
Package ‘miic’
October 14, 2020

Title Learning Causal or Non-Causal Graphical Models Using Information
Theory

Version 1.5.3

Description We report an information-theoretic method which learns a large
class of causal or non-causal graphical models from purely observational
data, while including the effects of unobserved latent variables, commonly
found in many datasets. Starting from a complete graph, the method
iteratively removes dispensable edges, by uncovering significant information
contributions from indirect paths, and assesses edge-specific confidences
from randomization of available data. The remaining edges are then oriented
based on the signature of causality in observational data. This approach can
be applied on a wide range of datasets and provide new biological insights
on regulatory networks from single cell expression data, genomic alterations
during tumor development and co-evolving residues in protein structures.
For more information you can refer to:
Cabeli et al. PLoS Comp. Bio. 2020 <doi:10.1371/journal.pcbi.1007866>,
Verny et al. PLoS Comp. Bio. 2017 <doi:10.1371/journal.pcbi.1005662>.

License GPL (>= 2)

URL https://github.com/miicTeam/miic_R_package

BugReports https://github.com/miicTeam/miic_R_package/issues

Imports ppcor, Rcpp, scales, stats,

Suggests igraph, grDevices, ggplot2 (>= 3.3.0), gridExtra

LinkingTo Rcpp

SystemRequirements C++14

LazyData true

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation yes

Author Vincent Cabeli [aut, cre],
Honghao Li [aut],
Marcel Ribeiro Dantas [aut],

1

https://github.com/miicTeam/miic_R_package
https://github.com/miicTeam/miic_R_package/issues


2 cosmicCancer

Nadir Sella [aut],
Louis Verny [aut],
Severine Affeldt [aut],
Hervé Isambert [aut]

Maintainer Vincent Cabeli <vincent.cabeli@curie.fr>

Repository CRAN

Date/Publication 2020-10-13 23:50:11 UTC

R topics documented:
cosmicCancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
cosmicCancer_stateOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
discretizeMDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
discretizeMutual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getIgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
hematoData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
miic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
miic.export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
miic.write.network.cytoscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
miic.write.style.cytoscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ohno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ohno_stateOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
plot.miic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Index 19

cosmicCancer Genomic and ploidy alterations in breast tumors

Description

The dataset contains 807 samples without predisposing Brca1/2 germline mutations and includes
204 somatic mutations (from whole exome sequencing) and expression level information for 91
genes.

Usage

data(cosmicCancer)

Format

A data.frame object.

References

Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, et al. (2015) Nucleic Acids Res 43:D805–D811.
(PubMed link)

https://pubmed.ncbi.nlm.nih.gov/25355519/
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cosmicCancer_stateOrder

Genomic and ploidy alterations in breast tumors

Description

The dataset contains 807 samples without predisposing Brca1/2 germline mutations and includes
204 somatic mutations (from whole exome sequencing) and expression level information for 91
genes, category order file.

Usage

data(cosmicCancer_stateOrder)

Format

A data.frame object.

References

Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, et al. (2015) Nucleic Acids Res 43:D805–D811.
(PubMed link)

discretizeMDL Discretize a real valued distribution

Description

This function performs minimum description length (MDL)-optimal histogram density estimation
as described in Kontkanen and Myllymäki (2007) and returns the cutpoints found to give the best
model according to the MDL principle.

Usage

discretizeMDL(x = NULL, max_bins = 20)

Arguments

x [a vector] A vector that contains the distribution to be discretized.

max_bins [an int] The maximum number of bins allowed by the algorithm.

Value

A list containing the cutpoints of the best discretization.

https://pubmed.ncbi.nlm.nih.gov/25355519/
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References

• Kontkanen P, Myllymäki P. MDL histogram density estimation. Artificial Intelligence and
Statistics 2007 Mar 11 (pp. 219-226).

