
Package ‘netchain’
February 16, 2020

Type Package

Title Inferring Causal Effects on Collective Outcomes under
Interference

Version 0.2.0

Date 2020-02-15

Maintainer Youjin Lee <youjin.lee@pennmedicine.upenn.edu>

Description In networks, treatments may spill over from the treated individual to his or her social con-
tacts and outcomes may be contagious over time. Under this setting, causal inference on the col-
lective outcome observed over all network is often of interest. We use chain graph models ap-
proximating the projection of the full longitudinal data onto the observed data to iden-
tify the causal effect of the intervention on the whole outcome. Justification of such approxima-
tion is demonstrated in Ogburn et al. (2018) <arXiv:1812.04990>.

License GPL (>= 3) | file LICENSE

Imports Rcpp (>= 0.12.17), Matrix, gtools, stringr, stats, igraph

Suggests knitr, rmarkdown, testthat, R.rsp

LinkingTo Rcpp

VignetteBuilder R.rsp

RoxygenNote 7.0.0

Encoding UTF-8

NeedsCompilation yes

Author Elizabeth Ogburn [aut],
Ilya Shpitser [aut],
Youjin Lee [aut, cre]

Repository CRAN

Date/Publication 2020-02-16 22:10:06 UTC

R topics documented:
netchain-package . 2
causal.influence . 2

1

2 causal.influence

chain.causal.multi . 4
chaingibbs . 6
multiloglikechain . 7
multimainfunction . 8
multipartition . 9
simGibbs . 9

Index 11

netchain-package netchain: causal inference on collective outcomes

Description

This package is for estimation of probability associated with collective counterfactual outcomes
using approximation via causal graphical model. We apply a parsimonious parameterization for
social network data with some specific kinds of interference and contagion, which corresponds to
particular family of graphical models known as chain graphs.

Details

We provide functions to estimate the parameters in conditional log-linear model when the observa-
tions (outcomes, treatments, and confounders) and the structure of a causal graph is given. Based on
the estimated parameters, we generate counterfactual outcomes using Gibbs sampling to infer the
causal effect (or causal probability) of a certain treatment assignment on the collective outcomes.
Moreover, we use this method to identify causally influential units on social network.

Author(s)

Youjin Lee

Maintainer: Youjin Lee <ylee160@jhu.edu>

See Also

https://github.com/youjin1207/netchain

causal.influence Identifying causally influential units on social network

Description

This function calculates probability associated with counterfactual collective outcome(s) P(Y(a_j)
= y) as a measure of influence of unit j, where a_j indicates the sole intervention of unit j.

https://github.com/youjin1207/netchain

causal.influence 3

Usage

causal.influence(
targetoutcome = "mean",
Avalues,
inputY,
inputA,
listC,
R.matrix,
E.matrix,
edgeinfo = NULL,
n.obs = 1000,
n.burn = 100,
optim.method = "L-BFGS-B"

)

Arguments

targetoutcome is a targeted couterfactual outcome of probability is in our interest, having dif-
ferent forms depending on the context of influence :

a vector of length m a vector specifies every element of y.
a [q x m] matrix a collection of y_1, y_2, ..., y_q of which we want to derive

the probability.
an integer the number of 1’s in y (0 ≥ & ≤ m).
’mean’ when we want derive E(Y(a)) (default).

Avalues distinct treatment values of which maximum indicates intervention. Defaults to
(0,1).

inputY a [n x m] matrix of n independent outcomes for m units.

inputA a [n x m] matrix of n independent treatment assignments assigned to m units.

listC is either a matrix, list or NULL:

a [n x m] matrix a matrix of n independent confounders for m units under single
confounder.

a list of [n x m] matrices a collection of n independent confounders for m units
under multiple confounders.

NULL no confounders.

R.matrix a [m x m] relational symmetric matrix where R.matrixij = 1 indicates Yi and
Yj are adjacent.

