Package 'mcmesae'

September 2, 2022
Version 0.7.1
License GPL-3
Title Markov Chain Monte Carlo Small Area Estimation
Type Package
LazyLoad yes

Encoding UTF-8

Description Fit multi-level models with possibly correlated random effects using Markov Chain Monte Carlo simulation. Such models allow smoothing over space and time and are useful in, for example, small area estimation.
Date 2022-09-02
Depends R (>= 3.2.0)
Imports Matrix (>= 1.2.0), Rcpp (>= 0.11.0), methods, GIGrvg, loo (>= 2.0.0), matrixStats

Suggests BayesLogit, lintools, splines, spdep, maptools, bayesplot, coda, posterior, parallel, testhat, roxygen2, knitr, rmarkdown, survey
LinkingTo Rcpp, RcppEigen, Matrix, GIGrvg
VignetteBuilder knitr
RoxygenNote 7.2.1
Collate 'MCMCsim.R' 'MH.R' 'tabMatrix.R' 'MatrixUtils.R' 'RcppExports.R' 'TMVN_sampler.R' 'aux_closures.R' 'cholesky.R' 'conjugate_gradients.R' 'family.R' 'formulas.R' 'kronprod.R' 'mc_block.R' 'mc_gen.R' 'mc_gl.R' 'mc_mec.R' 'mc_reg.R' 'mc_vfac.R' 'mc_vreg.R' 'mcmcsae.R' 'model_eval.R' 'modelmatrix.R' 'models.R' 'opts.R' 'parallel.R' 'plots.R' 'prediction.R' 'priors.R' 'random.R' 'samplers.R' 'sbc.R' 'sparse_template.R' 'utils.R'
NeedsCompilation yes
Author Harm Jan Boonstra [aut, cre], Grzegorz Baltissen [ctb]
Maintainer Harm Jan Boonstra hjboonstra@gmail.com
Repository CRAN
Date/Publication 2022-09-02 13:30:02 UTC
R topics documented:
mcmcsae-package 3
acceptance_rates 3
aggrMatrix 4
combine_chains 5
combine_iters 5
computeDesignMatrix 6
compute_GMRF_matrices 7
correlation 8
create_sampler 9
create_TMVN_sampler 13
gen 15
generate_data 19
get_draw 21
glreg 21
labels 22
matrix-vector 23
maximize_llh 24
MCMC-diagnostics 25
MCMC-object-conversion 26
mcmcsae-family 27
mcmcsae_example 28
MCMCsim 29
mec 32
model-information-criteria 35
model_matrix 37
nchains-ndraws-nvars 38
par_names 39
plot.dc 39
plot.mcdraws 40
plot_coef 41
posterior-moments 42
predict.mcdraws 43
print.dc_summary 46
print.mcdraws_summary 47
pr_exp 47
pr_fixed 48
pr_gig 49
pr_invchisq 49
pr_invwishart 50
read_draws 51
reg 52
residuals-fitted-values 54
setup_cluster 56
set_opts 56
stop_cluster 58
subset.dc 58
summary.dc 59
summary.mcdraws 60
transform_dc 61
vfac 62
vreg 63
weights.mcdraws 64
Index 66
mcmcsae-package Markov Chain Monte Carlo Small Area Estimation

Description

Fit multi-level models with possibly correlated random effects using MCMC.

Details

Functions to fit multi-level models with Gaussian, binomial, multinomial, negative binomial or Poisson likelihoods using MCMC. Models with a linear predictor consisting of various possibly correlated random effects are supported, allowing flexible modeling of temporal, spatial or other kinds of dependence structures. For Gaussian models the variance can be modeled too. By modeling variances at the unit level the marginal distribution can be changed to a Student-t or Laplace distribution, which may account better for outliers. The package has been developed with applications to small area estimation in official statistics in mind. The posterior samples for the model parameters can be passed to a prediction function to generate samples from the posterior predictive distribution for user-defined quantities such as finite population domain means. For model assessment, posterior predictive checks and DIC/WAIC criteria can easily be computed.
acceptance_rates Return Metropolis-Hastings acceptance rates

Description

Return Metropolis-Hastings acceptance rates

Usage

acceptance_rates(obj, aggregate.chains = FALSE)

Arguments

obj an mcdraws object, i.e. the output of function MCMCsim.
aggregate.chains
whether to return averages over chains or results per chain.

Value

A list of acceptance rates.

Examples

```
ex <- mcmcsae_example()
# specify a model that requires MH sampling (in this case for a modeled
# degrees of freedom parameter in the variance part of the model)
sampler <- create_sampler(ex$model, data=ex$dat, formula.V=~vfac(factor="fA",
    prior=pr_invchisq(df="modeled")))
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
(summary(sim))
acceptance_rates(sim)
```

aggrMatrix Utility function to construct a sparse aggregation matrix from a factor

Description

Utility function to construct a sparse aggregation matrix from a factor

Usage

aggrMatrix(fac, $w=1$, mean $=$ FALSE, facnames $=$ FALSE)

Arguments

fac factor variable.
w vector of weights associated with the levels of fac.
mean if TRUE, aggregation will produce (weighted) means instead of sums.
facnames whether the factor levels should be used as column names for the aggregation matrix.

Value

sparse aggregation matrix of class tabMatrix.

Examples

```
    n <- 1000
    f <- sample(1:100, n, replace=TRUE)
    x <- runif(n)
    M <- aggrMatrix(f)
    all.equal(crossprod_mv(M, x), as.vector(tapply(x, f, sum)))
```

combine_chains Combine multiple mcdraws objects into a single one by combining their chains

Description

This function can be used to combine the results of parallel simulations.

Usage

combine_chains(...)

Arguments

$$
\ldots \quad \text { objects of class mcdraws. }
$$

Value

A combined object of class mcdraws where the number of stored chains equals the sum of the numbers of chains in the input objects.
combine_iters Combine multiple mcdraws objects into a single one by combining their draws

Description

This function is used to combine the results of parallel posterior predictive simulations.

Usage

combine_iters(...)

Arguments

```
    ... objects of class mcdraws
```


Value

A combined object of class mcdraws where the number of stored draws equals the sum of the numbers of draws in the input objects.
computeDesignMatrix Compute a list of design matrices for all terms in a model formula, or based on a sampler environment

Description

If sampler is provided instead of formula, the design matrices are based on the model used to create the sampler environment. In that case, if data is NULL, the design matrices stored in sampler are returned, otherwise the design matrices are computed for the provided data based on the sampler's model. The output is a list of dense or sparse design matrices for the model components with respect to data.

Usage

computeDesignMatrix(formula $=$ NULL, data $=$ NULL, sampler $=$ NULL, labels $=$ TRUE)

Arguments

formula	model formula.
data	data frame to be used in deriving the design matrices.
sampler	a sampler environment (as created by e.g. by create_sampler).
labels	if TRUE, column names are assigned.

Value

A list of design matrices.

Examples

```
n <- 1000
dat <- data.frame(
    x = rnorm(n),
    f = factor(sample(1:50, n, replace=TRUE))
)
str(computeDesignMatrix(~ x, dat)[[1]])
model <- ~ reg(~x, name="beta") + gen(~x, factor=~f, name="v")
X <- computeDesignMatrix(model, dat)
str(X)
sampler <- create_sampler(model, dat, prior.only=TRUE)
str(computeDesignMatrix(sampler=sampler))
str(computeDesignMatrix(sampler=sampler, labels=FALSE))
newdata <- data.frame(x=rnorm(10), f=dat$f[1:10])
str(computeDesignMatrix(sampler=sampler, data=newdata))
```

compute_GMRF_matrices Compute (I)GMRF incidence, precision and restriction matrices corresponding to a generic model component

Description

This function computes incidence, precision and restriction matrices, or a subset thereof, for a Gaussian Markov Random Field (GMRF). A GMRF is specified by a formula passed to the factor argument, in the same way as for the factor argument of gen.

Usage

compute_GMRF_matrices(
factor, data, D = TRUE, Q = TRUE, R = TRUE, cols2remove = NULL, remove.redundant.R.cols = TRUE, enclos = .GlobalEnv, n. parent $=1 \mathrm{~L}$,
)

Arguments

factor	factor formula of a generic model component, see gen.
data	data frame to be used in deriving the matrices.
D	if TRUE compute the incidence matrix.
Q	if TRUE compute the precision matrix. R
if TRUE compute the restriction matrix.	
cols2remove	if an integer vector is passed, the dimensions (columns of D, rows and columns of Q and rows of R) that are removed. This can be useful in the case of empty domains.
remove.redundant.R.cols	
whether to test for and remove redundant restrictions from restriction matrix R	
n. parent	enclosure to look for objects not found in data. for internal use; in case of custom factor, the number of frames up the calling stack in which to evaluate any custom matrices further arguments passed to economizeMatrix.
I.	

Value

A list containing some or all of the components D (incidence matrix), Q (precision matrix) and R (restriction matrix).

```
Examples
    n <- 1000
    dat <- data.frame(
        x = rnorm(n),
        f1 = factor(sample(1:50, n, replace=TRUE)),
        f2 = factor(sample(1:10, n, replace=TRUE))
)
mats <- compute_GMRF_matrices(~ f1 * RW1(f2), dat)
str(mats)
```

```
correlation
```


Correlation structures

Description

Element 'factor' of a model component is a formula composed of several possible terms described below. It is used to derive a (sparse) precision matrix for a set of coefficient, and possibly a matrix representing a set of linear constraints to be imposed on the coefficient vector.
iid(f) Independent effects corresponding to the levels of factor f.
RW1(f, circular=FALSE, w=NULL) First-order random walk over the levels of factor f. The random walk can be made circular and different (fixed) weights can be attached to the innovations. If specified, w must be a positive numeric vector of length one less than the number of factor levels. For example, if the levels correspond to different times, it would often be reasonable to choose w proportional to the reciprocal time differences. For equidistant times there is generally no need to specify w.
RW2(f) Second-order random walk.
AR1(f, phi, w=NULL) First-order autoregressive correlation structure among the levels of f. Required argument is the (fixed) autoregressive parameter phi. For irregularly spaced $\operatorname{AR}(1)$ processes weights can be specified, in the same way as for RW1.
season(f, period) Dummy seasonal with period period.
spatial(f, poly.df, snap, queen, derive.constraints=FALSE) CAR spatial correlation. Argument poly.df should be an object of class SpatialPolygonsDataFrame obtained e.g. from reading in a shape file with readShapeSpatial from package maptools. Arguments snap and queen are passed to poly 2 nb . If derive.constraints=TRUE the constraint matrix for an IGMRF model component is formed by computing the singular vectors of the precision matrix.
custom(f, $\mathbf{D = N U L L}, \mathbf{Q}=\mathbf{N U L L}, \mathbf{R}=\mathbf{N U L L}$, derive.constraints=NULL) Either a custom precision or incidence matrix associated with factor f can be passed to argument Q or D. Optionally a constraint matrix can be supplied as R, or constraints can be derived from the null space of the precision matrix by setting derive.constraints=TRUE.

References

B. Allevius (2018). On the precision matrix of an irregularly sampled AR(1) process. arXiv:1801.03791.
H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman \& Hall/CRC.

Description

This function sets up a sampler object, based on the specification of a model. The object contains functions to draw a set of model parameters from their prior and conditional posterior distributions, and to generate starting values for the MCMC simulation. The functions share a common environment containing precomputed quantities such as design matrices based on the model and the data. The sampler object is the main input for the MCMC simulation function MCMCsim.