Examples

library(miic)
# Bimodal normal distribution
N <- 300
modes <- sample(1:2, size = N, replace = TRUE)
x <- as.numeric(modes == 1) * rnorm(N, mean = 0, sd = 1) +

as.numeric(modes == 2) * rnorm(N, mean = 5, sd = 2)
MDL_disc <- discretizeMDL(x)
hist(x, breaks = MDL_disc$cutpoints)

N <- 2000
modes <- sample(1:2, size = N, replace = TRUE)
x <- as.numeric(modes == 1) * rnorm(N, mean = 0, sd = 1) +

as.numeric(modes == 2) * rnorm(N, mean = 5, sd = 2)
MDL_disc <- discretizeMDL(x)
hist(x, breaks = MDL_disc$cutpoints)

discretizeMutual Iterative dynamic programming for (conditional) mutual information
through optimized discretization.

Description

This function chooses cutpoints in the input distributions by maximizing the mutual information
minus a complexity cost (computed as BIC or with the Normalized Maximum Likelihood ). The
(conditional) mutual information computed on the optimized discretized distributions effectively
approaches the mutual information computed on the original continuous variables.

Usage

discretizeMutual(
X,
Y,
matrix_u = NULL,
maxbins = NULL,
cplx = "nml",
n_eff = NULL,
sample_weights = NULL,
is_discrete = NULL,
plot = TRUE

)
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Arguments

X [a vector] A vector that contains the observational data of the first variable.

Y [a vector] A vector that contains the observational data of the second variable.

matrix_u [a numeric matrix] The matrix with the observations of as many columns as
conditioning variables.

maxbins [an int] The maximum number of bins desired in the discretization. A lower
number makes the computation faster, a higher number allows finer discretiza-
tion (by default : 5 * cubic root of N).

cplx [a string] The complexity used in the dynamic programming. Either "mdl" for
Minimum description Length or "nml" for Normalized Maximum Likelihood,
which is less costly in the finite sample case and will allow more bins than mdl.

n_eff [an int] The number of effective samples. When there is significant autocorrela-
tion in the samples you may want to specify a number of effective samples that
is lower than the number of points in the distribution.

sample_weights [a vector of floats] Individual weights for each sample, used for the same reason
as the effective sample number but with individual precision.

is_discrete [a vector of booleans] Specify if each variable is to be treated as discrete (TRUE)
or continuous (FALSE) in a logical vector of length ncol(matrix_u) + 2, in the
order [X, Y, U1, U2...]. By default, factors and character vectors are treated as
discrete, and numerical vectors as continuous.

plot [a boolean] Specify if the XY joint space with discretization scheme is to be
plotted or not (requires ggplot2 and gridExtra).

Details

For a pair of variables X and Y , the algorithm will in turn choose cutpoints on X then on Y ,
maximizing I(Xd;Yd)−cplx(Xd;Yd) where cplx(Xd;Yd) is the complexity cost of the considered
discretizations of X and Y (see Affeldt 2016 and Cabeli 2020). When the value I(Xd;Yd) is stable
between two iterations the discretization scheme of Xd and Yd is returned as well as I(Xd;Yd) and
I(Xd;Yd)− cplx(Xd;Yd).

With a set of conditioning variables U , the discretization scheme maximizes each term of the sum
I(X;Y |U) ∼ 0.5 ∗ (I(Xd;Yd, Ud)− I(Xd;Ud) + I(Yd;Xd, Ud)− I(Yd;Ud)).

Discrete variables can be passed as factors and will be used "as is" to maximize each term.

Value

A list that contains :

• two vectors containing the cutpoints for each variable : cutpoints1 corresponds to /emphmy-
Dist1, /emphcutpoints2 corresponds to /emphmyDist2.

• niterations is the number of iterations performed before convergence of the (C)MI estimation.

• iterationN, lists contatining the cutpoint vectors for each iteration.

• info and infok, the estimated (C)MI value and (C)MI minus the complexity cost.