E.matrix a [m x m] matrix where E.matrixij = 1 indicates Ai has a direct causal effect
on Yj . Defaults to diagonal matrix, which indicates no interference.

edgeinfo a list of matrix specifying additional directed edges (from confounders or treat-
ment to the outcomes) information. Defaults to NULL.

first column: "Y" indicates outcomes; "A" indicates treatment; "C" indicates
confounders. Under multiple confounders, "C1", "C2", ... indicate each
confounder.

second column: an index for unit corresponding to the variable in the first col-
umn, i=1,2,...m.

4 chain.causal.multi

n.obs the number of Gibbs samplers except for burn-in sample.
n.burn the number of burn-in sample in Gibbs sampling.
optim.method the method used in optim(). Defaults to "L-BFGS-B".

Value

returns "noconvergence" in case of failure to converence or a list with components :

influence

n.par the number of parameters estimated in conditional log-linear model.
par.est the estimated parameters.

Author(s)

Youjin Lee

Examples

library(netchain)
set.seed(1234)
weight.matrix <- matrix(c(0.5, 1, 0, 1, 0.3, 0.5, 0, 0.5, -0.5), 3, 3)
simobs <- simGibbs(n.unit = 3, n.gibbs = 100, n.sample = 5,

weight.matrix,
treat.matrix = 0.5*diag(3), cov.matrix= (-0.3)*diag(3))

inputY <- simobs$inputY
inputA <- simobs$inputA
inputC <- simobs$inputC
R.matrix <- ifelse(weight.matrix==0, 0, 1)
diag(R.matrix) <- 0
edgeinfo <- list(rbind(c("Y", 1), c("C", 1)), rbind(c("Y", 2), c("C", 2)),

rbind(c("Y", 3), c("C", 3)))
implement a function (take > 10 seconds)
result <- causal.influence(targetoutcome = "mean", Avalues = c(1,0), inputY, inputA,
listC = inputC, R.matrix, E.matrix = diag(3), edgeinfo = edgeinfo)

chain.causal.multi Causal estimation on collective outcomes under multiple confounders
and interference.

Description

This function calculates probability associated with counterfactual collective outcome(s) P(Y(a)
= y) when m units are subject to interference and contagion possibly with the presence of multi-
ple confounders. To estimate the magnitude of main effects, two-way interaction effects, or any
higher-order interaction effects we use hybrid graphcial models combining features of both log-
linear models on undirected graphs (R.matrix) and directed acyclic graphs (DAGs) models used to
represent casual relationships.

chain.causal.multi 5

Usage

chain.causal.multi(
targetoutcome = "mean",
treatment,
inputY,
inputA,
listC,
R.matrix,
E.matrix,
edgeinfo = NULL,
n.obs = 1000,
n.burn = 100,
optim.method = "L-BFGS-B"

)

Arguments

targetoutcome is a targeted couterfactual outcome of probability is in our interest, having dif-
ferent forms:

a vector of length m a vector specifies every element of y.
a [q x m] matrix a collection of y_1, y_2, ..., y_q of which we want to derive

the probability.
an integer the number of 1’s in y (0 ≥ & ≤ m).
’mean’ when we want derive E(Y(a)) (default).

treatment a vector of length m representing given treatment assignment a.

inputY a [n x m] matrix of n independent outcomes for m units.

inputA a [n x m] matrix of n independent treatment assignments assigned to m units.

listC is either a matrix, list or NULL:

a [n x m] matrix a matrix of n independent confounders for m units under single
confounder.

a list of [n x m] matrices a collection of n independent confounders for m units
under multiple confounders.

NULL no confounders.

R.matrix a [m x m] relational symmetric matrix where R.matrixij = 1 indicates Yi and
Yj are adjacent.

E.matrix a [m x m] matrix where E.matrixij = 1 indicates Ai has a direct causal effect
on Yj . Defaults to diagonal matrix, which indicates no interference.

edgeinfo a list of matrix specifying additional directed edges (from confounders or treat-
ment to the outcomes) information. Defaults to NULL.

first column: "Y" indicates outcomes; "A" indicates treatment; "C" indicates
confounders. Under multiple confounders, "C1", "C2", ... indicate each
confounder.

second column: an index for unit corresponding to the variable in the first col-
umn, i=1,2,...m.

