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Overview and objectives
This extended vignette is to explain and to (partially) record the development and testing of nlsr, an R
package to try to bring the R function nls() up to date and to add capabilities for the extension of the
symbolic and automatic derivative tools in R. As of 2022, it also records the upgrade to nlsr.

A particular goal in nlsr (and previously nlsr) is to attempt, wherever possible, to use analytic or automatic
derivatives. The function nls() generally uses a rather weak forward derivative approximation, though a
central difference approximation is available if one uses advanced options.

A second objective is to use a Marquardt stabilization of the Gauss-Newton equations to avoid the commonly
encountered “singular gradient” failure of nls(). This refers to the loss of rank of the Jacobian at the
parameters for evaluation. The particular stabilization also incorporates a very simple trick to avoid very
small diagonal elements of the Jacobian inner product, though in the present implementations, this is
accomplished indirectly. See the section below Implementation of method

Two other objectives have arisen in 2022 in the move to a new nlsr:

• to allow for variations in the method of solving the Gauss-Newton equations, so that we may more
easily test the performance of different approaches by changing control parameters to our programs.
In practice, these changes have shown almost no substantive changes in performance; if a Marquardt
stabilization of any sort is used, it seems to provide similar advantages over the simple Gauss-Newton
approach of nls().

• to employ the roxygen2 approach to documenting routines. This choice does confer the advantage
of consolidating the documentation (.Rd) files in the source code (.R) files, as well as building the
NAMESPACE file more or less automatically. On the other hand, it brings some additional syntactic
complications and the need to remember to roxygenise() the package before building and using it.

In preparing the nlsr package there was a sub-goal to unify, or at least render compatible, various packages in
R for the estimation or analysis of problems amenable to nonlinear least squares solution. This was expanded
in 2021 with a Google Summer of Code initiative Improvements to nls() in which Arkajyoti Bhattacharjee
was the contributor. Unfortunately, while we made some progress, we were NOT able to overcome some of
the densely entangled code sufficiently to make more than limited improvements.

A large part of the work for the nlsr package family – particularly the parts concerning derivatives and R
language structures – was initially carried out by Duncan Murdoch in 2014. Without his input, much of
the capability of the package would not exist, even though there was an earlier 2012 package nlmrt (Nash
(2012)). That package was clumsily written, but did show the possibilities for automatically providing analytic
Jacobian information to a nonlinear regression package.

The nlsr package and this vignette are works in progress, and assistance and examples are welcome. Note
that there is similar work on symbolic derivatives in the package Deriv (Andrew Clausen and Serguei Sokol
(2015) Symbolic Differentiation, version 2.0, https://cran.r-project.org/package=Deriv), and making the
current work “play nicely” with that package is desirable. There are also aspects of nls() in base R and the
package minpack.lm (Elzhov et al. (2012)) which could be better aligned. Much more on nls() in particular
is in process with Arkajyoti Bhattacharjee in mid 2022.

As a mechanism for highlighting issues that remain to be resolved, I have put double question marks (??)
where I believe attention is needed in this document.

0. Issues remaining to address and TODOS
Issues are related to concerns about one or more of the nonlinear modeling tools as revealed by tests and
examples used in this vignette. I have labeled some of these as MINOR, and regard these as issues that could
be fixed easily.

2

https://cran.r-project.org/package=Deriv


nls() uses different models with different algorithm choices

In Section 7. under Partially Linear Models, nls() uses different model forms according to the choice
of algorithm in some cases where the model can be partially linear. I believe there should at least be a
WARNING about this possibility, though preferably I would like to see this treated as an error in the code.
This is discussed in more detail in the paper “Refactoring nls()” (Nash and Bhattacharjee (2022)).

MINOR – Bounds specification and warnings for nlsLM and nls.lm

nls(), nlsr::nlxb and nlsr::nlfb allow a single value to be given for the lower and upper bounds. This
single value is expanded to a vector of length equal to the number of parameters, but the minpack.lm routines
are more fussy.

Also, while nls() and the nlsr functions warn of initial starting parameters that violate specified bounds,
the minpack.lm routines do not. This is easily fixable with a warning().

These are illustrated below.
# Bounds Test nlsbtsimple.R (see BT.RES in Nash and Walker-Smith (1987))
rm(list=ls())
bt.res<-function(x){ x }
bt.jac<-function(x){nn <- length(x); JJ <- diag(nn); attr(JJ, "gradient") <- JJ; JJ}
n <- 4
x<-rep(0,n) ; lower<-rep(NA,n); upper<-lower # to get arrays set
for (i in 1:n) { lower[i]<-1.0*(i-1)*(n-1)/n; upper[i]<-1.0*i*(n+1)/n }
x <-0.5*(lower+upper) # start on mean
xnames<-as.character(1:n) # name our parameters just in case
for (i in 1:n){ xnames[i]<-paste("p",xnames[i],sep='') }
names(x) <- xnames
require(minpack.lm)
require(nlsr)
bsnlf0<-nlfb(start=x, resfn=bt.res, jacfn=bt.jac) # unconstrained
bsnlf0

## nlsr object: x

## Warning in pt(abs(tval), rdf, lower.tail = FALSE): NaNs produced

## residual sumsquares = 3.689e-16 on 4 observations
## after 3 Jacobian and 3 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 2.49965e-09 Inf 0 NaN 2.5e-09 1
## p2 6.49909e-09 Inf 0 NaN 6.499e-09 1
## p3 1.04985e-08 Inf 0 NaN 1.05e-08 1
## p4 1.4498e-08 Inf 0 NaN 1.45e-08 1
bsnlm0<-nls.lm(par=x, fn=bt.res, jac=bt.jac) # unconstrained
bsnlm0

## Nonlinear regression via the Levenberg-Marquardt algorithm
## parameter estimates: 0, 0, 0, 0
## residual sum-of-squares: 0
## reason terminated: The cosine of the angle between `fvec' and any column of the Jacobian is at most `gtol' in absolute value.
bsnlf1<-nlfb(start=x, resfn=bt.res, jacfn=bt.jac, lower=lower, upper=upper)
bsnlf1

## nlsr object: x
## residual sumsquares = 7.875 on 4 observations
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## after 6 Jacobian and 6 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 4.72611e-12 NA NA NA 4.726e-12 1
## p2 0.75L NA NA NA 0 0
## p3 1.5L NA NA NA 0 0
## p4 2.25L NA NA NA 0 0
bsnlm1<-nls.lm(par=x, fn=bt.res, jac=bt.jac, lower=lower, upper=upper)
bsnlm1

## Nonlinear regression via the Levenberg-Marquardt algorithm
## parameter estimates: 0, 0.75, 1.5, 2.25
## residual sum-of-squares: 7.88
## reason terminated: Relative error between `par' and the solution is at most `ptol'.
# single value bounds
bsnlf2<-nlfb(start=x, resfn=bt.res, jacfn=bt.jac, lower=0.25, upper=4)
bsnlf2

## nlsr object: x
## residual sumsquares = 0.25 on 4 observations
## after 5 Jacobian and 5 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 0.25L NA NA NA 0 0
## p2 0.25L NA NA NA 0 0
## p3 0.25L NA NA NA 0 0
## p4 0.25L NA NA NA 0 0
# nls.lm will NOT expand single value bounds
bsnlm2<-try(nls.lm(par=x, fn=bt.res, jac=bt.jac, lower=0.25, upper=4))

## Error in nls.lm(par = x, fn = bt.res, jac = bt.jac, lower = 0.25, upper = 4) :
## length(lower) must be equal to length(par)

For example (from the file nlsbtsimple.R):

MINOR – nlsLM and nls.lm do not warn of out of bounds initial parameters

x<-rep(0,n) # resetting to this puts x out of bounds
cat("lower:"); print(lower)

## lower:

## [1] 0.00 0.75 1.50 2.25
cat("upper:"); print(upper)

## upper:

## [1] 1.25 2.50 3.75 5.00
names(x) <- xnames # to ensure names set
obnlm<-nls.lm(par=x, fn=bt.res, jac=bt.jac, lower=lower, upper=upper)
obnlm

## Nonlinear regression via the Levenberg-Marquardt algorithm
## parameter estimates: 0, 0.75, 1.5, 2.25
## residual sum-of-squares: 7.88
## reason terminated: Relative error between `par' and the solution is at most `ptol'.
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For nonlinear regression with minpack.lm::nlsLM there is also no warning. The example using file
Hobbsbdformula1.R in the vignette R: Examples of different nonlinear least squares calculations
(file NLS-Examples.Rmd) shows this. However, in this case, the program actually gets a good answer, despite
the failure to warn. In a start from all 1’s, which is feasible, a poor answer is obtained, as noted in the next
section.

Bounded minimization with minpack.lm

While minpack.lm mentions lower and upper bounds in the manual pages, there are no examples in the
package (that I could find) of their application. For the file nlsbtsimple.R, we get acceptable answers.
For the Hobbs problem, from a start of all 1’s, both nlsLM and nls.lm converge to sums of squares higher
than nlxb, nlfb or nls() using the “port” algorithm (when the last is able to get started). Moreover, in
one case for the scaled Hobbs problem, the two minpack.lm functions give different results. I have not yet
been able to understand how these routines apply bounds constraints. There is mention in https://lmfit-
py.readthedocs.io/en/latest/bounds.html that the original MINPACK did NOT cater for bounds constraints
on parameters, and that MINUIT, which uses the MINPACK ideas, used a transformation of the parameters
to accomplish this. (Hans Werner Borchers uses the same idea in the the code dfoptim::nmkb, which he
calls a transfinite transformation.)

Comments:

1) the transfinite idea is useful in that it may be applicable quite generally. If a wrapper for unconstrained
minimizers could be devised, it would enlarge the capability of a number of R tools.

2) The Hobbs problem, even when scaled, may be unscaled again by such a transformation of the
parameters.

I have seen many cases where methods that are generally reliable give an occasional unsatisfactory result.
However, it would be useful to know the precise reasons why or where minpack.lm routines are obtaining
these results, since it may be possible to either fix the issues or else provide some warnings or diagnostics,
which hopefully would be of wider application.

TODOS

• sysDerivs and sysSimplifications are new environments whose parent is emptyenv(). Why? This should
be better explained with motivations.

• R function optim() and function optimr() in package optimx include the control parscale which
is a vector of scaling factors so that optimization is performed on par/parscale where par are the
user-supplied parameters. The intent is to have the internal scaled parameters of similar general size.
The Hobbssetup script below carries out this scaling explicitly. Providing a parscale capability for
nlxb() and nlfb() is mostly a matter of effort. At the time of writing (August 2022), I feel that the
performance of the functions is good and adding parscale is not an urgent need.

• nls() does not insist that the formula argument in its call is of the structure where the left hand side
is “simple”, that is, usually a single variable. However, it is difficult to find examples where this is not
the case, though it is NOT a requirement of the nonlinear least squares algorithms. However, to get the
right features for more complicated modelling formulas, I need collaboration with practitioners.

• Data can be passed to nls() using variables already in the working environment or in the data
argument, which can be a dataframe, a list or an environment, but not a matrix. Why can a matrix of
data not be used?

• How can VARPRO / conditional linearity be married to the nlsr algorithms?

• A long-term need is a better, more consistent way to specify formulas for nonlinear models. At the
moment nlsr does not support indexed parameters, and nls() does so in an awkward way. The output
parameters do not match the input specification in that they are not indexed using the traditional
square brackets, but build the index value into the parameter name.
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1. Summary of capabilities and functions in nlsr

Throughout this exposition, we have chosen to set trace variables to FALSE to reduce the volume of output.
Changing such values to TRUE will expand output.

We will illustrate many of the capabilities with the Hobbs weed problem (Nash (1979), page 121). This can
be set up in a scaled or unscaled form.
## Use the Hobbs Weed problem
weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
weeddf <- data.frame(y=weed, tt=tt)
st <- c(b1=1, b2=1, b3=1) # a default starting vector (named!)
## Unscaled model
wmodu <- y ~ b1/(1+b2*exp(-b3*tt))
## Scaled model
wmods <- y ~ 100*b1/(1+10*b2*exp(-0.1*b3*tt))
## We can provide the residual and Jacobian as functions
# Unscaled Hobbs problem
hobbs.res <- function(x){ # scaled Hobbs weeds problem -- residual

# This variant uses looping
if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")
y <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
res <- x[1]/(1+x[2]*exp(-x[3]*tt)) - y

}

hobbs.jac <- function(x) { # scaled Hobbs weeds problem -- Jacobian
jj <- matrix(0.0, 12, 3)
tt <- 1:12
yy <- exp(-x[3]*tt)
zz <- 1.0/(1+x[2]*yy)
jj[tt,1] <- zz
jj[tt,2] <- -x[1]*zz*zz*yy
jj[tt,3] <- x[1]*zz*zz*yy*x[2]*tt
attr(jj, "gradient") <- jj
jj

}
# Scaled Hobbs problem
shobbs.res <- function(x){ # scaled Hobbs weeds problem -- residual

# This variant uses looping
if(length(x) != 3) stop("shobbs.res -- parameter vector n!=3")
y <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
res <- 100.0*x[1]/(1+x[2]*10.*exp(-0.1*x[3]*tt)) - y

}

shobbs.jac <- function(x) { # scaled Hobbs weeds problem -- Jacobian
jj <- matrix(0.0, 12, 3)
tt <- 1:12
yy <- exp(-0.1*x[3]*tt)
zz <- 100.0/(1+10.*x[2]*yy)
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jj[tt,1] <- zz
jj[tt,2] <- -0.1*x[1]*zz*zz*yy
jj[tt,3] <- 0.01*x[1]*zz*zz*yy*x[2]*tt
attr(jj, "gradient") <- jj
jj

}

nlxb

This is the likely the function most called by users from nlsr.

• Given a nonlinear model expressed as an expression of the form lhs ~ formula_for_rhs and a start
vector where parameters used in the model formula are named, attempts to find the minimum of the
residual sum of squares using as a default method the Nash variant (Nash, 1979) of the Marquardt
algorithm, where the linear sub-problem is solved by a qr method. The process is to develop the residual
and Jacobian functions using model2rjfun, then call nlfb.

require(nlsr)
# Use Hobbs scaled formula model
anlxb1 <- try(nlxb(wmods, start=st, data=weeddf))
print(anlxb1)

## nlsr object: anlxb1
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 7.809e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.578e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.459e-07 2.735
# summary(anlxb1) # for different output
# Test without starting parameters
anlxb1nostart <- try(nlxb(wmodu, data=weeddf))

## Error in nlxb(wmodu, data = weeddf) : A start vector MUST be provided
print(anlxb1nostart)

## [1] "Error in nlxb(wmodu, data = weeddf) : A start vector MUST be provided\n"
## attr(,"class")
## [1] "try-error"
## attr(,"condition")
## <simpleError in nlxb(wmodu, data = weeddf): A start vector MUST be provided>

Here we see that the Jacobian at the solution is essentially of rank 1, even though there are 3 coefficients. It
is therefore not surprising that nls(), which does not benefit from the Levenberg-Marquardt stabilization in
solving the nonlinear least squares program fails for this problem. See the subsection below for wrapnlsr.
Note that the singular values of the Jacobian computed via a numerical approximation are more extreme
(i.e., nearly singular) than those determined by analytic derivatives in the preceding solution anlxb1. For
this example, there is a clear advantage to the analytic derivatives.