• if $emphplot == TRUE, a plot object (requires ggplot2 and gridExtra).
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References

• Verny et al., PLoS Comp. Bio. 2017. https://doi.org/10.1371/journal.pcbi.1005662
• Cabeli et al., PLoS Comp. Bio. 2020. https://doi.org/10.1371/journal.pcbi.1007866
• Affeldt et al., Bioinformatics 2016

Examples

library(miic)
N <- 1000
# Dependence, conditional independence : X <- Z -> Y
Z <- runif(N)
X <- Z * 2 + rnorm(N, sd = 0.2)
Y <- Z * 2 + rnorm(N, sd = 0.2)
res <- discretizeMutual(X, Y, plot = FALSE)
message("I(X;Y) = ", res$info)
res <- discretizeMutual(X, Y, matrix_u = matrix(Z, ncol = 1), plot = FALSE)
message("I(X;Y|Z) = ", res$info)

# Conditional independence with categorical conditioning variable : X <- Z -> Y
Z <- sample(1:3, N, replace = TRUE)
X <- -as.numeric(Z == 1) + as.numeric(Z == 2) + 0.2 * rnorm(N)
Y <- as.numeric(Z == 1) + as.numeric(Z == 2) + 0.2 * rnorm(N)
res <- miic::discretizeMutual(X, Y, cplx = "nml")
message("I(X;Y) = ", res$info)
res <- miic::discretizeMutual(X, Y, matrix(Z, ncol = 1), is_discrete = c(FALSE, FALSE, TRUE))
message("I(X;Y|Z) = ", res$info)

# Independence, conditional dependence : X -> Z <- Y
X <- runif(N)
Y <- runif(N)
Z <- X + Y + rnorm(N, sd = 0.1)
res <- discretizeMutual(X, Y, plot = TRUE)
message("I(X;Y) = ", res$info)
res <- discretizeMutual(X, Y, matrix_u = matrix(Z, ncol = 1), plot = TRUE)
message("I(X;Y|Z) = ", res$info)

getIgraph Igraph plotting function for miic

Description

This functions returns an igraph object built from the result returned by miic.

Usage

getIgraph(miic.res)
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Arguments

miic.res [a miic graph object] The graph object returned by the miic execution.

Details

Edges attributes are passed to the igraph graph and can be accessed with e.g. E(g)$partial_correlation.
See miic for more details on edge parameters. By default, edges are colored according to the partial
correlation between two nodes conditioned on the conditioning set (negative is blue, null is gray and
positive is red) and their width is based on the conditional mutual information minus the complexity
cost.

Value

An igraph graph object.

See Also

miic for details on edge parameters in the returned object, igraph.plotting for the detailed de-
scription of the plotting parameters and layout for different layouts.

hematoData Early blood development: single cell binary gene expression data

Description

Binarized expression data of 33 transcription factors involved in early differentiation of primitive
erythroid and endothelial cells (3934 cells).

Usage

data(hematoData)

Format

A data.frame object.

References

Moignard et al. (2015) Nat Biotechnol 33(3):269-76 (PubMed link)

https://pubmed.ncbi.nlm.nih.gov/25355519/
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miic MIIC, causal network learning algorithm including latent variables

Description

MIIC (Multivariate Information based Inductive Causation) combines constraint-based and information-
theoretic approaches to disentangle direct from indirect effects amongst correlated variables, includ-
ing cause-effect relationships and the effect of unobserved latent causes.

Usage

miic(
input_data,
state_order = NULL,
true_edges = NULL,
black_box = NULL,
n_threads = 1,
cplx = c("nml", "mdl"),
orientation = TRUE,
ori_proba_ratio = 1,
propagation = TRUE,
latent = c("no", "yes", "orientation"),
n_eff = -1,
n_shuffles = 0,
conf_threshold = 0,
sample_weights = NULL,
test_mar = TRUE,
consistent = c("no", "orientation", "skeleton"),
max_iteration = 100,
consensus_threshold = 0.8,
verbose = FALSE

)

Arguments

input_data [a data frame] A n*d data frame (n samples, d variables) that contains the ob-
servational data. Each column corresponds to one variable and each row is a
sample that gives the values for all the observed variables. The column names
correspond to the names of the observed variables. Numeric columns will be
treated as continuous values, factors and character as categorical.

