
Package ‘multinomineq’
August 22, 2022

Type Package

Title Bayesian Inference for Multinomial Models with Inequality
Constraints

Version 0.2.4

Date 2022-08-21

Maintainer Daniel W. Heck <dheck@uni-marburg.de>

Description Implements Gibbs sampling and Bayes factors for multinomial models with
linear inequality constraints on the vector of probability parameters. As
special cases, the model class includes models that predict a linear order
of binomial probabilities (e.g., p[1] < p[2] < p[3] < .50) and mixture models
assuming that the parameter vector p must be inside the convex hull of a
finite number of predicted patterns (i.e., vertices). A formal definition of
inequality-constrained multinomial models and the implemented computational
methods is provided in: Heck, D.W., & Davis-Stober, C.P. (2019).
Multinomial models with linear inequality constraints: Overview and improvements
of computational methods for Bayesian inference. Journal of Mathematical
Psychology, 91, 70-87. <doi:10.1016/j.jmp.2019.03.004>.
Inequality-constrained multinomial models have applications in the area of
judgment and decision making to fit and test random utility models
(Regenwetter, M., Dana, J., & Davis-Stober, C.P. (2011). Transitivity of
preferences. Psychological Review, 118, 42–56, <doi:10.1037/a0021150>) or to
perform outcome-based strategy classification to select the decision strategy
that provides the best account for a vector of observed choice frequencies
(Heck, D.W., Hilbig, B.E., & Moshagen, M. (2017). From information
processing to decisions: Formalizing and comparing probabilistic choice models.
Cognitive Psychology, 96, 26–40. <doi:10.1016/j.cogpsych.2017.05.003>).

License GPL-3

URL https://github.com/danheck/multinomineq

Encoding UTF-8

LazyData true

Depends R (>= 4.0.0)

Imports Rcpp (>= 0.12.11), parallel, Rglpk, quadprog, coda,
RcppXPtrUtils

1

https://doi.org/10.1016/j.jmp.2019.03.004
https://doi.org/10.1037/a0021150
https://doi.org/10.1016/j.cogpsych.2017.05.003
https://github.com/danheck/multinomineq


2 R topics documented:

Suggests knitr, testthat, covr

LinkingTo Rcpp, RcppArmadillo, RcppProgress

VignetteBuilder knitr

RoxygenNote 7.2.1

NeedsCompilation yes

Author Daniel W. Heck [aut, cre] (<https://orcid.org/0000-0002-6302-9252>)

Repository CRAN

Date/Publication 2022-08-21 23:40:02 UTC

R topics documented:
multinomineq-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ab_drop_fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ab_max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Ab_multinom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Ab_sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
bf_binom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
bf_equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
bf_nonlinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
binom_to_multinom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
count_binom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
count_multinom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
count_to_bf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
drop_fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
find_inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
heck2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
heck2017_raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
hilbig2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
inside_binom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
karabatsos2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
ml_binom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
model_weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
nirt_to_Ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
population_bf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
postprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ppp_binom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
regenwetter2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
rpbinom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
rpdirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
sampling_multinom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
sampling_nonlinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
stochdom_Ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
stochdom_bf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
strategy_marginal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

https://orcid.org/0000-0002-6302-9252


multinomineq-package 3

strategy_multiattribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
strategy_postprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
strategy_to_Ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
strategy_unique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
swop5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
V_to_Ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Index 59

multinomineq-package multinomineq: Bayesian Inference for Inequality-Constrained Multi-
nomial Models

Description

Implements Gibbs sampling and Bayes factors for multinomial models with convex, linear-inequality
constraints on the probability parameters. This includes models that predict a linear order of bino-
mial probabilities (e.g., p1 < p2 < p3 < .50) and mixture models, which assume that the parameter
vector p must be inside the convex hull of a finite number of vertices.

Details

A formal definition of inequality-constrained multinomial models and the implemented computa-
tional methods for Bayesian inference is provided in:

• Heck, D. W., & Davis-Stober, C. P. (2019). Multinomial models with linear inequality con-
straints: Overview and improvements of computational methods for Bayesian inference. Manuscript
under revision. https://arxiv.org/abs/1808.07140

Inequality-constrained multinomial models have applications in multiple areas in psychology, judge-
ment and decision making, and beyond:

• Testing choice axioms such as transitivity and random utility theory (Regenwetter et al., 2012,
2014). See regenwetter2012

• Testing deterministic axioms of measurement and choice (Karabatsos, 2005; Myung et al.,
2005).

• Multiattribute decisions for probabilistic inferences involving strategies such as Take-the-
best (TTB) vs. weighted additive (WADD; Bröder & Schiffer, 2003; Heck et al., 2017) See
heck2017 and hilbig2014

• Fitting and testing nonparametric item response theory models (Karabatsos & Sheu, 2004).
See karabatsos2004

• Statistical inference for order-constrained contingency tables (Klugkist et al., 2007, 2010).
See bf_nonlinear

https://arxiv.org/abs/1808.07140
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• Testing stochastic dominance of response time distributions (Heathcote et al., 2010). See
stochdom_bf

• Cognitive diagnostic assessment (Hoijtink et al., 2014).

Author(s)

Daniel W. Heck
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See Also

Useful links:

• https://github.com/danheck/multinomineq

Ab_drop_fixed Drop fixed columns in the Ab-Representation

Description

Often inequalities refer to all probability parameters of a multinomial distribution. This function
allows to transform the inequalities into the appropriate format A * x <b with respect to the free
parameters only.

Usage

Ab_drop_fixed(A, b, options)

Arguments

A a matrix defining the convex polytope via A*x <= b. The columns of A do not
include the last choice option per item type and thus the number of columns must
be equal to sum(options-1) (e.g., the column order of A for k = c(a1,a2,a2,
b1,b2) is c(a1,a2, b1)).

b a vector of the same length as the number of rows of A.

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

Examples

# p1 < p2 < p3 < p4
A4 <- matrix(c(1, -1, 0, 0,

0, 1, -1, 0,
0, 0, 1, -1),

nrow = 3, byrow = TRUE)
b4 <- c(0, 0, 0)

# drop the fixed column for: p4 = (1-p1-p2-p3)
Ab_drop_fixed(A4, b4, options = c(4))

https://doi.org/10.1016/j.jmp.2010.06.005
https://github.com/danheck/multinomineq


6 Ab_max

Ab_max Automatic Construction of Ab-Representation for Common Inequality
Constraints

Description

Constructs the matrix A and vector b of the Ab-representation A*x < b for common inequality con-
straints such as "the probability j is larger than all others (Ab_max)" or "the probabilities are ordered
(Ab_monotonicity)").

Usage

Ab_max(
which_max,
options,
exclude = c(),
exclude_fixed = FALSE,
drop_fixed = TRUE

)

Arguments

which_max vector of indices refering to probabilities that are assumed to be larger than the
remaining probabilities (e.g., which_max=c(1,2) means that p1>p3, p1>p4,...,
p2>p3, ...). Note that the indices refer to all probabilities/categories (includ-
ing one fixed probability within each multinomial distribution).

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

exclude vector of indices refering to probabilities that are excluded from the construction
of the order constraints (including the fixed probabilities).

exclude_fixed whether to exclude the fixed probabilities (i.e., the last probability within each
multinomial) from the construction of the order constraints. For example, if
options=c(2,2,3) then the probabilities/columns 2, 4, and 7 are dropped (which
is equivalent to exclude=c(2,4,7)). This option is usually appropriate for bi-
nomial probabilities (i.e., if options = c(2,2,2,...)), e.g., when the interest
is in the probability of correct responding across different item types.

drop_fixed whether to drop columns of A containing the fixed probabilities (i.e., the last
probability within each multinomial). after construction of the inequalities.

Value

a list with the matrix A and the vectors b and options
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Examples

# Example 1: Multinomial with 5 categories
# Hypothesis: p1 is larger than p2,p3,p4,p5
Ab_max(which_max = 1, options = 5)

# Example 2: Four binomial probabilities
# Hypothesis: p1 is larger than p2,p3,p4
Ab_max(which_max = 1, options = c(2,2,2,2), exclude_fixed = TRUE)

Ab_multinom Get Constraints for Product-Multinomial Probabilities

Description

Get or add inequality constraints (or vertices) to ensure that multinomial probabilities are positive
and sum to one for all choice options within each item type.

Usage

Ab_multinom(options, A = NULL, b = NULL, nonneg = FALSE)

Arguments

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

A a matrix defining the convex polytope via A*x <= b. The columns of A do not
include the last choice option per item type and thus the number of columns must
be equal to sum(options-1) (e.g., the column order of A for k = c(a1,a2,a2,
b1,b2) is c(a1,a2, b1)).

b a vector of the same length as the number of rows of A.

nonneg whether to add constraints that probabilities must be nonnegative

Details

If A and b are provided, the constraints are added to these inequality constraints.

See Also

add_fixed

Examples

# three binary and two ternary choices:
options <- c(2,2,2, 3,3)
Ab_multinom(options)
Ab_multinom(options, nonneg = TRUE)
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Ab_sort Sort Inequalities by Acceptance Rate

Description

Uses samples from the prior/posterior to order the inequalities by the acceptance rate.

Usage

Ab_sort(A, b, k = 0, options, M = 1000, drop_irrelevant = TRUE)

Arguments

A a matrix with one row for each linear inequality constraint and one column for
each of the free parameters. The parameter space is defined as all probabilities
x that fulfill the order constraints A*x <= b.

b a vector of the same length as the number of rows of A.

k optional: number of observed frequencies (only for posterior sampling).

options optional: number of options per item type/category system. Uniform sampling
on [0,1] for each parameter is used if omitted.

M number of samples.
drop_irrelevant

whether to drop irrelevant constraints for probabilities such as theta[1] >= 0,
theta[1] <= 1, or sum(theta) <= 1.

Details

Those constraints that are rejected most often are placed at the first positions. This can help when
computing the encompassing Bayes factor and counting how many samples satisfy the constraints
(e.g., count_binom or bf_multinom). Essentially, it becomes more likely that the while-loop for
testing whether the inequalities hold can stop earlier, thus making the computation faster.

The function could also be helpful to improve the efficiency of the stepwise sampling implemented
in count_binom and count_multinom. First, one can use accept-reject sampling to test the first
few, rejected inequalities. Next, one can use a Gibbs sampler to draw samples conditional on the
first constraints.

Examples

### Binomial probabilities
b <- c(0,0,.30,.70, 1)
A <- matrix(c(-1,1,0, # p1 >= p2

0,1,-1, # p2 <= p3
1,0,0, # p1 <=.30
0,1,0, # p2 <= .70
0,0,1), # p3 <= 1 (redundant)
ncol = 3, byrow = 2)
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Ab_sort(A, b)

### Multinomial probabilities
# prior sampling:
Ab_sort(A, b, options = 4)
# posterior sampling:
Ab_sort(A, b, k = c(10,3, 2, 14), options = 4)

bf_binom Bayes Factor for Linear Inequality Constraints

Description

Computes the Bayes factor for product-binomial/-multinomial models with linear order-constraints
(specified via: A*x <= b or the convex hull V).

Usage

bf_binom(k, n, A, b, V, map, prior = c(1, 1), log = FALSE, ...)

bf_multinom(
k,
options,
A,
b,
V,
prior = rep(1, sum(options)),
log = FALSE,
...