While there is an almost liturgical adherence to setting up models where the dependent (or predicted) variable
is on the left hand side (LHS) of the model formula and the independent (or predictor) variable(s) on the
right hand side (RHS), this is
NOT an actual requirement in most cases, though there are some situations such as the minpack.lm function
wfct that do assume this structure. Here is an example of solving the Hobbs unscaled problem using a
1-sided model formula.
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# One-sided unscaled Hobbs weed model formula
wmodu1 <- ~ b1/(1+b2*exp(-b3*tt)) - y
anlxb11 <- try(nlxb(wmodu1, start=st, data=weeddf))
print(anlxb11)

## nlsr object: anlxb11
## residual sumsquares = 2.5873 on 12 observations
## after 19 Jacobian and 25 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 196.186 11.31 17.35 3.167e-08 -4.859e-09 1011
## b2 49.0916 1.688 29.08 3.284e-10 -3.099e-08 0.4605
## b3 0.31357 0.006863 45.69 5.768e-12 2.305e-06 0.04714

model2rjfun, model2ssgrfun, modelexpr

• These functions create functions to evaluate residuals or sums of squares at particular parameter locations.
model2rjfun is the key call in nlxb() to estimate models specified as expressions or formulas.

# st <- c(b1=1, b2=1, b3=1)
wrj <- model2rjfun(wmods, st, data=weeddf)
wrj

## function (prm)
## {
## if (is.null(names(prm)))
## names(prm) <- names(pvec)
## localdata <- list2env(as.list(prm), parent = data)
## eval(residexpr, envir = localdata)
## }
## <bytecode: 0x5632e32ff678>
## <environment: 0x5632e5895c20>
weedux <- nlxb(wmods, start=st, data=weeddf)
print(weedux)

## nlsr object: weedux
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 7.809e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.578e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.459e-07 2.735
wss <- model2ssgrfun(wmods, st, data=weeddf)
print(wss)

## function (prm)
## {
## resids <- rjfun(prm)
## ss <- as.numeric(crossprod(resids))
## if (gradient) {
## jacval <- attr(resids, "gradient")
## grval <- 2 * as.numeric(crossprod(jacval, resids))
## attr(ss, "gradient") <- grval
## }
## attr(ss, "resids") <- resids
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## ss
## }
## <bytecode: 0x5632e60261a0>
## <environment: 0x5632e60084b0>
# We can get expressions used to calculate these as follows:
wexpr.rj <- modelexpr(wrj)
print(wexpr.rj)

## expression({
## .expr1 <- 100 * b1
## .expr2 <- 10 * b2
## .expr6 <- exp(-0.1 * b3 * tt)
## .expr8 <- 1 + .expr2 * .expr6
## .expr14 <- .expr8^2
## .value <- .expr1/.expr8 - y
## .grad <- array(0, c(length(.value), 3L), list(NULL, c("b1",
## "b2", "b3")))
## .grad[, "b1"] <- 100/.expr8
## .grad[, "b2"] <- -(.expr1 * (10 * .expr6)/.expr14)
## .grad[, "b3"] <- .expr1 * (.expr2 * (.expr6 * (0.1 * tt)))/.expr14
## attr(.value, "gradient") <- .grad
## .value
## })
wexpr.ss <- modelexpr(wss)
print(wexpr.ss)

## expression({
## .expr1 <- 100 * b1
## .expr2 <- 10 * b2
## .expr6 <- exp(-0.1 * b3 * tt)
## .expr8 <- 1 + .expr2 * .expr6
## .expr14 <- .expr8^2
## .value <- .expr1/.expr8 - y
## .grad <- array(0, c(length(.value), 3L), list(NULL, c("b1",
## "b2", "b3")))
## .grad[, "b1"] <- 100/.expr8
## .grad[, "b2"] <- -(.expr1 * (10 * .expr6)/.expr14)
## .grad[, "b3"] <- .expr1 * (.expr2 * (.expr6 * (0.1 * tt)))/.expr14
## attr(.value, "gradient") <- .grad
## .value
## })

nlfb – minimize nonlinear least squares residual functions

• Given a nonlinear model expressed as an expression of the form of a function that computes the residuals
from the model and a start vector par , tries to minimize the nonlinear sum of squares of these residuals
w.r.t. par. If model(par, mydata) computes an a vector of numbers that are presumed to be able to fit
data lhs, then the residual vector is (model(par,mydata) - lhs), though traditionally we write the
negative of this vector. (Writing it this way allows the derivatives of the residuals w.r.t. the parameters
par to be the same as those for model(par,mydata).) nlfb tries to minimize the sum of squares of
the residuals with respect to the parameters.

• The method takes a parameter jacfn which returns the Jacobian matrix of derivatives of the residuals
w.r.t. the parameters in an attribute gradient. If jacfn is missing, then a numerical approximation to
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derivatives can be used if the control japprox is appropriately specified. Valid choices for approximations
are jafwd, jaback, jacentral and jand for forward, backward, central and package numDeriv difference
methods. There is also the choice SSJac, which is not necessarily an approximation, but gradient code
within a selfStart model function. (CAUTION: There is no check that such code is actually present!)
The Jacobian is stored in the attribute gradient of the residual allowing us to combine the computation
of the residual and Jacobian in the same code. That is, we can specify the same R function for both
resfn and jacfn. Since there are generally common computations, this may give a small improvement
in efficiency, though it does make the setup slightly more complicated. See the example below. However,
the main reason for this choice was to allow nlxb to be more easily coded.

• The start vector preferably uses named parameters (especially if there is an underlying formula). The
attempted minimization of the sum of squares uses the Nash variant Nash (1977), Nash (1979), of the
Marquardt algorithm, where the linear sub-problem is solved by a qr method. We explain how this is
done later, as well as giving a short discussion of the relative offset convergence criterion.

require(nlsr)

cat("try nlfb\n")

## try nlfb
st <- c(b1=1, b2=1, b3=1)
ans1 <- nlfb(st, shobbs.res, shobbs.jac, trace=FALSE)
summary(ans1)

## $residuals
## [1] 0.011900 -0.032755 0.092030 0.208782 0.392634 -0.057594 -1.105728
## [8] 0.715786 -0.107648 -0.348396 0.652593 -0.287568
##
## $sigma
## [1] 0.53617
##
## $df
## [1] 3 9
##
## $cov.unscaled
## [,1] [,2] [,3]
## [1,] 0.044472 0.047835 -0.025281
## [2,] 0.047835 0.099167 -0.017629
## [3,] -0.025281 -0.017629 0.016386
##
## $param
## Estimate Std. Error t value Pr(>|t|)
## b1 1.9619 0.113069 17.351 3.1667e-08
## b2 4.9092 0.168844 29.075 3.2836e-10
## b3 3.1357 0.068633 45.688 5.7676e-12
##
## $resname
## [1] "ans1"
##
## $ssquares
## [1] 2.5873
##
## $nobs
## [1] 12
##

10



## $ct
## [1] " " " " " "
##
## $mt
## [1] " " " " " "
##
## $Sd
## [1] 130.1160 6.1654 2.7353
##
## $gr
## [,1]
## [1,] 7.8092e-08
## [2,] 3.5779e-07
## [3,] -3.4589e-07
##
## $jeval
## [1] 23
##
## $feval
## [1] 34
## No jacobian function -- use internal approximation
ans1n <- nlfb(st, shobbs.res, trace=FALSE, control=list(japprox="jafwd", watch=FALSE)) # NO jacfn -- tell it fwd approx
print(ans1n)

## nlsr object: ans1n
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 6.669e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.232e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.805e-07 2.735
## difference
coef(ans1)-coef(ans1n)

## b1 b2 b3
## -2.3909e-10 1.2708e-09 4.4685e-10
## attr(,"pkgname")
## [1] "nlsr"

coef.nlsr

• extracts and displays the coefficients for a model estimated by nlxb() or nlfb() in the nlsr structured
object.

coef(anlxb1) # this is solution of scaled problem from unit start

## b1 b2 b3
## 1.9619 4.9092 3.1357
## attr(,"pkgname")
## [1] "nlsr"

print.nlsr

• Print summary output (but involving some serious computations!) of an object of class nlsr from nlxb
or nlfb from package nlsr.
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### From examples above
print(weedux)

## nlsr object: weedux
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 7.809e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.578e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.459e-07 2.735
print(ans1)

## nlsr object: ans1
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 7.809e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.578e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.459e-07 2.735

summary.nlsr

• Provide a summary output (but involving some serious computations!) of an object of class nlsr from
nlxb or nlfb from package nlsr. Also available for nls(). Note that this gives a rather lengthy output, so
calling it a summary is a bit of a stretch.

### From examples above
summary(weedux)

## $residuals
## [1] 0.011900 -0.032755 0.092030 0.208782 0.392634 -0.057594 -1.105728
## [8] 0.715786 -0.107648 -0.348396 0.652593 -0.287568
## attr(,"gradient")
## b1 b2 b3
## [1,] 2.7117 -1.0543 0.51756
## [2,] 3.6737 -1.4142 1.38849
## [3,] 4.9596 -1.8837 2.77424
## [4,] 6.6645 -2.4858 4.88137
## [5,] 8.9005 -3.2404 7.95373
## [6,] 11.7921 -4.1568 12.24383
## [7,] 15.4635 -5.2241 17.95225
## [8,] 20.0186 -6.3986 25.12937
## [9,] 25.5106 -7.5941 33.55263
## [10,] 31.9082 -8.6828 42.62517
## [11,] 39.0688 -9.5133 51.37254
## [12,] 46.7334 -9.9482 58.60466
##
## $sigma
## [1] 0.53617
##
## $df
## [1] 3 9
##
## $cov.unscaled
## [,1] [,2] [,3]
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## [1,] 0.044472 0.047835 -0.025281
## [2,] 0.047835 0.099167 -0.017629
## [3,] -0.025281 -0.017629 0.016386
##
## $param
## Estimate Std. Error t value Pr(>|t|)
## b1 1.9619 0.113069 17.351 3.1667e-08
## b2 4.9092 0.168844 29.075 3.2836e-10
## b3 3.1357 0.068633 45.688 5.7676e-12
##
## $resname
## [1] "weedux"
##
## $ssquares
## [1] 2.5873
##
## $nobs
## [1] 12
##
## $ct
## [1] " " " " " "
##
## $mt
## [1] " " " " " "
##
## $Sd
## [1] 130.1160 6.1654 2.7353
##
## $gr
## [,1]
## b1 7.8094e-08
## b2 3.5779e-07
## b3 -3.4589e-07
##
## $jeval
## [1] 23
##
## $feval
## [1] 34
summary(ans1)

## $residuals
## [1] 0.011900 -0.032755 0.092030 0.208782 0.392634 -0.057594 -1.105728
## [8] 0.715786 -0.107648 -0.348396 0.652593 -0.287568
##
## $sigma
## [1] 0.53617
##
## $df
## [1] 3 9
##
## $cov.unscaled
## [,1] [,2] [,3]
## [1,] 0.044472 0.047835 -0.025281
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## [2,] 0.047835 0.099167 -0.017629
## [3,] -0.025281 -0.017629 0.016386
##
## $param
## Estimate Std. Error t value Pr(>|t|)
## b1 1.9619 0.113069 17.351 3.1667e-08
## b2 4.9092 0.168844 29.075 3.2836e-10
## b3 3.1357 0.068633 45.688 5.7676e-12
##
## $resname
## [1] "ans1"
##
## $ssquares
## [1] 2.5873
##
## $nobs
## [1] 12
##
## $ct
## [1] " " " " " "
##
## $mt
## [1] " " " " " "
##
## $Sd
## [1] 130.1160 6.1654 2.7353
##
## $gr
## [,1]
## [1,] 7.8092e-08
## [2,] 3.5779e-07
## [3,] -3.4589e-07
##
## $jeval
## [1] 23
##
## $feval
## [1] 34

wrapnlsr

• Given a nonlinear model expressed as an expression of the form lhs ~ formula_for_rhs and a start
vector where parameters used in the model formula are named, attempts to find the minimum of the
residual sum of squares using the Nash variant Nash (1979) of the Marquardt algorithm, where the
linear sub-problem is solved by a qr method.

A particular purpose of this function is to create the nls-style model object for a problem when the solution
has been obtained by nlsr::nlxb. minpack.lm::nlsLM creates a structure that is parallel to that from
nls().
## The following attempt at Hobbs unscaled with nls() fails!
rm(list=ls()) # clear before starting
weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
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weeddf <- data.frame(tt, weed)
st <- c(b1=1, b2=1, b3=1) # a default starting vector (named!)
wmodu<- weed ~ b1/(1 + b2 * exp(- b3 * tt))
anls1u <- try(nls(wmodu, start=st, trace=FALSE, data=weeddf)) # fails

## Error in nls(wmodu, start = st, trace = FALSE, data = weeddf) :
## singular gradient
## But we succeed by calling nlxb first.
library(nlsr)
anlxb1un <- try(nlxb(wmodu, start=st, trace=FALSE, data=weeddf))
print(anlxb1un)

## nlsr object: anlxb1un
## residual sumsquares = 2.5873 on 12 observations
## after 19 Jacobian and 25 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 196.186 11.31 17.35 3.167e-08 -4.859e-09 1011
## b2 49.0916 1.688 29.08 3.284e-10 -3.099e-08 0.4605
## b3 0.31357 0.006863 45.69 5.768e-12 2.305e-06 0.04714
st2 <- coef(anlxb1un) # We try to start nls from solution using nlxb
anls2u <- try(nls(wmodu, start=st2, trace=FALSE, data=weeddf))
print(anls2u)

## Nonlinear regression model
## model: weed ~ b1/(1 + b2 * exp(-b3 * tt))
## data: weeddf
## b1 b2 b3
## 196.186 49.092 0.314
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 4.3e-08
## Or we can simply call wrapnlsr FROM THE ORIGINAL start
anls2a <- try(wrapnlsr(wmodu, start=st, trace=FALSE, data=weeddf))
summary(anls2a)

##
## Formula: weed ~ b1/(1 + b2 * exp(-b3 * tt))
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## b1 1.96e+02 1.13e+01 17.4 3.2e-08 ***
## b2 4.91e+01 1.69e+00 29.1 3.3e-10 ***
## b3 3.14e-01 6.86e-03 45.7 5.8e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.536 on 9 degrees of freedom
##
## Number of iterations to convergence: 0
## Achieved convergence tolerance: 2.03e-08
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# # For comparison could run nlsLM
# require(minpack.lm)
# anlsLM1u <- try(nlsLM(wmodu, start=st, trace=FALSE, data=weeddf))
# print(anlsLM1u)

resgr, resss

• For a nonlinear model originally expressed as an expression of the form lhs ~ formula_for_rhs assume
we have a resfn and jacfn that compute the residuals and the Jacobian at a set of parameters. This
routine computes the gradient, that is, t(Jacobian) %*% residuals.