state_order [a data frame] An optional d*(2-3) data frame giving the order of the ordinal cat-
egorical variables. It will be used during post-processing to compute the signs
of the edges using partial linear correlation. If specified, the data frame must
have at least a "var_names" column, containing the names of each variable as
specified by colnames(input_data). A "var_type" column may specify if each
variable is to be considered as discrete (0) or continuous (1). And the "lev-
els_increasing_order" column contains a single character string with all of the
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unique levels of the ordinal variable in increasing order, delimited by a comma.
If the variable is categorical but not ordinal, the "levels_increasing_order" col-
umn may instead contain NA.

true_edges [a data frame] An optional E*2 data frame containing the E edges of the true
graph for computing performance after the run.

black_box [a data frame] An optional E*2 data frame containing E pairs of variables that
will be considered as independent during the network reconstruction. In prac-
tice, these edges will not be included in the skeleton initialization and cannot be
part of the final result. Variable names must correspond to the input_data data
frame.

n_threads [a positive integer] When set greater than 1, n_threads parallel threads will be
used for computation. Make sure your compiler is compatible with openmp if
you wish to use multithreading.

cplx [a string; c("nml", "mdl")] In practice, the finite size of the input dataset re-
quires that the 2-point and 3-point information measures should be shifted by a
complexity term. The finite size corrections can be based on the Minimal De-
scription Length (MDL) criterion (set the option with "mdl"). In practice, the
MDL complexity criterion tends to underestimate the relevance of edges con-
necting variables with many different categories, leading to the removal of false
negative edges. To avoid such biases with finite datasets, the (universal) Nor-
malized Maximum Likelihood (NML) criterion can be used (set the option with
"nml"). The default is "nml" (see Affeldt et al., UAI 2015).

orientation [a boolean value] The miic network skeleton can be partially directed by ori-
enting and propagating edge directions, based on the sign and magnitude of the
conditional 3-point information of unshielded triples. The propagation proce-
dure relyes on probabilities; for more details, see Verny et al., PLoS Comp. Bio.
2017). If set to FALSE the orientation step is not performed.

ori_proba_ratio

[a floating point between 0 and 1] When orienting an edge according to the
probability of orientation, the threshold to accept the orientation. For a given
edge, denote by p > 0.5 the probability of orientation, the orientation is accepted
if (1 - p) / p < ori_proba_ratio. 0 means reject all orientations, 1 means accept
all orientations.

propagation [a boolean value] If set to FALSE, the skeleton is partially oriented with only the
v-structure orientations. Otherwise, the v-structure orientations are propagated
to downstream undirected edges in unshielded triples following the orientation
method

latent [a string; c("no", "yes", "orientation")] When set to "yes", the network recon-
struction is taking into account hidden (latent) variables. When set to "orien-
tation", latent variables are not considered during the skeleton reconstruction
but allows bi-directed edges during the orientation. Dependence between two
observed variables due to a latent variable is indicated with a ’6’ in the adja-
cency matrix and in the network edges.summary and by a bi-directed edge in
the (partially) oriented graph.

n_eff [a positive integer] The n samples given in the input_data data frame are ex-
pected to be independent. In case of correlated samples such as in time series or
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Monte Carlo sampling approaches, the effective number of independent samples
n_eff can be estimated using the decay of the autocorrelation function (Verny et
al., PLoS Comp. Bio. 2017). This effective number n_eff of independent sam-
ples can be provided using this parameter.

n_shuffles [a positive integer] The number of shufflings of the original dataset in order to
evaluate the edge specific confidence ratio of all inferred edges.

conf_threshold [a positive floating point] The threshold used to filter the less probable edges
following the skeleton step. See Verny et al., PLoS Comp. Bio. 2017.

sample_weights [a numeric vector] An optional vector containing the weight of each observation.