Usage

```
create_sampler(
    formula,
    data = NULL,
    family = "gaussian",
    ny = NULL,
    ry = NULL,
    r.mod,
    sigma.fixed = NULL,
    sigma.mod = NULL,
    Q0 = NULL,
    formula.V = NULL,
    logJacobian = NULL,
    linpred = NULL,
    compute.weights = FALSE,
    block = compute.weights,
    prior.only = FALSE,
    control = NULL
)
```


Arguments

formula	formula to specify the response variable and additive model components. The model components form the linear predictor part of the model. A model component on the right hand side can be either a regression term specified by reg (...), a covariates subject to error term specified by mec (...), or a generic random effect term specified by gen (. . .). See for details the help pages for these model component creation functions. An offset can be specified as offset(...). Other terms in the formula are collectively interpreted as ordinary regression effects, treated in the same way as a reg (...) term, but without the option to change the prior.
data	data frame with n rows in which the variables specified in model components (if any) can be found.

family character string describing the data distribution. The default is 'gaussian'. Other options are 'binomial' for the binomial distribution and 'negbinomial' for the negative binomial distribution, and "poisson" for the Poisson distribution. For the binomial distribution logistic and probit link functions are supported, the latter only for binary data. For the negative binomial and Poisson distributions a log link function is assumed. Note that posterior inference based on the Poisson distribution is implemented only approximately, as a special case of the negative binomial distribution. For categorical or multinomial data, family = "multinomial" can be used. The implementation is based on a stick-breaking representation of the multinomial distribution, and the logistic link function relates each category except the last to a linear predictor. The categories can be referenced in the model specification formula by 'cat_'.
ny in case family="binomial" the (vector of) numbers of trials. It can be either a numeric vector or the name of a variable in data. Defaults to a vector of 1 s .
ry in case family="negbinomial" the known, i.e. fixed part of the (reciprocal) dispersion parameter. It can be specified either as a numeric vector or the name of a numeric variable in data. The overall dispersion parameter is the product of ry with a positive scalar factor modelled as specified by argument r.mod. By default ry is taken to be 1 . For family = "poisson" a single value can be specified, determining how well the Poisson distribution is approximated by the negative binomial distribution. The value should be large enough such that the negative binomial's overdispersion becomes negligible, but not too large as this might result in slow MCMC mixing. The default is $r y=100$ in this case.
r.mod prior specification for a scalar (reciprocal) dispersion parameter of the negative binomial distribution. The prior can be specified by a call to a prior specification function. Currently pr_invchisq, pr_gig and pr_fixed are supported. The default is a chi-squared prior with 1 degree of freedom. To set the overall dispersion parameter to the value(s) specified by $r y$, use r. mod $=$ pr_fixed(value=1).
sigma.fixed for Gaussian models, if TRUE the residual standard deviation parameter 'sigma_' is fixed at 1 . In that case argument sigma.mod is ignored. This is convenient for Fay-Herriot type models with (sampling) variances assumed to be known. Default is FALSE.
sigma.mod prior for the variance parameter of a gaussian sampling distribution. This can be specified by a call to one of the prior specification functions pr_invchisq, pr_exp, pr_gig or pr_fixed for inverse chi-squared, exponential, generalized inverse gaussian or degenerate prior distribution, respectively. The default is an improper prior pr_invchisq $(\mathrm{df}=0$, scale=1). A half-t prior on the standard deviation can be specified using pr_invchisq with a chi-squared distributed scale parameter.
Q0
$\mathrm{n} x \mathrm{n}$ data-level precision matrix for a Gaussian model. It defaults to the unit matrix. If an n -vector is provided it will be expanded to a (sparse) diagonal matrix with Q0 on its diagonal. If a name is supplied it will be looked up in data and subsequently expanded to a diagonal matrix.
formula.V a formula specifying the terms of a variance model in the case of a Gaussian likelihood. Currently two types of terms are supported: a regression term for the \log-variance specified with $\operatorname{vreg}(\ldots)$, and a term $\operatorname{vfac}(\ldots)$ for multiplicative
modeled factors at a certain level specified by a factor variable. By using unitlevel inverse-chi-squared factors the marginal sampling distribution becomes a Student-t distribution, and by using unit-level exponential factors it becomes a Laplace or double exponential distribution.
logJacobian if the data are transformed the logarithm of the Jacobian can be supplied so that it is incorporated in all log-likelihood computations. This can be useful for comparing information criteria for different transformations. It should be supplied as a vector of the same size as the response variable, and is currently only supported if family="gaussian". For example, when a log-transformation is used on response vector y, the vector $-\log (y)$ should be supplied.
linpred a list of matrices defining (possibly out-of-sample) linear predictors to be simulated. This allows inference on e.g. (sub)population totals or means. The list must be of the form list (name_1=X_1, . . .) where the names refer to the model component names and predictions are computed by summing X_i $\% * \%$ $p[[$ name_i]]. Alternatively, linpred="fitted" can be used for simulations of the full in-sample linear predictor.
compute. weights
if TRUE weights are computed for each element of linpred. Note that for a large dataset in combination with vector-valued linear predictors the weights can take up a lot of memory. By default only means are stored in the simulation carried out using MCMCsim.
block if TRUE all coefficients are sampled in a single block. Alternatively, a list of character vectors indicating which coefficients should be sampled together in blocks.
prior.only whether a sampler is set up only for sampling from the prior or for sampling from both prior and posterior distributions. Default FALSE. If TRUE there is no need to specify a response in formula. This is used by generate_data, which samples from the prior predictive distribution.
control a list with further computational options, see details section.

Details

The right hand side of the formula argument to create_sampler can be used to specify additive model components. Currently two specialized model components are supported, reg(...) and gen (...) for regression and generic random effects components, respectively.
For gaussian models, formula.V can be used to specify the variance structure of the model. Currently two specialized variance model components are supported, vreg(...) for regression effects predicting the log-variance and $\mathrm{vfac}(. .$.$) for modeled variance factors.$
Further computational options can be set using the control parameter, which should be passed as a list with possible elements
add.outer. \mathbf{R} whether to add the outer product of the constraint matrix for a better conditioned solve system for blocks. This is done by default when using blocked Gibbs sampling for blocks with constraints.
recompute.e when FALSE residuals or linear predictors are only computed at the start of the simulation. This may give a modest speedup but in some cases may be less accurate due to roundoff error accumulation. Default is TRUE.

CG for a conjugate gradient iterative algorithm instead of Cholesky updates for sampling the model's coefficients. This must be a list with possible components max. it, stop.criterion, verbose, preconditioner and scale, see setup_CG_sampler. This is currently an experimental feature.

Value

A sampler object, which is the main input for the MCMC simulation function MCMCsim. The sampler object is an environment with precomputed quantities and functions. The main functions are rprior, which returns a sample from the prior distributions, draw, which returns a sample from the full conditional posterior distributions, and start, which returns a list with starting values for the Gibbs sampler. If prior.only is TRUE, functions draw and start are not created.

References

J.H. Albert and S. Chib (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association 88(422), 669-679.
D. Bates, M. Maechler, B. Bolker and S.C. Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67(1), 1-48.
S.W. Linderman, M.J. Johnson and R.P. Adams (2015). Dependent multinomial models made easy: Stick-breaking with the Polya-Gamma augmentation. Advances in Neural Information Processing Systems, 3456-3464.
N. Polson, J.G. Scott and J. Windle (2013). Bayesian Inference for Logistic Models Using PolyaGamma Latent Variables. Journal of the American Statistical Association 108(504), 1339-1349.
H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman \& Hall/CRC.
M. Zhou and L. Carin (2015). Negative Binomial Process Count and Mixture Modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 37(2), 307-320.

Examples

```
# first generate some data
n <- 200
x <- rnorm(n)
y <- 0.5 + 2*x + 0.3*rnorm(n)
# create a sampler for a simple linear regression model
sampler <- create_sampler(y ~ x)
sim <- MCMCsim(sampler)
(summary(sim))
y <- rbinom(n, 1, 1 / (1 + exp(-(0.5 + 2*x))))
# create a sampler for a binary logistic regression model
sampler <- create_sampler(y ~ x, family="binomial")
sim <- MCMCsim(sampler)
(summary(sim))
```


create_TMVN_sampler Set up a sampler object for sampling from a possibly truncated and degenerate multivariate normal distribution

Description

This function sets up an object for multivariate normal sampling based on a specified precision matrix or cholesky decomposition thereof. Linear equality and inequality restrictions are supported. For sampling under inequality restrictions three algorithms are available. The default in that case is an exact Hamiltonian Monte Carlo algorithm (Pakman and Paninski, 2014). Alternatively, a Gibbs sampling algorithm can be used (Rodriguez-Yam et al., 2004). The third option is a data augmentation method to sample from a smooth approximation to the truncated multivariate normal distribution (Souris et al., 2018).

Usage

create_TMVN_sampler(
Q,
perm $=$ NULL,
mu = NULL,
Xy = NULL,
update. Q = FALSE,
update.mu = update. Q ,
name $=$ " x ",
coef.names $=$ NULL,
R = NULL,
$r=$ NULL ,
$S=$ NULL,
$\mathrm{s}=\mathrm{NULL}$,
lower = NULL,
upper = NULL,
method = NULL,
reduce $=$ (method == "Gibbs" \&\& !is.null(R)),
T. $\mathrm{HMC}=\mathrm{pi} / 2$,
print. info = FALSE, sharpness = 100, useV = FALSE
)

Arguments

Q
perm whether permutation/pivoting should be used to build a Cholesky object.
mu
$\mathrm{Xy} \quad$ alternative to specifying mu ; in this case mu is computed as $Q^{\wedge}\{-1\} \mathrm{Xy}$.
update. $Q \quad$ whether Q is updated for each draw.

update.mu	whether mu is updated for each draw. By default equal to update. Q .
name	name of the TMVN vector parameter.
coef.names	optional labels for the components of the vector parameter.
R	equality restriction matrix.
r	rhs vector for equality constraints $R^{\wedge} T x=r$.
S	inequality restriction matrix.
s	rhs vector for inequality constraints $S^{\wedge} T x>=s$.
lower	alternative to s for two-sided inequality restrictions lower $<=\mathrm{S}^{\wedge} \mathrm{T} x<=$ upper.
upper	alternative to s for two-sided inequality restrictions lower $<=\mathrm{S}^{\wedge} \mathrm{T} \mathrm{x}<=$ upper.
method	sampling method. The options are "direct" for direct sampling from the unconstrained or equality constrained multivariate normal (MVN). For inequality constrained MVN sampling three methods are supported: "HMC" for (exact) Hamiltonian Monte Carlo, "Gibbs" for a component-wise Gibbs sampling approach, and "softTMVN" for a data augmentation method that samples from a smooth approximation to the truncated MVN.
reduce	whether to a priori restrict the simulation to the subspace defined by the equality constraints.
T. HMC	the duration of a Hamiltonian Monte Carlo simulated particle trajectory. If a vector of length 2 is supplied it is interpreted as an interval from which the duration is drawn uniformly, independently in each HMC iteration.
print.info	whether information about violations of inequalities and bounces off inequality walls is printed to the screen. This sometimes provides useful diagnostic information.
sharpness	for method 'softTMVN', the sharpness of the soft inequalities; the larger the better the approximation of exact inequalities. It must be either a scalar value or a vector of length equal to the number of inequality restrictions.
useV	for method 'softTMVN' whether to base computations on variance instead of precision matrices.

Details

The componentwise Gibbs sampler uses univariate truncated normal samplers as described in Botev and L'Ecuyer (2016). These samplers are implemented in R package TruncatedNormal, but here translated to $\mathrm{C}++$ for an additional speed-up.

Value

An environment for sampling from a possibly degenerate and truncated multivariate normal distribution.

