torch_double.

Method get_result(): This function returns the result of the Connection Weights method either
as an array ('array'), a torch tensor ('torch.tensor' or 'torch_tensor') of size (dim_in,
dim_out) or as a data.frame ('data.frame').

Usage:
ConnectionWeights$get_result(type = "array")

Arguments:
type The data type of the result. Use one of 'array', 'torch.tensor', 'torch_tensor' or

'data.frame' (default: 'array').

Returns: The result of this method for the given data in the chosen type.

Method plot(): This method visualizes the result of the ConnectionWeights method in a gg-
plot2::ggplot. You can use the argument output_idx to select individual output nodes for the plot.
The different results for the selected outputs are visualized using the method ggplot2::facet_grid.
You can also use the as_plotly argument to generate an interactive plot based on the plot function
plotly::plot_ly.

Usage:
ConnectionWeights$plot(
output_idx = NULL,
aggr_channels = "sum",
preprocess_FUN = identity,
as_plotly = FALSE

)

ConnectionWeights 5

Arguments:

output_idx An integer vector containing the numbers of the output indices whose result is
to be plotted, e.g. c(1,4) for the first and fourth model output. But this vector must
be included in the vector output_idx from the initialization, otherwise, no results were
calculated for this output node and can not be plotted. By default (NULL), the smallest index
of all calculated output nodes is used.

aggr_channels Pass one of 'norm', 'sum', 'mean' or a custom function to aggregate the
channels, e.g. the maximum (base::max) or minimum (base::min) over the channels or only
individual channels with function(x) x[1]. By default ('sum'), the sum of all channels is
used.
Note: This argument is used only for 2D and 3D inputs.

preprocess_FUN This function is applied to the method’s result before generating the plot. By
default, the identity function (identity) is used.

as_plotly This boolean value (default: FALSE) can be used to create an interactive plot based
on the library plotly. This function takes use of plotly::ggplotly, hence make sure that the
suggested package plotly is installed in your R session.
Advanced: You can first output the results as a ggplot (as_plotly = FALSE) and then make
custom changes to the plot, e.g. other theme or other fill color. Then you can manually call
the function ggplotly to get an interactive plotly plot.

Returns: Returns either a ggplot2::ggplot (as_plotly = FALSE) or a plotly::plot_ly object
(as_plotly = TRUE) with the plotted results.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ConnectionWeights$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

• J. D. Olden et al. (2004) An accurate comparison of methods for quantifying variable im-
portance in artificial neural networks using simulated data. Ecological Modelling 178, p.
389–397

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 1),
nn_sigmoid()

)

6 ConnectionWeights

Create Converter with input names
converter <- Converter$new(model,

input_dim = c(5),
input_names = list(c("Car", "Cat", "Dog", "Plane", "Horse"))

)

Apply method Connection Weights
cw <- ConnectionWeights$new(converter)

Print the result as a data.frame
cw$get_result("data.frame")

Plot the result
plot(cw)

#----------------------- Example 2: Neuralnet ------------------------------
library(neuralnet)
data(iris)

Train a Neural Network
nn <- neuralnet((Species == "setosa") ~ Petal.Length + Petal.Width,

iris,
linear.output = FALSE,
hidden = c(3, 2), act.fct = "tanh", rep = 1

)

Convert the trained model
converter <- Converter$new(nn)

Apply the Connection Weights method
cw <- ConnectionWeights$new(converter)

Get the result as a torch tensor
cw$get_result(type = "torch.tensor")

Plot the result
plot(cw)

#----------------------- Example 3: Keras ----------------------------------
library(keras)

if (is_keras_available()) {
Define a model
model <- keras_model_sequential()
model %>%
layer_conv_1d(

input_shape = c(64, 3), kernel_size = 16, filters = 8,
activation = "softplus"

) %>%
layer_conv_1d(kernel_size = 16, filters = 4, activation = "tanh") %>%
layer_conv_1d(kernel_size = 16, filters = 2, activation = "relu") %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%

ConvertedModel 7

layer_dense(units = 2, activation = "softmax")

Convert the model
converter <- Converter$new(model)

Apply the Connection Weights method
cw <- ConnectionWeights$new(converter)

Get the result as data.frame
cw$get_result(type = "data.frame")

Plot the result for all classes
plot(cw, output_idx = 1:2)

}

------------------------- Advanced: Plotly -------------------------------
If you want to create an interactive plot of your results with custom
changes, you can take use of the method plotly::ggplotly
library(ggplot2)
library(plotly)
library(neuralnet)
data(iris)

nn <- neuralnet(Species ~ .,
iris,
linear.output = FALSE,
hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5

)
create an converter for this model
converter <- Converter$new(nn)

create new instance of 'LRP'
cw <- ConnectionWeights$new(converter)

library(plotly)

Get the ggplot and add your changes
p <- plot(cw, output_idx = 1) +

theme_bw() +
scale_fill_gradient2(low = "green", mid = "black", high = "blue")

Now apply the method plotly::ggplotly with argument tooltip = "text"
plotly::ggplotly(p, tooltip = "text")

ConvertedModel Converted torch-based model

Description

This class stores all layers converted to torch in a module which can be used like the original model
(but torch-based). In addition, it provides other functions that are useful for interpreting individual

8 ConvertedModel

predictions or explaining the entire model. This model is part of the class Converter and is the core
for all the necessary calculations in the methods provided in this package.

Usage

ConvertedModel(modules_list, dtype = "float")

Arguments

modules_list A list of all accepted layers created by the ’Converter’ class during initialization.

dtype The data type for all the calculations and defined tensors. Use either 'float'
for torch::torch_float or 'double' for torch::torch_double.

Public fields

modules_list A list of all accepted layers created by the ’Converter’ class during initialization.

dtype The datatype for all the calculations and defined tensors. Either 'float' for torch::torch_float
or 'double' for torch::torch_double.

Method forward()

The forward method of the whole model, i.e. it calculates the output y = f(x) of a given input x.
In doing so, all intermediate values are stored in the individual torch modules from modules_list.

Usage:
self(x, channels_first = TRUE)

Arguments:

x The input torch tensor of dimensions (batch_size, dim_in).
channels_first If the input tensor x is given in the format ’channels first’ use TRUE. Otherwise,

if the channels are last, use FALSE and the input will be transformed into the format ’channels
first’. Default: TRUE.

Return:
Returns the output of the model with respect to the given inputs with dimensions (batch_size,
dim_out).

Method update_ref()

This method updates the stored intermediate values in each module from the list modules_list
when the reference input x_ref has changed.

Usage:
self$update_ref(x_ref, channels_first = TRUE)

Arguments:

x_ref Reference input of the model of dimensions (1, dim_in).

Converter 9

channels_first If the reference input tensor x is given in the format ’channels first’ use TRUE.
Otherwise, if the channels are last, use FALSE and the input will be transformed into the
format ’channels first’. Default: TRUE.

Return:
Returns the output of the reference input with dimension (1, dim_out) after passing through the
model.

Method set_dtype()

This method changes the data type for all the layers in modules_list. Use either 'float' for
torch::torch_float or 'double' for torch::torch_double.

Usage:
self$set_dtype(dtype)

Arguments:

dtype The data type for all the calculations and defined tensors.

Converter Converter of an artificial Neural Network

Description

This class analyzes a passed neural network and stores its internal structure and the individual layers
by converting the entire network into an nn_module. With the help of this converter, many methods
for interpreting the behavior of neural networks are provided, which give a better understanding of
the whole model or individual predictions. You can use models from the following libraries:

• torch (nn_sequential)

• keras (keras_model, keras_model_sequential),

• neuralnet

Furthermore, a model can be passed as a list (see details for more information).