test_mar [a boolean value] If set to TRUE, distributions with missing values will be tested
with Kullback-Leibler divergence : conditioning variables for the given link
X → Y Z will be considered only if the divergence between the full distribution
and the non-missing distribution KL(P (X,Y )|P (X,Y )!NA) is low enough
(with P (X,Y )!NA as the joint distribution of X and Y on samples which are
not missing on Z. This is a way to ensure that data are missing at random for the
considered interaction and to avoid selection bias. Set to TRUE by default

consistent [a string; c("no", "orientation", "skeleton")] if "orientation": iterate over skele-
ton and orientation steps to ensure consistency of the network; if "skeleton":
iterate over skeleton step to get a consistent skeleton, then orient edges and dis-
card inconsistent orientations to ensure consistency of the network. See (Li et
al., NeurIPS 2019) for details.

max_iteration [a positive integer] When the consistent parameter is set to "skeleton" or "orien-
tation", the maximum number of iterations allowed when trying to find a con-
sistent graph. Set to 100 by default.

consensus_threshold

[a floating point between 0.5 and 1.0] When the consistent parameter is set to
"skeleton" or "orientation", and when the result graph is inconsistent, or is a
union of more than one inconsistent graphs, a consensus graph will be produced
based on a pool of graphs. If the result graph is inconsistent, then the pool
is made of [max_iteration] graphs from the iterations, otherwise it is made of
those graphs in the union. In the consensus graph, the status of each edge is
determined as follows: Choose from the pool the most probable status. For
example, if the pool contains [A, B, B, B, C], then choose status B, if the fre-
quency of presence of B (0.6 in the example) is equal to or higher than [con-
sensus_threshold], then set B as the status of the edge in the consensus graph,
otherwise set undirected edge as the status. Set to 0.8 by default.

verbose [a boolean value] If TRUE, debugging output is printed.

Details

Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering
significant information contributions from indirect paths, and assesses edge-specific confidences
from randomization of available data. The remaining edges are then oriented based on the signature
of causality in observational data.

The method relies on an information theoretic based (conditional) independence test which is de-
scribed in (Verny et al., PLoS Comp. Bio. 2017), (Cabeli et al., PLoS Comp. Bio. 2020). It deals
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with both categorical and continuous variables by performing optimal context-dependent discretiza-
tion. As such, the input data frame may contain both numerical columns which will be treated as
continuous, or character / factor columns which will be treated as categorical. For further details
on the optimal discretization method and the conditional independence test, see the function dis-
cretizeMutual. The user may also choose to run miic with scheme presented in (Li et al., NeurIPS
2019) to improve the end result’s interpretability by ensuring consistent separating set during the
skeleton iterations.

Value

A miic-like object that contains:

• all.edges.summary: a data frame with information about the relationship between each pair of
variables

– x: X node
– y: Y node
– type: contains ’N’ if the edge has been removed or ’P’ for retained edges. If a true edges

file is given, ’P’ becomes ’TP’ (True Positive) or ’FP’ (False Positive), while ’N’ becomes
’TN’ (True Negative) or ’FN’ (False Negative).

– ai: the contributing nodes found by the method which participate in the mutual informa-
tion between x and y, and possibly separate them.

– info: provides the pairwise mutual information times Nxyi for the pair (x, y).
– info_cond: provides the conditional mutual information times Nxy_ai for the pair (x, y)

when conditioned on the collected nodes ai. It is equal to the info column when ai is an
empty set.

– cplx: gives the computed complexity between the (x, y) variables taking into account the
contributing nodes ai. Edges that have have more conditional information info_cond than
cplx are retained in the final graph.

– Nxy_ai: gives the number of complete samples on which the information and the com-
plexity have been computed. If the input dataset has no missing value, the number of
samples is the same for all pairs and corresponds to the total number of samples.

– log_confidence: represents the info - cplx value. It is a way to quantify the strength of the
edge (x, y).

– confidenceRatio: this column is present if the confidence cut is > 0 and it represents
the ratio between the probability to reject the edge (x, y) in the dataset versus the mean
probability to do the same in multiple (user defined) number of randomized datasets.

– infOrt: the orientation of the edge (x, y). It is the same value as in the adjacency matrix
at row x and column y : 1 for unoriented, 2 for an edge from X to Y, -2 from Y to X and
6 for bidirectional.