Author(s)

Harm Jan Boonstra, with help from Grzegorz Baltissen

References

Z.I. Botev and P. L'Ecuyer (2016). Simulation from the Normal Distribution Truncated to an Interval in the Tail. in VALUETOOLS.
Y. Cong, B. Chen and M. Zhou (2017). Fast simulation of hyperplane-truncated multivariate normal distributions. Bayesian Analysis 12(4), 1017-1037.
A. Pakman and L. Paninski (2014). Exact Hamiltonian Monte Carlo for truncated multivariate gaussians. Journal of Computational and Graphical Statistics 23(2), 518-542.
G. Rodriguez-Yam, R.A. Davis and L.L. Scharf (2004). Efficient Gibbs sampling of truncated multivariate normal with application to constrained linear regression. Unpublished manuscript.
H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman \& Hall/CRC.
A. Souris, A. Bhattacharya and P. Debdeep (2018). The Soft Multivariate Truncated Normal Distribution. arXiv:1807.09155.

Examples

```
S <- cbind(diag(2), c(-1, 1), c(1.1, -1)) # inequality matrix
# S'x >= 0 represents the wedge x1 <= x2 <= 1.1 x1
# example taken from Pakman and Paninski (2014)
# 1. exact Hamiltonian Monte Carlo (Pakman and Paninski, 2014)
sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), S=S, method="HMC")
sim <- MCMCsim(sampler)
summary(sim)
plot(as.matrix(sim$x), pch=".")
# 2. Gibbs sampling approach (Rodriguez-Yam et al., 2004)
sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), S=S, method="Gibbs")
sim <- MCMCsim(sampler)
summary(sim)
plot(as.matrix(sim$x), pch=".")
# 3. soft TMVN approximation (Souris et al., 2018)
sampler <- create_TMVN_sampler(Q=diag(2), mu=c(4, 4), S=S, method="softTMVN")
sim <- MCMCsim(sampler)
summary(sim)
plot(as.matrix(sim$x), pch=".")
```

Create a model component object for a generic random effects component in the linear predictor

Description

This function is intended to be used on the right hand side of the formula argument to create_sampler or generate_data.

```
Usage
    gen(
        formula = ~1,
        factor = NULL,
        remove.redundant = FALSE,
        drop.empty.levels = FALSE,
        X = NULL,
        var = NULL,
        prior = NULL,
        Q0 = NULL,
        PX = TRUE,
        GMRFmats = NULL,
        priorA = NULL,
        Leroux = FALSE,
        R0 = NULL,
        RA = NULL,
        constr = NULL,
        S0 = NULL,
        SA = NULL,
        formula.gl = NULL,
        name = "",
        sparse = NULL,
        perm = NULL,
        debug = FALSE,
        e = parent.frame()
    )
```


Arguments

formula a model formula specifying the effects that vary over the levels of the factor variable(s) specified by argument factor. Defaults to ~ 1, corresponding to random intercepts. If X is specified formula is ignored. Variable names are looked up in the data frame passed as data argument to create_sampler or generate_data, or in environment (formula).
factor a formula with factors by which the effects specified in the formula argument vary. Often only one such factor is needed but multiple factors are allowed so that interaction terms can be modeled conveniently. The formula must take the form $\sim f 1(f a c 1, \ldots) * f 2(f a c 2, \ldots) \ldots$, where fac1, fac2 are factor variables and $f 1, f 2$ determine the correlation structure assumed between levels of each factor, and the . . . indicate that for some correlation types further arguments can be passed. Correlation structures currently supported include iid for independent identically distributed effects, RW1 and RW2 for random walks of first or second order over the factor levels, AR1 for first-order autoregressive effects, season for seasonal effects, spatial for spatial (CAR) effects and custom for supplying a custom precision matrix corresponding to the levels of the factor. For further details about the correlation structures, and further arguments that can be passed, see correlation. Argument factor is ignored if X is specified. The factor variables are looked up in the data frame passed as data argument to
create_sampler or generate_data, or in environment(formula).
remove. redundant
whether redundant columns should be removed from the model matrix associated with formula. Default is FALSE.
drop.empty.levels
whether to remove factor levels without observations.
$X \quad$ A (possibly sparse) design matrix. This can be used instead of formula and factor.
var the (co)variance structure among the varying effects defined by formula over the levels of the factors defined by factor. The default is "unstructured", meaning that a full covariance matrix parameterization is used. For uncorrelated effects with different variances use var="diagonal". For uncorrelated and equal variances use var="scalar". In the case of a single varying effect there is no difference between these choices.
prior the prior specification for the variance parameters of the random effects. These can currently be specified by a call to pr_invwishart in case var="unstructured" or by a call to pr_invchisq otherwise. See the documentation of those prior specification functions for more details.
Q0 precision matrix associated with formula. This can only be used in combination with var="scalar".

PX whether parameter expansion should be used. Default is TRUE, which applies parameter expansion with default options. Alternative options can be specified by supplying a list with one or more of the following components:
vector whether a redundant multiplicative expansion parameter is used for each varying effect specified by formula. The default is TRUE except when var="scalar". If FALSE a single redundant multiplicative parameter is used.
data.scale whether the data level scale is used as a variance factor for the expansion parameters. Default is TRUE.
mu0 location (vector) parameter for parameter expansion. By default 0 .
Q0 precision (matrix) parameter for parameter expansion. Default is the identity matrix.
GMRFmats list of incidence/precision/constraint matrices. This can be specified as an alternative to factor. It should be a list such as is usually returned by compute_GMRF_matrices. Can be used together with argument X as a flexible alternative to formula and factor.
priorA prior distribution for scale factors at the variance scale associated with QA. In case of IGMRF models the scale factors correspond to the innovations. The default NULL means not to use any local scale factors. A prior can currently be specified using pr_invchisq or pr_exp.
Leroux this option alters the precision matrix determined by factor by taking a weighted average of it with the identity matrix. If TRUE the model gains an additional parameter, the 'Leroux' parameter, being the weight of the original, structured, precision matrix in the weighted average. By default a uniform prior for the weight and a uniform Metropolis-Hastings proposal density are employed. This
default can be changed by supplying a list with elements a, b, and a.star, b.star, implying a beta(a, b) prior and a beta(a.star, b .star) independence proposal density. A third option is to supply a single number between 0 and 1 , which is then used as a fixed value for the Leroux parameter.
an optional equality restriction matrix acting on the coefficients defined by formula, for each level defined by factor. If c is the number of restrictions, $R 0$ is a $q 0$ x c matrix where q 0 is the number of columns of the design matrix derived from formula. Together with RA it defines the set of equality constraints to be imposed on the vector of coefficients. Only allowed in combination with var="scalar".
an optional equality restriction matrix acting on the coefficients defined by factor, for each effect defined by formula. If c is the number of restrictions, RA is a 1 x c matrix where 1 is the number of levels defined by factor. Together with R0 this defines the set of equality constraints to be imposed on the vector of coefficients. If constr=TRUE, additional constraints are imposed, corresponding to the null-vectors of the singular precision matrix in case of an intrinsic Gaussian Markov Random Field.
whether constraints corresponding to the null-vectors of the precision matrix are to be imposed on the vector of coefficients. By default this is TRUE for improper or intrinsic GMRF model components, i.e. components with a singular precision matrix such as random walks or CAR spatial components.
an optional inequality restriction matrix acting on the coefficients defined by formula, for each level defined by factor. If c is the number of restrictions, s 0 is a q 0 x c matrix where q 0 is the number of columns of the design matrix derived from formula. Together with SA it defines the set of inequality constraints to be imposed on the vector of coefficients.
an optional inequality restriction matrix acting on the coefficients defined by factor, for each effect defined by formula. If c is the number of restrictions, SA is al x c matrix where 1 is the number of levels defined by factor. Together with S 0 this defines the set of constraints to be imposed on the vector of coefficients.
formula.gl a formula of the form $\sim \operatorname{glreg}(. .$.$) for group-level predictors around which$ the random effect component is hierarchically centered. See glreg for details.
name the name of the model component. This name is used in the output of the MCMC simulation function MCMCsim. By default the name will be 'gen' with the number of the model term attached.
sparse whether the model matrix associated with formula should be sparse. The default is based on a simple heuristic based on storage size.
whether permutation should be used in the Cholesky decomposition used for updating the model component's coefficient vector. Default is based on a simple heuristic.
if TRUE a breakpoint is set at the beginning of the posterior draw function associated with this model component. Mainly intended for developers.
for internal use only.

Value

An object with precomputed quantities and functions for sampling from prior or conditional posterior distributions for this model component. Only intended for internal use by other package functions.

References

J. Besag and C. Kooperberg (1995). On Conditional and Intrinsic Autoregression. Biometrika 82(4), 733-746.
C.M. Carvalho, N.G. Polson and J.G. Scott (2010). The horseshoe estimator for sparse signals. Biometrika 97(2), 465-480.
L. Fahrmeir, T. Kneib and S. Lang (2004). Penalized Structured Additive Regression for SpaceTime Data: a Bayesian Perspective. Statistica Sinica 14, 731-761.
A. Gelman (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1(3), 515-533.
A. Gelman, D.A. Van Dyk, Z. Huang and W.J. Boscardin (2008). Using Redundant Parameterizations to Fit Hierarchical Models. Journal of Computational and Graphical Statistics 17(1), 95-122.
B. Leroux, X. Lei and N. Breslow (1999). Estimation of Disease Rates in Small Areas: A New Mixed Model for Spatial Dependence. In M. Halloran and D. Berry (Eds.), Statistical Models in Epidemiology, the Environment and Clinical Trials, 135-178.
T. Park and G. Casella (2008). The Bayesian Lasso. Journal of the American Statistical Association 103(482), 681-686.
H. Rue and L. Held (2005). Gaussian Markov Random Fields. Chapman \& Hall/CRC.
generate_data Generate a data vector according to a model

Description

This function generates draws from the prior predictive distribution. Parameter values are drawn from their priors, and consequently data is generated from the sampling distribution given these parameter values.

```
Usage
    generate_data(
        formula,
        data = NULL,
        family = "gaussian",
        ny = NULL,
        ry,
        r.mod,
        sigma.fixed = !isTRUE(family == "gaussian"),
        sigma.mod = NULL,
```

```
    Q0 = NULL,
    formula.V = NULL,
    linpred = NULL
)
```


Arguments

formula	A model formula, see create_sampler. Any left-hand-side of the formula is ignored.
data	see create_sampler.
family	see create_sampler.
ny	see create_sampler.
ry	see create_sampler.
r.mod	see create_sampler.
sigma.fixed	see create_sampler.
sigma.mod	see create_sampler.
Q0	see create_sampler.
formula.V	see create_sampler.
linpred	see create_sampler.

Value

A list with a generated data vector and a list of prior means of the parameters. The parameters are drawn from their priors.

Examples

```
n <- 250
dat <- data.frame(
    x = rnorm(n),
    g = factor(sample(1:10, n, replace=TRUE)),
    ny = 10
)
gd <- generate_data(
    ~ reg(~ 1 + x, Q0=10, b0=c(0, 1), name="beta") + gen(factor = ~ g, name="v"),
    family="binomial", ny="ny", data=dat
)
gd
plot(dat$x, gd$y)
```

get_draw Extract a list of parameter values for a single draw

Description

Extract a list of parameter values for a single draw

```
Usage
get_draw(obj, iter, chain)
```


Arguments

obj	an object of class mcdraws.
iter	iteration number.
chain	chain number.

Value

A list with all parameter values of draw iter from chain chain.

Examples

```
ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
get_draw(sim, iter=20, chain=3)
```

glreg Create a model object for group-level regression effects within a generic random effects component.

Description

This function is intended to be used to specify the formula.gl argument to the gen model component specification function. Group-level predictors and hierarchical centering are not used by default, and they currently cannot be used in a model component that is sampled together with another model component in the same Gibbs block.

```
Usage
    glreg(
    formula = NULL,
    remove.redundant = FALSE,
    Q0 = NULL,
    data \(=\) NULL,
    name = "",
    e = parent.frame()
    )
```


Arguments

formula	a formula specifying the group-level predictors to be used within a model com- ponent. If no data is supplied the group-level predictors are derived as group- level means from the unit-level data passed as data argument to create_sampler or generate_data.		
remove.redundant		\quad	whether redundant columns should be removed from the design matrix. Default
:---			
is FALSE.			
prior precision matrix for the group-level effects. The default is a zero matrix			
corresponding to a noninformative improper prior.			
group-level data frame in which the group-level variables specified in formula			
are looked up.			
name		the name of the model component. This name is used in the output of the MCMC	
:---			
simulation function MCMCsim. By default this name will be the name of the			
corresponding generic random effects component appended by '.gl'.			
for internal use only.			