)

Arguments

k vector of observed response frequencies.
n the number of choices per item type. If k=n=0, Bayesian inference is relies on

the prior distribution only.
A a matrix with one row for each linear inequality constraint and one column for

each of the free parameters. The parameter space is defined as all probabilities
x that fulfill the order constraints A*x <= b.

b a vector of the same length as the number of rows of A.
V a matrix of vertices (one per row) that define the polytope of admissible param-

eters as the convex hull over these points (if provided, A and b are ignored).
Similar as for A, columns of V omit the last value for each multinomial condition
(e.g., a1,a2,a3,b1,b2 becomes a1,a2,b1). Note that this method is comparatively
slow since it solves linear-programming problems to test whether a point is in-
side a polytope (Fukuda, 2004) or to run the Gibbs sampler.
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map optional: numeric vector of the same length as k with integers mapping the fre-
quencies k to the free parameters/columns of A/V, thereby allowing for equality
constraints (e.g., map=c(1,1,2,2)). Reversed probabilities 1-p are coded by
negative integers. Guessing probabilities of .50 are encoded by zeros. The de-
fault assumes different parameters for each item type: map=1:ncol(A)

prior a vector with two positive numbers defining the shape parameters of the beta
prior distributions for each binomial rate parameter.

log whether to return the log-Bayes factor instead of the Bayes factor

... further arguments passed to count_binom or count_multinom (e.g., M, steps).

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

Details

For more control, use count_binom to specifiy how many samples should be drawn from the prior
and posterior, respectively. This is especially recommended if the same prior distribution (and thus
the same prior probability/integral) is used for computing BFs for multiple data sets that differ only
in the observed frequencies k and the sample size n. In this case, the prior probability/proportion of
the parameter space in line with the inequality constraints can be computed once with high precision
(or even analytically), and only the posterior probability/proportion needs to be estimated separately
for each unique vector k.

Value

a matrix with two columns (Bayes factor and SE of approximation) and three rows:

• `bf_0u`: constrained vs. unconstrained (saturated) model

• `bf_u0`: unconstrained vs. constrained model

• `bf_00'`: constrained vs. complement of inequality-constrained model (e.g., pi>.2 becomes
pi<=.2; this assumes identical equality constraints for both models)

References

Karabatsos, G. (2005). The exchangeable multinomial model as an approach to testing deter-
ministic axioms of choice and measurement. Journal of Mathematical Psychology, 49(1), 51-69.
doi:10.1016/j.jmp.2004.11.001

Regenwetter, M., Davis-Stober, C. P., Lim, S. H., Guo, Y., Popova, A., Zwilling, C., . . . Messner, W.
(2014). QTest: Quantitative testing of theories of binary choice. Decision, 1(1), 2-34. doi:10.1037/
dec0000007

See Also

count_binom and count_multinom for for more control on the number of prior/posterior samples
and bf_nonlinear for nonlinear order constraints.

https://doi.org/10.1016/j.jmp.2004.11.001
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Examples

k <- c(0, 3, 2, 5, 3, 7)
n <- rep(10, 6)

# linear order constraints:
# p1 <p2 <p3 <p4 <p5 <p6 <.50
A <- matrix(c(1, -1, 0, 0, 0, 0,

0, 1, -1, 0, 0, 0,
0, 0, 1, -1, 0, 0,
0, 0, 0, 1, -1, 0,
0, 0, 0, 0, 1, -1,
0, 0, 0, 0, 0, 1),

ncol = 6, byrow = TRUE)
b <- c(0, 0, 0, 0, 0, .50)

# Bayes factor: unconstrained vs. constrained
bf_binom(k, n, A, b, prior=c(1, 1), M=10000)
bf_binom(k, n, A, b, prior=c(1, 1), M=2000, steps=c(2,4,5))
bf_binom(k, n, A, b, prior=c(1, 1), M=1000, cmin = 200)

bf_equality Bayes Factor with Inequality and (Approximate) Equality Constraints

Description

To obtain the Bayes factor for the equality constraints C*x = d, a sequence of approximations
abs(C*x - d) < delta is used.

Usage

bf_equality(
k,
options,
A,
b,
C,
d,
prior = rep(1, sum(options)),
M1 = 1e+05,
M2 = 20000,
delta = 0.5^(1:8),
return_Ab = FALSE,
...

)
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Arguments

k the number of choices for each alternative ordered by item type (e.g. c(a1,a2,a3,
b1,b2) for a ternary and a binary item type). The length of k must be equal to
the sum of options. The default k=0 is equivalent to sampling from the prior.

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

A a matrix with one row for each linear inequality constraint and one column for
each of the free parameters. The parameter space is defined as all probabilities
x that fulfill the order constraints A*x <= b.

b a vector of the same length as the number of rows of A.

C a matrix specifying the equality constraints C*x = d with columns refering to the
free parameters (similar to A)

d a vector with the same number of elements as the rows of C.

prior the prior parameters of the Dirichlet-shape parameters. Must have the same
length as k.

M1 number of independent samples from the encompassing model to test whether
A*x < b.

M2 number of Gibbs-sampling iterations for each step of the approximation of C*x
= d.

delta a vector of stepsizes that are used for the approximation.

return_Ab if TRUE, the function returns a list with the additional inequality constraints
(specified via A, b, and steps) that are used in the stepwise approximation
abs(C*x - d) < delta[i].

... further arguments passed to count_binom or count_multinom (e.g., M, steps).

Details

First, the encompassing Bayes factor for the equality constraint A*x<b is computed using M1 inde-
pendent Dirichlet samples. Next, the equality constraint C*x=d is approximated by drawing samples
from the model A*x<b and testing whether abs(C*x - d) < delta[1]. Similarly, the stepsize delta
is reduced step by step until abs(C*x - d) < min(delta). Klugkist et al. (2010) show that this pro-
cedure provides a valid approximation of the exact equality constraints if the step size becomes
sufficiently small.

References

Klugkist, I., Laudy, O., & Hoijtink, H. (2010). Bayesian evaluation of inequality and equality con-
strained hypotheses for contingency tables. Psychological Methods, 15(3), 281-299. doi:10.1037/
a0020137

Examples

# Equality constraints: C * x = d
d <- c(.5, .5, 0)
C <- matrix(c(1, 0, 0, 0, # p1 = .50

https://doi.org/10.1037/a0020137
https://doi.org/10.1037/a0020137
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0, 1, 0, 0, # p2 = .50
0, 0, 1, -1), # p3 = p4

ncol = 4, byrow = TRUE)
k <- c(3,7, 6,4, 2,8, 5,5)
options <- c(2, 2, 2, 2)
bf_equality(k, options, C = C, d = d, delta = .5^(1:5),

M1 = 50000, M2 = 5000) # only for CRAN checks

# check against exact equality constraints (see ?bf_binom)
k_binom = k[seq(1,7,2)]
bf_binom(k_binom, n = 10, A = matrix(0), b = 0,

map = c(0, 0, 1, 1))

bf_nonlinear Bayes Factor for Nonlinear Inequality Constraints

Description

Computes the encompassing Bayes factor for a user-specified, nonlinear inequality constraint. Re-
strictions are defined via an indicator function of the free parameters c(p11,p12,p13, p21,p22,...)
(i.e., the multinomial probabilities).

Usage

bf_nonlinear(
k,
options,
inside,
prior = rep(1, sum(options)),
log = FALSE,
...

)

count_nonlinear(
k = 0,
options,
inside,
prior = rep(1, sum(options)),
M = 5000,
progress = TRUE,
cpu = 1

)

Arguments

k vector of observed response frequencies.

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.
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inside an indicator function that takes a vector with probabilities p=c(p11,p12, p21,p22,...)
(where the last probability for each multinomial is dropped) as input and returns
1 or TRUE if the order constraints are satisfied and 0 or FALSE otherwise (see
details).

prior a vector with two positive numbers defining the shape parameters of the beta
prior distributions for each binomial rate parameter.

log whether to return the log-Bayes factor instead of the Bayes factor

... further arguments passed to count_binom or count_multinom (e.g., M, steps).

M number of posterior samples drawn from the encompassing model

progress whether a progress bar should be shown (if cpu=1).

cpu either the number of CPUs used for parallel sampling, or a parallel cluster (e.g.,
cl <- parallel::makeCluster(3)). All arguments of the function call are
passed directly to each core, and thus the total number of samples is M*number_cpu.

Details

Inequality constraints are defined via an indicator function inside which returns inside(x)=1 (or
0) if the vector of free parameters x is inside (or outside) the model space. Since the vector x must
include only free (!) parameters, the last probability for each multinomial must not be used in the
function inside(x)!

Efficiency can be improved greatly if the indicator function is defined as C++ code via the function
cppXPtr in the package RcppXPtrUtils (see below for examples). In this case, please keep in mind
that indexing in C++ starts with 0,1,2... (not with 1,2,3,... as in R)!

References

Klugkist, I., & Hoijtink, H. (2007). The Bayes factor for inequality and about equality con-
strained models. Computational Statistics & Data Analysis, 51(12), 6367-6379. doi:10.1016/
j.csda.2007.01.024

Klugkist, I., Laudy, O., & Hoijtink, H. (2010). Bayesian evaluation of inequality and equality con-
strained hypotheses for contingency tables. Psychological Methods, 15(3), 281-299. doi:10.1037/
a0020137

Examples

##### 2x2x2 continceny table (Klugkist & Hojtink, 2007)
#
# (defendant's race) x (victim's race) x (death penalty)
# indexing: 0 = white/white/yes ; 1 = black/black/no
# probabilities: (p000,p001, p010,p011, p100,p101, p110,p111)
# Model2:
# p000*p101 < p100*p001 & p010*p111 < p110*p011

# observed frequencies:
k <- c(19,132, 0,9, 11,52, 6,97)

model <- function(x)
x[1]*x[6] < x[5]*x[2] & x[3]*(1-sum(x)) < x[7]*x[4]

https://doi.org/10.1016/j.csda.2007.01.024
https://doi.org/10.1016/j.csda.2007.01.024
https://doi.org/10.1037/a0020137
https://doi.org/10.1037/a0020137
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# NOTE: "1-sum(x)" must be used instead of "x[8]"!

# compute Bayes factor (Klugkist 2007: bf_0u=1.62)
bf_nonlinear(k, 8, model, M=50000)

##### Using a C++ indicator function (much faster)
cpp_code <- "SEXP model(NumericVector x){

return wrap(x[0]*x[5] < x[4]*x[1] & x[2]*(1-sum(x)) < x[6]*x[3]);}"
# NOTE: C++ indexing starts at 0!

# define C++ pointer to indicator function:
model_cpp <- RcppXPtrUtils::cppXPtr(cpp_code)

bf_nonlinear(k=c(19,132, 0,9, 11,52, 6,97), M = 100000,
options = 8, inside = model_cpp)

binom_to_multinom Converts Binary to Multinomial Frequencies

Description

Converts the number of "hits" in the binary choice format to the observed frequencies across for all
response categories (i.e., the multinomial format).

Usage

binom_to_multinom(k, n)

Arguments

k vector of observed response frequencies.

n the number of choices per item type. If k=n=0, Bayesian inference is relies on
the prior distribution only.

Details

In multinomineq, binary choice frequencies are represented by the number of "hits" for each item
type/condition (the vector k) and by the total number of responses per item type/condition (the
scalar or vector n).

In the multinomial format, the vector k includes all response categories (not only the number of
"hits"). This requires to define a vector options, which indicates how many categories belong to
one item type/condition (since the total number of responses per item type is fixed).
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Examples

k <- c(1, 5, 8, 10)
n <- 10
binom_to_multinom(k, n)

count_binom Count How Many Samples Satisfy Linear Inequalities (Binomial)

Description

Draws prior/posterior samples for product-binomial data and counts how many samples are inside
the convex polytope defined by (1) the inequalities A*x <= b or (2) the convex hull over the vertices
V.