Details

In order to better understand and analyze the prediction of a neural network, the preactivation
or other information of the individual layers, which are not stored in an ordinary forward pass,
are often required. For this reason, a given neural network is converted into a torch-based neu-
ral network, which provides all the necessary information for an interpretation. The converted
torch model is stored in the field model and is an instance of innsight::ConvertedModel. How-
ever, before the torch model is created, all relevant details of the passed model are extracted into
a named list. This list can be saved in complete form in the model_dict field with the argument
save_model_as_list, but this may consume a lot of memory for large networks and is not done by
default. Also, this named list can again be used as a passed model for the class Converter, which
will be described in more detail in the section ’Implemented Libraries’.

10 Converter

Implemented Methods:
An object of the Converter class can be applied to the following methods:

• Layerwise Relevance Propagation (LRP), Bach et al. (2015)
• Deep Learning Important Features (DeepLift), Shrikumar et al. (2017)
• SmoothGrad including ’SmoothGrad x Input’, Smilkov et al. (2017)
• Vanilla Gradient including ’Gradient x Input’
• ConnectionWeights, Olden et al. (2004)

Implemented Libraries:
The converter is implemented for models from the libraries nn_sequential, neuralnet and
keras. But you can also write a wrapper for other libraries because a model can be passed as
a named list with the following components:

• $input_dim
An integer vector with the model input dimension, e.g. for a dense layer with 5 input features
use c(5) or for a 1D-convolutional layer with signal length 50 and 4 channels use c(4,50).

• $input_names (optional)
A list with the names for each input dimension, e.g. for a dense layer with 3 input features
use list(c("X1", "X2", "X3")) or for a 1D-convolutional layer with signal length 5 and 2
channels use list(c("C1", "C2"), c("L1","L2","L3","L4","L5")). By default (NULL)
the names are generated.

• $output_dim (optional)
An integer vector with the model output dimension analogous to $input_dim. This value
does not need to be specified. But if it is set, the calculated value will be compared with it to
avoid errors during converting.

• $output_names (optional)
A list with the names for each output dimension analogous to $input_names. By default
(NULL) the names are generated.

• $layers
A list with the respective layers of the model. Each layer is represented as another list that
requires the following entries depending on the type:

– Dense Layer:
* $type: 'Dense'

* $weight: The weight matrix of the dense layer with shape (dim_out, dim_in).

* $bias: The bias vector of the dense layer with length dim_out.

* activation_name: The name of the activation function for this dense layer, e.g.
'relu', 'tanh' or 'softmax'.

* dim_in (optional): The input dimension of this layer. This value is not necessary, but
helpful to check the format of the weight matrix.

* dim_out (optional): The output dimension of this layer. This value is not necessary,
but helpful to check the format of the weight matrix.

– Convolutional Layers:
* $type: 'Conv1D' or 'Conv2D'

* $weight: The weight array of the convolutional layer with shape (out_channels,
in_channels, kernel_length) for 1D or (out_channels, in_channels, kernel_height,
kernel_width) for 2D.

Converter 11

* $bias: The bias vector of the layer with length out_channels.

* $activation_name: The name of the activation function for this layer, e.g. 'relu',
'tanh' or 'softmax'.

* $dim_in (optional): The input dimension of this layer according to the format (in_channels,
in_length) for 1D or (in_channels, in_height, in_width) for 2D.

* $dim_out (optional): The output dimension of this layer according to the format
(out_channels, out_length) for 1D or (out_channels, out_height, out_width)
for 2D.

* $stride (optional): The stride of the convolution (single integer for 1D and tuple of
two integers for 2D). If this value is not specified, the default values (1D: 1 and 2D:
c(1,1)) are used.

* $padding (optional): Zero-padding added to the sides of the input before convolu-
tion. For 1D-convolution a tuple of the form (pad_left, pad_right) and for 2D-
convolution (pad_left, pad_right, pad_top, pad_bottom) is required. If this value
is not specified, the default values (1D: c(0,0) and 2D: c(0,0,0,0)) are used.

* $dilation (optional): Spacing between kernel elements (single integer for 1D and
tuple of two integers for 2D). If this value is not specified, the default values (1D: 1
and 2D: c(1,1)) are used.

– Pooling Layers:
* $type: 'MaxPooling1D', 'MaxPooling2D', 'AveragePooling1D' or 'AveragePooling2D'

* $kernel_size: The size of the pooling window as an integer value for 1D-pooling
and an tuple of two integers for 2D-pooling.

* $strides (optional): The stride of the pooling window (single integer for 1D and tuple
of two integers for 2D). If this value is not specified (NULL), the value of kernel_size
will be used.

* dim_in (optional): The input dimension of this layer. This value is not necessary, but
helpful to check the correctness of the converted model.

* dim_out (optional): The output dimension of this layer. This value is not necessary,
but helpful to check the correctness of the converted model.

– Flatten Layer:
* $type: 'Flatten'

* $dim_in (optional): The input dimension of this layer without the batch dimension.

* $dim_out (optional): The output dimension of this layer without the batch dimension.

Note: This package works internally only with the data format ’channels first’, i.e. all input
dimensions and weight matrices must be adapted accordingly.

Public fields

model The converted neural network based on the torch module ConvertedModel.

model_dict The model stored in a named list (see details for more information). By default,
the entry model_dict$layers is deleted because it may require a lot of memory for large
networks. However, with the argument save_model_as_list this can be saved anyway.

Methods

Public methods:

12 Converter

• Converter$new()

• Converter$clone()

Method new(): Create a new Converter for a given neural network.

Usage:
Converter$new(
model,
input_dim = NULL,
input_names = NULL,
output_names = NULL,
dtype = "float",
save_model_as_list = FALSE

)

Arguments:

model A trained neural network for classification or regression tasks to be interpreted. Only
models from the following types or packages are allowed: nn_sequential, keras_model,
keras_model_sequential, neuralnet or a named list (see details).

input_dim An integer vector with the model input dimension excluding the batch dimension,
e.g. for a dense layer with 5 input features use c(5) or for a 1D convolutional layer with
signal length 50 and 4 channels use c(4, 50).
Note: This argument is only necessary for torch::nn_sequential, for all others it is
automatically extracted from the passed model. In addition, the input dimension input_dim
has to be in the format channels first.

input_names (Optional) A list with the names for each input dimension, e.g. for a dense layer
with 3 input features use list(c("X1", "X2", "X3")) or for a 1D convolutional layer with
signal length 5 and 2 channels use list(c("C1", "C2"), c("L1","L2","L3","L4","L5")).
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found input names in the passed model will be disregarded.

output_names (Optional) A list with the names for the output, e.g. for a model with 3 outputs
use list(c("Y1", "Y2", "Y3")).
Note: This argument is optional and otherwise the names are generated automatically. But
if this argument is set, all found output names in the passed model will be disregarded.

dtype The data type for the calculations. Use either 'float' for torch::torch_float or 'double'
for torch::torch_double.

save_model_as_list This logical value specifies whether the passed model should be stored
as a list (as it is described in the details also as an alternative input for a model). This list
can take a lot of memory for large networks, so by default the model is not stored as a list
(FALSE).