Value

An object with precomputed quantities for sampling from prior or conditional posterior distributions for this model component. Only intended for internal use by other package functions.

labels | Get and set the variable labels of a draws component object for a |
| :--- |
| vector-valued parameter |

Description

Get and set the variable labels of a draws component object for a vector-valued parameter

Usage

```
## S3 method for class 'dc'
labels(object, ...)
    labels(object) <- value
```


Arguments

object	a draws component object.
\ldots	currently not used.
value	a vector of labels.

Value

The extractor function returns the variable labels.

Examples

```
ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=50, n.iter=100, n.chain=1, store.all=TRUE)
labels(sim$beta)
labels(sim$v)
labels(sim$beta) <- c("a", "b")
labels(sim$beta)
```

matrix-vector Fast matrix-vector multiplications

Description

Functions for matrix-vector multiplies like $\% * \%$ and crossprod, but often faster for the matrix types supported. The return value is always a numeric vector.

Usage

M \%m*v\% v
crossprod_mv(M, v)

Arguments

M a matrix of class 'matrix', 'dgCMatrix', 'dsCMatrix', 'tabMatrix', or 'ddiMatrix'.
v
a numeric vector.

Value

For $\% m * \mathrm{v} \%$ the vector $M v$ and for crossprod_mv the vector $M^{\prime} v$ where M^{\prime} denotes the transpose of M.

Examples

$M<-$ matrix(rnorm(10*10), 10, 10)
x <- rnorm(10)
M \%m*v\% x
crossprod_mv(M, x)
M <- Matrix::rsparsematrix(100, 100, nnz=100)
$x<-r n o r m(100)$
M \%m*v\% x
crossprod_mv(M, x)
maximize_llh Maximize log-likelihood defined inside a sampler function

Description

Maximize log-likelihood defined inside a sampler function

Usage

maximize_llh(sampler, method = "BFGS", control = list(fnscale = -1), ...)

Arguments

sampler	sampler function.
method	optimization method, passed to optim.
control	control parameters, passed to optim.
\ldots	other parameters passed to optim.

Value

A list of parameter values that, provided the optimization was successful, maximize the likelihood.

Examples

```
n <- }100
dat <- data.frame(
    x = rnorm(n),
    f = factor(sample(1:50, n, replace=TRUE))
)
df <- generate_data(
    ~ reg(~x, name="beta", Q0=1) + gen(~x, factor=~f, name="v"),
    sigma.fixed=TRUE, data=dat
)
dat$y <- df$y
sampler <- create_sampler(y ~ x + gen(~x, factor=~f, name="v"), data=dat)
opt <- maximize_llh(sampler)
```

```
str(opt)
plot(df$par$v, opt$par$v); abline(0, 1, col="red")
```


Description

R_hat computes Gelman-Rubin convergence diagnostics based on the MCMC output in a model component, and n_eff computes the effective sample sizes, .i.e. estimates for the number of independent samples from the posterior distribution.

Usage

R_hat(dc)
n_eff(dc, useFFT = TRUE, lag.max, cl = NULL)

Arguments

dc a draws component (dc) object corresponding to a model parameter.
useFFT whether to use the Fast Fourier Transform algorithm. Default is TRUE as this is typically faster.
lag. max the lag up to which autocorrelations are computed in case useFFT=FALSE.
cl a cluster for parallel computation.

Value

In case of R_hat the split-Rhat convergence diagnostic for each component of the vector parameter, and in case of $n _e f f$ the effective number of independent samples for each component of the vector parameter.

References

A. Gelman and D. B. Rubin (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7, 457-511.
A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B. Rubin (2013). Bayesian Data Analysis, 3rd edition. Chapman \& Hall/CRC.

Examples

```
ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
n_eff(sim$beta)
n_eff(sim$v_sigma)
n_eff(sim$v_rho)
R_hat(sim$beta)
R_hat(sim$llh_)
R_hat(sim$v_sigma)
```

MCMC-object-conversion
Convert a draws component object to another format

Description

Use to_mcmc to convert a draws component to class mcmc.list, allowing one to use MCMC diagnostic functions provided by package coda. Use as. array to convert to an array of dimension (draws, chains, parameters). The array format is supported by some packages for analysis or visualisation of MCMC simulation results, e.g. bayesplot. Use as.matrix to convert to a matrix, concatenating the chains.

Usage

```
    to_mcmc (x)
    to_draws_array(x)
    ## S3 method for class 'dc'
    as.array(x, ...)
    ## S3 method for class 'dc'
    as.matrix(x, colnames = TRUE, ...)
```


Arguments

$\begin{array}{ll}\mathrm{x} & \begin{array}{l}\text { a component of an mcdraws object corresponding to a scalar or vector model } \\ \text { parameter. }\end{array} \\ \ldots & \text { currently ignored. } \\ \text { colnames } & \text { whether column names should be set. }\end{array}$

Value

The draws component coerced to an mcmc. list object, a draws_array object, an array, or a matrix.

Examples

```
data(iris)
sampler <- create_sampler(Sepal.Length ~ reg(~ Petal.Length + Species, name="beta"), data=iris)
sim <- MCMCsim(sampler, burnin=100, n.chain=2, n.iter=400)
summary(sim)
if (require("coda", quietly=TRUE)) {
    mcbeta <- to_mcmc(sim$beta)
    geweke.diag(mcbeta)
}
if (require("posterior", quietly=TRUE)) {
    mcbeta <- to_draws_array(sim$beta)
    mcbeta
}
str(as.array(sim$beta))
str(as.matrix(sim$beta))
# generate some example data
n <- 250
dat <- data.frame(x=runif(n), f=as.factor(sample(1:5, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, Q0=1, name="beta"), data=dat)
dat$y <- gd$y
sampler <- create_sampler(y ~ reg(~ x + f, name="beta"), data=dat)
sim <- MCMCsim(sampler, n.chain=2, n.iter=400)
str(sim$beta)
str(as.array(sim$beta))
bayesplot::mcmc_hist(as.array(sim$beta))
bayesplot::mcmc_dens_overlay(as.array(sim$beta))
# fake data simulation check:
bayesplot::mcmc_recover_intervals(as.array(sim$beta), gd$pars$beta)
bayesplot::mcmc_recover_hist(as.array(sim$beta), gd$pars$beta)
ex <- mcmcsae_example()
plot(ex$dat$fT, ex$dat$y)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, n.chain=2, n.iter=400, store.all=TRUE)
str(sim$beta)
str(as.matrix(sim$beta))
# fake data simulation check:
bayesplot::mcmc_recover_intervals(as.matrix(sim$beta), ex$pars$beta)
bayesplot::mcmc_recover_intervals(as.matrix(sim$u), ex$pars$u)
```

mcmcsae-family

Description

These functions are intended for use in the family argument of create_sampler. In future versions these functions may gain additional arguments, but currently the corresponding functions gaussian
and binomial can be used as well.

Usage

f_gaussian(link = "identity")
f_binomial(link = c("logit", "probit"))
f_negbinomial(link = "logit")
f_poisson(link = "log")
f_multinomial(link = "logit", K = NULL)

Arguments

link the name of a link function. Currently the only allowed link functions are: "identity" for (log-)Gaussian sampling distributions, "logit" (default) and "probit" for binomial distributions and "log" for negative binomial sampling distributions.

K number of categories for multinomial model; this must be specified for prior predictive sampling

Value

A family object.

mcmcsae_example | Generate artificial data according to an additive spatio-temporal |
| :--- |
| model |

Description

This function is used to generate data for several examples.

Usage

mcmcsae_example(n = 100L)

Arguments

n
the size of the generated dataset.

Value

A list containing the generated dataset, the values of the model parameters, and the model specification as a formula.

Examples

```
ex <- mcmcsae_example()
str(ex)
```

MCMCsim Run a Markov Chain Monte Carlo simulation

Description

Given a sampler object this function runs a MCMC simulation and stores the posterior draws. A sampler object for a wide class of multilevel models can be created using create_sampler, but users can also define their own sampler functions, see below. MCMCsim allows to choose the parameters for which simulation results must be stored. It is possible to define derived quantities that will also be stored. To save memory, it is also possible to only store Monte Carlo means/standard errors for some large vector parameters, say. Another way to use less memory is to save the simulation results of large vector parameters to file. For parameters specified in plot.trace traceplots or pair plots of multiple parameters are displayed during the simulation.

Usage

```
MCMCsim(
    sampler,
    from.prior = FALSE,
    n.iter = 1000L,
    n.chain = 3L,
    thin = 1L,
    burnin = if (from.prior) 0L else 250L,
    start = NULL,
    store,
    store.all = FALSE,
    pred = NULL,
    store.mean,
    store.sds = FALSE,
    to.file = NULL,
    filename = "MCdraws_",
    write.single.prec = FALSE,
    verbose = TRUE,
    n.progress = n.iter%/%10L,
    trace.convergence = NULL,
    stop.on.convergence = FALSE,
    convergence.bound = 1.05,
    plot.trace = NULL,
    add.to.plot = TRUE,
    plot.type = "l",
```

```
    n.cores = 1L,
    cl = NULL,
    seed = NULL,
    export = NULL
)
```


Arguments

sampler	sampler object created by create_sampler.
from.prior	whether to sample from the prior. By default from.prior=FALSE and samples are taken from the posterior.
n.iter	number of draws after burnin.
n n.chain	number of independent chains.
thin	only every thin'th draw is kept.
burnin	number of draws to discard at the beginning of each chain.
start	an optional function to generate starting values or a list containing for each chain a named list of starting values. It may be used to provide starting values for some or all parameters. The sampler object's own start function, if it exists, is called to generate any starting values not provided by the user.
store	vector of names of parameters to store MCMC draws for. By default, simulations are stored for all parameters returned by sampler\$store_default.
store.all	if TRUE simulation vectors of all parameters returned by the sampling function of sampler will be stored. The default is FALSE, and in that case only simulations for the parameters named in store are stored.
pred	list of character strings defining derived quantities to be computed (and stored) for each draw.
store.mean	vector of names of parameters for which only the mean (per chain) is to be stored. This may be useful for large vector parameters (e.g. regression residuals) for which storing complete MCMC output would use too much memory. The function sampler\$store_mean_default exists it provides the default.
store.sds	if TRUE store for all parameters in store. mean, besides the mean, also the standard deviation. Default is FALSE.
to.file	vector of names of parameters to write to file.
filename	name of file to write parameter draws to. Each named parameter is written to a separate file, named filename_parametername.
write.single.prec	
	Whether to write to file in single precision. Default is FALSE.
verbose	if FALSE no output is sent to the screen during the simulation. TRUE by default.
n.progress	print iteration number and diagnostics and update plots after so many iterations.
trace.convergence	
	vector of names of parameters for which Gelman-Rubin R-hat diagnostics are printed to the screen every n . progress iterations.

```
stop.on.convergence
    if TRUE stop the simulation if the R-hat diagnostics for all parameters in trace.convergence
    are less than convergence.bound.
convergence.bound
    threshold used with stop.on.convergence.
plot.trace character vector of parameter names for which to plot draws during the simula-
    tion. For one or two parameters traceplots will be shown, and if more parameters
    are specified the results will be displayed in a pairs plot. For vector parameters
    a specific component can be selected using brackets, e.g. "beta[2]".
add.to.plot if TRUE traceplot is added to every n.progress iterations, otherwise a new plot
    (with new scales etc) is made after each n.progress iterations.
plot.type default is "l" (lines).
n.cores the number of cpu cores to use. Default is one, i.e. no parallel computation. If
    an existing cluster cl is provided, n.cores will be set to the number of workers
    in that cluster.
cl an existing cluster can be passed for parallel computation. If NULL and n.cores
    > 1, a new cluster is created.
seed a random seed (integer). For parallel computation it is used to independently
    seed RNG streams for all workers.
export a character vector with names of objects to export to the workers. This may be
    needed for parallel execution if expressions in pred depend on global variables.
```


Details

A sampler object is an environment containing data and functions to use for sampling. The following elements of the sampler object are used by MCMCsim:
start function to generate starting values.
draw function to draw samples, typically from a full conditional posterior distribution.
rprior function to draw from a prior distribution.
coef.names list of vectors of parameter coefficient names, for vector parameters.
MHpars vector of names of parameters that are sampled using a Metropolis-Hastings (MH) sampler; acceptance rates are kept for these parameters.
adapt function of acceptance rates of MHpars to adapt MH-kernel, called every 100 iterations during the burn-in period.