Usage

count_binom(
k,
n,
A,
b,
V,
map,
prior = c(1, 1),
M = 10000,
steps,
start,
cmin = 0,
maxiter = 500,
burnin = 5,
progress = TRUE,
cpu = 1

)

Arguments

k vector of observed response frequencies.

n the number of choices per item type. If k=n=0, Bayesian inference is relies on
the prior distribution only.

A a matrix with one row for each linear inequality constraint and one column for
each of the free parameters. The parameter space is defined as all probabilities
x that fulfill the order constraints A*x <= b.

b a vector of the same length as the number of rows of A.
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V a matrix of vertices (one per row) that define the polytope of admissible param-
eters as the convex hull over these points (if provided, A and b are ignored).
Similar as for A, columns of V omit the last value for each multinomial condition
(e.g., a1,a2,a3,b1,b2 becomes a1,a2,b1). Note that this method is comparatively
slow since it solves linear-programming problems to test whether a point is in-
side a polytope (Fukuda, 2004) or to run the Gibbs sampler.

map optional: numeric vector of the same length as k with integers mapping the fre-
quencies k to the free parameters/columns of A/V, thereby allowing for equality
constraints (e.g., map=c(1,1,2,2)). Reversed probabilities 1-p are coded by
negative integers. Guessing probabilities of .50 are encoded by zeros. The de-
fault assumes different parameters for each item type: map=1:ncol(A)

prior a vector with two positive numbers defining the shape parameters of the beta
prior distributions for each binomial rate parameter.

M number of posterior samples drawn from the encompassing model

steps an integer vector that indicates the row numbers at which the matrix A is split for
a stepwise computation of the Bayes factor (see details). M can be a vector with
the number of samples drawn in each step from the (partially) order-constrained
models using Gibbs sampling. If cmin>0, samples are drawn for each step until
count[i]>=cmin.

start only relevant if steps is defined or cmin>0: a vector with starting values in
the interior of the polytope. If missing, an approximate maximum-likelihood
estimate is used.

cmin if cmin>0: minimum number of counts per step in the automatic stepwise pro-
cedure. If steps is not defined, steps=c(1,2,3,4,...) by default.

maxiter if cmin>0: maximum number of sampling runs in the automatic stepwise proce-
dure.

burnin number of burnin samples per step that are discarded. Since the maximum-
likelihood estimate is used as a start value (which is updated for each step in
the stepwise procedure in count_multinom), the burnin number can be smaller
than in other MCMC applications.

progress whether a progress bar should be shown (if cpu=1).

cpu either the number of CPUs used for parallel sampling, or a parallel cluster (e.g.,
cl <- parallel::makeCluster(3)). All arguments of the function call are
passed directly to each core, and thus the total number of samples is M*number_cpu.

Details

Counts the number of random samples drawn from beta distributions that satisfy the convex, linear-
inequalitiy constraints. The function is useful to compute the encompassing Bayes factor for testing
inequality-constrained models (see bf_binom; Hojtink, 2011).

The stepwise computation of the Bayes factor proceeds as follows: If the steps are defined as
steps=c(5,10), the BF is computed in three steps by comparing: (1) Unconstrained model vs.
inequalities in A[1:5,]; (2) use posterior based on inequalities in A[1:5,] and check inequalities
A[6:10,]; (3) sample from A[1:10,] and check inequalities in A[11:nrow(A),] (i.e., all inequali-
ties).
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Value

a matrix with the columns

• count: number of samples in polytope / that satisfy order constraints

• M: the total number of samples in each step

• steps: the "steps" used to sample from the polytope (i.e., the row numbers of A that were
considered stepwise)

with the attributes:

• proportion: estimated probability that samples are in polytope

• se: standard error of probability estimate

• const_map: logarithm of the binomial constants that have to be considered due to equality
constraints

References

Hoijtink, H. (2011). Informative Hypotheses: Theory and Practice for Behavioral and Social Sci-
entists. Boca Raton, FL: Chapman & Hall/CRC.

Fukuda, K. (2004). Is there an efficient way of determining whether a given point q is in the convex
hull of a given finite set S of points in Rd? Retrieved from https://www.cs.mcgill.ca/~fukuda/
soft/polyfaq/node22.html

See Also

bf_binom, count_multinom

Examples

### a set of linear order constraints:
### x1 < x2 < .... < x6 < .50
A <- matrix(c(1, -1, 0, 0, 0, 0,

0, 1, -1, 0, 0, 0,
0, 0, 1, -1, 0, 0,
0, 0, 0, 1, -1, 0,
0, 0, 0, 0, 1, -1,
0, 0, 0, 0, 0, 1),

ncol = 6, byrow = TRUE)
b <- c(0, 0, 0, 0, 0, .50)

### check whether a specific vector is inside the polytope:
A %*% c(.05, .1, .12, .16, .19, .23) <= b

### observed frequencies and number of observations:
k <- c(0, 3, 2, 5, 3, 7)
n <- rep(10, 6)

### count prior samples and compare to analytical result
prior <- count_binom(0, 0, A, b, M = 5000, steps = 1:4)

https://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node22.html
https://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node22.html
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prior # to get the proportion: attr(prior, "proportion")
(.50)^6 / factorial(6)

### count posterior samples + get Bayes factor
posterior <- count_binom(k, n, A, b, M=2000, steps=1:4)
count_to_bf(posterior, prior)

### automatic stepwise algorithm
prior <- count_binom(0, 0, A, b, M = 500, cmin = 200)
posterior <- count_binom(k, n, A, b, M = 500, cmin = 200)
count_to_bf(posterior, prior)

count_multinom Count How Many Samples Satisfy Linear Inequalities (Multinomial)

Description

Draws prior/posterior samples for product-multinomial data and counts how many samples are in-
side the convex polytope defined by (1) the inequalities A*x <= b or (2) the convex hull over the
vertices V.

Usage

count_multinom(
k = 0,
options,
A,
b,
V,
prior = rep(1, sum(options)),
M = 5000,
steps,
start,
cmin = 0,
maxiter = 500,
burnin = 5,
progress = TRUE,
cpu = 1

)

Arguments

k the number of choices for each alternative ordered by item type (e.g. c(a1,a2,a3,
b1,b2) for a ternary and a binary item type). The length of k must be equal to
the sum of options. The default k=0 is equivalent to sampling from the prior.

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.
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A a matrix defining the convex polytope via A*x <= b. The columns of A do not
include the last choice option per item type and thus the number of columns must
be equal to sum(options-1) (e.g., the column order of A for k = c(a1,a2,a2,
b1,b2) is c(a1,a2, b1)).

b a vector of the same length as the number of rows of A.

V a matrix of vertices (one per row) that define the polytope of admissible param-
eters as the convex hull over these points (if provided, A and b are ignored).
Similar as for A, columns of V omit the last value for each multinomial condition
(e.g., a1,a2,a3,b1,b2 becomes a1,a2,b1). Note that this method is comparatively
slow since it solves linear-programming problems to test whether a point is in-
side a polytope (Fukuda, 2004) or to run the Gibbs sampler.

prior the prior parameters of the Dirichlet-shape parameters. Must have the same
length as k.

M number of posterior samples drawn from the encompassing model

steps an integer vector that indicates the row numbers at which the matrix A is split for
a stepwise computation of the Bayes factor (see details). M can be a vector with
the number of samples drawn in each step from the (partially) order-constrained
models using Gibbs sampling. If cmin>0, samples are drawn for each step until
count[i]>=cmin.

start only relevant if steps is defined or cmin>0: a vector with starting values in
the interior of the polytope. If missing, an approximate maximum-likelihood
estimate is used.

cmin if cmin>0: minimum number of counts per step in the automatic stepwise pro-
cedure. If steps is not defined, steps=c(1,2,3,4,...) by default.

maxiter if cmin>0: maximum number of sampling runs in the automatic stepwise proce-
dure.

burnin number of burnin samples per step that are discarded. Since the maximum-
likelihood estimate is used as a start value (which is updated for each step in
the stepwise procedure in count_multinom), the burnin number can be smaller
than in other MCMC applications.

progress whether a progress bar should be shown (if cpu=1).

cpu either the number of CPUs used for parallel sampling, or a parallel cluster (e.g.,
cl <- parallel::makeCluster(3)). All arguments of the function call are
passed directly to each core, and thus the total number of samples is M*number_cpu.

Value

a list with the elements

a matrix with the columns

• count: number of samples in polytope / that satisfy order constraints

• M: the total number of samples in each step

• steps: the "steps" used to sample from the polytope (i.e., the row numbers of A that were
considered stepwise)
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with the attributes:

• proportion: estimated probability that samples are in polytope

• se: standard error of probability estimate

References

Hoijtink, H. (2011). Informative Hypotheses: Theory and Practice for Behavioral and Social Sci-
entists. Boca Raton, FL: Chapman & Hall/CRC.

See Also

bf_multinom, count_binom

Examples

### frequencies:
# (a1,a2,a3, b1,b2,b3,b4)
k <- c(1,5,9, 5,3,7,8)
options <- c(3, 4)

### linear order constraints
# a1<a2<a3 AND b2<b3<.50
# (note: a2<a3 <=> a2 < 1-a1-a2 <=> a1+2*a2 < 1)
# matrix A:
# (a1,a2, b1,b2,b3)
A <- matrix(c(1, -1, 0, 0, 0,

1, 2, 0, 0, 0,
0, 0, 0, 1, -1,
0, 0, 0, 0, 1),

ncol = sum(options-1), byrow = TRUE)
b <- c(0, 1, 0, .50)

# count prior and posterior samples and get BF
prior <- count_multinom(0, options, A, b, M = 2e4)
posterior <- count_multinom(k, options, A, b, M = 2e4)
count_to_bf(posterior, prior)

bf_multinom(k, options, A, b, M=10000)
bf_multinom(k, options, A, b, cmin = 5000, M = 1000)

count_to_bf Compute Bayes Factor Using Prior/Posterior Counts

Description

Computes the encompassing Bayes factor (and standard error) defined as the ratio of posterior/prior
samples that satisfy the order constraints (e.g., of a polytope).
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Usage

count_to_bf(
posterior,
prior,
exact_prior,
log = FALSE,
beta = c(1/2, 1/2),
samples = 3000

)

Arguments

posterior a vector (or matrix) with entries (or columns) count = number of posterior sam-
ples within polytope and M = total number of samples. See count_binom.

prior a vecotr or matrix similar as for posterior, but based on samples from the prior
distribution.

exact_prior optional: the exact prior probabability of the order constraints. For instance,
exact_prior=1/factorial(4) if pi1<pi2<pi3<pi4 (and if the prior is sym-
metric). If provided, prior is ignored.

log whether to return the log-Bayes factor instead of the Bayes factor
beta prior shape parameters of the beta distributions used for approximating the stan-

dard errors of the Bayes-factor estimates. The default is Jeffreys’ prior.
samples number of samples from beta distributions used to compute standard errors.

The unconstrained (encompassing) model is the saturated baseline model that
assumes a separate, independent probability for each observable frequency. The
Bayes factor is obtained as the ratio of posterior/prior samples within an order-
constrained subset of the parameter space.
The standard error of the (stepwise) encompassing Bayes factor is estimated by
sampling ratios from beta distributions, with parameters defined by the poste-
rior/prior counts (see Hoijtink, 2011; p. 211).