## Use shobbs example -- Scaled Hobbs problem
shobbs.res <- function(x){ # scaled Hobbs weeds problem -- residual

if(length(x) != 3) stop("shobbs.res -- parameter vector n!=3")
y <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
res <- 100.0*x[1]/(1+x[2]*10.*exp(-0.1*x[3]*tt)) - y

}

shobbs.jac <- function(x) { # scaled Hobbs weeds problem -- Jacobian
jj <- matrix(0.0, 12, 3)
tt <- 1:12
yy <- exp(-0.1*x[3]*tt)
zz <- 100.0/(1+10.*x[2]*yy)
jj[tt,1] <- zz
jj[tt,2] <- -0.1*x[1]*zz*zz*yy
jj[tt,3] <- 0.01*x[1]*zz*zz*yy*x[2]*tt
attr(jj, "gradient") <- jj
jj

}
RG <- resgr(st, shobbs.res, shobbs.jac)
RG

## [1] 4.64386 3.64458 2.25518 0.11562 -2.91533 -7.77921 -14.68094
## [8] -20.35397 -30.41538 -41.57497 -52.89343 -67.04642
## attr(,"Jacobian")
## [,1] [,2] [,3]
## [1,] 9.9519 -8.9615 0.89615
## [2,] 10.8846 -9.6998 1.93997
## [3,] 11.8932 -10.4787 3.14361
## [4,] 12.9816 -11.2964 4.51856
## [5,] 14.1537 -12.1504 6.07520
## [6,] 15.4128 -13.0373 7.82235
## [7,] 16.7621 -13.9524 9.76668
## [8,] 18.2040 -14.8902 11.91213
## [9,] 19.7406 -15.8437 14.25933
## [10,] 21.3730 -16.8050 16.80496
## [11,] 23.1016 -17.7647 19.54122
## [12,] 24.9256 -18.7127 22.45528
## attr(,"Jacobian")attr(,"gradient")
## [,1] [,2] [,3]
## [1,] 9.9519 -8.9615 0.89615
## [2,] 10.8846 -9.6998 1.93997
## [3,] 11.8932 -10.4787 3.14361
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## [4,] 12.9816 -11.2964 4.51856
## [5,] 14.1537 -12.1504 6.07520
## [6,] 15.4128 -13.0373 7.82235
## [7,] 16.7621 -13.9524 9.76668
## [8,] 18.2040 -14.8902 11.91213
## [9,] 19.7406 -15.8437 14.25933
## [10,] 21.3730 -16.8050 16.80496
## [11,] 23.1016 -17.7647 19.54122
## [12,] 24.9256 -18.7127 22.45528
## attr(,"gradient")
## [1] -10091.3 7835.3 -8234.2
SS <- resss(st, shobbs.res)
SS

## [1] 10685

nlsDeriv, codeDeriv, fnDeriv, newDeriv

These functions are mainly for test and development use.

• Functions Deriv and fnDeriv are designed as replacements for the stats package functions D and
deriv respectively, though the argument lists do not match exactly. newDeriv allows additional
analytic derivative expressions to be added. The following is an expanded and commented version of
the examples from the manual for these functions.

newDeriv() # a call with no arguments returns a list of available functions

## [1] "(" "*" "+" "-" "/" "["
## [7] "^" "abs" "acos" "asin" "atan" "cos"
## [13] "cosh" "digamma" "dnorm" "exp" "gamma" "lgamma"
## [19] "log" "pnorm" "psigamma" "sign" "sin" "sinh"
## [25] "sqrt" "tan" "trigamma" "~"

# for which derivatives are currently defined
newDeriv(sin(x)) # a call with a function that is in the list of available derivatives

## $expr
## sin(x)
##
## $argnames
## [1] "x"
##
## $required
## [1] 1
##
## $deriv
## cos(x) * D(x)

# returns the derivative expression for that function
nlsDeriv(~ sin(x+y), "x") # partial derivative of this function w.r.t. "x"

## cos(x + y)
## CAUTION !! ##
newDeriv(joe(x)) # but an undefined function returns NULL

## NULL
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newDeriv(joe(x), deriv=log(xˆ2)) # We can define derivatives, though joe() is meaningless.
nlsDeriv(~ joe(x+z), "x")

## log((x + z)^2)
# Some examples of usage
f <- function(x) xˆ2
newDeriv(f(x), 2*x*D(x))
nlsDeriv(~ f(abs(x)), "x")

## 2 * abs(x) * sign(x)
nlsDeriv(~ xˆ2, "x")

## 2 * x
nlsDeriv(~ (abs(x)ˆ2), "x")

## 2 * abs(x) * sign(x)
# derivatives of distribution functions
nlsDeriv(~ pnorm(x, sd=2, log = TRUE), "x")

## 0.5 * exp(dnorm(x/2, log = TRUE) - pnorm(x/2, log = TRUE))
# get evaluation code from a formula
codeDeriv(~ pnorm(x, sd = sd, log = TRUE), "x")

## {
## .expr1 <- x/sd
## .value <- pnorm(x, sd = sd, log = TRUE)
## .grad <- array(0, c(length(.value), 1L), list(NULL, "x"))
## .grad[, "x"] <- 1/sd * exp(dnorm(.expr1, log = TRUE) - pnorm(.expr1,
## log = TRUE))
## attr(.value, "gradient") <- .grad
## .value
## }
# wrap it in a function call
fnDeriv(~ pnorm(x, sd = sd, log = TRUE), "x")

## function (x, sd)
## {
## .expr1 <- x/sd
## .value <- pnorm(x, sd = sd, log = TRUE)
## .grad <- array(0, c(length(.value), 1L), list(NULL, "x"))
## .grad[, "x"] <- 1/sd * exp(dnorm(.expr1, log = TRUE) - pnorm(.expr1,
## log = TRUE))
## attr(.value, "gradient") <- .grad
## .value
## }
f <- fnDeriv(~ pnorm(x, sd = sd, log = TRUE), "x", args = alist(x =, sd = 2))
f

## function (x, sd = 2)
## {
## .expr1 <- x/sd
## .value <- pnorm(x, sd = sd, log = TRUE)

18



## .grad <- array(0, c(length(.value), 1L), list(NULL, "x"))
## .grad[, "x"] <- 1/sd * exp(dnorm(.expr1, log = TRUE) - pnorm(.expr1,
## log = TRUE))
## attr(.value, "gradient") <- .grad
## .value
## }
f(1)

## [1] -0.36895
## attr(,"gradient")
## x
## [1,] 0.25458
100*(f(1.01) - f(1)) # Should be close to the gradient

## [1] 0.25394
## attr(,"gradient")
## x
## [1,] 0.2533

# The attached gradient attribute (from f(1.01)) is
# meaningless after the subtraction.

nlsSimplify and related functions

• Simplifications to render derivative expresssions more usable.

The related tools are: newSimplification, sysSimplifications, isFALSE, isZERO, isONE,
isMINUSONE, isCALL, findSubexprs, sysDerivs.

nlsSimplify simplifies expressions according to rules specified by newSimplification.

findSubexprs finds common subexpressions in an expression vector so that duplicate computation can be
avoided.
## nlsSimplify
nlsSimplify(quote(a + 0))

## a
nlsSimplify(quote(exp(1)), verbose = TRUE)

## Simplifying exp(1)

## Applying simplification:

## $expr
## exp(a)
##
## $argnames
## [1] "a"
##
## $test
## is.numeric(a)
##
## $simplification
## exp(a)
##
## $do_eval
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## [1] TRUE

## [1] 2.7183
nlsSimplify(quote(sqrt(a + b))) # standard rule

## sqrt(a + b)
## sysSimplifications
# creates a new environment whose parent is emptyenv() Why?
str(sysSimplifications)

## <environment: 0x5632e3cf5428>
myrules <- new.env(parent = sysSimplifications)
## newSimplification
newSimplification(sqrt(a), TRUE, aˆ0.5, simpEnv = myrules)
nlsSimplify(quote(sqrt(a + b)), simpEnv = myrules)

## (a + b)^0.5
## isFALSE
print(isFALSE(1==2))

## [1] TRUE
print(isFALSE(2==2))

## [1] FALSE
## isZERO
print(isZERO(0))

## [1] TRUE
x <- -0
print(isZERO(x))

## [1] TRUE
x <- 0
print(isZERO(x))

## [1] TRUE
print(isZERO(~(-1)))

## [1] FALSE
print(isZERO("-1"))

## [1] FALSE
print(isZERO(expression(-1)))

## [1] FALSE
## isONE
print(isONE(1))

## [1] TRUE
x <- 1
print(isONE(x))
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## [1] TRUE
print(isONE(~(1)))

## [1] FALSE
print(isONE("1"))

## [1] FALSE
print(isONE(expression(1)))

## [1] FALSE
## isMINUSONE
print(isMINUSONE(-1))

## [1] TRUE
x <- -1
print(isMINUSONE(x))

## [1] TRUE
print(isMINUSONE(~(-1)))

## [1] FALSE
print(isMINUSONE("-1"))

## [1] FALSE
print(isMINUSONE(expression(-1)))

## [1] FALSE
## isCALL ?? don't have good understanding of this
x <- -1
print(isCALL(x,"isMINUSONE"))

## [1] FALSE
print(isCALL(x, quote(isMINUSONE)))

## [1] FALSE
## findSubexprs
findSubexprs(expression(xˆ2, x-y, yˆ2-xˆ2))

## {
## .expr1 <- x^2
## expression(.expr1, x - y, y^2 - .expr1)
## }
## sysDerivs
# creates a new environment whose parent is emptyenv() Why?
# Where are derivative definitions are stored?
str(sysDerivs)

## <environment: 0x5632da745b30>

21



2. Analytic versus approximate Jacobians
A key goal of package nlsr was to be able to use analytic or symbolic derivatives for the Jacobian in nonlinear
least squares computations, in particular when the model is specified as a formula or expression. In this
nlsr::nlxb() has been quite successsful. It should be pointed out that the principal advantage of using
analytic derivatives is that we get a more assured measure of the “flatness” of the sum of squares surface
at the termination point. My experience is that there is no particular gain in the speed in getting to that
termination point.

A disadvantage of the approach is that specifying a “formula” that includes an R function will (usually)
fail. nls(), because it defaults to using a derivative approximation, can accept formulas that include R
functions, and indeed, one of the examples in the manual page nls.Rd is of this type. In package nlsr we
have introduced the possibility of using Jacobian approximations via the control element japprox which is
discussed in several places below.

A second goal of including approximations for the Jacobian is to be able to specify or control the approximation.
nls(), as shown in Appendix A, has a rather complicated code involving both R and C to compute a forward
difference approximation to the Jacobian. In this computation, each parameter is adjusted by its absolute
value times the square root of the machine precision (double). Call this the ndstep. So the parameter delta
is the absolute value of the parameter times approximately 1.5e-8. If the parameter is zero, then the delta is
ndstep. In nlsr::jafwd(), I use a delta of ndstep times the absolute value of the parameter PLUS the
ndstep. This avoids the check for a zero parameter.

It is known (https://en.wikipedia.org/wiki/Finite_difference) that the forward (and backward) difference
approximations are not ideal. Central differences and higher approximations such as those found in the
CRAN package numDeriv are better, and it is desirable to be able to specify that these be used.

Specifying approximations to nlfb

We first look at the nlfb() function that uses R functions for the residual and Jacobian. Borrowing from
the mechanism used in optimx::optimr(), we can invoke an approximation by putting the name of an
appropriate R function in quotation marks. In nlsr there are four functions jafwd(), jaback, jacentral,
and jand for the forward, backward, central and numDeriv (default) approximations. Moreover, the ndstep
can be set in the control() list in the nlfb() call. Its default value is 1e-7. An open question is whether to
change to the value sqrt(.Machine$double.eps) to more closely match nls().
## Test with functional spec. of problem
## Default call WITH jacobian function
ans1 <- nlfb(st, resfn=shobbs.res, jacfn=shobbs.jac)
ans1

## nlsr object: x
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 7.809e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.578e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.459e-07 2.735
## No jacobian function -- and no japprox control setting
ans1n <- try(nlfb(st, shobbs.res)) # NO jacfn

## Error in nlfb(st, shobbs.res) :
## MUST PROVIDE jacobian function or specify approximation
ans1n

## [1] "Error in nlfb(st, shobbs.res) : \n MUST PROVIDE jacobian function or specify approximation\n"
## attr(,"class")
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## [1] "try-error"
## attr(,"condition")
## <simpleError in nlfb(st, shobbs.res): MUST PROVIDE jacobian function or specify approximation>
## Force jafwd approximation
ans1nf <- nlfb(st, shobbs.res, control=list(japprox="jafwd")) # NO jacfn, but specify fwd approx
ans1nf

## nlsr object: x
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 6.669e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.232e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.805e-07 2.735
## Alternative specification
ans1nfa <- nlfb(st, shobbs.res, jacfn="jafwd") # NO jacfn, but specify fwd approx in jacfn
ans1nfa

## nlsr object: x
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 6.669e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.232e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.805e-07 2.735
## Coeff differences from analytic:
ans1nf$coefficients-ans1$coefficients

## b1 b2 b3
## 2.3909e-10 -1.2708e-09 -4.4685e-10
## Force jacentral approximation
ans1nc <- nlfb(st, shobbs.res, control=list(japprox="jacentral")) # NO jacfn
ans1nc

## nlsr object: x
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 9.537e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.587e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.708e-07 2.735
## Coeff differences from analytic:
ans1nc$coefficients-ans1$coefficients

## b1 b2 b3
## -5.6010e-10 -8.5208e-10 2.6850e-10
## Force jaback approximation
ans1nb <- nlfb(st, shobbs.res, control=list(japprox="jaback")) # NO jacfn
ans1nb

## nlsr object: x
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
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## b1 1.96186 0.1131 17.35 3.167e-08 1.044e-07 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.572e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.119e-07 2.735
## Coeff differences from analytic:
ans1nb$coefficients-ans1$coefficients

## b1 b2 b3
## 6.5124e-10 1.3754e-09 -2.3150e-10
## Force jand approximation
ans1nn <- nlfb(st, shobbs.res, control=list(japprox="jand"), trace=FALSE) # NO jacfn
ans1nn

## nlsr object: x
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 7.807e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.577e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.459e-07 2.735
## Coeff differences from analytic:
ans1nc$coefficients-ans1$coefficients

## b1 b2 b3
## -5.6010e-10 -8.5208e-10 2.6850e-10

Specifying Jacobian approximations to nlxb

Since nlxb() provides the model as a formula or expression, we need to tell it how to get an approximate Jaco-
bian. First, we can specify WHICH approximation to use by putting the name of the jacobian approximating
function in the control list element japprox in quotation marks.

The default mechanism for using nlxb() is to create a function trjfn (by calling model2rjfun() ). To make
our work a lot easier, trjfn is used as BOTH the residual and Jacobian function by copying the created
Jacobian matrix into the “gradient” attribute of the returned object from trjfn.

NOTE: This requirement that the Jacobian matrix be returned in the “gradient” attribute of the returned
object of the jacfn specified in the call to nlfb() is one that users should be careful to observe.