Value

An object of class mcdraws containing posterior draws as well as some meta information.

Examples

```
# 1. create a sampler function
sampler <- new.env()
sampler$draw <- function(p) list(x=rnorm(1L), y=runif(1L))
# 2. do the simulation
```

```
sim <- MCMCsim(sampler, store=c("x", "y"))
str(sim)
summary(sim)
# example that requires start values or a start function
sampler$draw <- function(p) list(x=rnorm(1L), y=p$x * runif(1L))
sampler$start <- function(p) list(x=rnorm(1L), y=runif(1L))
sim <- MCMCsim(sampler, store=c("x", "y"))
summary(sim)
plot(sim, c("x", "y"))
# example using create_sampler; first generate some data
n <- 100
dat <- data.frame(x=runif(n), f=as.factor(sample(1:4, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, Q0=1, name="beta"), data=dat)
dat$y <- gd$y
sampler <- create_sampler(y ~ x + f, data=dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=400, n.chain=2)
(summary(sim))
gd$pars
```

Create a model component object for a regression (fixed effects) component in the linear predictor with measurement errors in quantitative covariates

Description

This function is intended to be used on the right hand side of the formula argument to create_sampler or generate_data. It creates an additive regression term in the model's linear predictor. By default, the prior for the regression coefficients is improper uniform. If b 0 or Q 0 are specified the prior becomes normal with mean b0 (default 0) and variance (matrix) sigma_^2 Q0^-1 where sigma_^2 is the overall scale parameter of the model, if any. Covariates are assumed to be measured subject to normally distributed errors with zero mean and variance specified using the formula or \vee arguments. Note that this means that formula should only contain quantitative variables, and no intercept.

Usage

mec (
formula $=\sim 1$,
sparse = NULL,
X = NULL,
$\mathrm{V}=\mathrm{NULL}$,
Q0 = NULL,
b0 = NULL,
R = NULL,
$r=N U L L$,

```
    S = NULL,
    s = NULL,
    lower = NULL,
    upper = NULL,
    name = "",
    perm = NULL,
    debug = FALSE,
    e = parent.frame()
)
```


Arguments

formula	a formula specifying the predictors subject to measurement error and possibly their variances as well. In the latter case the formula syntax $\sim(x 1 \mid \vee . x 1)+$ ($x 2 \mid \vee . x 2$) $+\ldots$ should be used where $x 1, x 2, \ldots$ are the names of (quantitative) predictors and $V . \times 1, V . \times 2, \ldots$ are the names of the variables holding the corresponding measurement error variances. If only the predictors are specified the formula has the usual form $\sim x 1+x 2+\ldots$ In that case variances should be specified using argument V . All variable names are looked up in the data frame passed as data argument to create_sampler or generate_data, or in environment (formula).
sparse	whether the model matrix associated with formula should be sparse. The default is to base this on a simple heuristic.
X	a (possibly sparse) design matrix can be specified directly, as an alternative to the creation of one based on formula. If X is specified formula is ignored.
V	measurement error variance; can contain zeros
Q0	prior precision matrix for the regression effects. The default is a zero matrix corresponding to a noninformative improper prior. It can be specified as a scalar value, as a numeric vector of appropriate length, or as a matrix object.
b0	prior mean for the regression effect. Defaults to a zero vector. It can be specified as a scalar value or as a numeric vector of appropriate length.
R	optional constraint matrix for equality restrictions $R^{\prime} x=r$ where x is the vector of regression effects.
r	right hand side for the equality constraints.
S	optional constraint matrix for inequality constraints $S^{\prime} \times>=s$ where x is the vector of regression effects.
s	right hand side for the inequality constraints.
lower	as an alternative to s, lower and upper may be specified for two-sided constraints lower <= S'x <= upper.
upper	as an alternative to s, lower and upper may be specified for two-sided constraints lower <= S'x <= upper.
name	the name of the model component. This name is used in the output of the MCMC simulation function MCMCsim. By default the name will be 'reg' with the number of the model term attached.

```
perm whether permutation should be used in the Cholesky decomposition used for up-
    dating the model component's coefficient. Default is based on a simple heuristic.
debug if TRUE a breakpoint is set at the beginning of the posterior draw function asso-
    ciated with this model component. Mainly intended for developers.
e
    for internal use only.
```


Value

an object with precomputed quantities and functions for sampling from prior or conditional posterior distributions for this model component. Only intended for internal use by other package functions.

References

L.M. Ybarra and S.L. Lohr (2008). Small area estimation when auxiliary information is measured with error. Biometrika 95(4), 919-931.
S. Arima, G.S. Datta and B. Liseo (2015). Bayesian estimators for small area models when auxiliary information is measured with error. Scandinavian Journal of Statistics 42(2), 518-529.

Examples

```
# example of Ybarra and Lohr (2008)
m <- 50
X <- rnorm(m, mean=5, sd=3) # true covariate values
v <- rnorm(m, sd=2)
theta <- 1 + 3*X + v # true values
psi <- rgamma(m, shape=4.5, scale=2)
e <- rnorm(m, sd=sqrt(psi)) # sampling error
y <- theta + e # direct estimates
C <- c(rep(3, 10), rep(0, 40)) # measurement error for first 10 values
W <- X + rnorm(m, sd=sqrt(C)) # covariate subject to measurement error
# fit Ybarra-Lohr model
sampler <- create_sampler(
    y ~ 1 + mec(~ 0 + W, V=C) + gen(factor=~local_),
    Q0=1/psi, sigma.fixed=TRUE, linpred="fitted"
)
sim <- MCMCsim(sampler, n.iter=800, n.chain=2, store.all=TRUE, verbose=FALSE)
(summ <- summary(sim))
plot(X, W, xlab="true X", ylab="inferred X")
points(X, summ$mec2_X[, "Mean"], col="green")
abline(0, 1, col="red")
legend("topleft", legend=c("prior mean", "posterior mean"), col=c("black", "green"), pch=c(1,1))
```

```
model-information-criteria
```

Compute DIC, WAIC and leave-one-out cross-validation model measures

Description

Compute the Deviance Information Criterion (DIC) or Watanabe-Akaike Information Criterion (WAIC) from an object of class mcdraws output by MCMCsim. Method waic.mcdraws computes WAIC using package loo. Method loo. mcdraws also depends on package loo to compute a Paretosmoothed importance sampling (PSIS) approximation to leave-one-out cross-validation.

Usage

```
compute_DIC(x, use.pV = FALSE)
    compute_WAIC(
        x,
        diagnostic = FALSE,
        batch.size = NULL,
        show.progress = TRUE,
        cl = NULL,
        n.cores = 1L
    )
    ## S3 method for class 'mcdraws'
    waic(x, by.unit = FALSE, ...)
    ## S3 method for class 'mcdraws'
    loo(x, by.unit = FALSE, r_eff = FALSE, n.cores = 1L, ...)
```


Arguments

x
use.pV whether half the posterior variance of the deviance should be used as an alternative estimate of the effective number of model parameters for DIC.
diagnostic whether vectors of log-pointwise-predictive-densities and pointwise contributions to the WAIC effective number of model parameters should be returned.
batch.size
show. progress
cl
n.cores number of data units to process per batch.
whether to show a progress bar.
an existing cluster can be passed for parallel computation. If cl is provided, n.cores will be set to the number of workers in that cluster. If NULL and n . cores >1, a new cluster is created. the number of cpu cores to use. Default is one, i.e. no parallel computation.
by.unit if TRUE the computation is carried out unit-by-unit, which is slower but uses much less memory.
... Other arguments, passed to loo. Not currently used by waic.mcdraws.
r_eff whether to compute relative effective sample size estimates for the likelihood of each observation. This takes more time, but should result in a better PSIS approximation. See loo.

Value

For compute_DIC a vector with the deviance information criterion and effective number of model parameters. For compute_WAIC a vector with the WAIC model selection criterion and WAIC effective number of model parameters. Method waic returns an object of class waic, loo, see the documentation for waic in package loo. Method loo returns an object of class psis_loo, see loo.

References

D. Spiegelhalter, N. Best, B. Carlin and A. van der Linde (2002). Bayesian Measures of Model Complexity and Fit. Journal of the Royal Statistical Society B 64 (4), 583-639.
S. Watanabe (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning 11, 3571-3594.
A. Gelman, J. Hwang and A. Vehtari (2014). Understanding predictive information criteria for Bayesian models. Statistics and Computing 24, 997-1016.
A. Vehtari, A. Gelman and J. Gabry (2015). Pareto smoothed importance sampling. arXiv:1507.02646.
A. Vehtari, A. Gelman and J. Gabry (2017). Practical Bayesian model evaluation using leave-oneout cross-validation and WAIC. Statistics and Computing 27, 1413-1432.
P.-C. Buerkner, J. Gabry and A. Vehtari (2020). Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models. arXiv:1810.10559.

Examples

```
ex <- mcmcsae_example(n=100)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, n.chain=4, store.all=TRUE)
compute_DIC(sim)
compute_WAIC(sim)
if (require(loo)) {
    waic(sim)
    loo(sim, r_eff=TRUE)
}
```


Description

Compute possibly sparse model matrix

Usage

```
model_matrix(
    formula,
    data \(=\) NULL,
    contrasts.arg = NULL,
    drop. unused.levels = FALSE,
    sparse = NULL,
    drop0 = TRUE,
    catsep = "",
    by = NULL,
    tabM = FALSE,
    enclos = .GlobalEnv
    )
```


Arguments

formula model formula.
data data frame containing all variables used in formula. These variables should not contain missing values. An error is raised in case any of them does.
contrasts.arg specification of contrasts for factor variables. Currently supported are "contr.none" (no contrasts applied), "contr.treatment" (first level removed) and "contr.SAS" (last level removed). Alternatively, a named list specifying a single level per factor variable can be passed.
drop.unused.levels
whether empty levels of individual factor variables should be removed.
sparse if TRUE a sparse matrix of class dgCMatrix is returned. This can be efficient for large datasets and a model containing categorical variables with many categories. If sparse=NULL, the default, whether a sparse or dense model matrix is returned is based on a simple heuristic.
drop0 whether to drop any remaining explicit zeros in resulting sparse matrix.
catsep separator for concatenating factor variable names and level names. By default it is the empty string, reproducing the labels of model.matrix.
by a vector by which to aggregate the result.
tabM if TRUE return a list of tabMatrix objects.
enclos enclosure to look for objects not found in data.

Value

Design matrix X , either an ordinary matrix or a sparse dgCMatrix.

```
nchains-ndraws-nvars Get the number of chains, samples per chain or the number of vari-
                    ables in a simulation object
```


Description

Get the number of chains, samples per chain or the number of variables in a simulation object

Usage

nchains(obj)
ndraws(obj)
nvars(dc)

Arguments

obj an mcdraws object or a draws component (dc) object.
dc a draws component object.