Value

a matrix with two columns (Bayes factor and SE of approximation) and three rows:

• `bf_0u`: constrained vs. unconstrained (saturated) model
• `bf_u0`: unconstrained vs. constrained model
• `bf_00'`: constrained vs. complement of inequality-constrained model (e.g., pi>.2 becomes

pi<=.2; this assumes identical equality constraints for both models)

References

Hoijtink, H. (2011). Informative Hypotheses: Theory and Practice for Behavioral and Social Sci-
entists. Boca Raton, FL: Chapman & Hall/CRC.

See Also

count_binom, count_multinom
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Examples

# vector input
post <- c(count = 1447, M = 5000)
prior <- c(count = 152, M = 10000)
count_to_bf(post, prior)

# matrix input (due to nested stepwise procedure)
post <- cbind(count = c(139, 192), M = c(200, 1000))
count_to_bf(post, prior)

# exact prior probability known
count_to_bf(posterior = c(count = 1447, M = 10000),

exact_prior = 1/factorial(4))

drop_fixed Drop or Add Fixed Dimensions for Multinomial Probabili-
ties/Frequencies

Description

Switches between two representation of polytopes for multinomial probabilities (whether the fixed
parameters are included).

Usage

drop_fixed(x, options = 2)

add_fixed(x, options = 2, sum = 1)

Arguments

x a vector (typically k, n, or prior) or a matrix (typically A or V), in which case
the fixed dimensions are dropped/added column-wise.

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

sum a vector that determines the fixed sum in each multinomial condition. By default,
probabilities are assumed that sum to one. If frequencies n are provided, use
sum=n.

Examples

######## bi- and trinomial (a1,a2, b1,b2,b3)
# vectors with frequencies:
drop_fixed(c(3,7, 4,1,5), options = c(2,3))
add_fixed (c(3, 4,1), options = c(2,3),

sum = c(10, 10))

# matrices with probabilities:
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V <- matrix(c(1, 0, 0,
1, .5, .5,
0, 1, 0), 3, byrow = TRUE)

V2 <- add_fixed(V, options = c(2,3))
V2
drop_fixed(V2, c(2,3))

find_inside Find a Point/Parameter Vector Within a Convex Polytope

Description

Finds the center/a random point that is within the convex polytope defined by the linear inequalities
A*x <= b or by the convex hull over the vertices in the matrix V.

Usage

find_inside(A, b, V, options = NULL, random = FALSE, probs = TRUE)

Arguments

A a matrix with one row for each linear inequality constraint and one column for
each of the free parameters. The parameter space is defined as all probabilities
x that fulfill the order constraints A*x <= b.

b a vector of the same length as the number of rows of A.
V a matrix of vertices (one per row) that define the polytope of admissible param-

eters as the convex hull over these points (if provided, A and b are ignored).
Similar as for A, columns of V omit the last value for each multinomial condition
(e.g., a1,a2,a3,b1,b2 becomes a1,a2,b1). Note that this method is comparatively
slow since it solves linear-programming problems to test whether a point is in-
side a polytope (Fukuda, 2004) or to run the Gibbs sampler.

options optional: number of options per item type (only for Ax ≤ b representation).
Necessary to account for sum-to-one constraints within multinomial distribu-
tions (e.g., p_1 + p_2 + p_3 <= 1). By default, parameters are assumed to be
independent.

random if TRUE, random starting values in the interior are generated. If FALSE, the center
of the polytope is computed using linear programming.

probs only for A*x<b representation: whether to add inequality constraints that the
variables are probabilities (nonnegative and sum to 1 within each option)

Details

If vertices V are provided, a convex combination of the vertices is returned. If random=TRUE, the
weights are drawn uniformly from a Dirichlet distribution.

If inequalities are provided via A and b, linear programming (LP) is used to find the Chebyshev
center of the polytope (i.e., the center of the largest ball that fits into the polytope; the solution may
not be unique). If random=TRUE, LP is used to find a random point (not uniformly sampled!) in the
convex polytope.
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Examples

# inequality representation (A*x <= b)
A <- matrix(c(1, -1, 0, 1, 0,

0, 0, -1, 0, 1,
0, 0, 0, 1, -1,
1, 1, 1, 1, 0,
1, 1, 1, 0, 0,
-1, 0, 0, 0, 0),

ncol = 5, byrow = TRUE)
b <- c(0.5, 0, 0, .7, .4, -.2)
find_inside(A, b)
find_inside(A, b, random = TRUE)

# vertex representation
V <- matrix(c(

# strict weak orders
0, 1, 0, 1, 0, 1, # a < b < c
1, 0, 0, 1, 0, 1, # b < a < c
0, 1, 0, 1, 1, 0, # a < c < b
0, 1, 1, 0, 1, 0, # c < a < b
1, 0, 1, 0, 1, 0, # c < b < a
1, 0, 1, 0, 0, 1, # b < c < a

0, 0, 0, 1, 0, 1, # a ~ b < c
0, 1, 0, 0, 1, 0, # a ~ c < b
1, 0, 1, 0, 0, 0, # c ~ b < a
0, 1, 0, 1, 0, 0, # a < b ~ c
1, 0, 0, 0, 0, 1, # b < a ~ c
0, 0, 1, 0, 1, 0, # c < a ~ b

0, 0, 0, 0, 0, 0 # a ~ b ~ c
), byrow = TRUE, ncol = 6)
find_inside(V = V)
find_inside(V = V, random = TRUE)

heck2017 Data: Multiattribute Decisions (Heck, Hilbig & Moshagen, 2017)

Description

Choice frequencies with multiattribute decisions across 4 item types (Heck, Hilbig & Moshagen,
2017).

Usage

heck2017
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Format

A data frame 4 variables:

B1 Frequency of choosing Option B for Item Type 1

B2 Frequency of choosing Option B for Item Type 2

B3 Frequency of choosing Option B for Item Type 3

B4 Frequency of choosing Option B for Item Type 4

Details

Each participant made 40 choices for each of 4 item types with four cues (with validities .9, .8, .7,
and .6). The pattern of cue values of Option A and and B was as follows:

• Item Type 1: A = (-1, 1, 1, -1) vs. B = (-1, -1, -1, -1)

• Item Type 2: A = (1, -1, -1, 1) vs. B = (-1, 1, -1, 1)

• Item Type 3: A = (-1, 1, 1, 1) vs. B = (-1, 1, 1, -1)

• Item Type 4: A = (1, -1, -1, -1) vs. B = (-1, 1, 1, -1)

Raw data are available as heck2017_raw

References

Heck, D. W., Hilbig, B. E., & Moshagen, M. (2017). From information processing to deci-
sions: Formalizing and comparing probabilistic choice models. Cognitive Psychology, 96, 26-40.
doi:10.1016/j.cogpsych.2017.05.003

Examples

data(heck2017)
head(heck2017)
n <- rep(40, 4)

# cue validities and values
v <- c(.9, .8, .7, .6)
cueA <- matrix(c(-1, 1, 1, -1,

1, -1, -1, 1,
-1, 1, 1, 1,
1, -1, -1, -1),

ncol = 4, byrow = TRUE)
cueB <- matrix(c(-1, -1, -1, -1,

-1, 1 , -1, 1 ,
-1, 1 , 1 , -1,
-1, 1 , 1 , -1),

ncol = 4, byrow = TRUE)

# get predictions
strategies <- c("baseline", "WADDprob", "WADD",

"TTBprob", "TTB", "EQW", "GUESS")
strats <- strategy_multiattribute(cueA, cueB, v, strategies)

https://doi.org/10.1016/j.cogpsych.2017.05.003
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# strategy classification with Bayes factor
strategy_postprob(heck2017[1:4,], n, strats)

heck2017_raw Data: Multiattribute Decisions (Heck, Hilbig & Moshagen, 2017)

Description

Raw data with multiattribute decisions (Heck, Hilbig & Moshagen, 2017).

Usage

heck2017_raw

Format

A data frame with 21 variables:

vp ID code of participant

trial Trial index

pattern Number of cue pattern

ttb Prediction of take-the-best (TTB)

eqw Prediction of equal weights (EQW)

wadd Prediction of weighted additive (WADD)

logoddsdiff Log-odds difference (WADDprob)

ttbsteps Number of TTB steps (TTBprob)

itemtype Item type as in paper

reversedorder Whether item is reversed

choice Choice

rt Response time

choice.rev Choice (reversed)

a1 Value of Cue 1 for Option A

a2 Value of Cue 2 for Option A

a3 Value of Cue 3 for Option A

a4 Value of Cue 4 for Option A

b1 Value of Cue 1 for Option B

b2 Value of Cue 2 for Option B

b3 Value of Cue 3 for Option B

b4 Value of Cue 4 for Option B
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Details

Each participant made 40 choices for each of 4 item types with four cues (with validities .9, .8, .7,
and .6). Individual choice freqeuncies are available as heck2017

References

Heck, D. W., Hilbig, B. E., & Moshagen, M. (2017). From information processing to deci-
sions: Formalizing and comparing probabilistic choice models. Cognitive Psychology, 96, 26-40.
doi:10.1016/j.cogpsych.2017.05.003

See Also

heck2017 for the aggregated choice frequencies per item type.

Examples

data(heck2017_raw)
head(heck2017_raw)

# get cue values, validities, and predictions
cueA <- heck2017_raw[,paste0("a",1:4)]
cueB <- heck2017_raw[,paste0("b",1:4)]
v <- c(.9, .8, .7, .6)
strat <- strategy_multiattribute(cueA, cueB, v,

c("TTB", "TTBprob", "WADD",
"WADDprob", "EQW", "GUESS"))

# get unique item types
types <- strategy_unique(strat)
types$unique

# get table of choice frequencies for analysis
freq <- with(heck2017_raw,

table(vp, types$item_type, choice))
freqB <- freq[,4:1,1] + # reversed items: Option A

freq[,5:8,2] # non-rev. items: Option B
head(40 - freqB)
data(heck2017)
head(heck2017) # same frequencies (different order)

# strategy classification
pp <- strategy_postprob(freqB[1:4,], rep(40, 4),

types$strategies)
round(pp, 3)

https://doi.org/10.1016/j.cogpsych.2017.05.003
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hilbig2014 Data: Multiattribute Decisions (Hilbig & Moshagen, 2014)

Description

Choice frequencies of multiattribute decisions across 3 item types (Hilbig & Moshagen, 2014).

Usage

hilbig2014

Format

A data frame 3 variables:

B1 Frequency of choosing Option B for Item Type 1

B2 Frequency of choosing Option B for Item Type 2

B3 Frequency of choosing Option B for Item Type 3

Details

Each participant made 32 choices for each of 3 item types with four cues (with validities .9, .8, .7,
and .6).