When we specify a Jacobian approximation (via control$japprox) to nlxb(), the call to model2rjfun
is made with jacobian=FALSE and the appropriate function for the approximation is supplied in the
subsequent call the nlfb() to minimize the sum of squared objective. The jacobian parameter in the call to
model2rjfun() defaults to TRUE.
## rm(list=ls()) # clear workspace for each major section
## Use the Hobbs Weed problem
weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
weeddf <- data.frame(y=weed, tt=tt)
st1 <- c(b1=1, b2=1, b3=1) # a default starting vector (named!)
wmods <- y ~ 100*b1/(1+10*b2*exp(-0.1*b3*tt)) ## Scaled model
print(wmods)

## y ~ 100 * b1/(1 + 10 * b2 * exp(-0.1 * b3 * tt))
anlxb1 <- try(nlxb(wmods, start=st1, data=weeddf))
print(anlxb1)
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## nlsr object: anlxb1
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 7.809e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.578e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.459e-07 2.735
anlxb1fwd <- (nlxb(wmods, start=st1, data=weeddf,

control=list(japprox="jafwd")))
print(anlxb1fwd)

## nlsr object: anlxb1fwd
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 6.669e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.232e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.805e-07 2.735
## fwd - analytic
print(anlxb1fwd$coefficients - anlxb1$coefficients)

## b1 b2 b3
## 2.3909e-10 -1.2708e-09 -4.4685e-10
anlxb1bak <- (nlxb(wmods, start=st1, data=weeddf,

control=list(japprox="jaback")))
print(anlxb1bak)

## nlsr object: anlxb1bak
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 1.044e-07 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.572e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.119e-07 2.735
## back - analytic
print(anlxb1bak$coefficients - anlxb1$coefficients)

## b1 b2 b3
## 6.5124e-10 1.3754e-09 -2.3150e-10
anlxb1cen <- (nlxb(wmods, start=st1, data=weeddf,

control=list(japprox="jacentral")))
print(anlxb1cen)

## nlsr object: anlxb1cen
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 9.537e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.587e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.708e-07 2.735
## central - analytic
print(anlxb1cen$coefficients - anlxb1$coefficients)
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## b1 b2 b3
## -5.6010e-10 -8.5208e-10 2.6850e-10
anlxb1nd <- (nlxb(wmods, start=st1, data=weeddf,

control=list(japprox="jand")))
print(anlxb1nd)

## nlsr object: anlxb1nd
## residual sumsquares = 2.5873 on 12 observations
## after 23 Jacobian and 34 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 7.807e-08 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 3.577e-07 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 -3.459e-07 2.735
## numDeriv - analytic
print(anlxb1nd$coefficients - anlxb1$coefficients)

## b1 b2 b3
## -5.7647e-12 -1.0112e-11 2.4873e-12

3. Weighted nonlinear regression
While the standard approach to nonlinear regression is to minimize the sum of squared residuals, there are
frequently good reasons to weight each residual to scale them according to their importance. That is, we
wish to favour those residuals believed to be more certain. Until 2020, nlsr did not provide for weights that
could alter with the parameters of the model. That is, the weights were pre-specified, at least in nlxb. The
resfn and jacfn of nlfb could, of course be specified with almost any loss function that results in a sum of
squared residuals.

With the addition of the possibility of forcing the use of an approximation to the Jacobian (Section 2
above), formulas that allow the inclusion of functions (i.e., subprograms) are possible, and these may include
weighting.

The following examples illustrate how this works.

Static weights

## weighted nonlinear regression using inverse squared variance of the response
require(minpack.lm)
Treated <- Puromycin[Puromycin$state == "treated", ]
# We want the variance of each "group" of the rate variable
# for which the conc variable is the same. We first find
# this variance by group using the tapply() function.
var.Treated <- tapply(Treated$rate, Treated$conc, var)
var.Treated <- rep(var.Treated, each = 2)
Pur.wt1nls <- nls(rate ~ (Vm * conc)/(K + conc), data = Treated,

start = list(Vm = 200, K = 0.1), weights = 1/var.Treatedˆ2)
Pur.wt1nlm <- nlsLM(rate ~ (Vm * conc)/(K + conc), data = Treated,

start = list(Vm = 200, K = 0.1), weights = 1/var.Treatedˆ2)
Pur.wt1nlx <- nlxb(rate ~ (Vm * conc)/(K + conc), data = Treated,

start = list(Vm = 200, K = 0.1), weights = 1/var.Treatedˆ2)
rnls <- summary(Pur.wt1nls)$residuals
ssrnls<-as.numeric(crossprod(rnls))
rnlm <- summary(Pur.wt1nlm)$residuals
ssrnlm<-as.numeric(crossprod(rnlm))
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rnlx <- Pur.wt1nlx$resid
ssrnlx<-as.numeric(crossprod(rnlx))
cat("Compare nls and nlsLM: ", all.equal(coef(Pur.wt1nls), coef(Pur.wt1nlm)),"\n")

## Compare nls and nlsLM: TRUE
cat("Compare nls and nlsLM: ", all.equal(coef(Pur.wt1nls), coef(Pur.wt1nlx)),"\n")

## Compare nls and nlsLM: Attributes: < names for current but not for target > Attributes: < Length mismatch: comparison on first 0 components > Mean relative difference: 7.5758e-08
cat("Sumsquares nls - nlsLM: ", ssrnls-ssrnlm,"\n")

## Sumsquares nls - nlsLM: 3.3862e-15
cat("Sumsquares nls - nlxb: ", ssrnls-ssrnlx,"\n")

## Sumsquares nls - nlxb: 1.0027e-12

Dynamic weights via the wfct() function

minpack.lm provides an interesting function that allows us to access current values of various quantities
associated with our model. There are five possibilities, of which two are static weightings – the name of
the response or the predictor variable. (It seems wfct assumes only one such variable.) The other three
possibilities are the current values of the “fitted” model, the residuals as specified by “resid”, or the “error”,
which is the square root of the variance of the response variable. The last possibility requires repetitions of
the independent or predictor variable.

Concerns: I have found that the structure of wfct means that examples using it in calls to nlsLM, nls or
nlxb with fail if they are accessed via source() or if the call is surrounded by a print() or try(). This
remains to be sorted out.

Note that nlxb cannot use fitted or resid in the wfct function to specify weights. nls() generates such
functions as part of the returned object. nlsr does have predict.nlsr() that could be used to generate
fits and by extension, residuals. What is possible??
## minpack.lm::wfct
### Examples from 'nls' doc where wfct used ###
## Weighting by inverse of response 1/y_i:
wtt1nlm<-nlsLM(rate ~ Vm * conc/(K + conc), data = Treated,

start = c(Vm = 200, K = 0.05), weights = wfct(1/rate))
print(wtt1nlm)

wtt1nls<-nls(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(1/rate))

print(wtt1nls)

wtt1nlx<-nlxb(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(1/rate))

print(wtt1nlx)

## Weighting by square root of predictor \sqrt{x_i}:
# ?? why does try() not work
wtt2nlm<-nlsLM(rate ~ Vm * conc/(K + conc), data = Treated,

start = c(Vm = 200, K = 0.05), weights = wfct(sqrt(conc)))
print(wtt2nlm)

wtt2nls<-nls(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(sqrt(conc)))
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print(wtt2nls)

wtt2nlx<-nlxb(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(sqrt(conc)))

print(wtt2nlx)

## Weighting by inverse square of fitted values 1/\hat{y_i}ˆ2:
wtt3nlm<-nlsLM(rate ~ Vm * conc/(K + conc), data = Treated,

start = c(Vm = 200, K = 0.05), weights = wfct(1/fittedˆ2))
print(wtt3nlm)

wtt3nls<-nls(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(1/fittedˆ2))

print(wtt3nls)

# These don't work -- there is no fitted() function available in nlsr
# wtt3nlx<-try(nlxb(rate ~ Vm * conc/(K + conc), data = Treated,
# start = c(Vm = 200, K = 0.05), weights = wfct(1/fittedˆ2)))
## (nlxb(rate ~ Vm * conc/(K + conc), data = Treated,
## start = c(Vm = 200, K = 0.05), weights = wfct(1/(resid+rate)ˆ2)))
## (wrapnlsr(rate ~ Vm * conc/(K + conc), data = Treated,
## start = c(Vm = 200, K = 0.05), weights = wfct(1/(resid+rate)ˆ2)))

## Weighting by inverse variance 1/\sigma{y_i}ˆ2:
wtt4nlm<-nlsLM(rate ~ Vm * conc/(K + conc), data = Treated,

start = c(Vm = 200, K = 0.05), weights = wfct(1/errorˆ2))
print(wtt4nlm)

wtt4nls<-nls(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(1/errorˆ2))

print(wtt4nls)

wtt4nlx<-nlxb(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(1/errorˆ2))

print(wtt4nlx)

wtt5nls<-nls(rate ~ Vm * conc/(K + conc), data = Treated,
start = c(Vm = 200, K = 0.05), weights = wfct(1/residˆ2))

print(wtt5nls)
wtt5nlm<-nlsLM(rate ~ Vm * conc/(K + conc), data = Treated,

start = c(Vm = 200, K = 0.05), weights = wfct(1/residˆ2))
print(wtt5nlm)
## Won't work! No resid function available from nlxb.
## wtt5nlx<-nlxb(rate ~ Vm * conc/(K + conc), data = Treated,
## start = c(Vm = 200, K = 0.05), weights = wfct(1/residˆ2))
## print(wtt5nlx)

Weights built into a one-sided model function

In all three formula-based nonlinear model estimators (nls, nlsLM, nlxb), the “formula” can be set so there
is no so-called Left Hand Side (LHS).
st<-c(b1=1, b2=1, b3=1)
frm <- ~ b1/(1+b2*exp(-b3*tt))-y
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nolhs <- nlxb(formula=frm, data=weeddf, start=st)
nolhs

## nlsr object: x
## residual sumsquares = 2.5873 on 12 observations
## after 19 Jacobian and 25 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 196.186 11.31 17.35 3.167e-08 -4.859e-09 1011
## b2 49.0916 1.688 29.08 3.284e-10 -3.099e-08 0.4605
## b3 0.31357 0.006863 45.69 5.768e-12 2.305e-06 0.04714

Since we can set up problems in this way, we could, in some cases, build weights into the expression on the
right hand side. For nlxb, attempts to develop the analytic Jacobian will generally fail if the formula includes
an R function call. This can be overcome by specifying a Jacobian approximation in the control list element
japprox.
## weighted nonlinear regression using 1-sided model functions
Treated <- Puromycin[Puromycin$state == "treated", ]
weighted.MM <- function(resp, conc, Vm, K)
{

## Purpose: exactly as white book p. 451 -- RHS for nls()
## Weighted version of Michaelis-Menten model
## ----------------------------------------------------------
## Arguments: 'y', 'x' and the two parameters (see book)
## ----------------------------------------------------------
## Author: Martin Maechler, Date: 23 Mar 2001

pred <- (Vm * conc)/(K + conc)
(resp - pred) / sqrt(pred)

}

Pur.wtMMnls <- nls( ~ weighted.MM(rate, conc, Vm, K), data = Treated,
start = list(Vm = 200, K = 0.1))

print(Pur.wtMMnls)

## Nonlinear regression model
## model: 0 ~ weighted.MM(rate, conc, Vm, K)
## data: Treated
## Vm K
## 206.8347 0.0546
## residual sum-of-squares: 14.6
##
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 3.86e-06
Pur.wtMMnlm <- nlsLM( ~ weighted.MM(rate, conc, Vm, K), data = Treated,

start = list(Vm = 200, K = 0.1))
print(Pur.wtMMnlm)

## Nonlinear regression model
## model: 0 ~ weighted.MM(rate, conc, Vm, K)
## data: Treated
## Vm K
## 206.8347 0.0546
## residual sum-of-squares: 14.6
##
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## Number of iterations to convergence: 5
## Achieved convergence tolerance: 1.49e-08
Pur.wtMMnlx <- nlxb( ~ weighted.MM(rate, conc, Vm, K), data = Treated,

start = list(Vm = 200, K = 0.1), control=list(japprox="jafwd"))
print(Pur.wtMMnlx)

## nlsr object: Pur.wtMMnlx
## residual sumsquares = 14.597 on 12 observations
## after 8 Jacobian and 8 function evaluations
## name coeff SE tstat pval gradient JSingval
## Vm 206.835 9.225 22.42 7.003e-10 -5.246e-10 230.7
## K 0.0546112 0.007979 6.845 4.488e-05 -6.713e-06 0.131
# Another approach
## Passing arguments using a list that can not be coerced to a data.frame
lisTreat <- with(Treated, list(conc1 = conc[1], conc.1 = conc[-1], rate = rate))
weighted.MM1 <- function(resp, conc1, conc.1, Vm, K){

conc <- c(conc1, conc.1)
pred <- (Vm * conc)/(K + conc)
(resp - pred) / sqrt(pred)

}
Pur.wtMM1nls <- nls( ~ weighted.MM1(rate, conc1, conc.1, Vm, K),

data = lisTreat, start = list(Vm = 200, K = 0.1))
print(Pur.wtMM1nls)

## Nonlinear regression model
## model: 0 ~ weighted.MM1(rate, conc1, conc.1, Vm, K)
## data: lisTreat
## Vm K
## 206.8347 0.0546
## residual sum-of-squares: 14.6
##
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 3.86e-06
# Should we put in comparison of coeffs / sumsquares??
# stopifnot(all.equal(coef(Pur.wt), coef(Pur.wt1)))
Pur.wtMM1nlm <- nlsLM( ~ weighted.MM1(rate, conc1, conc.1, Vm, K),

data = lisTreat, start = list(Vm = 200, K = 0.1))
print(Pur.wtMM1nlm)

## Nonlinear regression model
## model: 0 ~ weighted.MM1(rate, conc1, conc.1, Vm, K)
## data: lisTreat
## Vm K
## 206.8347 0.0546
## residual sum-of-squares: 14.6
##
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 1.49e-08
Pur.wtMM1nlx <- nlxb( ~ weighted.MM1(rate, conc1, conc.1, Vm, K),

data = lisTreat, start = list(Vm = 200, K = 0.1), control=list(japprox="jafwd"))
print(Pur.wtMM1nlx)

## nlsr object: Pur.wtMM1nlx
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## residual sumsquares = 14.597 on 12 observations
## after 8 Jacobian and 8 function evaluations
## name coeff SE tstat pval gradient JSingval
## Vm 206.835 9.225 22.42 7.003e-10 -5.246e-10 230.7
## K 0.0546112 0.007979 6.845 4.488e-05 -6.713e-06 0.131
# yet another approach
## Chambers and Hastie (1992) Statistical Models in S (p. 537):
## If the value of the right side [of formula] has an attribute called
## 'gradient' this should be a matrix with the number of rows equal
## to the length of the response and one column for each parameter.
weighted.MM.grad <- function(resp, conc1, conc.1, Vm, K) {

conc <- c(conc1, conc.1)
K.conc <- K+conc
dy.dV <- conc/K.conc
dy.dK <- -Vm*dy.dV/K.conc
pred <- Vm*dy.dV
pred.5 <- sqrt(pred)
dev <- (resp - pred) / pred.5
Ddev <- -0.5*(resp+pred)/(pred.5*pred)
attr(dev, "gradient") <- Ddev * cbind(Vm = dy.dV, K = dy.dK)
dev

}
Pur.wtMM.gradnls <- nls( ~ weighted.MM.grad(rate, conc1, conc.1, Vm, K),

data = lisTreat, start = list(Vm = 200, K = 0.1))
print(Pur.wtMM.gradnls)

## Nonlinear regression model
## model: 0 ~ weighted.MM.grad(rate, conc1, conc.1, Vm, K)
## data: lisTreat
## Vm K
## 206.8347 0.0546
## residual sum-of-squares: 14.6
##
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 3.86e-06
Pur.wtMM.gradnlm <- nlsLM( ~ weighted.MM.grad(rate, conc1, conc.1, Vm, K),

data = lisTreat, start = list(Vm = 200, K = 0.1))
print(Pur.wtMM.gradnlm)

## Nonlinear regression model
## model: 0 ~ weighted.MM.grad(rate, conc1, conc.1, Vm, K)
## data: lisTreat
## Vm K
## 206.8347 0.0546
## residual sum-of-squares: 14.6
##
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 1.49e-08
Pur.wtMM.gradnlx <- nlxb( ~ weighted.MM.grad(rate, conc1, conc.1, Vm, K),

data = lisTreat, start = list(Vm = 200, K = 0.1),
control=list(japprox="jafwd"))

print(Pur.wtMM.gradnlx)
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## nlsr object: Pur.wtMM.gradnlx
## residual sumsquares = 14.597 on 12 observations
## after 8 Jacobian and 8 function evaluations
## name coeff SE tstat pval gradient JSingval
## Vm 206.835 9.225 22.42 7.003e-10 -3.99e-10 230.7
## K 0.0546112 0.007979 6.845 4.488e-05 -5.206e-06 0.131
#3 To display the coefficients for comparison:
## rbind(coef(Pur.wtMMnls), coef(Pur.wtMM1nls), coef(Pur.wtMM.gradnls))
## In this example, there seems no advantage to providing the gradient.
## In other cases, there might be.