6 chaingibbs

n.obs the number of Gibbs samplers except for burn-in sample.

n.burn the number of burn-in sample in Gibbs sampling.

optim.method the method used in optim(). Defaults to "L-BFGS-B".

Value

returns "noconvergence" in case of failure to converence or a list with components :

causalprob the estimated probability P(Y(a) = y).

n.par the number of parameters estimated in conditional log-linear model.

par.est the estimated parameters.

Author(s)

Youjin Lee

Examples

library(netchain)
set.seed(1234)
weight.matrix <- matrix(c(0.5, 1, 0, 1, 0.3, 0.5, 0, 0.5, -0.5), 3, 3)
simobs <- simGibbs(n.unit = 3, n.gibbs = 100, n.sample = 5,

weight.matrix, treat.matrix = 0.5*diag(3), cov.matrix= (-0.3)*diag(3))
inputY <- simobs$inputY
inputA <- simobs$inputA
inputC <- simobs$inputC
R.matrix <- ifelse(weight.matrix==0, 0, 1)
diag(R.matrix) <- 0
edgeinfo <- list(rbind(c("Y", 1), c("C", 1)), rbind(c("Y", 2), c("C", 2)),

rbind(c("Y", 3), c("C", 3)))
implement a function (take > 10 seconds)
result <- chain.causal.multi(targetoutcome = "mean",
treatment <- c(1,0,0), inputY, inputA, listC = inputC, R.matrix,
E.matrix <- diag(3), edgeinfo = edgeinfo)

chaingibbs Generate Gibbs samplers for counterfactual collective outcomes.

Description

This function generates the outcomes using Gibbs sampling under the given treatment assignment
and edge information.

multiloglikechain 7

Usage

chaingibbs(
pars,
n.obs,
treatment,
covariates,
initprob = 0.5,
yvalues = c(0, 1),
Neighborind,
Neighborpar,
n.burn

)

Arguments

pars a set of parameters

n.obs the number of Gibbs samples.

treatment a set of given treatment assignment of length m.

covariates given confounder(s):

• NULL: no confounder.
• a vector of length m: under unique confounder.
• a [q x m] matrix: a set of q different confounders.

initprob an initial probability generating outcomes. Defaults to initprob = 0.5

yvalues distinct binary values for outcomes. Defaults to (0,1).

Neighborind a list of matrix specifying edge information of which first column illustrates a
type of variables (1:outcome, 2:treatment, 3~:confounders) and of which second
column presents the index of those variable.

Neighborpar index for parameters in the order of Neighborind.

n.burn the number of burn-in sample in Gibbs sampling (≥ n.obs).

Value

a [n.obs x m] matrix each row of which consists of outcomes.

multiloglikechain Derive log-likelihood of conditional log-linear model given parame-
ters.

Description

Derive log-likelihood of conditional log-linear model given parameters.

Usage

multiloglikechain(pars, listobservations, permutetab, edgeY, edgeAY, edgeExtra)

8 multimainfunction

Arguments

pars a set of parameters
listobservations

a collection of [(2+nc) x m] matrices comprised of outcomes (first row), treat-
ments (second row), and confounders (from the third row), where nc is the num-
ber of confounders.

permutetab a matrix comprised of every possible values for outcome in each row.

edgeY a matrix of which each row indicates a pair of index for adjacent outcomes.

edgeAY a matrix of which each row indicates a index for treatment (first column) and for
outcome (second column) on which the treatment has a direct effect.

edgeExtra a list of edges of which a list of matrix specifying additional directed edges
(from confounders or treatment to the outcomes) information.

Value

log-likelihood of conditional log-linear model given parameters, observations, and edge informa-
tion.

multimainfunction Extracting factors for conditional log-linear model

Description

This is an auxiliary function to print out the factors for conditional log-linear model given edge
information.