Value

The number of chains or retained samples per chain or the number of variables.

Examples

```
ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=5, store.all=TRUE)
nchains(sim); nchains(sim$beta)
ndraws(sim); ndraws(sim$beta)
nvars(sim$beta); nvars(sim$sigma_); nvars(sim$llh_); nvars(sim$v)
plot(sim, "beta")
nchains(subset(sim$beta, chains=1:2))
ndraws(subset(sim$beta, draws=sample(1:ndraws(sim), 100)))
nvars(subset(sim$u, vars=1:2))
```

```
    par_names Get the parameter names from an mcdraws object
```


Description

Get the parameter names from an mcdraws object

Usage

par_names(obj)

Arguments

obj an mcdraws object.

Value

The names of the parameters whose MCMC simulations are stored in obj.

Examples

```
data(iris)
sampler <- create_sampler(Sepal.Length ~
    reg(~ Petal.Length + Species, name="beta"), data=iris)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
(summary(sim))
par_names(sim)
```

plot.dc Trace, density and autocorrelation plots for (parameters of a) draws component (dc) object

Description

Trace, density and autocorrelation plots for (parameters of a) draws component (dc) object

Usage

```
## S3 method for class 'dc'
```

plot(x, nrows, ncols, ask = FALSE, ...)

Arguments

x	a draws component object.
nrows	number of rows in plot layout.
ncols	number of columns in plot layout.
ask	ask before plotting the next page; default is FALSE.
\ldots	arguments passed to density.

Examples

```
ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
plot(sim$u)
```

plot.mcdraws Trace, density and autocorrelation plots

Description

Trace, density and autocorrelation plots for selected components of an mcdraws object.

Usage

\#\# S3 method for class 'mcdraws'
plot(x, vnames, nrows, ncols, ask = FALSE, ...)

Arguments

X vnames optional character vector to select a subset of parameters.
nrows number of rows in plot layout.
ncols number of columns in plot layout.
ask ask before plotting the next page; default is FALSE.
... arguments passed to density.

Examples

```
ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
plot(sim, c("beta", "u", "u_sigma", "v_sigma"), ask=TRUE)
```

Plot a set of model coefficients or predictions with uncertainty intervals based on summaries of simulation results or other objects.

Description

This function plots estimates with error bars. Multiple sets of estimates can be compared. The error bars can either be based on standard errors or on explicitly specified lower and upper bounds. The function is adapted from function plot.sae in package hbsae, which in turn was adapted from function coefplot. default from package arm.

Usage

```
    plot_coef(
```

 ...,
 n. se \(=1\),
 est.names,
 sort.by = NULL,
 decreasing = FALSE,
 index = NULL,
 maxrows \(=50 \mathrm{~L}\),
 maxcols \(=6 \mathrm{~L}\),
 offset = 0.1,
 cex.var = 0.8,
 mar \(=c(0.1,2.1,5.1,0.1)\)
)

Arguments

\ldots.	dc_summary objects (output by the summary method for simulation objects of class dc), sae objects (output by the functions of package hbsae), or lists. In case of a list the components used are those with name est for point estimates, se for standard error based intervals or lower and upper for custom intervals. Instead of dc_summary objects matrix objects are also supported as long as they contain columns named "Mean" and "SD" as do dc_summary objects. Named parameters of other types that do not match any other argument names are passed to lower-level plot functions.
n. se	number of standard errors below and above the point estimates to use for error bars. By default equal to 1. This only refers to the objects of class dc_summary and sae.
est.names	labels to use in the legend for the components of the . . argument
sort.by	vector by which to sort the coefficients, referring to the first object passed. if TRUE, sort in decreasing order (defait).
index	vector of names or indices of the selected areas to be plotted.
maxrows	maximum number of rows in a column.

maxcols	maximum number of columns of estimates on a page.
offset	space used between plots of multiple estimates for the same area.
cex.var	the fontsize of the variable names, default=0.8.
mar	a numerical vector of the form c(bottom, left, top, right) which gives the number of lines of margin to be specified on the four sides of the plot.

Examples

```
# create artificial data
set.seed(21)
n <- 100
dat <- data.frame(
    x=runif(n),
    f=factor(sample(1:20, n, replace=TRUE))
)
model <- ~ reg(~ x, Q0=1, name="beta") + gen(factor=~f, name="v")
gd <- generate_data(model, data=dat)
dat$y <- gd$y
# fit a base model
model0 <- y ~ reg(~ 1, name="beta") + gen(factor=~f, name="v")
sampler <- create_sampler(model0, data=dat, block=TRUE)
sim <- MCMCsim(sampler, store.all=TRUE)
(summ0 <- summary(sim))
# fit 'true' model
model <- y ~ reg(~ x, name="beta") + gen(factor=~f, name="v")
sampler <- create_sampler(model, data=dat, block=TRUE)
sim <- MCMCsim(sampler, store.all=TRUE)
(summ <- summary(sim))
# compare random effect estimates against true parameter values
plot_coef(summ0$v, summ$v, list(est=gd$pars$v), n.se=2, offset=0.2,
    maxrows=10, est.names=c("base model", "true model", "true"))
```

posterior-moments Get means or standard deviations of parameters from the MCMC output in an mcdraws object

Description

Get means or standard deviations of parameters from the MCMC output in an mcdraws object

Usage

get_means(obj, vnames = NULL)
get_sds(obj, vnames = NULL)

Arguments

obj

an object of class mcdraws.
vnames optional character vector to select a subset of parameters.

Value

A list with simulation means or standard deviations.

Examples

```
ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4)
get_means(sim)
get_means(sim, "e_")
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4,
    store.mean=c("beta", "u"), store.sds=TRUE)
    summary(sim, "beta")
    get_means(sim, "beta")
    get_sds(sim, "beta")
    get_means(sim, "u")
    get_sds(sim, "u")
```

 predict.mcdraws Generate draws from the predictive distribution

Description

Generate draws from the predictive distribution

Usage

\#\# S3 method for class 'mcdraws'
predict(
object,
newdata $=$ NULL,
X. = if (is.null(newdata)) "in-sample" else NULL, type = c("data", "link", "response", "data_cat"),
var = NULL,
ny $=$ NULL,
ry = NULL,
fun. = identity,
labels = NULL,
ppcheck = FALSE,
iters = NULL,

```
    to.file = FALSE,
    filename,
    write.single.prec = FALSE,
    show.progress = TRUE,
    n.cores = 1L,
    cl = NULL,
    seed = NULL,
    export = NULL,
)
```


Arguments

object an object of class mcdraws, as output by MCMCsim.
newdata data frame with auxiliary information to be used for prediction.
X. a list of design matrices; alternatively, X. equals 'in-sample' or 'linpred'. If 'in-sample' (the default if newdata is not supplied), the design matrices for insample prediction are used. If 'linpred' the 'linpred_' component of object is used.
type the type of predictions. The default is "data", meaning that new data is generated according to the predictive distribution. If type="link" only the linear predictor for the mean is generated, and in case type="response" the linear predictor is transformed to the response scale. For Gaussian models type="link" and type="response" are equivalent. For binomial and negative binomial models type="response" returns the simulations of the latent probabilities. For multinomial models type="link" generates the linear predictor for all categories except the last, and type="response" transforms this vector to the probability scale, and type="data" generates the multinomial data, all in long vector format, where the output for all categories (except the last) are stacked. For multinomial models and single trials, a further option is type="data_cat", which generates the data as a categorical vector, with integer coded levels.
var variance(s) used for out-of-sample prediction. By default 1.
ny number of trials for used for out-of-sample prediction in case of a binomial model. By default 1.
ry fixed part of the (reciprocal) dispersion parameter in case of a negative binomial model.
fun. function applied to the vector of posterior predictions to compute one or multiple summaries or test statistics. The function can have one or two arguments. The first argument is always the vector of posterior predictions. The optional second argument represents a list of model parameters, needed only when a test statistic depends on them.
labels optional names for the output object. Must be a vector of the same length as the result of fun..
ppcheck if TRUE, function fun. is also applied to the observed data and an MCMC approximation is computed of the posterior predictive probability that the test statistic for predicted data is greater than the test statistic for the observed data.

iters	iterations in object to use for prediction. Default NULL means that all draws from object are used.
to.file	if TRUE the predictions are streamed to file.
filename	name of the file to write predictions to in case to. file=TRUE.
write.single.prec	
	Whether to write to file in single precision. Default is FALSE.
show.progress	whether to show a progress bar.
n.cores	the number of cpu cores to use. Default is one, i.e. no parallel computation. If an existing cluster cl is provided, n . cores will be set to the number of workers in that cluster.
cl	an existing cluster can be passed for parallel computation. If NULL and n. cores >1, a new cluster is created.
seed	a random seed (integer). For parallel computation it is used to independently seed RNG streams for all workers.
export	a character vector with names of objects to export to the workers. This may be needed for parallel execution if expressions in fun. depend on global variables.
	currently not used.

Value

An object of class dc, containing draws from the posterior (or prior) predictive distribution. If ppcheck=TRUE posterior predictive p-values are returned as an additional attribute. In case to. file=TRUE the file name used is returned.

Examples

```
n <- 250
dat <- data.frame(x=runif(n))
dat$y <- 1 + dat$x + rnorm(n)
sampler <- create_sampler(y ~ x, data=dat)
sim <- MCMCsim(sampler)
summary(sim)
# in-sample prediction
pred <- predict(sim, ppcheck=TRUE)
hist(attr(pred, "ppp"))
# out-of-sample prediction
pred <- predict(sim, newdata=data.frame(x=seq(0, 1, by=0.1)))
summary(pred)
```

```
print.dc_summary Display a summary of a dc object
```


Description

Display a summary of a dc object

Usage

```
## S3 method for class 'dc_summary'
    print(
        x,
        digits = 3L,
        max.lines = 1000L,
        tail = FALSE,
        sort = NULL,
        max.label.length = NULL,
        ...
    )
```


Arguments

$x \quad$ an object of class dc_summary
digits number of digits to use, defaults to 3 .
max.lines maximum number of lines to display. If NULL, all elements are displayed.
tail if TRUE the last instead of first at most max. lines are displayed.
sort column name on which to sort the output.
max.label.length
if specified, printed row labels will be abbreviated to at most this length.
... passed on to print. default.

Examples

```
ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
print(summary(sim$u), sort="n_eff")
```

print.mcdraws_summary Print a summary of MCMC simulation results

Description

Display a summary of an mcdraws object, as output by MCMCsim.

Usage

\#\# S3 method for class 'mcdraws_summary'
print(x, digits = 3L, max.lines = 10L, tail = FALSE, sort = NULL, ...)

Arguments

$x \quad$ an object of class mcdraws_summary as output by summary.mcdraws.
digits number of digits to use, defaults to 3 .
max.lines maximum number of elements per vector parameter to display. If NULL, all elements are displayed.
tail if TRUE the last instead of first max. lines of each component are displayed.
sort column name on which to sort the output.
... passed on to print.default.

Examples

```
ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
print(summary(sim), sort="n_eff")
```

pr_exp \quad| Create an object containing information about exponential prior dis- |
| :--- |
| tributions | tributions

Description

Create an object containing information about exponential prior distributions

Usage

$$
\text { pr_exp(scale }=1, \mathrm{n}=\mathrm{NULL}, \text { post }=\text { FALSE })
$$

Arguments

$$
\begin{array}{ll}
\text { scale } & \text { scale parameter of length } 1 \text { or } n . \\
\mathrm{n} & \text { dimension, if known. For internal use only. } \\
\text { post } & \begin{array}{l}
\text { whether conditional posterior sampling function should be created. For internal } \\
\text { use only. }
\end{array}
\end{array}
$$

Value

An environment with information about the prior and possibly conditional posterior distribution(s), to be used by other package functions.

pr_fixed	Create an object containing information about a degenerate prior fix- ing a parameter to a fixed value

Description

Create an object containing information about a degenerate prior fixing a parameter to a fixed value

Usage

$$
\text { pr_fixed(value }=1, \mathrm{n}=\text { NULL, post }=\text { FALSE) }
$$

Arguments

value \quad value parameter of length 1 or n.
n dimension, if known. For internal use only.
post whether conditional posterior sampling function should be created. For internal use only.