4. Relative offset and other convergence criteria
Here we will mostly look at the relative offset convergence criterion (ROCC) that was proposed by Bates,
Douglas M. and Watts, Donald G. (1981). The primary merit of this test is that it it compares the estimated
progress towards a minimum sum of squares with the current value. When this is very small, the method
terminates. Both nls() and nlsr try to use this criterion for terminating the process of minimizing the
objective, though there are minor differences of detail. nlsr also includes the option of turning off the ROCC
with the control parameter rofftest=FALSE. nlsr::nlfb() also has a small sum of squares test: if the
sum of squares is less than the fourth power of the machine precision, .Machine$double.eps, the iteration
will terminate unless control smallsstest=FALSE. In some extreme problems this may be necessary, and
they would likely run until limits on maximum number of evaluations of the sum of squares (control femax)
or Jacobian (control jemax) are exceeded. In other words, we are dealing with problems at the edge of
computability.

There is a weakness in the ROCC, in that it does not work well with problems that have a zero sum of squares
as the solution, so called zero-residual problems. In October 2020, I suggested a patch to the stats::nls()
function to avoid a zero-divide in the ROCC of nls(), using ideas, but not the exact implementation, already
in nlsr::nlfb(). Previously, the documentation of nls() said:

Warning

The default settings of nls generally fail on small-residual problems.

The nls function uses a relative-offset convergence criterion that compares the numerical imprecision at
the current parameter estimates to the residual sum-of-squares. To avoid a zero-divide in computing the
test value, a positive constant convTestAdd should be added to the sum-of-squares. This quantity is set via
nls.control(), as in the example below.

Overview of the ROCC test

The ROCC test uses the calculated reduction in the sum of squared residuals in the linearized sub-problem
for the latest iteration and compares this to the current sum of squared residuals. The comparison is made
by division of the reduction in the sum of squares to the current sum of squares. Clearly if the denominator
is zero, we have the awkwardness of zero divided by zero. This is overcome if we add a positive value
scaleOffset to the denominator. A default value of 0.0 for scaleOffset preserves the legacy behaviour of
nls().

While I have used ROCC as if there is a single definition, nls() and nlsr::nffb() use somewhat different
formulas and scalings. However, I believe they result in essentially similar outcomes once the scaleOffset
safeguard is applied.

Some implementation ideas for the ROCC

Below in Section 5 we will see that the essential iteration in either a Gauss-Newton or Marquardt method
finds a least squares solution to the linearized problem
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Aδ = b

where A is either the Jacobian or a modification thereof for a Marquardt statbilization, and b the appropriate
negative of the residuals, possibly augmented with zeros according to the needs of the stabilization.

Clearly we can compute the current sum of squared as the cross product bT b, since the zeros do not alter this
value. It turns out the QR decomposition gives us a quite convenient computation for the reduction in this
value by the current linearized sub-problem. This happens to be the sum of squares of the elements of the
vector

rproj = Q′b

where Q′ is the transpose of the orthogonal decomposition matrix Q from the decomposition.

Let us illustrate this with a linear least squares problem. Note that this problem uses an explicit column of
1s. Most “regression” calculations assume a constant term which is included automatically. Furthermore, a
linear model with just a single constant minimizes the sum of squares when that constant is the mean of the
dependent variable, that is the mean of column b. This sum of squares is generally called the “Total Sum of
Squares” and any linear model with more than a constant will have a smaller some of squares. Here, and in
most nonlinear models, we do not have that guarantee. Hence we will talk of the “overall” sum of squares for
want of a better term, and this is simply the sum of squares of the elements of b. We will judge our progress
by this number.

First we create some data for the A and b.
# QRsolveEx.R -- example of solving least squares with QR
# J C Nash 2020-12-06
# Enter matrix from Compact Numerical Methods for Computers, Ex04
text <- c(563, 262, 461, 221, 1, 305,
658, 291, 473, 222, 1, 342,
676, 294, 513, 221, 1, 331,
749, 302, 516, 218, 1, 339,
834, 320, 540, 217, 1, 354,
973, 350, 596, 218, 1, 369,
1079, 386, 650, 218, 1, 378,
1151, 401, 676, 225, 1, 368,
1324, 446, 769, 228, 1, 405,
1499, 492, 870, 230, 1, 438,
1690, 510, 907, 237, 1, 438,
1735, 534, 932, 235, 1, 451,
1778, 559, 956, 236, 1, 485)
mm<-matrix(text, ncol=6, byrow=TRUE) # byrow is critical!
A <- mm[,1:5] # select the matrix
A # display

## [,1] [,2] [,3] [,4] [,5]
## [1,] 563 262 461 221 1
## [2,] 658 291 473 222 1
## [3,] 676 294 513 221 1
## [4,] 749 302 516 218 1
## [5,] 834 320 540 217 1
## [6,] 973 350 596 218 1
## [7,] 1079 386 650 218 1
## [8,] 1151 401 676 225 1
## [9,] 1324 446 769 228 1
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## [10,] 1499 492 870 230 1
## [11,] 1690 510 907 237 1
## [12,] 1735 534 932 235 1
## [13,] 1778 559 956 236 1
b <- mm[,6] # rhs
b

## [1] 305 342 331 339 354 369 378 368 405 438 438 451 485
oss<-as.numeric(crossprod(b))
cat("Overall sumsquares of b =",oss,"\n")

## Overall sumsquares of b = 1960595
cat("(n-1)*variance=",(length(b)-1)*var(b),"= tss = ",as.numeric(crossprod(b-mean(b))),"\n")

## (n-1)*variance= 35210 = tss = 35210
Aqr<-qr(A) # compute the QR decomposition of A
QAqr<-qr.Q(Aqr) # extract the Q matrix of this decomposition
RAqr<-qr.R(Aqr) # This is how to get the R matrix
XAqr<-qr.X(Aqr) # And this is the reconstruction of A from the decomposition
cat("max reconstruction error = ", max(abs(XAqr-A)),"\n")

## max reconstruction error = 9.0949e-13
cat("check the orthogonality Q' * Q: ", max(abs(t(QAqr)%*%QAqr-diag(rep(1,dim(A)[2])))),"\n")

## check the orthogonality Q' * Q: 2.2204e-16
cat("note failure of orthogonality of Q * Q': ",max(abs(QAqr%*%t(QAqr)-diag(rep(1,dim(A)[1])))),"\n")

## note failure of orthogonality of Q * Q': 0.874
Absol<-qr.solve(A,b, tol=1000*.Machine$double.eps) # solve the linear ls problem
Absol # and display it

## [1] -0.046192 1.019387 -0.159823 -0.290376 207.782626
Abres<-qr.resid(Aqr,b)# and get the residual
rss<-as.numeric(crossprod(Abres))
cat("residual sumsquares=",rss,"\n")

## residual sumsquares= 965.25
Qtb<-as.vector(t(QAqr)%*%b) # Q' * b -- turns out to be reduction in sumsquares
ssQtb<-as.numeric(crossprod(Qtb))
cat("oss-ssQtb = overall sumsquares minus sumsquares Q' * b = ",oss-ssQtb,"\n")

## oss-ssQtb = overall sumsquares minus sumsquares Q' * b = 965.25
cat("Thus reduction in sumsquares is ", ssQtb,"\n")

## Thus reduction in sumsquares is 1959630
Qtr<-as.vector(t(QAqr)%*%Abres) # projection of residuals onto range space of A
Qtr

## [1] 8.8818e-16 -4.4409e-16 -8.8818e-16 8.8818e-16 -4.4409e-16

We thus have a quite convenient and available method to compute a relative offset test criterion if we solve
our Gauss-Newton or Marquardt sub-problem with a QR decomposition.
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Other convergence and termination tests

In order to catch runaway computations where some numerical imprecision causes convergence tests to fail,
methods generally check the number of Jacobian or sum of squares (i.e., residual) calculations. nlsr does this
with the femax and jemax elements of the control list, for which the defaults are 10000 and 5000 respectively,
which is possibly overly loose. minpack.lm::nlsLM uses control list elements maxfev and maxiter (default
50) which I believe parallel femax and jemax. The default value of maxfev is 100 times the (number of
parameters to estimate + 1). nls() appears to have only control element maxiter for which the default is
50 also.

While nls() and nlsr use the ROCC, minpack.lm uses a combination of tests:

• control element ftol is used in a test that seems to be related to the ROCC, since termination occurs
when both the actual and predicted relative reductions in the sum of squares are at most ftol.

• when the relative change between two consecutive iterates is at most ptol the process terminates.

• if the cosine of the angle between result of evaluation of the residual and any column of the Jacobian is
at most gtol in absolute value the process terminates. Therefore, gtol measures the orthogonality
desired between the residual vector and the columns of the Jacobian.

5. Implementation of nonlinear least squares methods
This section is a review of approaches to solving the nonlinear least squares problem that underlies nonlinear
regression modelling. In particular, we look at using a QR decomposition for the Levenberg-Marquardt
stabilization of the solution of the Gauss-Newton equations.

Gauss-Newton variants

Nonlinear least squares methods are mostly founded on some or other variant of the Gauss-Newton algorithm.
The function we wish to minimize is the sum of squares of the (nonlinear) residuals r(x) where there are m
observations (elements of r) and n parameters x. Hence the function is

f(x) =
∑

i

(ri
2)

Newton’s method starts with an original set of parameters x[0]. At a given iteraion, which could be the first,
we want to solve

x[k + 1] = x[k] −H−1g

where H is the Hessian and g is the gradient at x[k]. We can rewrite this as a solution, at each iteration, of

Hδ = −g

with

x[k + 1] = x[k] + δ

For the particular sum of squares, the gradient is

g(x) = 2 ∗ r[k]

and
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H(x) = 2(J ′J +
∑

i

(ri ∗ Zi))

where J is the Jacobian (first derivatives of r w.r.t. x) and Zi is the tensor of second derivatives of ri w.r.t.
x). Note that J ′ is the transpose of J .

The primary simplification of the Gauss-Newton method is to assume that the second term above is negligible.
As there is a common factor of 2 on each side of the Newton iteration after the simplification of the Hessian,
the Gauss-Newton iteration equation is

(J ′J)δ = −J ′r

This iteration frequently fails. The approximation of the Hessian by the Jacobian inner-product is one reason,
but there is also the possibility that the sum of squares function is not “quadratic” enough that the unit step
reduces it. Hartley (1961) introduced a line search along delta. Marquardt (1963) suggested replacing J ′J
with (J ′J + λ ∗D) where D is a diagonal matrix intended to partially approximate the omitted portion of
the Hessian. Choices suggested by Marquardt were D = I (a unit matrix) or D = (diagonal part of J ′J).
The former approach, when λ is large enough that the iteration is essentially

δ = −g/λ

gives a version of the steepest descents algorithm. Using the diagonal of J ′J , we have a scaled version of
this (see https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm; Levenberg (1944)
predated Marquardt, but the latter seems to have done the practical work that brought the approach to
general attention.)

Nash (1977) found that on low precision machines, it was common for diagonal elements of J ′J to underflow.
A very small modification to solve

(J ′J + lambda ∗ (D + ϕ ∗ I)) ∗ δ = −g

where ϕ is a small number avoids most of these conditions. ϕ = 1 seems to work quite well. We note that
this modification would likely not have been recognized had I not been working on machines with mediochre
floating-point arithmetic – a little more than 6 decimal digits of precision and no extended precision.

Choices

Both nlsr::nlxb() and minpack.lm::nlsLM use a Levenberg-Marquardt stabilization of the iteration
described above, with nlsr using the modification involving the ϕ control parameter. The complexities of
the code in minpack.lm are such that I have relied largely on the documentation to judge how the iteration
is accomplished. nls() uses a straightforward Hartley variant of the Gauss-Newton iteration, but rather
than form the sum of squares and cross-products, uses a QR decomposition of the matrix J that has been
found by a forward difference approximation. The line search used by nls() is a simple back-tracking search
using a step reduction factor of 0.5 as the default stepsize reduction.

Nash (1979) and Nash and Walker-Smith (1987) solve

(JTJ + λDx)δ = −JT r

by the Cholesky decomposition. In this Dx = (D+ϕ ∗ I) as described above and λ is a number of modest size
initially. Clearly for λ = 0 we have a Gauss-Newton method. Typically, the sum of squares of the residuals
calculated at the “new” set of parameters is used as a criterion for keeping those parameter values. If so, the
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size of λ is reduced. If not, we increase the size of λ and compute a new δ. Note that a new J , the expensive
step in each iteration, is NOT required in this latter case.

In 2022, a modification to use Dy = (ψ ∗ D + ϕ ∗ I) was introduced, though the matrix equations are
solved via a QR decomposition approach. Within the code, control parameters psi, phi and stepredn were
introduced so that a variety of Gauss-Newton, Hartley, or Marquardt approaches are available by simple
control modifications. Experience so far suggests that a Levenberg-Marquardt stabilization is much more
reliable than the Gauss-Newton-Hartley choices, but that different selections of psi and phi perform rather
similarly. As for Gauss-Newton methods, the details of how to start, adjust and terminate the iteration lead
to many variants, increased by these different possibilities for specifying D. See Nash (1979).

Using matrix decompositions

In Nash (1979), the iteration equation was solved as stated. However, this involves forming the sum of squares
and cross products of J , a process that loses some numerical precision. A better way to solve the linear
equations is to apply the QR decomposition to the matrix J itself. However, we still need to incorporate the
λ ∗ I or λ ∗D adjustments. This is done by adding rows to J that are the square roots of the “pieces”. We
add 1 row for each diagonal element of I and each diagonal element of D. Note that we also need to add a
zero to the residual vector (the right-hand side) for each diagonal element.