The pattern of cue values of Option A and and B was as follows:

• Item Type 1: A = (1, 1, 1, -1) vs. B = (-1, 1, -1, 1)

• Item Type 2: A = (1, -1, -1, -1) vs. B = (-1, 1, 1, -1)

• Item Type 3: A = (1, 1, 1, -1) vs. B = (-1, 1, 1, 1)

References

Hilbig, B. E., & Moshagen, M. (2014). Generalized outcome-based strategy classification: Compar-
ing deterministic and probabilistic choice models. Psychonomic Bulletin & Review, 21(6), 1431-
1443. doi:10.3758/s1342301406430

Examples

data(hilbig2014)
head(hilbig2014)

# validities and cue values
v <- c(.9, .8, .7, .6)
cueA <- matrix(c(1, 1, 1, -1,

1, -1, -1, -1,
1, 1, 1, -1),

ncol = 4, byrow = TRUE)
cueB <- matrix(c(-1, 1, -1, 1,

-1, 1, 1, -1,

https://doi.org/10.3758/s13423-014-0643-0
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-1, 1, 1, 1),
ncol = 4, byrow = TRUE)

# get strategy predictions
strategies <- c("baseline", "WADDprob", "WADD",

"TTB", "EQW", "GUESS")
preds <- strategy_multiattribute(cueA, cueB, v, strategies)
c <- c(1, rep(.5, 5)) # upper bound of probabilities

# use Bayes factor for strategy classification
n <- rep(32, 3)
strategy_postprob(k = hilbig2014[1:5,], n, preds)

inside Check Whether Points are Inside a Convex Polytope

Description

Determines whether a point x is inside a convex poltyope by checking whether (1) all inequalities
A*x <= b are satisfied or (2) the point x is in the convex hull of the vertices in V.

Usage

inside(x, A, b, V)

Arguments

x a vector of length equal to the number of columns of A or V (i.e., a single point
in D-dimensional space) or matrix of points/vertices (one per row).

A a matrix with one row for each linear inequality constraint and one column for
each of the free parameters. The parameter space is defined as all probabilities
x that fulfill the order constraints A*x <= b.

b a vector of the same length as the number of rows of A.

V a matrix of vertices (one per row) that define the polytope of admissible param-
eters as the convex hull over these points (if provided, A and b are ignored).
Similar as for A, columns of V omit the last value for each multinomial condition
(e.g., a1,a2,a3,b1,b2 becomes a1,a2,b1). Note that this method is comparatively
slow since it solves linear-programming problems to test whether a point is in-
side a polytope (Fukuda, 2004) or to run the Gibbs sampler.

See Also

Ab_to_V and V_to_Ab to change between A/b and V representation.
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Examples

# linear order constraints: x1<x2<x3<.5
A <- matrix(c(1,-1, 0,

0, 1,-1,
0, 0, 1), ncol = 3, byrow = TRUE)

b <- c(0, 0, .50)

# vertices: admissible points (corners of polytope)
V <- matrix(c( 0, 0, 0,

0, 0,.5,
0,.5,.5,
.5,.5,.5), ncol = 3, byrow = TRUE)

xin <- c(.1, .2, .45) # inside
inside(xin, A, b)
inside(xin, V = V)

xout <- c(.4, .1, .55) # outside
inside(xout, A, b)
inside(xout, V = V)

inside_binom Check Whether Choice Frequencies are in Polytope

Description

Computes relative choice frequencies and checks whether these are in the polytope defined via (1)
A*x <= b or (2) by the convex hull of a set of vertices V.

Usage

inside_binom(k, n, A, b, V)

inside_multinom(k, options, A, b, V)

Arguments

k choice frequencies. For inside_binom: per item type (e.g.: a1,b1,c1,..) For
inside_multinom: for all choice options ordered by item type (e.g., for ternary
choices: a1,a2,a3, b1,b2,b3,..)

n only for inside_binom: number of choices per item type.

A a matrix with one row for each linear inequality constraint and one column for
each of the free parameters. The parameter space is defined as all probabilities
x that fulfill the order constraints A*x <= b.

b a vector of the same length as the number of rows of A.
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V a matrix of vertices (one per row) that define the polytope of admissible param-
eters as the convex hull over these points (if provided, A and b are ignored).
Similar as for A, columns of V omit the last value for each multinomial condition
(e.g., a1,a2,a3,b1,b2 becomes a1,a2,b1). Note that this method is comparatively
slow since it solves linear-programming problems to test whether a point is in-
side a polytope (Fukuda, 2004) or to run the Gibbs sampler.

options only for inside_multinom: number of response options per item type.

See Also

inside

Examples

############ binomial
# x1<x2<x3<.50:
A <- matrix(c(1,-1,0,

0,1,-1,
0,0, 1), ncol=3, byrow=TRUE)

b <- c(0, 0, .50)
k <- c( 0, 1, 5)
n <- c(10,10,10)
inside_binom(k, n, A, b)

############ multinomial
# two ternary choices:
# (a1,a2,a3, b1,b2,b3)
k <- c(1,4,10, 5,9,1)
options <- c(3, 3)
# a1<b1, a2<b2, no constraints on a3, b3
A <- matrix(c(1,-1,0, 0,

0, 0,1,-1), ncol=4, byrow=TRUE)
b <- c(0, 0)
inside_multinom(k, options, A, b)

# V-representation:
V <- matrix(c(0, 0, 0, 0,

0, 0, 0, 1,
0, 1, 0, 0,
0, 0, 1, 1,
0, 1, 0, 1,
1, 1, 0, 0,
0, 1, 1, 1,
1, 1, 0, 1,
1, 1, 1, 1), 9, 4, byrow = TRUE)

inside_multinom(k, options, V = V)
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karabatsos2004 Data: Item Responses Theory (Karabatsos & Sheu, 2004)

Description

The test was part of the 1992 Trial State Assessment in Reading at Grade 4, conducted by the
National Assessments of Educational Progress (NAEP).

Usage

karabatsos2004

Format

A list with 4 matrices:

k.M: Number of correct responses for participants with rest scores j=0,...,5 (i.e., the sum score
minus the score for item i)

n.M: Total number of participants for each cell of matrix k.M

k.IIO: Number of correct responses for participants with sum scores j=0,...,6

n.IIO: Total number of participants for each cell of matrix k.IIO

References

Karabatsos, G., & Sheu, C.-F. (2004). Order-constrained Bayes inference for dichotomous mod-
els of unidimensional nonparametric IRT. Applied Psychological Measurement, 28(2), 110-125.
doi:10.1177/0146621603260678

See Also

The polytope for the nonparametric item response theory can be obtained using (see nirt_to_Ab).

Examples

data(karabatsos2004)
head(karabatsos2004)

######################################################
##### Testing Monotonicity (M) #####
##### (Karabatsos & Sheu, 2004, Table 3, p. 120) #####

IJ <- dim(karabatsos2004$k.M)
monotonicity <- nirt_to_Ab(IJ[1], IJ[2], axioms = "W1")
p <- sampling_binom(k = c(karabatsos2004$k.M),

n = c(karabatsos2004$n.M),
A = monotonicity$A, b = monotonicity$b,
prior = c(.5, .5), M = 300)

https://doi.org/10.1177/0146621603260678
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# posterior means (Table 4, p. 120)
post.mean <- matrix(apply(p, 2, mean), IJ[1],

dimnames = dimnames(karabatsos2004$k.M))
round(post.mean, 2)

# posterior predictive checks (Table 4, p. 121)
ppp <- ppp_binom(p, c(karabatsos2004$k.M), c(karabatsos2004$n.M),

by = 1:prod(IJ))
ppp <- matrix(ppp[,3], IJ[1], dimnames = dimnames(karabatsos2004$k.M))
round(ppp, 2)

######################################################
##### Testing invariant item ordering (IIO) #####
##### (Karabatsos & Sheu, 2004, Table 6, p. 122) #####

IJ <- dim(karabatsos2004$k.IIO)
iio <- nirt_to_Ab(IJ[1], IJ[2], axioms = "W2")
p <- sampling_binom(k = c(karabatsos2004$k.IIO),

n = c(karabatsos2004$n.IIO),
A = iio$A, b = iio$b,
prior = c(.5, .5), M = 300)

# posterior predictive checks (Table 6, p. 122)
ppp <- ppp_binom(prob = p, k = c(karabatsos2004$k.IIO),

n = c(karabatsos2004$n.IIO), by = 1:prod(IJ))
matrix(ppp[,3], 7, dimnames = dimnames(karabatsos2004$k.IIO))

# for each item:
ppp <- ppp_binom(p, c(karabatsos2004$k.IIO), c(karabatsos2004$n.IIO),

by = rep(1:IJ[2], each = IJ[1]))
round(ppp[,3], 2)

ml_binom Maximum-likelihood Estimate

Description

Get ML estimate for product-binomial/multinomial model with linear inequality constraints.

Usage

ml_binom(k, n, A, b, map, strategy, n.fit = 3, start, progress = FALSE, ...)

ml_multinom(k, options, A, b, V, n.fit = 3, start, progress = FALSE, ...)

Arguments

k vector of observed response frequencies.

n the number of choices per item type. If k=n=0, Bayesian inference is relies on
the prior distribution only.
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A a matrix with one row for each linear inequality constraint and one column for
each of the free parameters. The parameter space is defined as all probabilities
x that fulfill the order constraints A*x <= b.

b a vector of the same length as the number of rows of A.

map optional: numeric vector of the same length as k with integers mapping the fre-
quencies k to the free parameters/columns of A/V, thereby allowing for equality
constraints (e.g., map=c(1,1,2,2)). Reversed probabilities 1-p are coded by
negative integers. Guessing probabilities of .50 are encoded by zeros. The de-
fault assumes different parameters for each item type: map=1:ncol(A)

strategy a list that defines the predictions of a strategy, seestrategy_multiattribute.

n.fit number of calls to constrOptim.

start only relevant if steps is defined or cmin>0: a vector with starting values in
the interior of the polytope. If missing, an approximate maximum-likelihood
estimate is used.

progress whether a progress bar should be shown (if cpu=1).

... further arguments passed to the function constrOptim. To ensure high accuracy,
the number of maximum iterations should be sufficiently large (e.g., by setting
control = list(maxit = 1e6, reltol=.Machine$double.eps^.6), outer.iterations
= 1000.

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

V a matrix of vertices (one per row) that define the polytope of admissible param-
eters as the convex hull over these points (if provided, A and b are ignored).
Similar as for A, columns of V omit the last value for each multinomial condition
(e.g., a1,a2,a3,b1,b2 becomes a1,a2,b1). Note that this method is comparatively
slow since it solves linear-programming problems to test whether a point is in-
side a polytope (Fukuda, 2004) or to run the Gibbs sampler.

Details

First, it is checked whether the unconstrained maximum-likelihood estimator (e.g., for the binomial:
k/n) is inside the constrained parameter space. Only if this is not the case, nonlinear optimization
with convex linear-inequality constrained is used to estimate (A) the probability parameters θ for
the Ab-representation or (B) the mixture weights α for the V-representation.

Value

the list returned by the optimizer constrOptim, including the input arguments (e.g., k, options, A,
V, etc.).

• If the Ab-representation was used, par provides the ML estimate for the probability vector θ.