Returns: A new instance of the R6 class 'Converter'.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Converter$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Converter 13

References

• J. D. Olden et al. (2004) An accurate comparison of methods for quantifying variable im-
portance in artificial neural networks using simulated data. Ecological Modelling 178, p.
389–397

• S. Bach et al. (2015) On pixel-wise explanations for non-linear classifier decisions by layer-
wise relevance propagation. PLoS ONE 10, p. 1-46

• A. Shrikumar et al. (2017) Learning important features through propagating activation dif-
ferences. ICML 2017, p. 4844-4866

• D. Smilkov et al. (2017) SmoothGrad: removing noise by adding noise. CoRR, abs/1706.03825

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

model <- nn_sequential(
nn_linear(5, 10),
nn_relu(),
nn_linear(10, 2, bias = FALSE),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)

Convert the model (for torch models is 'input_dim' required!)
converter <- Converter$new(model, input_dim = c(5))

Get the converted model
converted_model <- converter$model

Test it with the original model
mean(abs(converted_model(data) - model(data)))

#----------------------- Example 2: Neuralnet ------------------------------
library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet((Species == "setosa") ~ Petal.Length + Petal.Width,

iris,
linear.output = FALSE,
hidden = c(3, 2), act.fct = "tanh", rep = 1

)

Convert the model
converter <- Converter$new(nn)

Print all the layers
converter$model$modules_list

14 Converter

#----------------------- Example 3: Keras ----------------------------------
library(keras)

if (is_keras_available()) {
Define a keras model
model <- keras_model_sequential()
model %>%
layer_conv_2d(

input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "relu", padding = "same"

) %>%
layer_conv_2d(

kernel_size = 8, filters = 4,
activation = "tanh", padding = "same"

) %>%
layer_conv_2d(

kernel_size = 4, filters = 2,
activation = "relu", padding = "same"

) %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

Convert this model and save model as list
converter <- Converter$new(model, save_model_as_list = TRUE)

Print the converted model as a named list
str(converter$model_dict)

}

#----------------------- Example 4: List ----------------------------------

Define a model

model <- list()
model$input_dim <- 5
model$input_names <- list(c("Feat1", "Feat2", "Feat3", "Feat4", "Feat5"))
model$output_dim <- 2
model$output_names <- list(c("Cat", "no-Cat"))
model$layers$Layer_1 <-

list(
type = "Dense",
weight = matrix(rnorm(5 * 20), 20, 5),
bias = rnorm(20),
activation_name = "tanh",
dim_in = 5,
dim_out = 20

)
model$layers$Layer_2 <-

list(
type = "Dense",
weight = matrix(rnorm(20 * 2), 2, 20),
bias = rnorm(2),

DeepLift 15

activation_name = "softmax"#,
#dim_in = 20, # These values are optional, but
#dim_out = 2 # useful for internal checks

)

Convert the model
converter <- Converter$new(model)

Get the model as a torch::nn_module
torch_model <- converter$model

You can use it as a normal torch model
x <- torch::torch_randn(3, 5)
torch_model(x)

DeepLift Deep Learning Important FeaTures (DeepLift) Method

Description

This is an implementation of the Deep Learning Important FeaTures (DeepLift) algorithm intro-
duced by Shrikumar et al. (2017). It’s a local method for interpreting a single element x of the
dataset concerning a reference value x′ and returns the contribution of each input feature from the
difference of the output (y = f(x)) and reference output (y′ = f(x′)) prediction. The basic idea
of this method is to decompose the difference-from-reference prediction with respect to the input
features, i.e.

∆y = y − y′ =
∑
i

C(xi).

Compared to Layer-wise Relevance Propagation (see LRP), the DeepLift method is an exact de-
composition and not an approximation, so we get real contributions of the input features to the
difference-from-reference prediction. There are two ways to handle activation functions: Rescale-
Rule ('rescale') and RevealCancel-Rule ('reveal_cancel').

Super class

innsight::InterpretingMethod -> DeepLift

Public fields

x_ref The reference input of size (1, dim_in) for the interpretation.

rule_name Name of the applied rule to calculate the contributions for the non-linear part of a neural
network layer. Either "rescale" or "reveal_cancel".

16 DeepLift

Methods

Public methods:

• DeepLift$new()

• DeepLift$plot()

• DeepLift$boxplot()

• DeepLift$clone()

Method new(): Create a new instance of the DeepLift method.

Usage:
DeepLift$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
ignore_last_act = TRUE,
rule_name = "rescale",
x_ref = NULL,
dtype = "float"

)

Arguments:

converter An instance of the R6 class Converter.
data The data for which the contribution scores are to be calculated. It has to be an array or

array-like format of size (batch_size, dim_in).
channels_first The format of the given date, i.e. channels on last dimension (FALSE) or after

the batch dimension (TRUE). If the data has no channels, use the default value TRUE.
output_idx This vector determines for which outputs the method will be applied. By default

(NULL), all outputs (but limited to the first 10) are considered.
ignore_last_act Set this boolean value to include the last activation, or not (default: TRUE).

In some cases, the last activation leads to a saturation problem.
rule_name Name of the applied rule to calculate the contributions. Use one of 'rescale' and

'reveal_cancel'.
x_ref The reference input of size (1, dim_in) for the interpretation. With the default value NULL

you use an input of zeros.
dtype The data type for the calculations. Use either 'float' for torch::torch_float or 'double'

for torch::torch_double.

Method plot(): This method visualizes the result of the selected method in a ggplot2::ggplot.
You can use the argument data_idx to select the data points in the given data for the plot. In
addition, the individual output nodes for the plot can be selected with the argument output_idx.
The different results for the selected data points and outputs are visualized using the method
ggplot2::facet_grid. You can also use the as_plotly argument to generate an interactive plot
based on the plot function plotly::plot_ly.

Usage:

DeepLift 17

DeepLift$plot(
data_idx = 1,
output_idx = NULL,
aggr_channels = "sum",
as_plotly = FALSE

)

Arguments:

data_idx An integer vector containing the numbers of the data points whose result is to be
plotted, e.g. c(1,3) for the first and third data point in the given data. Default: c(1).

output_idx An integer vector containing the numbers of the output indices whose result is
to be plotted, e.g. c(1,4) for the first and fourth model output. But this vector must
be included in the vector output_idx from the initialization, otherwise, no results were
calculated for this output node and can not be plotted. By default (NULL), the smallest index
of all calculated output nodes is used.

aggr_channels Pass one of 'norm', 'sum', 'mean' or a custom function to aggregate the
channels, e.g. the maximum (base::max) or minimum (base::min) over the channels or only
individual channels with function(x) x[1]. By default ('sum'), the sum of all channels is
used.
Note: This argument is used only for 2D and 3D inputs.

as_plotly This boolean value (default: FALSE) can be used to create an interactive plot based
on the library plotly. This function takes use of plotly::ggplotly, hence make sure that the
suggested package plotly is installed in your R session.
Advanced: You can first output the results as a ggplot (as_plotly = FALSE) and then make
custom changes to the plot, e.g. other theme or other fill color. Then you can manually call
the function ggplotly to get an interactive plotly plot.

Returns: Returns either a ggplot2::ggplot (as_plotly = FALSE) or a plotly::plot_ly (as_plotly
= TRUE) with the plotted results.

Method boxplot(): This function visualizes the results of this method in a boxplot, where the
type of visualization depends on the input dimension of the data. By default a ggplot2::ggplot
is returned, but with the argument as_plotly an interactive plotly::plot_ly plot can be created,
which however requires a successful installation of the package plotly.