Various authors (including the present one) have suggested different strategies for modification of λ. In the
present approach, we reduce the lambda parameter before solution. The initial value is the control element
lamda (note the mis-spelling), which has default 1e-4. If the resulting sum of squares is not reduced, lambda
is increased, otherwise we move to the next iteration. My current opinion is that a “quick” increase, say
a factor of 10, and a “slow” decrease, say a factor of 0.4, work quite well. However, it is worth checking
that lamda has not got too small or underflowed before applying the increase factor. On the other hand,
it is useful to be able to set lamda = 0 along with zero increase and decrease factors laminc and lamdec
so a Hartley method can be evaluated with the program(s) by setting the control stepredn. Regularly, the
current code nlfb() uses the line

if (lamda<1000*.Machine$double.eps) lamda<-1000*.Machine$double.eps

to ensure we get an increase. However, these possibilities are really for those of us playing to improve
algorithms and not for practitioner use.

The Levenberg-Marquardt adjustment to the Gauss-Newton approach is the second major
improvement of nlsr (and also its predecessor nlmrt and the package minpack-lm) over nls().

We could implement the methods using the equations above. However, the accumulation of inner products
in JTJ occasions some numerical error, and it is generally both safer and more efficient to use matrix
decompositions. In particular, if we form the QR decomposition of J

QR = J

where Q is an orthonormal matrix and R is Right or Upper triangular, we can easily solve

Rδ = QT r

for which the solution is also the solution of the Gauss-Newton equations. But how do we get the Marquardt
stabilization?

If we augment J with a square matrix sqrt(λD) whose diagonal elements are the square roots of λ times the
diagonal elements of D, and augment the vector r with n zeros where n is the column dimension of J and D,
we achieve our goal.

Typically we can use D = 1n (the identity of order n), but Marquardt (1963) showed that using the diagonal
elements of JTJ for D results in a useful implicit scaling of the parameters. Nash (1977) pointed out that
on computers with limited arithmetic (which now are rare since the IEEE 754 standard appeared in 1985),
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underflow might cause a problem of very small elements in D and proposed adding ϕ1n to the diagonals of
JTJ before multiplying by λ in the Marquardt stabilization. This avoids some awkward cases with very little
extra overhead. It is accomplished with the QR approach by appending sqrt(ϕ ∗ λ) times a unit matrix In to
the matrix already augmented matrix. We must also append a further n zeros to the augmented r.

6. Fixed parameters
Motivation for fixed parameters

In finding optimal parameters in nonlinear optimization and nonlinear least squares problems, we may wish
to fix one or more parameters while allowing the rest to be adjusted to explore or optimize an objective
function. A lot of the material is drawn from Nash J C (2014) Nonlinear parameter optimization using
R tools Chichester UK: Wiley, in particular chapters 11 and 12.

Background for fixed parameters

Here are some of the ways fixed parameters may be specified in R packages.

• nlxb() in package nlsr (formerly part of defunct package nlmrt) uses a character vector masked of
quoted parameter names. These parameters will NOT be altered by the algorithm. This approach has
a simplicity that is attractive, but requires an extra argument to calling sequences.

• nlfb() in nlsr (formerly in nlmrt also) uses the vector maskidx of (integer) indices of the parameters
to be masked. These parameters will NOT be altered by the algorithm. Note that the mechanism here
is different from that in nlxb which uses the names of the parameters.

• Rvmmin and Rcgmin use an indicator vector bdmsk that has 1 for each parameter that is “free” or
unconstrained, and 0 for any parameter that is fixed or MASKED for the duration of the optimization.

Note that the function bmchk() in package optimx contains a much more extensive examination of the
bounds on parameters. In particular, it considers such issues as:

• inadmissible bounds (lower > upper),

• when to convert a pair of bounds where upper["parameter"] - lower["parameter"] < tol to a
fixed or masked parameter (maskadded), and

• whether parameters outside of bounds should be moved to the nearest bound (parchanged).

It may be useful to use inadmissible to refer to situations where a lower bound is higher than an upper
bound and infeasible where a parameter is outside the bounds.

From optimx the function optimr() can call many different “optimizers” (actually function minimization
methods that may include bounds and possibly masks). Masks could be specified by setting the lower and
upper bounds equal for the parameters to be fixed. While this may seem to be a simple method for specifying
masks, there can be computational as well as conceptual difficulties. For example, what happens when the
upper bound is only very slightly greater than the lower bound. Also should we stop or declare an error if
starting values are NOT on the fixed value.

Of these choices, my current preference is to use the last one – setting lower and upper bounds equal for
fixed parameters, and furthermore setting the starting value to this fixed value, and otherwise declaring an
error. The approach does not add any special argument for masking, and is relatively obvious to novice users.
However, such users may be tempted to put in narrow bounds rather than explicit equalities, and this could
have deleterious consequences.

Internal structures to specify fixed parameters

bdmsk is the internal structure used in Rcgmin and Rvmmin to handle bounds constraints as well as masks.
There is one element of bdmsk for each parameter, and in Rcgmin and Rvmmin, this is used on input to specify
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parameter i as fixed or masked by setting bdmsk[i] <- 0. Free parameters have their bdmsk element 1, but
during optimization in the presence of bounds, we can set other values. The full set is as follows

• 1 for a free or unconstrained parameter
• 0 for a masked or fixed parameter
• -0.5 for a parameter that is out of bounds high (> upper bound)
• -1 for a parameter at its upper bound
• -3 for a parameter at its lower bound
• -3.5 for a parameter that is out of bounds low (< lower bound)

Not all these possibilities will be used by all methods that use bdmsk.

The -1 and -3 are historical, and arose in the development of BASIC codes for Nash and Walker-Smith (1987)
which is now available for free download at https://archive.org/details/NLPE87plus. In particular, adding 2
gives 1 for an upper bound and -1 for a lower bound, simplifying the expression to decide if an optimization
trial step will move away from a bound.

Proposed approaches to fix parameters

Because masks (fixed parameters) reduce the dimension of the optimization problem, we can consider
modifying the problem to the lower dimension space. This is Duncan Murdoch’s suggestion, using

• fn0(par0) to be the initial user function of the full dimension parameter vector par0
• fn1(par1) to be the reduced or internal functin of the reduced dimension vector par1
• par1 <- forward(par0)
• par0 <- inverse(par1)

The major advantage of this approach is explicit dimension reduction. The main disadvantage is the effort of
transformation at every step of an optimization.

An alternative is to use the bdmsk vector to mask the optimization search or adjustment vector, including
gradients and (approximate) Hessian matrices. A 0 element of bdmsk “multiplies” any adjustment. The
principal difficulty is to ensure we do not essentially divide by zero in applying any inverse Hessian. This
approach avoids forward, inverse and fn1. However, it may hide the reduction in dimension, and caution
is necessary in using the function and its derived gradient, Hessian and derived information.

Examples of use of fixed parameters

Using Rvmmin, we easily minimize the function

sq(x) =
∑

i

(i− xi)2

a simple quadratic. The unconstrained solution has the function zero when the parameters are the sequence 1
to the number of parameters. When we fix the first parameter at 0.3, the smallest we can make the function
is 0.49, i.e., (1 − 0.3)2. In both cases the convergence indicator, 2, means that the gradient at the suggested
solution was very small.
require(optimx)
sq<-function(x){

nn<-length(x)
yy<-1:nn
f<-sum((yy-x)ˆ2)

# cat("Fv=",f," at ")
# print(x)

f
}
sq.g <- function(x){
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nn<-length(x)
yy<-1:nn
gg<- 2*(x - yy)

}
xx <- c(.3, 4)
uncans <- Rvmmin(xx, sq, sq.g)
uncans

## $par
## [1] 1 2
##
## $value
## [1] 0
##
## $counts
## function gradient
## 4 3
##
## $convergence
## [1] 2
##
## $message
## [1] "Rvmminu appears to have converged"
mybm <- c(0,1) # fix parameter 1
cans <- Rvmmin(xx, sq, sq.g, bdmsk=mybm)

## trace= 0
cans

## $par
## [1] 0.3 2.0
##
## $value
## [1] 0.49
##
## $counts
## function gradient
## 6 4
##
## $convergence
## [1] 2
##
## $message
## [1] "Rvmminb appears to have converged"
##
## $bdmsk
## [1] 0 1

Using the same example for nlsr::nlfb(), we get the following.
## rm(list=ls()) # clear workspace??
library(nlsr)
sqres<-function(x){

nn<-length(x)
yy<-1:nn
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res <- (yy-x)
}
sqjac <- function(x){

nn<-length(x)
yy<-1:nn
JJ <- matrix(-1, nrow=nn, ncol=nn)
attr(JJ, "gradient") <- JJ ## !! Critical statement
JJ

}
xx <- c(.3, 4) # repeat for completeness
anlfbu<-nlfb(xx, sqres, sqjac)
anlfbu

## nlsr object: x
## residual sumsquares = 3.645 on 2 observations
## after 23 Jacobian and 30 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 -0.35 NA NA NA 3.1e-07 2
## p2 3.35 NA NA NA 3.1e-07 0
anlfbc<-nlfb(xx, sqres, sqjac, lower=c(xx[1], -Inf), upper=c(xx[1], Inf), trace=FALSE)
anlfbc

## nlsr object: x
## residual sumsquares = 0.98 on 2 observations
## after 24 Jacobian and 24 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 0.3U M NA NA NA 0 NA
## p2 2.7 1.4 1.929 0.3045 1.55e-07 1.414
# Following will warn All parameters are masked
anlfbe<-try(nlfb(xx, sqres, sqjac, lower=c(xx[1], xx[2]), upper=c(xx[1],xx[2])))

## Warning in nlfb(xx, sqres, sqjac, lower = c(xx[1], xx[2]), upper = c(xx[1], :
## All parameters are masked

It is difficult to run this example with nlsr::nlxb(), as we need to provide a formula that spans the “data”.
Note that the unconstrained problem gives a warning when we try to compute a p-value for an essentially
perfect minimum of the sum of squares.

?? Note that Dec 28 version does NOT work, but Dec 03 version does. Issue with changes between 03 and
28, probably in how “formula” is treated. – see stats::model.frame – need to have a version that handles
“masked”
nn<-length(xx) # Also length(yy)
if (nn != 2) stop("This example has nn=2 only!")
yy<-1:2
v1 <- c(1,0); v2 <- c(0,1)
anlxbu <- nlxb(yy~v1*p1+v2*p2, start=c(p1=0.3, p2=4) )
anlxbu

## nlsr object: x

## Warning in pt(abs(tval), rdf, lower.tail = FALSE): NaNs produced

## residual sumsquares = 7.182e-17 on 2 observations
## after 3 Jacobian and 3 function evaluations
## name coeff SE tstat pval gradient JSingval
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## p1 1 Inf 0 NaN -2.8e-09 1
## p2 2 Inf 0 NaN 7.999e-09 1
anlxbc <- nlxb(yy~v1*p1+v2*p2, start=c(p1=0.3, p2=4), masked=c("p1") )
anlxbc

## nlsr object: x

## Warning in pt(abs(tval), rdf, lower.tail = FALSE): NaNs produced

## residual sumsquares = 7.182e-17 on 2 observations
## after 3 Jacobian and 3 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 1 Inf 0 NaN -2.8e-09 1
## p2 2 Inf 0 NaN 7.999e-09 1

We can also use a different example that better illustrates nlsr::nlxb().
weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
ii <- 1:12
wdf <- data.frame(weed, ii)
weedux <- nlxb(weed~b1/(1+b2*exp(-b3*ii)), start=c(b1=200, b2=50, b3=0.3))
weedux

## nlsr object: x
## residual sumsquares = 2.5873 on 12 observations
## after 6 Jacobian and 6 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 196.186 11.31 17.35 3.167e-08 -5.069e-11 1011
## b2 49.0916 1.688 29.08 3.284e-10 -2.192e-09 0.4605
## b3 0.31357 0.006863 45.69 5.768e-12 2.61e-07 0.04714
#- Old mechanism of 'nlsr' NO longer works
#- weedcx <- nlxb(weed~b1/(1+b2*exp(-b3*ii)), start=c(b1=200, b2=50, b3=0.3), masked=c("b1"))
weedcx <- nlxb(weed~b1/(1+b2*exp(-b3*ii)), start=c(b1=200, b2=50, b3=0.3),

lower=c(b1=200, b2=0, b3=0), upper=c(b1=200, b2=100, b3=40))
weedcx

## nlsr object: x
## residual sumsquares = 2.6182 on 12 observations
## after 4 Jacobian and 4 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 200U M NA NA NA 0 NA
## b2 49.5108 1.12 44.21 8.421e-13 -2.887e-07 1022
## b3 0.311461 0.002278 136.8 1.073e-17 0.0001635 0.4569
rfn <- function(bvec, weed=weed, ii=ii){

res <- rep(NA, length(ii))
for (i in ii){

res[i]<- bvec[1]/(1+bvec[2]*exp(-bvec[3]*i))-weed[i]
}
res

}
weeduf <- nlfb(start=c(200, 50, 0.3),resfn=rfn,weed=weed, ii=ii, control=list(japprox="jacentral"))
weeduf

## nlsr object: x
## residual sumsquares = 2.5873 on 12 observations
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## after 6 Jacobian and 6 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 196.186 11.31 17.35 3.167e-08 1.378e-11 1011
## p2 49.0916 1.688 29.08 3.284e-10 -2.466e-09 0.4605
## p3 0.31357 0.006863 45.69 5.768e-12 5.067e-07 0.04714
#- maskidx method to specify masks no longer works
#- weedcf <- nlfb(start=c(200, 50, 0.3),resfn=rfn,weed=weed, ii=ii,
#- maskidx=c(1), control=list(japprox="jacentral"))
weedcf <- nlfb(start=c(200, 50, 0.3),resfn=rfn,weed=weed, ii=ii, lower=c(200, 0, 0),

upper=c(200, 100, 40), control=list(japprox="jacentral"))
weedcf

## nlsr object: x
## residual sumsquares = 2.6182 on 12 observations
## after 4 Jacobian and 4 function evaluations
## name coeff SE tstat pval gradient JSingval
## p1 200U M NA NA NA 0 NA
## p2 49.5108 1.12 44.21 8.421e-13 -2.888e-07 1022
## p3 0.311461 0.002278 136.8 1.073e-17 0.0001634 0.4569

7. Capabilities added to nlsr in the 2022 version
In the review of nonlinear modelling tools starting in December 2020, several aspects of nlsr were modified.

Numerical approximations to Jacobians

While a defining aspect of nlsr is the ability to develop analytic Jacobian functions for nlfb to use from the
formula used in the call to nlxb, there are many models for which analytic derivatives are either impossible
or, more commonly, simply not available through the table of derivatives in the nlsr package. Thus it is
important to be able to specify an approximation.

This has been documented above in “2. Analytic versus approximate Jacobians”, with examples. Note that
the formula can use R functions that are not in the derivatives table if we specify a Jacobian approximation.