• If the V-representation was used, par provides the estimates for the (usually not identifiable)
mixture weights α that define the convex hull of the vertices in V , while p provides the ML es-
timates for the probability parameters. Because the weights must sum to one, the α-parameter
for the last row of the matrix V is dropped. If the unconstrained ML estimate is inside the
convex hull, the mixture weights α are not estimated and replaced by missings (NA).
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Examples

# predicted linear order: p1 < p2 < p3 < .50
# (cf. WADDprob in ?strategy_multiattribute)
A <- matrix(c(1, -1, 0,

0, 1, -1,
0, 0, 1),

ncol = 3, byrow = TRUE)
b <- c(0, 0, .50)
ml_binom(k = c(4,1,23), n = 40, A, b)[1:2]
ml_multinom(k = c(4,36, 1,39, 23,17),

options = c(2,2,2), A, b)[1:2]

# probabilistic strategy: A,A,A,B [e1<e2<e3<e4<.50]
strat <- list(pattern = c(-1, -2, -3, 4),

c = .5, ordered = TRUE, prior = c(1,1))
ml_binom(c(7,3,1, 19), 20, strategy = strat)[1:2]

# vertex representation (one prediction per row)
V <- matrix(c(

# strict weak orders
0, 1, 0, 1, 0, 1, # a < b < c
1, 0, 0, 1, 0, 1, # b < a < c
0, 1, 0, 1, 1, 0, # a < c < b
0, 1, 1, 0, 1, 0, # c < a < b
1, 0, 1, 0, 1, 0, # c < b < a
1, 0, 1, 0, 0, 1, # b < c < a

0, 0, 0, 1, 0, 1, # a ~ b < c
0, 1, 0, 0, 1, 0, # a ~ c < b
1, 0, 1, 0, 0, 0, # c ~ b < a
0, 1, 0, 1, 0, 0, # a < b ~ c
1, 0, 0, 0, 0, 1, # b < a ~ c
0, 0, 1, 0, 1, 0, # c < a ~ b

0, 0, 0, 0, 0, 0 # a ~ b ~ c
), byrow = TRUE, ncol = 6)

ml_multinom(k = c(4,1,5, 1,9,0, 7,2,1), n.fit = 1,
options = c(3,3,3), V = V)

model_weights Get Posterior/NML Model Weights

Description

Computes the posterior model probabilities based on the log-marginal likelihoods/negative NML
values.
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Usage

model_weights(x, prior)

Arguments

x vector or matrix of log-marginal probabilities or negative NML values (if matrix:
one model per column)

prior vector of prior model probabilities (default: uniform over models). The vector
is normalized internally to sum to one.

Examples

logmarginal <- c(-3.4, -2.0, -10.7)
model_weights(logmarginal)

nml <- matrix(c(2.5, 3.1, 4.2,
1.4, 0.3, 8.2), nrow = 2, byrow = TRUE)

model_weights(-nml)

nirt_to_Ab Nonparametric Item Response Theory (NIRT)

Description

Provides the inequality constraints on choice probabilities implied by nonparametric item response
theory (NIRT; Karabatsos, 2001).

Usage

nirt_to_Ab(N, M, options = 2, axioms = c("W1", "W2"))

Arguments

N number of persons / rows in item-response table

M number of items / columns in item-response table

options number of item categories/response options. If options=2, a dichotomous NIRT
for product-binomial data is returned.

axioms which axioms should be included in the polytope representation A ∗ x <= b?
See details.
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Details

In contrast to parametric IRT models (e.g., the 1-parameter-logistic Rasch model), NIRT does not
assume specific parametric shapes of the item-response and person-response functions. Instead, the
necessary axioms for a unidimensional representation of the latent trait are tested directly.

The axioms are as follows:

• "W1": Weak row/subject independence: Persons can be ordered on an ordinal scale indepen-
dent of items.

• "W2": Weak column/item independence: Items can be ordered on an ordinal scale independent
of persons

• "DC": Double cancellation: A necessary condition for a joint ordering of (person,item) pairs
and an additive representation (i.e., an interval scale).

Note that axioms W1 and W2 jointly define the ISOP model by Scheiblechner (1995; isotonic
ordinal probabilistic model) and the double homogeneity model by Mokken (1971). If DC is added,
we obtain the ADISOP model by Scheiblechner (1999; ).

References

Karabatsos, G. (2001). The Rasch model, additive conjoint measurement, and new models of prob-
abilistic measurement theory. Journal of Applied Measurement, 2(4), 389–423.

Karabatsos, G., & Sheu, C.-F. (2004). Order-constrained Bayes inference for dichotomous mod-
els of unidimensional nonparametric IRT. Applied Psychological Measurement, 28(2), 110-125.
doi:10.1177/0146621603260678

Mokken, R. J. (1971). A theory and procedure of scale analysis: With applications in political
research (Vol. 1). Berlin: Walter de Gruyter.

Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60(2),
281–304. doi:10.1007/BF02301417

Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychome-
trika, 64(3), 295–316. doi:10.1007/BF02294297

Examples

# 5 persons, 3 items
nirt_to_Ab(5, 3)

population_bf Aggregation of Individual Bayes Factors

Description

Aggregation of multiple individual (N=1) Bayes factors to obtain the evidence for a hypothesis in a
population of persons.

https://doi.org/10.1177/0146621603260678
https://doi.org/10.1007/BF02301417
https://doi.org/10.1007/BF02294297
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Usage

population_bf(bfs)

Arguments

bfs a vector with individual Bayes factors, a matrix with one type of Bayes-factor
comparison per column, or a list of matrices with a named column "bf" (as
returned by bf_multinom/count_to_bf).

Value

a vector or matrix with named elements/columns:

• population_bf: the product of individual BFs

• geometric_bf: the geometric mean of the individual BFs

• evidence_rate: the proportion of BFs>1 (BFs<1) if geometric_bf>1 (<1). Values close to
1.00 indicate homogeneity.

• stability_rate: the proportion bfs>geometric_bf (<) if geometric_bf>1 (<). Values
close to 0.50 indicate stability.

References

Klaassen, F., Zedelius, C. M., Veling, H., Aarts, H., & Hoijtink, H. (in press). All for one or
some for all? Evaluating informative hypotheses using multiple N = 1 studies. Behavior Research
Methods. https://doi.org/10.3758/s13428-017-0992-5

Examples

# consistent evidence across persons:
bfs <- c(2.3, 1.8, 3.3, 2.8, 4.0, 1.9, 2.5)
population_bf(bfs)

# (A) heterogeneous, inconsistent evidence
# (B) heterogeneous, inconsistent evidence
bfs <- cbind(A = c(2.3, 1.8, 3.3, 2.8, 4.0, 1.9, 2.5),

B = c(10.3, .7, 3.3, .8, 14.0, .9, 1.5))
population_bf(bfs)

postprob Transform Bayes Factors to Posterior Model Probabilities

Description

Computes posterior model probabilities based on Bayes factors.
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Usage

postprob(..., prior, include_unconstr = TRUE)

Arguments

... one or more Bayes-factor objects for different models as returned by the func-
tions bf_binom, bf_multinom and count_to_bf (i.e., a 3x4 matrix containing
a row "bf0u" and a column "bf"). Note that the Bayes factors must have been
computed for the same data and using the same prior (this is not checked inter-
nally).

prior a vector of prior model probabilities (default: uniform). The order must be iden-
tical to that of the Bayes factors supplied via .... If include_unconstr=TRUE,
the unconstrained model is automatically added to the list of models (at the last
position).

include_unconstr

whether to include the unconstrained, encompassing model without inequality
constraints (i.e., the saturated model).

Examples

# data: binomial frequencies in 4 conditions
n <- 100
k <- c(59, 54, 74)

# Hypothesis 1: p1 < p2 < p3
A1 <- matrix(c(1, -1, 0,

0, 1, -1), 2, 3, TRUE)
b1 <- c(0, 0)

# Hypothesis 2: p1 < p2 and p1 < p3
A2 <- matrix(c(1, -1, 0,

1, 0, -1), 2, 3, TRUE)
b2 <- c(0, 0)

# get posterior probability for hypothesis
bf1 <- bf_binom(k, n, A = A1, b = b1)
bf2 <- bf_binom(k, n, A = A2, b = b2)
postprob(bf1, bf2,

prior = c(bf1=1/3, bf2=1/3, unconstr=1/3))

ppp_binom Posterior Predictive p-Values

Description

Uses posterior samples to get posterior-predicted frequencies and compare the Pearson’s X^2 statis-
tic for (1) the observed frequencies vs. (2) the posterior-predicted frequencies.
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Usage

ppp_binom(prob, k, n, by)

ppp_multinom(prob, k, options, drop_fixed = TRUE)

Arguments

prob vector with probabilities or a matrix with one probability vector per row. For
rpbinom: probabilities of a success for each option. For rpmultinom: probabili-
ties of all categories excluding the last category for each option (cf. drop_fixed).
See also sampling_binom and sampling_multinom.

k vector of observed response frequencies.

n integer vector, specifying the number of trials for each binomial/multinomial
distribution Note that this is the size argument in rmultinom, cf. Multinom.

by optional: a vector of the same length as k indicating factor levels by which the
posterior-predictive checks should be split (e.g., by item sets).

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

drop_fixed whether the output matrix includes the last probability for each category (which
is not a free parameter since probabilities must sum to one).

References

Myung, J. I., Karabatsos, G., & Iverson, G. J. (2005). A Bayesian approach to testing decision
making axioms. Journal of Mathematical Psychology, 49, 205-225. doi:10.1016/j.jmp.2005.02.004

See Also

sampling_binom/sampling_multinom to get posterior samples and rpbinom/rpmultinom to get
posterior-predictive samples.

Examples

# uniform samples: p<.10
prob <- matrix(runif(300*3, 0, .1), 300)
n <- rep(10, 3)
ppp_binom(prob, c(1,2,0), n) # ok
ppp_binom(prob, c(5,4,3), n) # misfit

# multinomial (ternary choice)
prob <- matrix(runif(300*2, 0, .05), 300)
ppp_multinom(prob, c(1,0,9), 3) # ok

https://doi.org/10.1016/j.jmp.2005.02.004
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regenwetter2012 Data: Ternary Risky Choices (Regenwetter & Davis-Stober, 2012)

Description

Raw data with choice frequencies for all 20 paired comparison of 5 gambles a, b, c, d, and e.
Participants could either choose "Option 1", "Option 2", or "indifferent" (ternary choice). Each
paired comparison (e.g., a vs. b) was repeated 45 times per participant. The data include 3 different
gamble sets and aimed at testing whether people have transitive preferences (see Regenwetter &
Davis-Stober, 2012).

Usage

regenwetter2012

Format

A matrix with 22 columns:

participant: Participant number

gamble_set: Gamble set

a>b: Number of times a preferred over b

b>a: Number of times b preferred over a

a=b: Number of times being indifferent between a and b

References

Regenwetter, M., & Davis-Stober, C. P. (2012). Behavioral variability of choices versus structural
inconsistency of preferences. Psychological Review, 119(2), 408-416. doi:10.1037/a0027372

See Also

The substantive model of interest was the strict weak order polytope (see swop5).

Examples

data(regenwetter2012)
head(regenwetter2012)

# check transitive preferences: strict weak order polytope (SWOP)
data(swop5)
tail(swop5$A, 3)
# participant 1, gamble set 1:
p1 <- regenwetter2012[1,-c(1:2)]
inside_multinom(p1, swop5$options, swop5$A, swop5$b)

# posterior samples

https://doi.org/10.1037/a0027372
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p <- sampling_multinom(regenwetter2012[1,-c(1:2)],
swop5$options, swop5$A, swop5$b,
M=100, start = swop5$start)

colMeans(p)
apply(p[,1:6], 2, plot, type = "l")
ppp_multinom(p, p1, swop5$options)

# Bayes factor
bf_multinom(regenwetter2012[1,-c(1:2)], swop5$options,

swop5$A, swop5$b, M = 10000)

rpbinom Random Generation for Independent Multinomial Distributions

Description

Generates random draws from independent multinomial distributions (= product-multinomial pmultinom).

Usage

rpbinom(prob, n)

rpmultinom(prob, n, options, drop_fixed = TRUE)

Arguments

prob vector with probabilities or a matrix with one probability vector per row. For
rpbinom: probabilities of a success for each option. For rpmultinom: probabili-
ties of all categories excluding the last category for each option (cf. drop_fixed).
See also sampling_binom and sampling_multinom.

n integer vector, specifying the number of trials for each binomial/multinomial
distribution Note that this is the size argument in rmultinom, cf. Multinom.