Usage:
DeepLift$boxplot(
output_idx = NULL,
data_idx = "all",
ref_data_idx = NULL,
aggr_channels = "norm",
preprocess_FUN = abs,
as_plotly = FALSE,
individual_data_idx = NULL,
individual_max = 20

)

Arguments:

output_idx An integer vector containing the numbers of the output indices whose result is
to be plotted, e.g. c(1,4) for the first and fourth model output. But this vector must

18 DeepLift

be included in the vector output_idx from the initialization, otherwise, no results were
calculated for this output node and can not be plotted. By default (NULL), the smallest index
of all calculated output nodes is used.

data_idx By default ("all"), all available data is used to calculate the boxplot information.
However, this parameter can be used to select a subset of them by passing the indices. E.g.
with data_idx = c(1:10, 25, 26) only the first 10 data points and the 25th and 26th are
used to calculate the boxplots.

ref_data_idx This integer number determines the index for the reference data point. In addi-
tion to the boxplots, it is displayed in red color and is used to compare an individual result
with the summary statistics provided by the boxplot. With the default value (NULL) no in-
dividual data point is plotted. This index can be chosen with respect to all available data,
even if only a subset is selected with argument data_idx.
Note: Because of the complexity of 3D inputs, this argument is used only for 1D and 2D
inputs and disregarded for 3D inputs.

aggr_channels Pass one of 'norm', 'sum', 'mean' or a custom function to aggregate the
channels, e.g. the maximum (base::max) or minimum (base::min) over the channels or only
individual channels with function(x) x[1]. By default ('norm'), the Euclidean norm of
all channels is used.
Note: This argument is used only for 2D and 3D inputs.

preprocess_FUN This function is applied to the method’s result before calculating the boxplots.
Since positive and negative values often cancel each other out, the absolute value (abs) is
used by default. But you can also use the raw data (identity) to see the results’ orientation,
the squared data (function(x) x^2) to weight the outliers higher or any other function.

as_plotly This boolean value (default: FALSE) can be used to create an interactive plot based
on the library plotly instead of ggplot2. Make sure that the suggested package plotly is
installed in your R session.

individual_data_idx Only relevant for a plotly plot with input dimension 1 or 2! This in-
teger vector of data indices determines the available data points in a dropdown menu, which
are drawn in individually analogous to ref_data_idx only for more data points. With the
default value NULL the first individual_max data points are used.
Note: If ref_data_idx is specified, this data point will be added to those from individual_data_idx
in the dropdown menu.

individual_max Only relevant for a plotly plot with input dimension 1 or 2! This integer
determines the maximum number of individual data points in the dropdown menu with-
out counting ref_data_idx. This means that if individual_data_idx has more than
individual_max indices, only the first individual_max will be used. A too high number
can significantly increase the runtime.

Returns: Returns either a ggplot2::ggplot (as_plotly = FALSE) or a plotly::plot_ly (as_plotly
= TRUE) with the boxplots.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DeepLift$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

DeepLift 19

References

A. Shrikumar et al. (2017) Learning important features through propagating activation differences.
ICML 2017, p. 4844-4866

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)
ref <- torch_randn(1, 5)

Create Converter
converter <- Converter$new(model, input_dim = c(5))

Apply method DeepLift
deeplift <- DeepLift$new(converter, data, x_ref = ref)

Print the result as a torch tensor for first two data points
deeplift$get_result("torch.tensor")[1:2]

Plot the result for both classes
plot(deeplift, output_idx = 1:2)

Plot the boxplot of all datapoints
boxplot(deeplift, output_idx = 1:2)

------------------------- Example 2: Neuralnet ---------------------------
library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet((Species == "setosa") ~ Petal.Length + Petal.Width,

iris,
linear.output = FALSE,
hidden = c(3, 2), act.fct = "tanh", rep = 1

)

Convert the model
converter <- Converter$new(nn)

Apply DeepLift with rescale-rule and a reference input of the feature
means
x_ref <- matrix(colMeans(iris[, c(3, 4)]), nrow = 1)

20 DeepLift

deeplift_rescale <- DeepLift$new(converter, iris[, c(3, 4)], x_ref = x_ref)

Get the result as a dataframe and show first 5 rows
deeplift_rescale$get_result(type = "data.frame")[1:5,]

Plot the result for the first datapoint in the data
plot(deeplift_rescale, data_idx = 1)

Plot the result as boxplots
boxplot(deeplift_rescale)

------------------------- Example 3: Keras -------------------------------
library(keras)

if (is_keras_available()) {
data <- array(rnorm(10 * 32 * 32 * 3), dim = c(10, 32, 32, 3))

model <- keras_model_sequential()
model %>%
layer_conv_2d(

input_shape = c(32, 32, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid"

) %>%
layer_conv_2d(

kernel_size = 8, filters = 4, activation = "tanh",
padding = "same"

) %>%
layer_conv_2d(

kernel_size = 4, filters = 2, activation = "relu",
padding = "valid"

) %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 2, activation = "softmax")

Convert the model
converter <- Converter$new(model)

Apply the DeepLift method with reveal-cancel rule
deeplift_revcancel <- DeepLift$new(converter, data,

channels_first = FALSE,
rule_name = "reveal_cancel"

)

Plot the result for the first image and both classes
plot(deeplift_revcancel, output_idx = 1:2)

Plot the result as boxplots for first class
boxplot(deeplift_revcancel, output_idx = 1)

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed

Gradient 21

library(plotly)
boxplot(deeplift_revcancel, as_plotly = TRUE)

}

------------------------- Advanced: Plotly -------------------------------
If you want to create an interactive plot of your results with custom
changes, you can take use of the method plotly::ggplotly
library(ggplot2)
library(neuralnet)
library(plotly)
data(iris)

nn <- neuralnet(Species ~ .,
iris,
linear.output = FALSE,
hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5

)
create an converter for this model
converter <- Converter$new(nn)

create new instance of 'DeepLift'
deeplift <- DeepLift$new(converter, iris[, -5])

Get the ggplot and add your changes
p <- plot(deeplift, output_idx = 1, data_idx = 1:2) +

theme_bw() +
scale_fill_gradient2(low = "green", mid = "black", high = "blue")

Now apply the method plotly::ggplotly with argument tooltip = "text"
plotly::ggplotly(p, tooltip = "text")

Gradient Vanilla Gradient Method

Description

This method computes the gradients (also known as ’Vanilla Gradients’) of the outputs with respect
to the input variables, i.e. for all input variable i and output class j

df(x)j/dxi.

If the argument times_input is TRUE, the gradients are multiplied by the respective input value
(’Gradient x Input’), i.e.

xi ∗ df(x)j/dxi.

Super classes

innsight::InterpretingMethod -> innsight::GradientBased -> Gradient

22 Gradient

Methods

Public methods:
• Gradient$new()

• Gradient$clone()

Method new(): Create a new instance of the Vanilla Gradient method.

Usage:
Gradient$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
ignore_last_act = TRUE,
times_input = FALSE,
dtype = "float"

)

Arguments:
converter An instance of the R6 class Converter.
data The data for which the gradients are to be calculated. It has to be an array or array-like

format of size (batch_size, dim_in).
channels_first The format of the given data, i.e. channels on last dimension (FALSE) or after

the batch dimension (TRUE). If the data has no channels, use the default value TRUE.
output_idx This vector determines for which outputs the method will be applied. By default

(NULL), all outputs (but limited to the first 10) are considered.
ignore_last_act A boolean value to include the last activation into all the calculations, or not

(default: TRUE). In some cases, the last activation leads to a saturation problem.
times_input Multiplies the gradients with the input features. This method is called ’Gradient

x Input’. Default: FALSE.
dtype The data type for the calculations. Use either 'float' for torch::torch_float or 'double'

for torch::torch_double.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Gradient$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),

Gradient 23

nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)

Create Converter with input and output names
converter <- Converter$new(model,

input_dim = c(5),
input_names = list(c("Car", "Cat", "Dog", "Plane", "Horse")),
output_names = list(c("Buy it!", "Don't buy it!"))