Value

An environment with information about the prior and possibly conditional posterior distribution(s), to be used by other package functions.
pr_gig Create an object containing information about Generalized Inverse Gaussian (GIG) prior distributions

Description

Create an object containing information about Generalized Inverse Gaussian (GIG) prior distributions

Usage

```
pr_gig(a, b, p, n = NULL, post = FALSE)
```


Arguments

a
b parameter of length 1 or n.
p parameter of length 1 or n.
n dimension, if known. For internal use only.
post whether conditional posterior sampling function should be created. For internal use only.

Value

An environment with information about the prior and possibly conditional posterior distribution(s), to be used by other package functions.
pr_invchisq Create an object containing information about inverse chi-squared priors with possibly modeled degrees of freedom and scale parameters

Description

Create an object containing information about inverse chi-squared priors with possibly modeled degrees of freedom and scale parameters

Usage

pr_invchisq(df = 1, scale $=1, \mathrm{n}=$ NULL, post $=$ FALSE $)$

Arguments

df
n
dimension, if known. For internal use only.
post whether conditional posterior sampling function should be created. For internal use only.

Value

An environment with information about the prior and possibly conditional posterior distribution(s), to be used by other package functions.

pr_invwishart \quad| Create an object containing information about an inverse Wishart |
| :--- |
| prior, possibly with modeled scale matrix |

Description

Create an object containing information about an inverse Wishart prior, possibly with modeled scale matrix

Usage

$$
\text { pr_invwishart(df = NULL, scale }=\text { NULL, } n=\text { NULL })
$$

Arguments

df Degrees of freedom parameter. This should be a scalar numeric value. The default value is the dimension (n) plus one.
scale Either a (known) scale matrix, or scale="modeled" or scale="modelled", which puts default chi-squared priors on the diagonal elements of the inverse Wishart scale matrix. For more control on these chi-squared priors a list can be passed with some of the following components:
df degrees of freedom (scalar or vector) of the chi-squared distribution(s)
scale scale parameter(s) of the chi-squared distribution(s)
common whether the modeled scale parameter of the inverse chi-squared distribution is (a scalar parameter) common to all n diagonal elements.
n dimension, if known. For internal use only.

Value

An environment with information about the prior distribution used, to be used by other package functions.

References

A. Huang and M.P. Wand (2013). Simple marginally noninformative prior distributions for covariance matrices. Bayesian Analysis 8, 439-452.

$$
\text { read_draws } \quad \text { Read MCMC draws from a file }
$$

Description

Read draws written to file by MCMCsim used with argument to.file.

Usage

read_draws(name, filename = paste0("MCdraws_", name, ".dat"))

Arguments

name name of the parameter to load the corresponding file with posterior draws for.
filename name of the file in which the draws are stored.

Value

An object of class dc containing MCMC draws for a (vector) parameter.

Examples

```
## Not run:
# NB this example creates a file "MCdraws_e_.RData" in the working directory
n <- 100
dat <- data.frame(x=runif(n), f=as.factor(sample(1:5, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, Q0=1, name="beta"), data=dat)
dat$y <- gd$y
sampler <- create_sampler(y ~ reg(~ x + f, name="beta"), data=dat)
# run the MCMC simulation and write draws of residuals to file:
sim <- MCMCsim(sampler, n.iter=500, to.file="e_")
summary(sim)
mcres <- read_draws("e_")
summary(mcres)
## End(Not run)
```

Create a model component object for a regression (fixed effects) component in the linear predictor

Description

This function is intended to be used on the right hand side of the formula argument to create_sampler or generate_data. It creates an additive regression term in the model's linear predictor. By default, the prior for the regression coefficients is improper uniform. If b 0 or Q 0 are specified the prior becomes normal with mean b0 (default 0) and variance (matrix) sigma_^2 Q0^-1 where sigma_^2 is the overall scale parameter of the model, if any.

```
Usage
    reg(
        formula = ~1,
    remove.redundant = FALSE,
    sparse = NULL,
    X = NULL,
    Q0 = NULL,
    b0 = NULL,
    R = NULL,
    r = NULL,
    S = NULL,
    s = NULL,
    lower = NULL,
    upper = NULL,
    name = "",
    perm = NULL,
    debug = FALSE,
    e = parent.frame()
)
```


Arguments

formula | a formula specifying the predictors to be used in the model, in the same way as |
| :--- |
| the right hand side of the formula argument of R's lm function. Variable names |
| are looked up in the data frame passed as data argument to create_sampler or |
| generate_data, or in environment (formula). |

remove.redundant
whether redundant columns should be removed from the design matrix. Default
is FALSE. But note that treatment contrasts are automatically applied to all factor
variables in formula.
whether the model matrix associated with formula should be sparse. The de-
fault is to base this on a simple heuristic.
sparse

Q \quad| a (possibly sparse) design matrix can be specified directly, as an alternative to |
| :--- |
| the creation of one based on formula. If X is specified formula is ignored. |

prior precision matrix for the regression effects. The default is a zero matrix
corresponding to a noninformative improper prior. It can be specified as a scalar
value, as a numeric vector of appropriate length, or as a matrix object.

Value

an object with precomputed quantities and functions for sampling from prior or conditional posterior distributions for this model component. Only intended for internal use by other package functions.

Examples

```
data(iris)
# default: flat priors on regression coefficients
sampler <- create_sampler(Sepal.Length ~
            reg(~ Petal.Length + Species, name="beta"),
    data=iris
)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary(sim)
# (weakly) informative normal priors on regression coefficients
sampler <- create_sampler(Sepal.Length ~
            reg(~ Petal.Length + Species, Q0=1e-2, name="beta"),
    data=iris
)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary(sim)
# binary regression
sampler <- create_sampler(Species == "setosa" ~
    reg(~ Sepal.Length, Q=0.1, name="beta"),
    family="binomial", data=iris)
sim <- MCMCsim(sampler, burnin=100, n.iter=400)
summary(sim)
pred <- predict(sim)
str(pred)
# example with equality constrained regression effects
n <- 500
df <- data.frame(x=runif(n))
df$y <- rnorm(n, 1 + 2*df$x)
R <- matrix(1, 2, 1)
r <- 3
sampler <- create_sampler(y ~ reg(~ 1 + x, R=R, r=r, name="beta"), data=df)
sim <- MCMCsim(sampler)
summary(sim)
plot(sim, "beta")
summary(transform_dc(sim$beta, fun=function(x) crossprod_mv(R, x) - r))
```

```
residuals-fitted-values
```

Extract draws of fitted values or residuals from an mcdraws object

Description

For a model created with create_sampler and estimated using MCMCsim, these functions return the posterior draws of fitted values or residuals. In the current implementation the fitted values correspond to the linear predictor and the residuals are computed as the data vector minus the fitted values, regardless of the model's distribution family. For large datasets the returned object can
become very large. One may therefore select a subset of draws or chains or use mean. only=TRUE to return a vector of posterior means only.

Usage

```
## S3 method for class 'mcdraws'
fitted(
    object,
    mean.only = FALSE,
    units = NULL,
    chains = seq_len(nchains(object)),
    draws = seq_len(ndraws(object)),
    matrix = FALSE,
    type = c("link", "response"),
)
## S3 method for class 'mcdraws'
residuals(
    object,
    mean.only = FALSE,
    units = NULL,
    chains = seq_len(nchains(object)),
    draws = seq_len(ndraws(object)),
    matrix = FALSE,
    )
```


Arguments

object an object of class mcdraws.
mean. only if TRUE only the vector of posterior means is returned. In that case the subsequent arguments are ignored. Default is FALSE.
units the data units (by default all) for which fitted values or residuals should be computed.
chains optionally, a selection of chains.
draws optionally, a selection of draws per chain.
matrix whether a matrix should be returned instead of a dc object.
type the type of fitted values: "link" for fitted values on the linear predictor scale (the default), and "response" for fitted values on the response scale. Returned residuals are always on the response scale.
... currently not used.

Value

Either a draws component object or a matrix with draws of fitted values or residuals. The residuals are always on the response scale, whereas fitted values can be on the scale of the linear predictor or the response depending on type. If mean. only=TRUE, a vector of posterior means.

Examples

```
ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, store.all=TRUE)
fitted(sim, mean.only=TRUE)
summary(fitted(sim))
residuals(sim, mean.only=TRUE)
summary(residuals(sim))
bayesplot::mcmc_intervals(as.matrix(subset(residuals(sim), vars=1:20)))
```

setup_cluster Set up a cluster for parallel computing

Description

The cluster is set up for a number of workers by loading the memcsae package and setting up independent RNG streams.

Usage

setup_cluster (n.cores $=$ NULL, seed $=$ NULL, export $=$ NULL)

Arguments

n.cores	the number of cpu cores to use.
seed	optional random seed for reproducibility.
export	a character vector with names of objects to export to the workers.

Value

an object representing the cluster.
set_opts Set global options relating to computational details

Description

Set global options relating to computational details

Usage

```
set_opts(
    auto.order.block = TRUE,
    chol.inplace = TRUE,
    chol.ordering = 0L,
    PG.approx = TRUE,
    PG.approx.m = -2L,
    CRT.approx.m = 20L
)
```


Arguments

auto.order.block
whether Gibbs blocks should be ordered automatically in such a way that those with the most sparse design matrices come first. This way of ordering can make Cholesky updates more efficient.
chol.inplace whether sparse Cholesky updates should re-use the same memory location.
chol. ordering an integer passed to CHOLMOD routines determining which reordering schemes are tried to limit sparse Cholesky fill-in.
PG.approx whether Polya-Gamma draws for logistic binomial models are approximated by a hybrid gamma convolution approach. If not, BayesLogit: : rpg is used, which is exact for some values of the shape parameter.

PG.approx.m if PG. approx=TRUE, the number of explicit gamma draws in the sum-of-gammas representation of the Polya-Gamma distribution. The remainder (infinite) convolution is approximated by a single moment-matching gamma draw. Special values are: -2 L for a default choice depending on the value of the shape parameter and balancing performance and accuracy, -1 L for a moment-matching normal approximation, and 0 L for a moment-matching gamma approximation.
CRT. approx.m scalar integer specifying the degree of approximation to sampling from a Chinese Restaurant Table distribution. The approximation is based on Le Cam's theorem. Larger values yield a slower but more accurate sampler.

Value

This function sets or resets options in the option environment .opts.

References

D. Bates, M. Maechler, B. Bolker and S.C. Walker (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67(1), 1-48.
Y. Chen, T.A. Davis, W.W. Hager and S. Rajamanickam (2008). Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software 35(3), 1-14.

```
    stop_cluster Stop a cluster
```


Description

Stop a cluster set up by setup_cluster.

Usage

stop_cluster(cl)

Arguments

cl the cluster object.

Value

NULL.

subset.dc | Select a subset of chains, samples and parameters from a draws com- |
| :--- |
| ponent $(d c)$ object |

Description

Select a subset of chains, samples and parameters from a draws component (dc) object

```
Usage
    ## S3 method for class 'dc'
    subset(
        x,
        chains = seq_len(nchains(x)),
        draws = seq_len(ndraws(x)),
        vars = seq_len(nvars(x)),
        ...
    )
```


Arguments

x

chains

draws

vars

...
a draws component (dc) object.
an integer vector indicating which chains to select.
an integer vector indicating which samples to select.
an integer vector indicating which parameters to select.
not used.