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

drop_fixed whether the output matrix includes the last probability for each category (which
is not a free parameter since probabilities must sum to one).

Value

a matrix with one vector of frequencies per row. For rpbinom, only the frequencies of ’successes’
are returned, whereas for rpmultinom, the complete frequency vectors (which sum to n within each
option) are returned.
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Examples

# 3 binomials
rpbinom(prob = c(.2, .7, .9), n = c(10, 50, 30))

# 2 and 3 options: [a1,a2, b1,b2,b3]
rpmultinom(prob = c(a1=.5, b1=.3,b2=.6),

n = c(10, 20), options = c(2, 3))
# or:
rpmultinom(prob = c(a1=.5,a2=.5, b1=.3,b2=.6,b3=.1),

n = c(10, 20), options = c(2, 3),
drop_fixed = FALSE)

# matrix with one probability vector per row:
p <- rpdirichlet(n = 6, alpha = c(1,1, 1,1,1),

options = c(2, 3))
rpmultinom(prob = p, n = c(20, 50), options = c(2,3))

rpdirichlet Random Samples from the Product-Dirichlet Distribution

Description

Random samples from the prior/posterior (i.e., product-Dirichlet) of the unconstrained product-
multinomial model (the encompassing model).

Usage

rpdirichlet(n, alpha, options, drop_fixed = TRUE)

Arguments

n number of samples

alpha Dirichlet parameters concatenated across independent conditions (e.g., a1,a2,
b1,b2,b3)

options the number of choice options per item type, e.g., c(2,3) for a binary and ternary
condition. The sum of options must be equal to the length of alpha.

drop_fixed whether the output matrix includes the last probability for each category (which
is not a free parameter since probabilities must sum to one).

Examples

# standard uniform Dirichlet
rpdirichlet(5, c(1,1,1,1), 4)
rpdirichlet(5, c(1,1,1,1), 4, drop_fixed = FALSE)

# two ternary outcomes: (a1,a2,a3, b1,b2,b3)
rpdirichlet(5, c(9,5,1, 3,6,6), c(3,3))
rpdirichlet(5, c(9,5,1, 3,6,6), c(3,3), drop_fixed = FALSE)
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sampling_multinom Posterior Sampling for Inequality-Constrained Multinomial Models

Description

Uses Gibbs sampling to draw posterior samples for binomial and multinomial models with linear
inequality-constraints.

Usage

sampling_multinom(
k,
options,
A,
b,
V,
prior = rep(1, sum(options)),
M = 5000,
start,
burnin = 10,
progress = TRUE,
cpu = 1

)

sampling_binom(
k,
n,
A,
b,
V,
map = 1:ncol(A),
prior = c(1, 1),
M = 5000,
start,
burnin = 10,
progress = TRUE,
cpu = 1

)

Arguments

k the number of choices for each alternative ordered by item type (e.g. c(a1,a2,a3,
b1,b2) for a ternary and a binary item type). The length of k must be equal to
the sum of options. The default k=0 is equivalent to sampling from the prior.

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.
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A a matrix with one row for each linear inequality constraint and one column for
each of the free parameters. The parameter space is defined as all probabilities
x that fulfill the order constraints A*x <= b.

b a vector of the same length as the number of rows of A.

V a matrix of vertices (one per row) that define the polytope of admissible param-
eters as the convex hull over these points (if provided, A and b are ignored).
Similar as for A, columns of V omit the last value for each multinomial condition
(e.g., a1,a2,a3,b1,b2 becomes a1,a2,b1). Note that this method is comparatively
slow since it solves linear-programming problems to test whether a point is in-
side a polytope (Fukuda, 2004) or to run the Gibbs sampler.

prior the prior parameters of the Dirichlet-shape parameters. Must have the same
length as k.

M number of posterior samples

start only relevant if steps is defined or cmin>0: a vector with starting values in
the interior of the polytope. If missing, an approximate maximum-likelihood
estimate is used.

burnin number of burnin samples that are discarded. Can be chosen to be small if the
maxmimum-a-posteriori estimate is used as the (default) starting value.

progress whether a progress bar should be shown (if cpu=1).

cpu either the number of CPUs using separate MCMC chains in parallel, or a parallel
cluster (e.g., cl <- parallel::makeCluster(3)). All arguments of the func-
tion call are passed directly to each core, and thus the total number of samples
is M*number_cpu.

n the number of choices per item type. If k=n=0, Bayesian inference is relies on
the prior distribution only.

map optional: numeric vector of the same length as k with integers mapping the fre-
quencies k to the free parameters/columns of A/V, thereby allowing for equality
constraints (e.g., map=c(1,1,2,2)). Reversed probabilities 1-p are coded by
negative integers. Guessing probabilities of .50 are encoded by zeros. The de-
fault assumes different parameters for each item type: map=1:ncol(A)

Details

Draws posterior samples for binomial/multinomial random utility models that assume a mixture
over predefined preference orders/vertices that jointly define a convex polytope via the set of in-
equalities A * x < b or as the convex hull of a set of vertices V.

Value

an mcmc matrix (or an mcmc.list if cpu>1) with posterior samples of the binomial/multinomial
probability parameters. See mcmc) .

References

Myung, J. I., Karabatsos, G., & Iverson, G. J. (2005). A Bayesian approach to testing decision
making axioms. Journal of Mathematical Psychology, 49, 205-225. doi:10.1016/j.jmp.2005.02.004

https://doi.org/10.1016/j.jmp.2005.02.004
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See Also

count_multinom, ml_multinom

Examples

############### binomial ##########################
A <- matrix(c(1, 0, 0, # x1 < .50

1, 1, 1, # x1+x2+x3 < 1
0, 2, 2, # 2*x2+2*x3 < 1
0, -1, 0, # x2 > .2
0, 0, 1), # x3 < .1

ncol = 3, byrow = TRUE)
b <- c(.5, 1, 1, -.2, .1)
samp <- sampling_binom(c(5,12,7), c(20,20,20), A, b)
head(samp)
plot(samp)

############### multinomial ##########################
# binary and ternary choice:
# (a1,a2 b1,b2,b3)
k <- c(15,9, 5,2,17)
options <- c(2, 3)

# columns: (a1, b1,b2)
A <- matrix(c(1, 0, 0, # a1 < .20

0, 2, 1, # 2*b1+b2 < 1
0, -1, 0, # b1 > .2
0, 0, 1), # b2 < .4

ncol = 3, byrow = TRUE)
b <- c(.2, 1, -.2, .4)
samp <- sampling_multinom(k, options, A, b)
head(samp)
plot(samp)

sampling_nonlinear Posterior Sampling for Multinomial Models with Nonlinear Inequali-
ties

Description

A Gibbs sampler that draws posterior samples of probability parameters conditional on a (possibly
nonlinear) indicator function defining a restricted parameter space that is convex.

Usage

sampling_nonlinear(
k,
options,
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inside,
prior = rep(1, sum(options)),
M = 1000,
start,
burnin = 10,
eps = 1e-06,
progress = TRUE,
cpu = 1

)

Arguments

k vector of observed response frequencies.

options number of observable categories/probabilities for each item type/multinomial
distribution, e.g., c(3,2) for a ternary and binary item.

inside an indicator function that takes a vector with probabilities p=c(p11,p12, p21,p22,...)
(where the last probability for each multinomial is dropped) as input and returns
1 or TRUE if the order constraints are satisfied and 0 or FALSE otherwise (see
details).

prior a vector with two positive numbers defining the shape parameters of the beta
prior distributions for each binomial rate parameter.

M number of posterior samples drawn from the encompassing model

start only relevant if steps is defined or cmin>0: a vector with starting values in
the interior of the polytope. If missing, an approximate maximum-likelihood
estimate is used.

burnin number of burnin samples that are discarded. Can be chosen to be small if the
maxmimum-a-posteriori estimate is used as the (default) starting value.

eps precision of the bisection algorithm

progress whether a progress bar should be shown (if cpu=1).

cpu either the number of CPUs used for parallel sampling, or a parallel cluster (e.g.,
cl <- parallel::makeCluster(3)). All arguments of the function call are
passed directly to each core, and thus the total number of samples is M*number_cpu.

Details

Inequality constraints are defined via an indicator function inside which returns inside(x)=1 (or
0) if the vector of free parameters x is inside (or outside) the model space. Since the vector x must
include only free (!) parameters, the last probability for each multinomial must not be used in the
function inside(x)!

Efficiency can be improved greatly if the indicator function is defined as C++ code via the function
cppXPtr in the package RcppXPtrUtils (see below for examples). In this case, please keep in mind
that indexing in C++ starts with 0,1,2... (not with 1,2,3,... as in R)!

For each parameter, the Gibbs sampler draws a sample from the conditional posterior distribution
(a scaled, truncated beta). The conditional truncation boundaries are computed with a bisection
algorithm. This requires that the restricted parameteter space defined by the indicator function is
convex.
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Examples

# two binomial success probabilities: x = c(x1, x2)
# restriction to a circle:
model <- function(x)

(x[1]-.50)^2 + (x[2]-.50)^2 <= .15

# draw prior samples
mcmc <- sampling_nonlinear(k = 0, options = c(2,2),

inside = model, M = 1000)
head(mcmc)
plot(c(mcmc[,1]), c(mcmc[,2]), xlim=0:1, ylim=0:1)

##### Using a C++ indicator function (much faster)
cpp_code <- "SEXP inside(NumericVector x){

return wrap( sum(pow(x-.50, 2)) <= .15);}"
# NOTE: Uses Rcpp sugar syntax (vectorized sum & pow)

# define function via C++ pointer:
model_cpp <- RcppXPtrUtils::cppXPtr(cpp_code)
mcmc <- sampling_nonlinear(k=0, options = c(2,2),

inside = model_cpp)
head(mcmc)
plot(c(mcmc[,1]), c(mcmc[,2]), xlim=0:1, ylim=0:1)

stochdom_Ab Ab-Representation for Stochastic Dominance of Histogram Bins

Description

Provides the necessary linear equality constraints to test stochastic dominance of continuous distri-
butions, that is, whether the cumulative density functions F satisfy the constraint F1(t) < F2(t) for
all t.

Usage

stochdom_Ab(bins, conditions = 2, order = "<")

Arguments

bins number of bins of histogram

conditions number of conditions

order order constraint on the random variables across conditions. The default order="<"
implies that the random variables increase across conditions (implying that the
cdfs decrease: F1(t) > F2(t)).



50 stochdom_bf

References

Heathcote, A., Brown, S., Wagenmakers, E. J., & Eidels, A. (2010). Distribution-free tests of
stochastic dominance for small samples. Journal of Mathematical Psychology, 54(5), 454-463.
doi:10.1016/j.jmp.2010.06.005

See Also

stochdom_bf to obtain a Bayes factor directly.

Examples

stochdom_Ab(4, 2)
stochdom_Ab(4, 3)

stochdom_bf Bayes Factor for Stochastic Dominance of Continuous Distributions

Description

Uses discrete bins (as in a histogram) to compute the Bayes factor in favor of stochastic dominance
of continuous distributions.

Usage

stochdom_bf(x1, x2, breaks = "Sturges", order = "<", ...)