)

Calculate the Gradients
grad <- Gradient$new(converter, data)

Print the result as a data.frame for first 5 rows
grad$get_result("data.frame")[1:5,]

Plot the result for both classes
plot(grad, output_idx = 1:2)

Plot the boxplot of all datapoints
boxplot(grad, output_idx = 1:2)

------------------------- Example 2: Neuralnet ---------------------------
library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet(Species ~ ., iris,

linear.output = FALSE,
hidden = c(10, 5),
act.fct = "logistic",
rep = 1

)

Convert the trained model
converter <- Converter$new(nn)

Calculate the gradients
gradient <- Gradient$new(converter, iris[, -5], times_input = TRUE)

Plot the result for the first and 60th data point and all classes
plot(gradient, data_idx = c(1, 60), output_idx = 1:3)

Calculate Gradients x Input and do not ignore the last activation
gradient <- Gradient$new(converter, iris[, -5], ignore_last_act = FALSE)

Plot the result again
plot(gradient, data_idx = c(1, 60), output_idx = 1:3)

------------------------- Example 3: Keras -------------------------------

24 Gradient

library(keras)

if (is_keras_available()) {
data <- array(rnorm(64 * 60 * 3), dim = c(64, 60, 3))

model <- keras_model_sequential()
model %>%
layer_conv_1d(

input_shape = c(60, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid"

) %>%
layer_conv_1d(

kernel_size = 8, filters = 4, activation = "tanh",
padding = "same"

) %>%
layer_conv_1d(

kernel_size = 4, filters = 2, activation = "relu",
padding = "valid"

) %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 3, activation = "softmax")

Convert the model
converter <- Converter$new(model)

Apply the Gradient method
gradient <- Gradient$new(converter, data, channels_first = FALSE)

Plot the result for the first datapoint and all classes
plot(gradient, output_idx = 1:3)

Plot the result as boxplots for first two classes
boxplot(gradient, output_idx = 1:2)

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)

Result as boxplots
boxplot(gradient, as_plotly = TRUE)

Result of the second data point
plot(gradient, data_idx = 2, as_plotly = TRUE)

}

------------------------- Advanced: Plotly -------------------------------
If you want to create an interactive plot of your results with custom
changes, you can take use of the method plotly::ggplotly
library(ggplot2)
library(plotly)
library(neuralnet)

GradientBased 25

data(iris)

nn <- neuralnet(Species ~ .,
iris,
linear.output = FALSE,
hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5

)
create an converter for this model
converter <- Converter$new(nn)

create new instance of 'Gradient'
gradient <- Gradient$new(converter, iris[, -5])

library(plotly)

Get the ggplot and add your changes
p <- plot(gradient, output_idx = 1, data_idx = 1:2) +

theme_bw() +
scale_fill_gradient2(low = "green", mid = "black", high = "blue")

Now apply the method plotly::ggplotly with argument tooltip = "text"
plotly::ggplotly(p, tooltip = "text")

GradientBased Super class for Gradient-based Interpretation Methods

Description

Super class for gradient-based interpretation methods. This class inherits from InterpretingMethod.
It summarizes all implemented gradient-based methods and provides a private function to calculate
the gradients w.r.t. to the input for given data. Implemented are:

• ’Vanilla Gradients’ and ’Gradient x Input’ (Gradient)

• ’SmoothGrad’ and ’SmoothGrad x Input’ (SmoothGrad)

Super class

innsight::InterpretingMethod -> GradientBased

Public fields

times_input Multiplies the gradients with the input features. This method is called ’Gradient x
Input’.

26 GradientBased

Methods

Public methods:
• GradientBased$new()

• GradientBased$plot()

• GradientBased$boxplot()

• GradientBased$clone()

Method new(): Create a new instance of this class.

Usage:
GradientBased$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
ignore_last_act = TRUE,
times_input = TRUE,
dtype = "float"

)

Arguments:
converter The converter of class Converter with the stored and torch-converted model.
data The given data in an array-like format to be interpreted with the selected gradient-based

method.
channels_first The format of the given date, i.e. channels on last dimension (FALSE) or after

the batch dimension (TRUE). If the data has no channels, use the default value TRUE.
output_idx This vector determines for which outputs the method will be applied. By default

(NULL), all outputs (but limited to the first 10) are considered.
ignore_last_act Set this boolean value to include the last activation, or not (default: TRUE).

In some cases, the last activation leads to a saturation problem.
times_input Multiplies the gradients with the input features. This method is called ’Gradient

x Input’.
dtype The data type for the calculations. Use either 'float' for torch::torch_float or 'double'

for torch::torch_double.

Method plot(): This method visualizes the result of the selected method in a ggplot2::ggplot.
You can use the argument data_idx to select the data points in the given data for the plot. In
addition, the individual output nodes for the plot can be selected with the argument output_idx.
The different results for the selected data points and outputs are visualized using the method
ggplot2::facet_grid. You can also use the as_plotly argument to generate an interactive plot
based on the plot function plotly::plot_ly.

Usage:
GradientBased$plot(
data_idx = 1,
output_idx = NULL,
aggr_channels = "sum",
as_plotly = FALSE

)

GradientBased 27

Arguments:
data_idx An integer vector containing the numbers of the data points whose result is to be

plotted, e.g. c(1,3) for the first and third data point in the given data. Default: c(1).
output_idx An integer vector containing the numbers of the output indices whose result is

to be plotted, e.g. c(1,4) for the first and fourth model output. But this vector must
be included in the vector output_idx from the initialization, otherwise, no results were
calculated for this output node and can not be plotted. By default (NULL), the smallest index
of all calculated output nodes is used.

aggr_channels Pass one of 'norm', 'sum', 'mean' or a custom function to aggregate the
channels, e.g. the maximum (base::max) or minimum (base::min) over the channels or only
individual channels with function(x) x[1]. By default ('sum'), the sum of all channels is
used.
Note: This argument is used only for 2D and 3D inputs.

as_plotly This boolean value (default: FALSE) can be used to create an interactive plot based
on the library plotly. This function takes use of plotly::ggplotly, hence make sure that the
suggested package plotly is installed in your R session.
Advanced: You can first output the results as a ggplot (as_plotly = FALSE) and then make
custom changes to the plot, e.g. other theme or other fill color. Then you can manually call
the function ggplotly to get an interactive plotly plot.

Returns: Returns either a ggplot2::ggplot (as_plotly = FALSE) or a plotly::plot_ly (as_plotly
= TRUE) with the plotted results.

Method boxplot(): This function visualizes the results of this method in a boxplot, where the
type of visualization depends on the input dimension of the data. By default a ggplot2::ggplot
is returned, but with the argument as_plotly an interactive plotly::plot_ly plot can be created,
which however requires a successful installation of the package plotly.

Usage:
GradientBased$boxplot(
output_idx = NULL,
data_idx = "all",
ref_data_idx = NULL,
aggr_channels = "norm",
preprocess_FUN = abs,
as_plotly = FALSE,
individual_data_idx = NULL,
individual_max = 20

)

Arguments:
output_idx An integer vector containing the numbers of the output indices whose result is

to be plotted, e.g. c(1,4) for the first and fourth model output. But this vector must
be included in the vector output_idx from the initialization, otherwise, no results were
calculated for this output node and can not be plotted. By default (NULL), the smallest index
of all calculated output nodes is used.

data_idx By default ("all"), all available data is used to calculate the boxplot information.
However, this parameter can be used to select a subset of them by passing the indices. E.g.
with data_idx = c(1:10, 25, 26) only the first 10 data points and the 25th and 26th are
used to calculate the boxplots.