Self start models

nls() and nlsLM() allow for self-starting models, but they are not explicitly part of nlsr::nlxb(). nls()
does not need a start argument if the formula contains as its right-hand side (rhs) the name of a selfStart
function that is available in the current search path.

Such selfStart functions often also include code to compute the Jacobian, though this does not seem to be a
requirement. We have also noted that some of the selfStart models – particularly those in the base-R file
./src/library/stats/R/zzModels.R – may simply use a crude start and a different algoithm, such as the
‘plinear’ option. Thus they are not really developing an approximate start, but conducting an alternative
solution.

While I contemplated using the “no start argument” approach to selfStart models, the mechanism chosen to
use their capabilities is to invoke the getInitial() function to set the starting parameter vector. Moreover,
by setting control element japprox to ‘SSJac’, we use the Jacobian code available in the selfStart function.

Here is an example using the Michaelis-Menten model in the stats package.
cat("=== SSmicmen ===\n")

## === SSmicmen ===
dat <- PurTrt <- Puromycin[ Puromycin$state == "treated", ]
frm <- rate ~ SSmicmen(conc, Vm, K)
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strt<-getInitial(frm, data = dat)
print(strt)

## Vm K
## 212.683707 0.064121
fm1x <- nlxb(frm, data = dat, start=strt,

trace=FALSE, control=list(japprox="SSJac"))
fm1x

## nlsr object: x
## residual sumsquares = 1195.4 on 12 observations
## after 3 Jacobian and 3 function evaluations
## name coeff SE tstat pval gradient JSingval
## Vm 212.684 6.947 30.61 3.241e-11 -1.246e-10 2050
## K 0.0641213 0.008281 7.743 1.565e-05 -0.0008175 1.574

We see very quick convergence using the approximation generated by the SSmicmen code.

nls(), in the absence of a selfStart model and with no start specified, puts all parameters equal to 1. Since
there are situations such as the Lanczos multiple exponential model, i.e.,

y ~ a * exp(-b*x) + c * exp(-d*x) + e * exp(-f*x)

where the three terms would be equivalent with parameters a through f all at 1, a minor modification to set
the parameters so they are all different seems more appropriate. While this could be automated, I prefer to
insist that the user take responsibility for an initial guess in these cases.

Models with partially linear parameters

nls() offers the choice of solving a problem with partially linear parameters with a version of the Golub-
Pereyra VARPRO algorithm. The choice is specified in by algorithm="plinear" in the call. (Note that
algorithm="port" is also possible and replaces the default Gauss-Newton method with the nl2sol code
from the Bell Port library (Fox (1997), Dennis, Gay, and Welsch (1981)). However, “port” does not provide
for partially linear parameters, though it does allow bounds constraints on them.)

Unfortunately, at least in my opinion, when the algorithm is changed to “plinear”, the user must also change
the formula that specifies the model to be fitted! This is illustrated with one of the examples from the manual
page of nls(). Note how asking for the plinear option introduces another parameter into the model. We
can set up the computation with this parameter explicitly included when using the default algorithm, which I
believe is a more transparent choice. However, the conditional linearity (VARPRO) algorithm is generally
more reliable in getting the optimal parameters in difficult cases. Ideally, the details of use of the “plinear”
approach would be hidden from view. Accomplishing that remains an open issue.
## Comment in example is "## using conditional linearity"
DNase1 <- subset(DNase, Run == 1) # data
## using nls with plinear
# Using a formula that explicitly includes the asymptote. (Default algorithm.)
fm2DNase1orig <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(Asym = 10, xmid = 0, scal = 1))

summary(fm2DNase1orig)

##
## Formula: density ~ Asym/(1 + exp((xmid - log(conc))/scal))
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
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## Asym 2.3452 0.0782 30.0 2.2e-13 ***
## xmid 1.4831 0.0814 18.2 1.2e-10 ***
## scal 1.0415 0.0323 32.3 8.5e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0192 on 13 degrees of freedom
##
## Number of iterations to convergence: 6
## Achieved convergence tolerance: 2.79e-07
# Using conditional linearity. Note the linear paraemter does not appear explicitly.
# And we must change the starting vector.
fm2DNase1 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(xmid = 0, scal = 1),
algorithm = "plinear")

summary(fm2DNase1)

##
## Formula: density ~ 1/(1 + exp((xmid - log(conc))/scal))
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## xmid 1.4831 0.0814 18.2 1.2e-10 ***
## scal 1.0415 0.0323 32.3 8.5e-14 ***
## .lin 2.3452 0.0782 30.0 2.2e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0192 on 13 degrees of freedom
##
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 1.11e-06
# How to run with "port" algorithm -- NOT RUN
# fm2DNase1port <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
# data = DNase1,
# start = list(Asym = 10, xmid = 0, scal = 1),
# algorithm = "port")
# summary(fm2DNase1port)

# require(minpack.lm) # Does NOT offer VARPRO. First example is WRONG. NOT RUN.
# fm2DNase1mA <- nlsLM(density ~ 1/(1 + exp((xmid - log(conc))/scal)),
# data = DNase1,
# start = list(xmid = 0, scal = 1))
# summary(fm2DNase1mA)
# fm2DNase1mB <- nlsLM(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
# data = DNase1,
# start = list(Asym=10, xmid = 0, scal = 1))
# summary(fm2DNase1mB)
#
# # This gets wrong answer. NOT RUN
# fm2DNase1xA <- nlxb(density ~ 1/(1 + exp((xmid - log(conc))/scal)),
# data = DNase1,
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# start = list(xmid = 0, scal = 1))
# print(fm2DNase1xA)
# Original formula with nlsr::nlxb().
fm2DNase1xB <- nlxb(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(Asym=10, xmid = 0, scal = 1))

print(fm2DNase1xB)

## nlsr object: fm2DNase1xB
## residual sumsquares = 0.0047896 on 16 observations
## after 7 Jacobian and 7 function evaluations
## name coeff SE tstat pval gradient JSingval
## Asym 2.34518 0.07815 30.01 2.165e-13 -2.378e-11 2.105
## xmid 1.48309 0.08135 18.23 1.219e-10 -9.163e-09 1.454
## scal 1.04145 0.03227 32.27 8.507e-14 2.325e-08 0.1651

There are, however, problems where being able to exploit the partial linearity is an advantage. It would be
very nice to be able to use the capability WITHOUT having to adjust the model specification.

8. Capabilities still missing from nlsr

This section last updated 2021-02-19.

Automatic differentiation of functional models

This is the natural extension of Multi-line expressions. The authors would welcome collaboration with
someone who has expertise in this area. Some progress has been made with the autodiffr package of
Changcheng Li (see https://github.com/Non-Contradiction/autodiffr).

At the time of writing, functional models require that nlxb be called with the control japprox set to an
available approximating function, as discussed above.

Indexed parameters

There is an example in nls.Rd where indexed parameters are used. That is, parameters can be given a subscript
e.g., b[2]. As far as I can determine, this facility is not documented, and neither minpack.lm::nlsLM nor
nlsr::nlxb can do this.

Here is the example in the nls() documentation.
## The muscle dataset in MASS is from an experiment on muscle
## contraction on 21 animals. The observed variables are Strip
## (identifier of muscle), Conc (Cacl concentration) and Length
## (resulting length of muscle section).
utils::data(muscle, package = "MASS")

## The non linear model considered is
## Length = alpha + beta*exp(-Conc/theta) + error
## where theta is constant but alpha and beta may vary with Strip.

with(muscle, table(Strip)) # 2, 3 or 4 obs per strip

## Strip
## S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
## 4 4 4 3 3 3 2 2 2 2 3 2 2 2 2 4 4 3 3 3
## S21
## 3
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## We first use the plinear algorithm to fit an overall model,
## ignoring that alpha and beta might vary with Strip.

musc.1 <- nls(Length ~ cbind(1, exp(-Conc/th)), muscle,
start = list(th = 1), algorithm = "plinear")

summary(musc.1)

##
## Formula: Length ~ cbind(1, exp(-Conc/th))
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## th 0.608 0.115 5.31 1.9e-06 ***
## .lin1 28.963 1.230 23.55 < 2e-16 ***
## .lin2 -34.227 3.793 -9.02 1.4e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.67 on 57 degrees of freedom
##
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 9.33e-07
## Then we use nls' indexing feature for parameters in non-linear
## models to use the conventional algorithm to fit a model in which
## alpha and beta vary with Strip. The starting values are provided
## by the previously fitted model.
## Note that with indexed parameters, the starting values must be
## given in a list (with names):
b <- coef(musc.1)
musc.2 <- nls(Length ~ a[Strip] + b[Strip]*exp(-Conc/th), muscle,

start = list(a = rep(b[2], 21), b = rep(b[3], 21), th = b[1]))
## IGNORE_RDIFF_ BEGIN
summary(musc.2)

##
## Formula: Length ~ a[Strip] + b[Strip] * exp(-Conc/th)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## a1 23.454 0.796 29.46 5.0e-16 ***
## a2 28.302 0.793 35.70 < 2e-16 ***
## a3 30.801 1.716 17.95 1.7e-12 ***
## a4 25.921 3.016 8.60 1.4e-07 ***
## a5 23.201 2.891 8.02 3.5e-07 ***
## a6 20.120 2.435 8.26 2.3e-07 ***
## a7 33.595 1.682 19.98 3.0e-13 ***
## a8 39.053 3.753 10.41 8.6e-09 ***
## a9 32.137 3.318 9.69 2.5e-08 ***
## a10 40.005 3.336 11.99 1.0e-09 ***
## a11 36.190 3.109 11.64 1.6e-09 ***
## a12 36.911 1.839 20.07 2.8e-13 ***
## a13 30.635 1.700 18.02 1.6e-12 ***
## a14 34.312 3.495 9.82 2.0e-08 ***
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## a15 38.395 3.375 11.38 2.3e-09 ***
## a16 31.226 0.886 35.26 < 2e-16 ***
## a17 31.230 0.821 38.02 < 2e-16 ***
## a18 19.998 1.011 19.78 3.6e-13 ***
## a19 37.095 1.071 34.65 < 2e-16 ***
## a20 32.594 1.121 29.07 6.2e-16 ***
## a21 30.376 1.057 28.74 7.5e-16 ***
## b1 -27.300 6.873 -3.97 0.00099 ***
## b2 -26.270 6.754 -3.89 0.00118 **
## b3 -30.901 2.270 -13.61 1.4e-10 ***
## b4 -32.238 3.810 -8.46 1.7e-07 ***
## b5 -29.941 3.773 -7.94 4.1e-07 ***
## b6 -20.622 3.647 -5.65 2.9e-05 ***
## b7 -19.625 8.085 -2.43 0.02661 *
## b8 -45.780 4.113 -11.13 3.2e-09 ***
## b9 -31.345 6.352 -4.93 0.00013 ***
## b10 -38.599 3.955 -9.76 2.2e-08 ***
## b11 -33.921 3.839 -8.84 9.2e-08 ***
## b12 -38.268 8.992 -4.26 0.00053 ***
## b13 -22.568 8.194 -2.75 0.01355 *
## b14 -36.167 6.358 -5.69 2.7e-05 ***
## b15 -32.952 6.354 -5.19 7.4e-05 ***
## b16 -47.207 9.540 -4.95 0.00012 ***
## b17 -33.875 7.688 -4.41 0.00039 ***
## b18 -15.896 6.222 -2.55 0.02051 *
## b19 -28.969 7.235 -4.00 0.00092 ***
## b20 -36.917 8.033 -4.60 0.00026 ***
## b21 -26.508 7.012 -3.78 0.00149 **
## th 0.797 0.127 6.30 8.0e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.11 on 17 degrees of freedom
##
## Number of iterations to convergence: 8
## Achieved convergence tolerance: 2.19e-06
## IGNORE_RDIFF_ END

The structure of the call is interesting in that start is a list and the elements of each part are NOT equal in
length, as can bee seen from
istart = list(a = rep(b[2], 21), b = rep(b[3], 21), th = b[1])
str(istart)

## List of 3
## $ a : Named num [1:21] 29 29 29 29 29 ...
## ..- attr(*, "names")= chr [1:21] ".lin1" ".lin1" ".lin1" ".lin1" ...
## $ b : Named num [1:21] -34.2 -34.2 -34.2 -34.2 -34.2 ...
## ..- attr(*, "names")= chr [1:21] ".lin2" ".lin2" ".lin2" ".lin2" ...
## $ th: Named num 0.608
## ..- attr(*, "names")= chr "th"
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9. Nonlinear equations and other non-modelling problems
Solution of sets of nonlinear equations is generally NOT a problem that is commonly required for statisticians
or data analysts. My experience is that the occasions where it does arise are when workers try to solve the
first order conditions for optimality of a function, rather than try to optimize the function. If this function
is a sum of squares, then we have a nonlinear least squares problem, and generally such problems are best
approached by methods of the type discussed in this article, in particular codes nlfb and nls.lm.

Conversely, since our problem is, using the notation already established, equivalent to residuals equal to zero,
namely,

r(x) = 0

the solution of a nonlinear least squares problem for which the final sum of squares is zero provides a solution
to the nonlinear equations. In my experience this is a valid approach to the nonlinear equations problem,
especially if there is concern that a solution may not exist. However, there are methods for nonlinear equations,
some of which (e.g., Hasselman (2013)) are available in R packages, and they may be more appropriate. On
the other hand, if the nonlinear least squares tools are familiar, it may be more human-efficient to use them,
at least as a first try.
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Appendix A: Providing exogenous data
These examples show dotargs do NOT work for any of nlsr, nls, or minpack.lm. Use of a dataframe or local
(calling) environment objects does work in all.
# NOTE: This is OLD material and not consistent in usage with rest of vignette
library(knitr)
# try different ways of supplying data to R nls stuff
ydata <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443, 38.558,

50.156, 62.948, 75.995, 91.972)
ttdata <- seq_along(ydata) # for testing
mydata <- data.frame(y = ydata, tt = ttdata)
hobsc <- y ~ 100*b1/(1 + 10*b2 * exp(-0.1 * b3 * tt))
ste <- c(b1 = 2, b2 = 5, b3 = 3)

# let's try finding the variables
findmainenv <- function(formula, prm) {

vn <- all.vars(formula)
pnames <- names(prm)
ppos <- match(pnames, vn)
datvar <- vn[-ppos]
cat("Data variables:")
print(datvar)
cat("Are the variables present in the current working environment?\n")
for (i in seq_along(datvar)){

cat(datvar[[i]]," : present=",exists(datvar[[i]]),"\n")
}

}

findmainenv(hobsc, ste)

## Data variables:[1] "y" "tt"
## Are the variables present in the current working environment?
## y : present= FALSE
## tt : present= TRUE
y <- ydata
tt <- ttdata
findmainenv(hobsc, ste)

## Data variables:[1] "y" "tt"
## Are the variables present in the current working environment?
## y : present= TRUE
## tt : present= TRUE
rm(y)
rm(tt)

# ===============================

# let's try finding the variables in dotargs
finddotargs <- function(formula, prm, ...) {

dots <- list(...)
cat("dots:")
print(dots)
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cat("names in dots:")
dtn <- names(dots)
print(dtn)
vn <- all.vars(formula)
pnames <- names(prm)
ppos <- match(pnames, vn)
datvar <- vn[-ppos]
cat("Data variables:")
print(datvar)
cat("Are the variables present in the dot args?\n")
for (i in seq_along(datvar)){

dname <- datvar[[i]]
cat(dname," : present=",(dname %in% dtn),"\n")