Arguments

x1 a vector with samples from the first random variable/experimental condition.

x2 a vector with samples from the second random variable/experimental condition.

breaks number of bins of histogram. See hist.

order order constraint on the random variables across conditions. The default order="<"
implies that the random variables increase across conditions (implying that the
cdfs decrease: F1(t) > F2(t)).

... further arguments passed to bf_multinom. Note that the noninformative default
prior 1/number_of_bins is used.

References

Heathcote, A., Brown, S., Wagenmakers, E. J., & Eidels, A. (2010). Distribution-free tests of
stochastic dominance for small samples. Journal of Mathematical Psychology, 54(5), 454-463.
doi:10.1016/j.jmp.2010.06.005

https://doi.org/10.1016/j.jmp.2010.06.005
https://doi.org/10.1016/j.jmp.2010.06.005
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Examples

x1 <- rnorm(300, 0, 1)
x2 <- rnorm(300, .5, 1) # dominates x1
x3 <- rnorm(300, 0, 1.2) # intersects x1

plot(ecdf(x1))
lines(ecdf(x2), col = "red")
lines(ecdf(x3), col = "blue")

b12 <- stochdom_bf(x1, x2, order = "<", M =5e4)
b13 <- stochdom_bf(x1, x3, order = "<", M =5e4)
b12$bf
b13$bf

strategy_marginal Log-Marginal Likelihood for Decision Strategy

Description

Computes the logarithm of the marginal likelihood, defined as the integral over the likelihood func-
tion weighted by the prior distribution of the error probabilities.

Usage

strategy_marginal(k, n, strategy)

Arguments

k observed frequencies of Option B. Either a vector or a matrix/data frame (one
person per row).

n vector with the number of choices per item type.

strategy a list that defines the predictions of a strategy, seestrategy_multiattribute.

Examples

k <- c(1,11,18)
n <- c(20, 20, 20)
# pattern: A, A, B with constant error e<.50
strat <- list(pattern = c(-1, -1, 1),

c = .5, ordered = FALSE,
prior = c(1,1))

m1 <- strategy_marginal(k, n, strat)
m1

# pattern: A, B, B with ordered error e1<e3<e2<.50
strat2 <- list(pattern = c(-1, 3, 2),

c = .5, ordered = TRUE,
prior = c(1,1))
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m2 <- strategy_marginal(k, n, strat2)
m2

# Bayes factor: Model 2 vs. Model 1
exp(m2 - m1)

strategy_multiattribute

Strategy Predictions for Multiattribute Decisions

Description

Returns a list defining the predictions of different choice strategies (e.g., TTB, WADD)

Usage

strategy_multiattribute(cueA, cueB, v, strategy, c = 0.5, prior = c(1, 1))

Arguments

cueA cue values of Option A (-1/+1 = negative/positive; 0 = missing). If a matrix is
provided, each row defines one item type.

cueB cue values of Option B (see cueA).

v cue validities: probabilities that cues lead to correct decision. Must be of the
same length as the number of cues.

strategy strategy label, e.g., "TTB", "WADD", or "WADDprob". Can be a vector. See details.

c defines the upper boundary for the error probabilities

prior defines the prior distribution for the error probabilities (i.e., truncated indepen-
dent beta distributions dbeta(prior[1], prior[2]) )

Value

a strategy object (a list) with the entries:

• pattern: a numeric vector encoding the predicted choice pattern by the sign (negative =
Option A, positive = Option B, 0 = guessing). Identical error probabilities are encoded by
using the same absolute number (e.g., c(-1,1,1) defines one error probability with A,B,B
predictions).

• c: upper boundary of error probabilities

• ordered: whether error probabilities are linearly ordered by their absolute value in pattern
(largest error: smallest absolute number)

• prior: a numeric vector with two positive values specifying the shape parameters of the beta
prior distribution (truncated to the interval [0,c]

• label: strategy label
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Examples

# single item type
v <- c(.9, .8, .7, .6)
ca <- c(1, -1, -1, 1)
cb <- c(-1, 1, -1, -1)
strategy_multiattribute(ca, cb, v, "TTB")
strategy_multiattribute(ca, cb, v, "WADDprob")

# multiple item types
data(heck2017_raw)
strategy_multiattribute(heck2017_raw[1:10, c("a1","a2","a3","a4")],

heck2017_raw[1:10, c("b1","b2","b3","b4")],
v, "WADDprob")

strategy_postprob Strategy Classification: Posterior Model Probabilities

Description

Posterior model probabilities for multiple strategies (with equal prior model probabilities).

Usage

strategy_postprob(k, n, strategies, cpu = 1)

Arguments

k observed frequencies of Option B. Either a vector or a matrix/data frame (one
person per row).

n vector with the number of choices per item type.

strategies list of strategies. See strategy_multiattribute

cpu number of processing units for parallel computation.

See Also

strategy_marginal and model_weights

Examples

# pattern 1: A, A, B with constant error e<.50
strat1 <- list(pattern = c(-1, -1, 1),

c = .5, ordered = FALSE,
prior = c(1,1))

# pattern 2: A, B, B with ordered error e1<e3<e2<.50
strat2 <- list(pattern = c(-1, 3, 2),

c = .5, ordered = TRUE,
prior = c(1,1))

baseline <- list(pattern = 1:3, c = 1, ordered = FALSE,
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prior = c(1,1))

# data
k <- c(3, 4, 12) # frequencies Option B
n <- c(20, 20, 20) # number of choices
strategy_postprob(k, n, list(strat1, strat2, baseline))

strategy_to_Ab Transform Pattern of Predictions to Polytope

Description

Transforms ordered item-type predictions to polytope definition. This allows to use Monte-Carlo
methods to compute the Bayes factor if the number of item types is large (bf_binom).

Usage

strategy_to_Ab(strategy)

Arguments

strategy a decision strategy returned by strategy_multiattribute.

Details

Note: Only works for models without guessing predictions and without equality constraints (i.e.,
requires separate error probabilities per item type)

Value

a list containing the matrix A and the vector b that define a polytope via A*x <= b.

Examples

# strategy: A,B,B,A e2<e3<e4<e1<.50
strat <- list(pattern = c(-1,4,3,-2),

c = .5, ordered = TRUE,
prior = c(1,1))

pt <- strategy_to_Ab(strat)
pt

# compare results to encompassing BF method:
b <- list(pattern = 1:4, c = 1,

ordered = FALSE, prior = c(1,1))
k <- c(2, 20, 18, 0)
n <- rep(20, 4)
m1 <- strategy_postprob(k, n, list(strat, b))
log(m1[1] / m1[2])
bf_binom(k, n, pt$A, pt$b, log = TRUE)
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strategy_unique Unique Patterns/Item Types of Strategy Predictions

Description

Find unique item types, which are defined as patterns of cue values that lead to identical strategy
predictions.

Usage

strategy_unique(strategies, add_baseline = TRUE, reversed = FALSE)

Arguments

strategies a list of strategy predictions with the same length of the vector pattern, see
strategy_multiattribute.

add_baseline whether to add a baseline model which assumes one probability in [0,1] for each
item type.

reversed whether reversed patterns are treated separately (default: automatically switch
Option A and B if pattern=c(-1,1,1,1))

Value

a list including:

• unique: a matrix with the unique strategy patterns

• item_type: a vector that maps the original predictions to item types (negative: reversed items)

• strategies: a list with strategy predictions with pattern adapted to the unique item types

Examples

data(heck2017_raw)
ca <- heck2017_raw[1:100, c("a1","a2","a3","a4")]
cb <- heck2017_raw[1:100, c("b1","b2","b3","b4")]
v <- c(.9, .8, .7, .6)
strats <- strategy_multiattribute(ca,cb, v,

c("WADDprob","WADD","TTB"))
strategy_unique(strats)
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swop5 Strict Weak Order Polytope for 5 Elements and Ternary Choices

Description

Facet-defining inequalities of the strict weak order mixture model for all 10 paired comparisons of 5
choice elements a,b,c,d,e in a 3-alternative forced-choice task (Regenwetter & Davis-Stober, 2012).

Usage

swop5

Format

A list with 3 elements:

A: Matrix with inequality constraints that define a polytope via A*x <= b.
b: vector with upper bounds for the inequalities.
start: A point in the polytope.
options: A vector with the number of options (=3) per item type.

References

Regenwetter, M., & Davis-Stober, C. P. (2012). Behavioral variability of choices versus structural
inconsistency of preferences. Psychological Review, 119(2), 408-416. doi:10.1037/a0027372

See Also

The corresponding data set regenwetter2012.

Examples

data(swop5)
tail(swop5$A) # A*x <= b
tail(swop5$b)
swop5$start # inside SWOP polytope
swop5$options # 3 choice options per item

# check whether point is in polytope:
inside(swop5$start, swop5$A, swop5$b)

# get prior samples:
p <- sampling_multinom(0, swop5$options,

swop5$A, swop5$b,
M = 100, start = swop5$start)

colMeans(p)
apply(p[,1:5], 2, plot, type = "l")

https://doi.org/10.1037/a0027372
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V_to_Ab Transform Vertex/Inequality Representation of Polytope

Description

For convex polytopes: Requires rPorta (https://github.com/TasCL/rPorta) to transform the
vertex representation to/from the inequality representation. Since rPorta cannot be compiled with
R versions >=4.0.0 anymore, the function is currently deprecated.

Usage

V_to_Ab(V)

Ab_to_V(A, b, options = 2)

Arguments

V a matrix with one vertex of a polytope per row (e.g., the admissible preference
orders of a random utility model or any other theory). Since the values have to
sum up to one within each multinomial condition, the last value of each multi-
nomial is omitted (e.g., the prediction 1-0-0/0-1 for a tri and binomial becomes
1-0/0).

A a matrix defining the convex polytope via A*x <= b. The columns of A do not
include the last choice option per item type and thus the number of columns must
be equal to sum(options-1) (e.g., the column order of A for k = c(a1,a2,a2,
b1,b2) is c(a1,a2, b1)).

b a vector of the same length as the number of rows of A.

options number of choice options per item type. Can be a vector options=c(2,3,4) if
item types have 2/3/4 choice options.

Details

Choice models can be represented as polytopes if they assume a latent mixture over a finite number
preference patterns (random preference model). For the general approach and theory underlying
binary and ternary choice models, see Regenwetter et al. (2012, 2014, 2017).

The function is currently deprecated since the package rPorta cannot be compiled with R>=4.0.0!

For binary choices (options=2), additional constraints are added to A and b to ensure that all dimen-
sions of the polytope satisfy: 0 <= p_i <= 1. For ternary choices (options=3), constraints are added
to ensure that 0 <= p_1+p_2 <=1 for pairwise columns (1+2, 3+4, 5+6, ...). See Ab_multinom.

References

Regenwetter, M., & Davis-Stober, C. P. (2012). Behavioral variability of choices versus structural
inconsistency of preferences. Psychological Review, 119(2), 408-416. doi:10.1037/a0027372

https://github.com/TasCL/rPorta
https://doi.org/10.1037/a0027372
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Regenwetter, M., Davis-Stober, C. P., Lim, S. H., Guo, Y., Popova, A., Zwilling, C., . . . Messner, W.
(2014). QTest: Quantitative testing of theories of binary choice. Decision, 1(1), 2-34. doi:10.1037/
dec0000007

Regenwetter, M., & Robinson, M. M. (2017). The construct–behavior gap in behavioral decision re-
search: A challenge beyond replicability. Psychological Review, 124(5), 533-550. https://doi.org/10.1037/rev0000067

https://doi.org/10.1037/dec0000007
https://doi.org/10.1037/dec0000007
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