28 InterpretingMethod

ref_data_idx This integer number determines the index for the reference data point. In addi-
tion to the boxplots, it is displayed in red color and is used to compare an individual result
with the summary statistics provided by the boxplot. With the default value (NULL) no in-
dividual data point is plotted. This index can be chosen with respect to all available data,
even if only a subset is selected with argument data_idx.
Note: Because of the complexity of 3D inputs, this argument is used only for 1D and 2D
inputs and disregarded for 3D inputs.

aggr_channels Pass one of 'norm', 'sum', 'mean' or a custom function to aggregate the
channels, e.g. the maximum (base::max) or minimum (base::min) over the channels or only
individual channels with function(x) x[1]. By default ('norm'), the Euclidean norm of
all channels is used.
Note: This argument is used only for 2D and 3D inputs.

preprocess_FUN This function is applied to the method’s result before calculating the boxplots.
Since positive and negative values often cancel each other out, the absolute value (abs) is
used by default. But you can also use the raw data (identity) to see the results’ orientation,
the squared data (function(x) x^2) to weight the outliers higher or any other function.

as_plotly This boolean value (default: FALSE) can be used to create an interactive plot based
on the library plotly instead of ggplot2. Make sure that the suggested package plotly is
installed in your R session.

individual_data_idx Only relevant for a plotly plot with input dimension 1 or 2! This in-
teger vector of data indices determines the available data points in a dropdown menu, which
are drawn in individually analogous to ref_data_idx only for more data points. With the
default value NULL the first individual_max data points are used.
Note: If ref_data_idx is specified, this data point will be added to those from individual_data_idx
in the dropdown menu.

individual_max Only relevant for a plotly plot with input dimension 1 or 2! This integer
determines the maximum number of individual data points in the dropdown menu with-
out counting ref_data_idx. This means that if individual_data_idx has more than
individual_max indices, only the first individual_max will be used. A too high number
can significantly increase the runtime.

Returns: Returns either a ggplot2::ggplot (as_plotly = FALSE) or a plotly::plot_ly (as_plotly
= TRUE) with the boxplots.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GradientBased$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

InterpretingMethod Super class for Interpreting Methods

InterpretingMethod 29

Description

This is a super class for all data-based interpreting methods. Implemented are the following meth-
ods:

• Deep Learning Important Features (DeepLift)

• Layer-wise Relevance Propagation (LRP)

• Gradient-based methods:

– Vanilla gradients including ’Gradients x Input’ (Gradient)
– Smoothed gradients including ’SmoothGrad x Input’ (SmoothGrad)

Public fields

data The passed data as a torch tensor in the given data type (dtype) to be interpreted with the
selected method.

converter An instance of the R6 class Converter.

dtype The data type for the calculations. Either 'float' for torch::torch_float or 'double' for
torch::torch_double.

channels_first The format of the given date, i.e. channels on last dimension (FALSE) or after the
batch dimension (TRUE). If the data has no channels, the default value TRUE is used.

ignore_last_act A boolean value to include the last activation into all the calculations, or not
(default: TRUE). In some cases, the last activation leads to a saturation problem.

result The methods result of the given data as a torch tensor of size (batch_size, dim_in, dim_out)
in the given data type (dtype).

output_idx This vector determines for which outputs the method will be applied. By default
(NULL), all outputs (but limited to the first 10) are considered.

Methods

Public methods:
• InterpretingMethod$new()

• InterpretingMethod$get_result()

• InterpretingMethod$clone()

Method new(): Create a new instance of this super class.

Usage:
InterpretingMethod$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
ignore_last_act = TRUE,
dtype = "float"

)

Arguments:

30 LRP

converter An instance of the R6 class Converter.
data The data for which this method is to be applied. It has to be an array or array-like format

of size (batch_size, dim_in).
channels_first The format of the given data, i.e. channels on last dimension (FALSE) or after

the batch dimension (TRUE). If the data has no channels, use the default value TRUE.
output_idx This vector determines for which output indices the method will be applied. By

default (NULL), all outputs (but limited to the first 10) are considered.
ignore_last_act A boolean value to include the last activation into all the calculations, or not

(default: TRUE). In some cases, the last activation leads to a saturation problem.
dtype dtype The data type for the calculations. Use either 'float' for torch::torch_float or

'double' for torch::torch_double.

Method get_result(): This function returns the result of this method for the given data either
as an array ('array'), a torch tensor ('torch.tensor', or 'torch_tensor') of size (batch_size,
dim_in, dim_out) or as a data.frame ('data.frame').

Usage:
InterpretingMethod$get_result(type = "array")

Arguments:

type The data type of the result. Use one of 'array', 'torch.tensor', 'torch_tensor' or
'data.frame' (default: 'array').

Returns: The result of this method for the given data in the chosen type.

Method clone(): The objects of this class are cloneable with this method.

Usage:
InterpretingMethod$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

LRP Layer-wise Relevance Propagation (LRP) Method

Description

This is an implementation of the Layer-wise Relevance Propagation (LRP) algorithm introduced by
Bach et al. (2015). It’s a local method for interpreting a single element of the dataset and calculates
the relevance scores for each input feature to the model output. The basic idea of this method is to
decompose the prediction score of the model with respect to the input features, i.e.

f(x) =
∑
i

R(xi).

Because of the bias vector that absorbs some relevance, this decomposition is generally an approxi-
mation. There exist several propagation rules to determine the relevance scores. In this package are
implemented: simple rule ("simple"), epsilon rule ("epsilon") and alpha-beta rule ("alpha_beta").

LRP 31

Super class

innsight::InterpretingMethod -> LRP

Public fields

rule_name The name of the rule with which the relevance scores are calculated. Implemented are
"simple", "epsilon", "alpha_beta" (default: "simple").

rule_param The parameter of the selected rule.

Methods

Public methods:
• LRP$new()

• LRP$plot()

• LRP$boxplot()

• LRP$clone()

Method new(): Create a new instance of the LRP-Method.

Usage:
LRP$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
ignore_last_act = TRUE,
rule_name = "simple",
rule_param = NULL,
dtype = "float"

)

Arguments:
converter An instance of the R6 class Converter.
data The data for which the relevance scores are to be calculated. It has to be an array or

array-like format of size (batch_size, dim_in).
channels_first The format of the given date, i.e. channels on last dimension (FALSE) or after

the batch dimension (TRUE). If the data has no channels, use the default value TRUE.
output_idx This vector determines for which outputs the method will be applied. By default

(NULL), all outputs (but limited to the first 10) are considered.
ignore_last_act Set this boolean value to include the last activation, or not (default: TRUE).

In some cases, the last activation leads to a saturation problem.
rule_name The name of the rule, with which the relevance scores are calculated. Implemented

are "simple", "epsilon", "alpha_beta" (default: "simple").
rule_param The parameter of the selected rule. Note: Only the rules "epsilon" and "alpha_beta"

take use of the parameter. Use the default value NULL for the default parameters ("epsilon"
: 0.01, "alpha_beta" : 0.5).

dtype The data type for the calculations. Use either 'float' for torch::torch_float or 'double'
for torch::torch_double.

32 LRP

Returns: A new instance of the R6 class 'LRP'.

Method plot(): This method visualizes the result of the selected method in a ggplot2::ggplot.
You can use the argument data_idx to select the data points in the given data for the plot. In
addition, the individual output nodes for the plot can be selected with the argument output_idx.
The different results for the selected data points and outputs are visualized using the method
ggplot2::facet_grid. You can also use the as_plotly argument to generate an interactive plot
based on the plot function plotly::plot_ly.

Usage:
LRP$plot(
data_idx = 1,
output_idx = NULL,
aggr_channels = "sum",
as_plotly = FALSE

)

Arguments:
data_idx An integer vector containing the numbers of the data points whose result is to be

plotted, e.g. c(1,3) for the first and third data point in the given data. Default: c(1).
output_idx An integer vector containing the numbers of the output indices whose result is

to be plotted, e.g. c(1,4) for the first and fourth model output. But this vector must
be included in the vector output_idx from the initialization, otherwise, no results were
calculated for this output node and can not be plotted. By default (NULL), the smallest index
of all calculated output nodes is used.

aggr_channels Pass one of 'norm', 'sum', 'mean' or a custom function to aggregate the
channels, e.g. the maximum (base::max) or minimum (base::min) over the channels or only
individual channels with function(x) x[1]. By default ('sum'), the sum of all channels is
used.
Note: This argument is used only for 2D and 3D inputs.

as_plotly This boolean value (default: FALSE) can be used to create an interactive plot based
on the library plotly. This function takes use of plotly::ggplotly, hence make sure that the
suggested package plotly is installed in your R session.
Advanced: You can first output the results as a ggplot (as_plotly = FALSE) and then make
custom changes to the plot, e.g. other theme or other fill color. Then you can manually call
the function ggplotly to get an interactive plotly plot.