– trueOrt: the orientation of the edge (x, y) present in the true edges file if provided.
– isOrtOk: information about the consistency of the inferred graph’s orientations with a

reference graph is given (i.e. if true edges file is provided). Y: the orientation is consistent;
N: the orientation is not consistent with the PAG (Partial Ancestor Graph) derived from
the given true graph.

– sign: the sign of the partial correlation between variables x and y, conditioned on the
contributing nodes ai.
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– partial_correlation: value of the partial correlation for the edge (x, y) conditioned on the
contributing nodes ai.

– isCausal: details about the nature of the arrow tip for a directed edge. A directed edge
in a causal graph does not necessarily imply causation but it does imply that the cause-
effect relationship is not the other way around. An arrow-tip which is itself downstream
of another directed edge suggests stronger causal sense and is marked by a ’Y’, or ’N’
otherwise.

– proba: probabilities for the inferred orientation, derived from the three-point mutual in-
formation (cf Affeldt & Isambert, UAI 2015 proceedings) and noted as p(x->y);p(x<-y).

• retained.edges.summary: a data frame in the format of all.edges.summary containing only the
inferred edges.

• orientations.prob: this data frame lists the orientation probabilities of the two edges of all
unshielded triples of the reconstructed network with the structure: node1 – mid-node – node2:

– node1: node at the end of the unshielded triplet

– p1: probability of the arrowhead node1 <- mid-node

– p2: probability of the arrowhead node1 -> mid-node

– mid-node: node at the center of the unshielded triplet

– p3: probability of the arrowhead mid-node <- node2

– p4: probability of the arrowhead mid-node -> node2

– node2: node at the end of the unshielded triplet

– NI3: 3 point (conditional) mutual information * N

• AdjMatrix: the adjacency matrix is a square matrix used to represent the inferred graph. The
entries of the matrix indicate whether pairs of vertices are adjacent or not in the graph. The
matrix can be read as a (row, column) set of couples where the row represents the source
node and the column the target node. Since miic can reconstruct mixed networks (including
directed, undirected and bidirected edges), we will have a different digit for each case:

– 1: (x, y) edge is undirected

– 2: (x, y) edge is directed as x -> y

– -2: (x, y) edge is directed as x <- y

– 6: (x, y) edge is bidirected

References

• Verny et al., PLoS Comp. Bio. 2017. https://doi.org/10.1371/journal.pcbi.1005662

• Cabeli et al., PLoS Comp. Bio. 2020. https://doi.org/10.1371/journal.pcbi.1007866

• Li et al., NeurIPS 2019 http://papers.nips.cc/paper/9573-constraint-based-causal-structure-learning-
with-consistent-separating-sets.pdf

See Also

discretizeMutual for optimal discretization and (conditional) independence test.
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Examples

library(miic)

# EXAMPLE HEMATOPOIESIS
data(hematoData)

# execute MIIC (reconstruct graph)
miic.res <- miic(

input_data = hematoData[1:1000,], latent = "yes",
n_shuffles = 10, conf_threshold = 0.001

)

# plot graph
if(require(igraph)) {
plot(miic.res, method="igraph")

}

# write graph to graphml format. Note that to correctly visualize
# the network we created the miic style for Cytoscape (http://www.cytoscape.org/).

miic.write.network.cytoscape(g = miic.res, file = file.path(tempdir(), "temp"))

# EXAMPLE CANCER
data(cosmicCancer)
data(cosmicCancer_stateOrder)
# execute MIIC (reconstruct graph)
miic.res <- miic(

input_data = cosmicCancer, state_order = cosmicCancer_stateOrder, latent = "yes",
n_shuffles = 100, conf_threshold = 0.001

)

# plot graph
if(require(igraph)) {
plot(miic.res)

}

# write graph to graphml format. Note that to correctly visualize
# the network we created the miic style for Cytoscape (http://www.cytoscape.org/).
miic.write.network.cytoscape(g = miic.res, file = file.path(tempdir(), "temp"))