Usage

multimainfunction(pars, newcombined, edgeY, edgeAY, edgeExtra)

Arguments

pars a set of parameters

newcombined a [(2+nc) x m] matrix comprised of outcomes (first row), treatments (second
row), and confounders (from the third row), where nc is the number of con-
founders.

edgeY a matrix of which each row indicates a pair of index for adjacent outcomes.

edgeAY a matrix of which each row indicates a index for treatment (first column) and for
outcome (second column) on which the treatment has a direct effect.

edgeExtra a list of edges of which a list of matrix specifying additional directed edges
(from confounders or treatment to the outcomes) information.

Value

a sum of factors.

multipartition 9

multipartition Calculating normalizing constant in conditional log-linear model.

Description

Calculating normalizing constant in conditional log-linear model.

Usage

multipartition(pars, combined, permutetab, edgeY, edgeAY, edgeExtra)

Arguments

pars a set of parameters

combined a [(2+nc) x m] matrix comprised of outcomes (first row), treatments (second
row), and confounders (from the third row), where nc is the number of con-
founders.

permutetab a matrix comprised of every possible values for outcome in each row.

edgeY a matrix of which each row indicates a pair of index for adjacent outcomes.

edgeAY a matrix of which each row indicates a index for treatment (first column) and for
outcome (second column) on which the treatment has a direct effect.

edgeExtra a list of edges of which a list of matrix specifying additional directed edges
(from confounders or treatment to the outcomes) information.

Value

a normalizing constant

simGibbs Generate binary (Y, A, C) from chain graph model under simplest
scenario.

Description

Generate binary (Y, A, C) from chain graph model under simplest scenario.

Usage

simGibbs(
n.unit,
n.gibbs,
n.sample,
weight.matrix,
treat.matrix,

10 simGibbs

cov.matrix,
init.prob = 0.5,
treat.prob = 0.5,
cov.prob = 0.5,
n.burn = 100,
yvalues = c(1, 0)

)

Arguments

n.unit the number of units (m).

n.gibbs the number of independent Gibbs sampler.

n.sample the number of samples from each Gibbs sampling (n = n.gibbs x n.sample).

weight.matrix a [m x m] symmetric relational matrix where Wij = 1 indicates the existence of
undirected edges between Yi and Yj and its magnitude. Here Wii represents the
main effect of Yi.

treat.matrix a [m x m] matrix where treat.matrixij indicates the magnitude of direct effect
from Ai to Yj .

cov.matrix a [m x m] matrix where treat.matrixij indicates the magnitude of direct effect
from Ci to Yj .

init.prob an initial probability generating (Y, A, C) from Bernoulli distribution.

treat.prob a probability updating A in Gibbs sampling procedure.

cov.prob a probability updating C in Gibbs sampling procedure.

n.burn the number of burn-in sample in Gibbs sampling (≥ n.obs).

yvalues a vector of distinct binary outcome values. Defaults to c(0,1).

Value

a list of [n.gibbs] x [n.sample] independent observations:

inputY a [([n.gibbs] x [n.sample]) x m] matrix for outcomes.

inputA a [([n.gibbs] x [n.sample]) x m] matrix for treatments.

inputC a [([n.gibbs] x [n.sample]) x m] matrix for confounders.

Examples

library(netchain)
weight.matrix <- matrix(c(0.5, 1, 0, 1, 0.3, 0.5, 0, 0.5, -0.5), 3, 3)
simobs <- simGibbs(n.unit = 3, n.gibbs = 200, n.sample = 10,

weight.matrix,
treat.matrix = 0.5*diag(3), cov.matrix= (-0.3)*diag(3))

inputY <- simobs$inputY
inputA <- simobs$inputA
inputC <- simobs$inputC

Index

∗Topic package
netchain-package, 2

causal.influence, 2
chain.causal.multi, 4
chaingibbs, 6

multiloglikechain, 7
multimainfunction, 8
multipartition, 9

netchain (netchain-package), 2
netchain-package, 2

simGibbs, 9

11

	netchain-package
	causal.influence
	chain.causal.multi
	chaingibbs
	multiloglikechain
	multimainfunction
	multipartition
	simGibbs
	Index