Returns: Returns either a ggplot2::ggplot (as_plotly = FALSE) or a plotly::plot_ly (as_plotly
= TRUE) with the plotted results.

Method boxplot(): This function visualizes the results of this method in a boxplot, where the
type of visualization depends on the input dimension of the data. By default a ggplot2::ggplot
is returned, but with the argument as_plotly an interactive plotly::plot_ly plot can be created,
which however requires a successful installation of the package plotly.

Usage:
LRP$boxplot(
output_idx = NULL,
data_idx = "all",
ref_data_idx = NULL,
aggr_channels = "norm",

LRP 33

preprocess_FUN = abs,
as_plotly = FALSE,
individual_data_idx = NULL,
individual_max = 20

)

Arguments:
output_idx An integer vector containing the numbers of the output indices whose result is

to be plotted, e.g. c(1,4) for the first and fourth model output. But this vector must
be included in the vector output_idx from the initialization, otherwise, no results were
calculated for this output node and can not be plotted. By default (NULL), the smallest index
of all calculated output nodes is used.

data_idx By default ("all"), all available data is used to calculate the boxplot information.
However, this parameter can be used to select a subset of them by passing the indices. E.g.
with data_idx = c(1:10, 25, 26) only the first 10 data points and the 25th and 26th are
used to calculate the boxplots.

ref_data_idx This integer number determines the index for the reference data point. In addi-
tion to the boxplots, it is displayed in red color and is used to compare an individual result
with the summary statistics provided by the boxplot. With the default value (NULL) no in-
dividual data point is plotted. This index can be chosen with respect to all available data,
even if only a subset is selected with argument data_idx.
Note: Because of the complexity of 3D inputs, this argument is used only for 1D and 2D
inputs and disregarded for 3D inputs.

aggr_channels Pass one of 'norm', 'sum', 'mean' or a custom function to aggregate the
channels, e.g. the maximum (base::max) or minimum (base::min) over the channels or only
individual channels with function(x) x[1]. By default ('norm'), the Euclidean norm of
all channels is used.
Note: This argument is used only for 2D and 3D inputs.

preprocess_FUN This function is applied to the method’s result before calculating the boxplots.
Since positive and negative values often cancel each other out, the absolute value (abs) is
used by default. But you can also use the raw data (identity) to see the results’ orientation,
the squared data (function(x) x^2) to weight the outliers higher or any other function.

as_plotly This boolean value (default: FALSE) can be used to create an interactive plot based
on the library plotly instead of ggplot2. Make sure that the suggested package plotly is
installed in your R session.

individual_data_idx Only relevant for a plotly plot with input dimension 1 or 2! This in-
teger vector of data indices determines the available data points in a dropdown menu, which
are drawn in individually analogous to ref_data_idx only for more data points. With the
default value NULL the first individual_max data points are used.
Note: If ref_data_idx is specified, this data point will be added to those from individual_data_idx
in the dropdown menu.

individual_max Only relevant for a plotly plot with input dimension 1 or 2! This integer
determines the maximum number of individual data points in the dropdown menu with-
out counting ref_data_idx. This means that if individual_data_idx has more than
individual_max indices, only the first individual_max will be used. A too high number
can significantly increase the runtime.

Returns: Returns either a ggplot2::ggplot (as_plotly = FALSE) or a plotly::plot_ly (as_plotly
= TRUE) with the boxplots.

34 LRP

Method clone(): The objects of this class are cloneable with this method.

Usage:
LRP$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

S. Bach et al. (2015) On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PLoS ONE 10, p. 1-46

Examples

#----------------------- Example 1: Torch ----------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

nn_linear(5, 12),
nn_relu(),
nn_linear(12, 2),
nn_softmax(dim = 2)

)
data <- torch_randn(25, 5)

Create Converter
converter <- Converter$new(model, input_dim = c(5))

Apply method LRP with simple rule (default)
lrp <- LRP$new(converter, data)

Print the result as an array for data point one and two
lrp$get_result()[1:2,,]

Plot the result for both classes
plot(lrp, output_idx = 1:2)

Plot the boxplot of all datapoints without preprocess function
boxplot(lrp, output_idx = 1:2, preprocess_FUN = identity)

------------------------- Example 2: Neuralnet ---------------------------
library(neuralnet)
data(iris)
nn <- neuralnet(Species ~ .,

iris,
linear.output = FALSE,
hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5

)
create an converter for this model
converter <- Converter$new(nn)

LRP 35

create new instance of 'LRP'
lrp <- LRP$new(converter, iris[, -5], rule_name = "simple")

get the result as an array for data point one and two
lrp$get_result()[1:2,,]

get the result as a torch tensor for data point one and two
lrp$get_result(type = "torch.tensor")[1:2]

use the alpha-beta rule with alpha = 2
lrp <- LRP$new(converter, iris[, -5],

rule_name = "alpha_beta",
rule_param = 2

)

include the last activation into the calculation
lrp <- LRP$new(converter, iris[, -5],

rule_name = "alpha_beta",
rule_param = 2,
ignore_last_act = FALSE

)

Plot the result for all classes
plot(lrp, output_idx = 1:3)

Plot the Boxplot for the first class
boxplot(lrp)

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)

Result as boxplots
boxplot(lrp, as_plotly = TRUE)

Result of the second data point
plot(lrp, data_idx = 2, as_plotly = TRUE)

------------------------- Example 3: Keras -------------------------------
library(keras)

if (is_keras_available()) {
data <- array(rnorm(10 * 60 * 3), dim = c(10, 60, 3))

model <- keras_model_sequential()
model %>%
layer_conv_1d(

input_shape = c(60, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid"

) %>%
layer_conv_1d(

kernel_size = 8, filters = 4, activation = "tanh",

36 LRP

padding = "same"
) %>%
layer_conv_1d(

kernel_size = 4, filters = 2, activation = "relu",
padding = "valid"

) %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 3, activation = "softmax")

Convert the model
converter <- Converter$new(model)

Apply the LRP method with the epsilon rule and eps = 0.1
lrp_eps <- LRP$new(converter, data,

channels_first = FALSE,
rule_name = "epsilon",
rule_param = 0.1

)

Plot the result for the first datapoint and all classes
plot(lrp_eps, output_idx = 1:3)

Plot the result as boxplots for first two classes
boxplot(lrp_eps, output_idx = 1:2)

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)

Result as boxplots
boxplot(lrp_eps, as_plotly = TRUE)

Result of the second data point
plot(lrp_eps, data_idx = 2, as_plotly = TRUE)

}

------------------------- Advanced: Plotly -------------------------------
If you want to create an interactive plot of your results with custom
changes, you can take use of the method plotly::ggplotly
library(ggplot2)
library(plotly)
library(neuralnet)
data(iris)

nn <- neuralnet(Species ~ .,
iris,
linear.output = FALSE,
hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5

)
create an converter for this model
converter <- Converter$new(nn)

SmoothGrad 37

create new instance of 'LRP'
lrp <- LRP$new(converter, iris[, -5])

library(plotly)

Get the ggplot and add your changes
p <- plot(lrp, output_idx = 1, data_idx = 1:2) +

theme_bw() +
scale_fill_gradient2(low = "green", mid = "black", high = "blue")

Now apply the method plotly::ggplotly with argument tooltip = "text"
plotly::ggplotly(p, tooltip = "text")

SmoothGrad SmoothGrad Method

Description

’SmoothGrad’ was introduced by D. Smilkov et al. (2017) and is an extension to the classical
Vanilla Gradient method. It takes the mean of the gradients for n perturbations of each data point,
i.e. with ε ∼ N(0, σ)

1/n
∑
n

df(x+ ε)j/dxj .