# EXAMPLE OHNOLOGS
data(ohno)
data(ohno_stateOrder)
# execute MIIC (reconstruct graph)
miic.res <- miic(

input_data = ohno, latent = "yes", state_order = ohno_stateOrder,
n_shuffles = 100, conf_threshold = 0.001

)

# plot graph
if(require(igraph)) {
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plot(miic.res)
}

# write graph to graphml format. Note that to correctly visualize
# the network we created the miic style for Cytoscape (http://www.cytoscape.org/).
miic.write.network.cytoscape(g = miic.res, file = file.path(tempdir(), "temp"))

miic.export Export miic result to different plotting methods

Description

This function creates an object built from the result returned by miic that is ready to be fed to
different plotting methods.

Usage

miic.export(miic.res, method = NULL)

Arguments

miic.res [a miic graph object] The graph object returned by the miic execution.

method A string representing the plotting method. Currently only "igraph" is supported.

Details

See the details of specific function for each method. For igraph, see getIgraph.

Value

A graph object adapted to the method.

See Also

getIgraph for details on the igraph exported object.

Examples

library(miic)
data(hematoData)

# execute MIIC (reconstruct graph)
miic.res <- miic(

input_data = hematoData, latent = "yes",
n_shuffles = 10, conf_threshold = 0.001

)
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# Using igraph
if(require(igraph)) {
g = miic.export(miic.res, "igraph")
plot(g) # Default visualisation, calls igraph::plot.igraph()

# Specifying layout (see ?igraph::layout_)
l <-layout_with_kk(g)
plot(g, layout=l)

# Override some graphical parameters
plot(g, edge.curved = .2)
plot(g, vertex.shape="none", edge.color="gray85", vertex.label.color="gray10")
}

miic.write.network.cytoscape

GraphML converting function for miic graph

Description

Convert miic graph to GraphML format.

Usage

miic.write.network.cytoscape(g, file, layout = NULL)

Arguments

g The graph object returned by miic.

file A string. Path to the output file containing file name without extension (.graphml
will be appended).

layout An optional data frame of 2 (or 3) columns containing the coordinate x and y for
each node. The optional first column can contain node names. If node names is
not given, the order of the input file will be assigned to the list of positions.

http://graphml.graphdrawing.org/
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miic.write.style.cytoscape

Style writing function for the miic network

Description

This function writes the miic style for a correct visualization using the cytoscape tool (http://www.cytoscape.org/).

Usage

miic.write.style.cytoscape(file)

Arguments

file [a string] The file path of the output file (containing the file name without exten-
sion).

Details

The style is written in the xml file format.

ohno Tetraploidization in vertebrate evolution

Description

20,415 protein-coding genes in the human genome from Ensembl (v70) and information on the
retention of duplicates originating either from the two whole genome duplications at the onset of
vertebrates (‘ohnolog’) or from subsequent small scale duplications (‘SSD’) as well as copy number
variants (‘CNV’).

Usage

data(ohno)

Format

A data.frame object.

References

Verny et al., PLoS Comp. Bio. 2017.
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ohno_stateOrder Tetraploidization in vertebrate evolution

Description

20,415 protein-coding genes in the human genome from Ensembl (v70) and information on the
retention of duplicates originating either from the two whole genome duplications at the onset of
vertebrates (‘ohnolog’) or from subsequent small scale duplications (‘SSD’) as well as copy number
variants (‘CNV’), category order.

Usage

data(ohno_stateOrder)

Format

A data.frame object.

References

Verny et al., PLoS Comp. Bio. 2017.

plot.miic Basic plot function of a miic network inference result

Description

This function calls miic.export to build a plottable object from the result returned by miic and
plot it.

Usage

## S3 method for class 'miic'
plot(x, method = "igraph", ...)

Arguments

x [a miic graph object] The graph object returned by miic.

method A string representing the plotting method. Default to "igraph". Currently only
"igraph" is supported.

... Additional plotting parameters. See the corresponding plot function for the com-
plete list. For igraph, see igraph.plotting.

Details

See the documentation of miic.export for further details.
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See Also

miic.export for generic exports, getIgraph for igraph export, igraph.plotting
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