Value

The selected part of the draws component as an object of class dc.

Examples

```
n <- 300
dat <- data.frame(x=runif(n), f=as.factor(sample(1:7, n, replace=TRUE)))
gd <- generate_data(~ reg(~ x + f, Q0=1, name="beta"), data=dat)
dat$y <- gd$y
sampler <- create_sampler(y ~ reg(~ x + f, name="beta"), data=dat)
sim <- MCMCsim(sampler)
(summary(sim$beta))
(summary(subset(sim$beta, chains=1)))
(summary(subset(sim$beta, chains=1, draws=sample(1:ndraws(sim), 100))))
(summary(subset(sim$beta, vars=1:2)))
```

```
summary.dc Summarize a draws component (dc) object
```


Description

Summarize a draws component (dc) object

Usage

```
    ## S3 method for class 'dc'
    summary(
        object,
        probs = c(0.05, 0.5, 0.95),
        na.rm = FALSE,
        time = NULL,
        abbr = FALSE,
        batch.size = 100L,
    )
```


Arguments

object an object of class dc.
probs vector of probabilities at which to evaluate quantiles.
na.rm whether to remove NA/NaN draws in computing the summaries.
time \quad MCMC computation time; if specified the effective sample size per unit of time is returned in an extra column labeled 'efficiency'.
abbr if TRUE abbreviate the labels in the output.
batch.size number of parameter columns to process simultaneously. A larger batch size may speed things up a little, but if an out of memory error occurs it may be a good idea to use a smaller number and try again. The default is 100 .
... arguments passed to n_eff.

Value

A matrix with summaries of class dc_summary.

Examples

```
ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
summary(sim$u)
```

summary.mcdraws Summarize an mcdraws object

Description

Summarize an mcdraws object

Usage

\#\# S3 method for class 'mcdraws'
summary(object,
vnames = NULL,
probs = c(0.05, 0.5, 0.95),
na.rm $=$ FALSE,
efficiency = FALSE,
abbr = FALSE,
batch.size $=100 \mathrm{~L}$,
)

Arguments

object an object of class mcdraws, typically generated by function MCMCsim.
vnames optional character vector to select a subset of parameters.
probs vector of probabilities at which to evaluate quantiles.
na.rm whether to remove NA/NaN draws in computing the summaries.
efficiency if TRUE the effective sample size per second of computation time is returned as well.
abbr if TRUE abbreviate the labels in the output.
batch.size number of parameter columns to process simultaneously for vector parameters. A larger batch size may speed things up a little, but if an out of memory error occurs it may be a good idea to use a smaller number and try again. The default is 100 .
... arguments passed to n_eff.

Value

A list of class mcdraws_summary summarizing object.

Examples

```
ex <- mcmcsae_example()
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, store.all=TRUE)
summary(sim)
par_names(sim)
summary(sim, c("beta", "v_sigma", "u_sigma"))
```

```
transform_dc
```

Transform one or more draws component objects into a new one by applying a function

Description

Transform one or more draws component objects into a new one by applying a function

Usage

transform_dc(..., fun, to.matrix = FALSE, labels = NULL)

Arguments

... draws component object(s) of class dc.
fun a function to apply. This function should take as many arguments as there are input objects. The arguments can be arbitrarily named, but they are assumed to be in the same order as the input objects. The function should return a vector.
to.matrix if TRUE the output is in matrix format; otherwise it is a draws component object.
labels optional labels for the output object.

Value

Either a matrix or a draws component object.

Examples

```
ex <- mcmcsae_example(n=50)
sampler <- create_sampler(ex$model, data=ex$dat)
sim <- MCMCsim(sampler, burnin=100, n.iter=300, thin=2, n.chain=4, store.all=TRUE)
summary(sim$v_sigma)
summary(transform_dc(sim$v_sigma, fun=function(x) x^2))
summary(transform_dc(sim$u, sim$u_sigma, fun=function(x1, x2) abs(x1)/x2))
```

vfac Create a model component object for a variance factor component in
the variance function of a gaussian sampling distribution

Description

This function is intended to be used on the right hand side of the formula.V argument to create_sampler or generate_data.

Usage

```
vfac(
    factor = "local_",
    prior = pr_invchisq(df = 1, scale = 1),
    name = "",
    debug = FALSE,
    e = parent.frame()
)
```


Arguments

> factor The name of a factor variable. The name "local_" has a special meaning, and assigns a different variance scale parameter to each data unit. In case of inverse chi-squared priors this implies that the marginal sampling distribution is a t distribution. In case of exponential priors the marginal sampling distribution is a Laplace or double exponential distribution.
> prior the prior assigned to the variance factors. Currently the prior can be inverse chi-squared or exponential, specified by a call to pr_invchisq or pr_exp, respectively. The default priors are inverse chi-squared with 1 degree of freedom. See the help pages of the prior specification functions for details on how to set non-default priors.

name \begin{tabular}{l}
The name of the variance model component. This name is used in the output

of the MCMC simulation function MCMCsim. By default the name will be 'vfac'

with the number of the variance model term attached.

If TRUE a breakpoint is set at the beginning of the posterior draw function asso-

ciated with this model component. Mainly intended for developers.

e

\quad

For internal use only.
\end{tabular}

Value

An object with precomputed quantities and functions for sampling from prior or conditional posterior distributions for this model component. Only intended for internal use by other package functions. variance function of a gaussian sampling distribution

Description

This function is intended to be used on the right hand side of the formula. V argument to create_sampler or generate_data.

Usage

vreg (
formula = NULL,
remove.redundant = FALSE,
sparse $=$ NULL,
X = NULL,
Q0 = NULL,
b0 = NULL,
name = "",
e = parent.frame()
)

Arguments

formula a formula for the regression effects explaining the log-variance. Variable names are looked up in the data frame passed as data argument to create_sampler or generate_data, or in environment (formula).
remove.redundant
whether redundant columns should be removed from the design matrix. Default is FALSE.
sparse whether the model matrix associated with formula should be sparse. The default is determined by a simple heuristic based on storage size.
a (possibly sparse) design matrix can be specified directly, as an alternative to the creation of one based on formula. If X is specified formula is ignored.
Q0 prior precision matrix for the regression effects. The default is a zero matrix corresponding to a noninformative improper prior.
b0 prior mean for the regression effect. Defaults to a zero vector.
e the name of the model component. This name is used in the output of the MCMC simulation function MCMCsim. By default the name will be 'vreg' with the number of the variance model term attached. for internal use only.

Value

An object with precomputed quantities and functions for sampling from prior or conditional posterior distributions for this model component. Only intended for internal use by other package functions.

References

E. Cepeda and D. Gamerman (2000). Bayesian modeling of variance heterogeneity in normal regression models. Brazilian Journal of Probability and Statistics, 207-221.
T.I. Lin and W.L. Wang (2011). Bayesian inference in joint modelling of location and scale parameters of the t distribution for longitudinal data. Journal of Statistical Planning and Inference 141(4), 1543-1553.

```
weights.mcdraws Extract weights from an mcdraws object
```


Description

Extract weights from an mcdraws object

Usage

```
## S3 method for class 'mcdraws'
```

weights(object, ...)

Arguments

object an object of class mcdraws.
... currently not used.

Value

A vector with (simulation means of) weights.

Examples

```
# first create a population data frame
N <- 1000 # population size
pop <- data.frame(x=rnorm(N), area=factor(sample(1:10, N, replace=TRUE)))
pop$y <- 1 + 2*pop$x + seq(-1, to=1, length.out=10)[pop$area] + 0.5*rnorm(N)
pop$sample <- FALSE
pop$sample[sample(seq_len(N), 100)] <- TRUE
# a simple linear regression model:
sampler <- create_sampler(
    y ~ reg(~ x, name="beta"),
    linpred=list(beta=rowsum(model.matrix(~ x, pop), pop$area)), compute.weights=TRUE,
    data=pop[pop$sample, ]
)
sim <- MCMCsim(sampler)
(summary(sim))
str(weights(sim))
crossprod_mv(weights(sim), pop$y[pop$sample])
summary(sim$linpred_)
# a multilevel model:
sampler <- create_sampler(
    y ~ reg(~ x, name="beta") + gen(factor = ~ area, name="v"),
    linpred=list(beta=rowsum(model.matrix(~ x, pop), pop$area), v=diag(10)), compute.weights=TRUE,
    data=pop[pop$sample, ]
)
sim <- MCMCsim(sampler)
(summary(sim))
str(weights(sim))
crossprod_mv(weights(sim), pop$y[pop$sample])
summary(sim$linpred_)
```


Index

```
%m*v% (matrix-vector), 23
acceptance_rates, 3
aggrMatrix,4
as.array.dc (MCMC-object-conversion), 26
as.matrix.dc (MCMC-object-conversion),
    26
combine_chains,5
combine_iters,5
compute_DIC
    (model-information-criteria),
    35
compute_GMRF_matrices, 7, 17
compute_WAIC
    (model-information-criteria),
    35
computeDesignMatrix, 6
correlation, 8,16
create_sampler, 6, 9, 15-17, 22, 27, 29, 30,
    32, 33,52-54, 62, }6
create_TMVN_sampler, 13
crossprod_mv (matrix-vector), 23
density,40
draws_array,26
f_binomial (mcmcsae-family), 27
f_gaussian (mcmcsae-family), 27
f_multinomial (mcmcsae-family), 27
f_negbinomial (mcmcsae-family), 27
f_poisson(mcmcsae-family), 27
fitted.mcdraws
    (residuals-fitted-values), 54
gen, 7, 9, 11, 15, 21
generate_data, 11, 15-17, 19, 22, 32, 33, 52,
    53,62,63
get_draw, 21
get_means (posterior-moments), 42
get_sds (posterior-moments), 42
```

glreg, 18, 21
labels, 22
labels<- (labels), 22
loo, 36
loo.mcdraws
(model-information-criteria), 35
matrix-vector, 23
maximize_llh, 24
MCMC-diagnostics, 25
MCMC-object-conversion, 26
mcmc.list, 26
mcmcsae (mcmcsae-package), 3
mcmcsae-family, 27
mcmcsae-package, 3
mcmcsae_example, 28
MCMCsim, 4, 9, 11, 12, 18, 22, 29, 33, 35, 44, $47,51,53,54,60,63,64$
mec, 9, 32
model-information-criteria, 35
model_matrix, 37
n_eff, 60, 61
n_eff (MCMC-diagnostics), 25
nchains (nchains-ndraws-nvars), 38
nchains-ndraws-nvars, 38
ndraws (nchains-ndraws-nvars), 38
nvars (nchains-ndraws-nvars), 38
optim, 24
par_names, 39
plot.dc, 39
plot.mcdraws, 40
plot_coef, 41
poly2nb, 8
posterior-moments, 42
pr_exp, 10, 17, 47, 62
pr_fixed, 10, 48

```
pr_gig, 10,49
pr_invchisq, 10, 17, 49,62
pr_invwishart, 17,50
predict.mcdraws,43
print.dc_summary,46
print.mcdraws_summary,47
R_hat (MCMC-diagnostics), 25
read_draws,51
readShapeSpatial,8
reg, 9, 11, 52
residuals-fitted-values,54
residuals.mcdraws
    (residuals-fitted-values), 54
set_opts,56
setup_CG_sampler, 12
setup_cluster, 56,58
stop_cluster,58
subset.dc, 58
summary.dc, 59
summary.mcdraws, 47, 60
to_draws_array
    (MCMC-object-conversion), 26
to_mcmc (MCMC-object-conversion), 26
transform_dc, 61
vfac, 10, 11, }6
vreg, 10, 11, 63
waic, 36
waic.mcdraws
    (model-information-criteria),
    35
weights.mcdraws, }6
```