Super classes

innsight::InterpretingMethod -> innsight::GradientBased -> SmoothGrad

Public fields

n Number of perturbations of the input data (default: 50).

noise_level The standard deviation of the Gaussian perturbation, i.e. σ = (max(x)−min(x))∗
noise_level.

Methods

Public methods:

• SmoothGrad$new()

• SmoothGrad$clone()

Method new(): Create a new instance of the SmoothGrad method.

Usage:

38 SmoothGrad

SmoothGrad$new(
converter,
data,
channels_first = TRUE,
output_idx = NULL,
ignore_last_act = TRUE,
times_input = FALSE,
n = 50,
noise_level = 0.1,
dtype = "float"

)

Arguments:
converter An instance of the R6 class Converter.
data The data for which the smoothed gradients are to be calculated. It has to be an array or

array-like format of size (batch_size, dim_in).
channels_first The format of the given data, i.e. channels on last dimension (FALSE) or after

the batch dimension (TRUE). If the data has no channels, use the default value TRUE.
output_idx This vector determines for which outputs the method will be applied. By default

(NULL), all outputs (but limited to the first 10) are considered.
ignore_last_act A boolean value to include the last activation into all the calculations, or not

(default: TRUE). In some cases, the last activation leads to a saturation problem.
times_input Multiplies the gradients with the input features. This method is called ’Smooth-

Grad x Input’. Default: FALSE.
n Number of perturbations of the input data (default: 50).
noise_level Determines the standard deviation of the gaussian perturbation, i.e. σ = (max(x)−

min(x))∗ noise_level.
dtype The data type for the calculations. Use either 'float' for torch::torch_float or 'double'

for torch::torch_double.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SmoothGrad$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

D. Smilkov et al. (2017) SmoothGrad: removing noise by adding noise. CoRR, abs/1706.03825

Examples

------------------------- Example 1: Torch -------------------------------
library(torch)

Create nn_sequential model and data
model <- nn_sequential(

SmoothGrad 39

nn_linear(5, 10),
nn_relu(),
nn_linear(10, 2),
nn_sigmoid()

)
data <- torch_randn(25, 5)

Create Converter
converter <- Converter$new(model, input_dim = c(5))

Calculate the smoothed Gradients
smoothgrad <- SmoothGrad$new(converter, data)

Print the result as a data.frame for first 5 rows
smoothgrad$get_result("data.frame")[1:5,]

Plot the result for both classes
plot(smoothgrad, output_idx = 1:2)

Plot the boxplot of all datapoints
boxplot(smoothgrad, output_idx = 1:2)

------------------------- Example 2: Neuralnet ---------------------------
library(neuralnet)
data(iris)

Train a neural network
nn <- neuralnet(Species ~ ., iris,

linear.output = FALSE,
hidden = c(10, 5),
act.fct = "logistic",
rep = 1

)

Convert the trained model
converter <- Converter$new(nn)

Calculate the smoothed gradients
smoothgrad <- SmoothGrad$new(converter, iris[, -5], times_input = FALSE)

Plot the result for the first and 60th data point and all classes
plot(smoothgrad, data_idx = c(1, 60), output_idx = 1:3)

Calculate SmoothGrad x Input and do not ignore the last activation
smoothgrad <- SmoothGrad$new(converter, iris[, -5], ignore_last_act = FALSE)

Plot the result again
plot(smoothgrad, data_idx = c(1, 60), output_idx = 1:3)

------------------------- Example 3: Keras -------------------------------
library(keras)

if (is_keras_available()) {

40 SmoothGrad

data <- array(rnorm(64 * 60 * 3), dim = c(64, 60, 3))

model <- keras_model_sequential()
model %>%

layer_conv_1d(
input_shape = c(60, 3), kernel_size = 8, filters = 8,
activation = "softplus", padding = "valid"

) %>%
layer_conv_1d(

kernel_size = 8, filters = 4, activation = "tanh",
padding = "same"

) %>%
layer_conv_1d(

kernel_size = 4, filters = 2, activation = "relu",
padding = "valid"

) %>%
layer_flatten() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 3, activation = "softmax")

Convert the model
converter <- Converter$new(model)

Apply the SmoothGrad method
smoothgrad <- SmoothGrad$new(converter, data, channels_first = FALSE)

Plot the result for the first datapoint and all classes
plot(smoothgrad, output_idx = 1:3)

Plot the result as boxplots for first two classes
boxplot(smoothgrad, output_idx = 1:2)

You can also create an interactive plot with plotly.
This is a suggested package, so make sure that it is installed
library(plotly)

Result as boxplots
boxplot(smoothgrad, as_plotly = TRUE)

Result of the second data point
plot(smoothgrad, data_idx = 2, as_plotly = TRUE)

}

------------------------- Advanced: Plotly -------------------------------
If you want to create an interactive plot of your results with custom
changes, you can take use of the method plotly::ggplotly
library(ggplot2)
library(plotly)
library(neuralnet)
data(iris)

nn <- neuralnet(Species ~ .,

SmoothGrad 41

iris,
linear.output = FALSE,
hidden = c(10, 8), act.fct = "tanh", rep = 1, threshold = 0.5

)
create an converter for this model
converter <- Converter$new(nn)

create new instance of 'SmoothGrad'
smoothgrad <- SmoothGrad$new(converter, iris[, -5])

library(plotly)

Get the ggplot and add your changes
p <- plot(smoothgrad, output_idx = 1, data_idx = 1:2) +

theme_bw() +
scale_fill_gradient2(low = "green", mid = "black", high = "blue")

Now apply the method plotly::ggplotly with argument tooltip = "text"
plotly::ggplotly(p, tooltip = "text")

Index

base::max, 5, 17, 18, 27, 28, 32, 33
base::min, 5, 17, 18, 27, 28, 32, 33

ConnectionWeights, 3, 3, 10
ConvertedModel, 3, 7, 11
Converter, 3, 4, 8, 9, 16, 22, 26, 29–31, 38

DeepLift, 2, 10, 15, 29

ggplot2::facet_grid, 4, 16, 26, 32
ggplot2::ggplot, 4, 5, 16–18, 26–28, 32, 33
Gradient, 2, 10, 21, 25, 29, 37
GradientBased, 25

innsight (innsight-package), 2
innsight-package, 2
innsight::ConvertedModel, 9
innsight::GradientBased, 21, 37
innsight::InterpretingMethod, 15, 21, 25,

31, 37
InterpretingMethod, 25, 28

keras, 9, 10
keras::keras_model, 3
keras::keras_model_sequential, 3
keras_model, 9, 12
keras_model_sequential, 9, 12

LRP, 2, 10, 15, 29, 30

neuralnet, 9, 10, 12
neuralnet::neuralnet, 3
nn_module, 9
nn_sequential, 9, 10, 12

plotly::ggplotly, 5, 17, 27, 32
plotly::plot_ly, 4, 5, 16–18, 26–28, 32, 33

SmoothGrad, 3, 10, 25, 29, 37

torch::nn_sequential, 3

torch::torch_double, 3, 4, 8, 9, 12, 16, 22,
26, 29–31, 38

torch::torch_float, 3, 4, 8, 9, 12, 16, 22,
26, 29–31, 38

42

	innsight-package
	ConnectionWeights
	ConvertedModel
	Converter
	DeepLift
	Gradient
	GradientBased
	InterpretingMethod
	LRP
	SmoothGrad
	Index