}
}

finddotargs(hobsc, ste, y=ydata, tt=ttdata)

## dots:$y
## [1] 5.308 7.240 9.638 12.866 17.069 23.192 31.443 38.558 50.156 62.948
## [11] 75.995 91.972
##
## $tt
## [1] 1 2 3 4 5 6 7 8 9 10 11 12
##
## names in dots:[1] "y" "tt"
## Data variables:[1] "y" "tt"
## Are the variables present in the dot args?
## y : present= TRUE
## tt : present= TRUE
# ===============================

y <- ydata
tt <- ttdata
tryq <- try(nlsquiet <- nls(formula=hobsc, start=ste))
if (class(tryq) != "try-error") {print(nlsquiet)} else {cat("try-error\n")}

## Nonlinear regression model
## model: y ~ 100 * b1/(1 + 10 * b2 * exp(-0.1 * b3 * tt))
## data: parent.frame()
## b1 b2 b3
## 1.96 4.91 3.14
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 4
## Achieved convergence tolerance: 2.17e-07
#- OK
rm(y); rm(tt)

## this will fail
tdots1<-try(nlsdots <- nls(formula=hobsc, start=ste, y=ydata, tt=ttdata))

## Error in nls(formula = hobsc, start = ste, y = ydata, tt = ttdata) :
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## parameters without starting value in 'data': y, tt
# But ...
y <- ydata # put data in globalenv
tt <- ttdata
tdots2<-try(nlsdots <- nls(formula=hobsc, start=ste))
tdots2

## Nonlinear regression model
## model: y ~ 100 * b1/(1 + 10 * b2 * exp(-0.1 * b3 * tt))
## data: parent.frame()
## b1 b2 b3
## 1.96 4.91 3.14
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 4
## Achieved convergence tolerance: 2.17e-07
rm(y); rm(tt)
## but ...
mydata<-data.frame(y=ydata, tt=ttdata)
tframe <- try(nlsframe <- nls(formula=hobsc, start=ste, data=mydata))
if (class(tframe) != "try-error") {print(nlsframe)} else {cat("try-error\n")}

## Nonlinear regression model
## model: y ~ 100 * b1/(1 + 10 * b2 * exp(-0.1 * b3 * tt))
## data: mydata
## b1 b2 b3
## 1.96 4.91 3.14
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 4
## Achieved convergence tolerance: 2.17e-07
#- OK

y <- ydata
tt <- ttdata
tquiet <- try(nlsrquiet <- nlxb(formula=hobsc, start=ste))
if ( class(tquiet) != "try-error") {print(nlsrquiet)}

## nlsr object: nlsrquiet
## residual sumsquares = 2.5873 on 12 observations
## after 6 Jacobian and 6 function evaluations
## name coeff SE tstat pval gradient JSingval
## b1 1.96186 0.1131 17.35 3.167e-08 -1.073e-11 130.1
## b2 4.90916 0.1688 29.08 3.284e-10 -7.696e-09 6.165
## b3 3.1357 0.06863 45.69 5.768e-12 1.17e-08 2.735
#- OK
rm(y); rm(tt)
test <- try(nlsrdots <- nlxb(formula=hobsc, start=ste, y=ydata, tt=ttdata))

## Error in eval(residexpr, envir = localdata) : object 'tt' not found
#- Note -- does NOT work -- do we need to specify the present env. in nlfb for y, tt??
if (class(test) != "try-error") { print(nlsrdots) } else {cat("Try error\n") }
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## Try error
test2 <- try(nlsframe <- nls(formula=hobsc, start=ste, data=mydata))
if (class(test) != "try-error") {print(nlsframe) } else {cat("Try error\n") }

## Try error
#- OK

library(minpack.lm)
y <- ydata
tt <- ttdata
nlsLMquiet <- nlsLM(formula=hobsc, start=ste)
print(nlsLMquiet)

## Nonlinear regression model
## model: y ~ 100 * b1/(1 + 10 * b2 * exp(-0.1 * b3 * tt))
## data: parent.frame()
## b1 b2 b3
## 1.96 4.91 3.14
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 4
## Achieved convergence tolerance: 1.49e-08
#- OK
rm(y)
rm(tt)
## Dotargs
## Following fails
## tdots <- try(nlsLMdots <- nlsLM(formula=hobsc, start=ste, y=ydata, tt=ttdata))
## but ...
tdots <- try(nlsLMdots <- nlsLM(formula=hobsc, start=ste, data=mydata))
if (class(tdots) != "try-error") { print(nlsLMdots) } else {cat("try-error\n") }

## Nonlinear regression model
## model: y ~ 100 * b1/(1 + 10 * b2 * exp(-0.1 * b3 * tt))
## data: mydata
## b1 b2 b3
## 1.96 4.91 3.14
## residual sum-of-squares: 2.59
##
## Number of iterations to convergence: 4
## Achieved convergence tolerance: 1.49e-08
#- Note -- does NOT work
## dataframe
tframe <- try(nlsLMframe <- nlsLM(formula=hobsc, start=ste, data=mydata) )
if (class(tdots) != "try-error") {print(nlsLMframe)} else {cat("try-error\n") }

## Nonlinear regression model
## model: y ~ 100 * b1/(1 + 10 * b2 * exp(-0.1 * b3 * tt))
## data: mydata
## b1 b2 b3
## 1.96 4.91 3.14
## residual sum-of-squares: 2.59
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##
## Number of iterations to convergence: 4
## Achieved convergence tolerance: 1.49e-08
#- does not work

## detach("package:nlsr", unload=TRUE)
## Uses nlmrt here for comparison
## library(nlmrt)
## txq <- try( nlxbquiet <- nlxb(formula=hobsc, start=ste))
## if (class(txq) != "try-error") {print(nlxbquiet)} else { cat("try-error\n")}
#- Note -- does NOT work
## txdots <- try( nlxbdots <- nlxb(formula=hobsc, start=ste, y=y, tt=tt) )
## if (class(txdots) != "try-error") {print(nlxbdots)} else {cat("try-error\n")}
#- Note -- does NOT work
## dataframe
## nlxbframe <- nlxb(formula=hobsc, start=ste, data=mydata)
## print(nlxbframe)
#- OK
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Appendix B: Derivative approximation in nls()
This Appendix could benefit from some examples.

From nls.R

numericDeriv <- function(expr, theta, rho = parent.frame(), dir=1.0)
{

dir <- rep_len(dir, length(theta))
val <- .Call(C_numeric_deriv, expr, theta, rho, dir)
valDim <- dim(val)
if (!is.null(valDim)) {

if (valDim[length(valDim)] == 1)
valDim <- valDim[-length(valDim)]

if(length(valDim) > 1L)
dim(attr(val, "gradient")) <- c(valDim,

dim(attr(val, "gradient"))[-1L])
}
val

}

From nls.c

/*
* call to numeric_deriv from R -
* .Call("numeric_deriv", expr, theta, rho)
* Returns: ans
*/

SEXP
numeric_deriv(SEXP expr, SEXP theta, SEXP rho, SEXP dir)
{

SEXP ans, gradient, pars;
double eps = sqrt(DOUBLE_EPS), *rDir;
int start, i, j, k, lengthTheta = 0;

if(!isString(theta))
error(_("'theta' should be of type character"));
if (isNull(rho)) {
error(_("use of NULL environment is defunct"));
rho = R_BaseEnv;
} else
if(!isEnvironment(rho))

error(_("'rho' should be an environment"));
PROTECT(dir = coerceVector(dir, REALSXP));
if(TYPEOF(dir) != REALSXP || LENGTH(dir) != LENGTH(theta))
error(_("'dir' is not a numeric vector of the correct length"));
rDir = REAL(dir);

PROTECT(pars = allocVector(VECSXP, LENGTH(theta)));

PROTECT(ans = duplicate(eval(expr, rho)));

if(!isReal(ans)) {
SEXP temp = coerceVector(ans, REALSXP);
UNPROTECT(1);
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PROTECT(ans = temp);
}
for(i = 0; i < LENGTH(ans); i++) {
if (!R_FINITE(REAL(ans)[i]))

error(_("Missing value or an infinity produced when evaluating the model"));
}
const void *vmax = vmaxget();
for(i = 0; i < LENGTH(theta); i++) {
const char *name = translateChar(STRING_ELT(theta, i));
SEXP s_name = install(name);
SEXP temp = findVar(s_name, rho);
if(isInteger(temp))

error(_("variable '%s' is integer, not numeric"), name);
if(!isReal(temp))

error(_("variable '%s' is not numeric"), name);
if (MAYBE_SHARED(temp)) /* We'll be modifying the variable, so need to make sure it's unique PR#15849 */

defineVar(s_name, temp = duplicate(temp), rho);
MARK_NOT_MUTABLE(temp);
SET_VECTOR_ELT(pars, i, temp);
lengthTheta += LENGTH(VECTOR_ELT(pars, i));
}
vmaxset(vmax);
PROTECT(gradient = allocMatrix(REALSXP, LENGTH(ans), lengthTheta));

for(i = 0, start = 0; i < LENGTH(theta); i++) {
for(j = 0; j < LENGTH(VECTOR_ELT(pars, i)); j++, start += LENGTH(ans)) {

SEXP ans_del;
double origPar, xx, delta;

origPar = REAL(VECTOR_ELT(pars, i))[j];
xx = fabs(origPar);
delta = (xx == 0) ? eps : xx*eps;
REAL(VECTOR_ELT(pars, i))[j] += rDir[i] * delta;
PROTECT(ans_del = eval(expr, rho));
if(!isReal(ans_del)) ans_del = coerceVector(ans_del, REALSXP);
UNPROTECT(1);
for(k = 0; k < LENGTH(ans); k++) {
if (!R_FINITE(REAL(ans_del)[k]))

error(_("Missing value or an infinity produced when evaluating the model"));
REAL(gradient)[start + k] =

rDir[i] * (REAL(ans_del)[k] - REAL(ans)[k])/delta;
}
REAL(VECTOR_ELT(pars, i))[j] = origPar;

}
}
setAttrib(ans, install("gradient"), gradient);
UNPROTECT(4);
return ans;

}

nlsr::numericDerivR.R

This is a replacement for the nls() function numericDeriv() that is coded all in R.
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#' numericDerivR: numerically evaluates the gradient of an expression. All in R
#'
#' This version is all in R to replace the C version in package stats
#' @param expr expression or call to be differentiated. Should evaluate to a numeric vector.
#' @param theta character vector of names of numeric variables used in expr.
#' @param rho environment containing all the variables needed to evaluate expr.
#' @param dir numeric vector of directions, typically with values in -1, 1 to use for the finite
#' differences; will be recycled to the length of theta.
#' @param eps a positive number, to be used as unit step size hh for the approximate
#' numerical derivative (f(x+h)-f(x))/h (f(x+h)-f(x))/h or the central version, see central.
#' @param central logical indicating if central divided differences should be computed,
#' i.e., (f(x+h) - f(x-h)) / 2h (f(x+h)-f(x-h))/2h. These are typically more accurate but
#' need more evaluations of f()f().
#' @return
#' The value of eval(expr, envir = rho) plus a matrix attribute "gradient". The columns of
#' this matrix are the derivatives of the value with respect to the variables listed in theta.
#' @examples
#' ex <- expression(a/(1+b*exp(-tt*c)) - weed)
#' weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,
#' 38.558, 50.156, 62.948, 75.995, 91.972)
#' tt <- 1:12
#' a <- 200; b <- 50; c <- 0.3
#' dhobb <- numericDerivR(ex, theta=c("a", "b", "c"))
#' print(dhobb)
#' # exf <- ~ a/(1+b*exp(-tt*c)) - weed
#' # Note that a formula doesn't work
#' # dh1 <- try(numericDerivR(exf, theta=c("a", "b", "c")))
#' @export
numericDerivR <- function(expr, theta, rho = parent.frame(), dir = 1,

eps = .Machine$double.eps ˆ (1/if(central) 3 else 2), central = FALSE)
## Note: this expr must be set up as a call to work properly according to JN??
## ?? we set eps conditional on central. But central set AFTER eps. Is this OK.
{ ## cat("numericDeriv-Alt\n")

dir <- rep_len(dir, length(theta))
stopifnot(is.finite(eps), eps > 0)

## rho1 <- new.env(FALSE, rho, 0)
if (!is.character(theta) ) {stop("'theta' should be of type character")}
if (is.null(rho)) {

stop("use of NULL environment is defunct")
# rho <- R_BaseEnv;

} else {
if(! is.environment(rho)) {stop("'rho' should be an environment")}
# int nprot = 3;

}
if( ! ((length(dir) == length(theta) ) & (is.numeric(dir) ) ) )

{stop("'dir' is not a numeric vector of the correct length") }
if(is.na(central)) { stop("'central' is NA, but must be TRUE or FALSE") }
res0 <- eval(expr, rho) # the base residuals. ?? C has a check for REAL ANS=res0

# cat("res0:"); print(res0)
## if (any(is.infinite(res0)) ) {stop("residuals cannot be evaluated at base point")}
## 220715 -- let it fail!

## CHECK_FN_VAL(res, ans); ?? how to do this. Is it necessary?
nt <- length(theta) # number of parameters
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mr <- length(res0) # number of residuals
JJ <- matrix(NA, nrow=mr, ncol=nt) # Initialize the Jacobian
for (j in 1:nt){

origPar<-get(theta[j],rho) # This is parameter by NAME, not index
xx <- abs(origPar)
delta <- if (xx == 0.0) {eps} else { xx*eps }
## JN: I prefer eps*(xx + eps) which is simpler ?? Should we suggest / use a control switch
prmx<-origPar+delta*dir[j]
assign(theta[j],prmx,rho)
res1 <- eval(expr, rho) # new residuals (forward step)

# cat("res1:"); print(res1)
if (central) { # compute backward step resids for central diff

prmb <- origPar - dir[j]*delta
assign(theta[j], prmb, envir=rho) # may be able to make more efficient later??
resb <- eval(expr, rho)
JJ[, j] <- dir[j]*(res1-resb)/(2*delta) # vectorized

} else { ## forward diff
JJ[, j] <- dir[j]*(res1-res0)/delta

} # end forward diff
assign(theta[j],origPar, rho) # reset value ??

} # end loop over the parameters
attr(res0, "gradient") <- JJ
return(res0)

}

Let us compute the Jacobian for the Hobbs problem with this function and its nls() original. I find the
mechanism for these functions awkward.
library(nlsr) # so we have numericDerivR code
# Data for Hobbs problem
weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972) # for testing
tt <- seq_along(weed) # for testing
# A simple starting vector -- must have named parameters for nlxb, nls, wrapnlsr.
st <- c(b1=1, b2=1, b3=1)
wmodu <- weed ~ b1/(1+b2*exp(-b3*tt))
weeddf <- data.frame(weed=weed, tt=tt)
weedenv <- list2env(weeddf)
weedenv$b1 <- st[[1]]
weedenv$b2 <- st[[2]]
weedenv$b3 <- st[[3]]
rexpr<-call("-",wmodu[[3]], wmodu[[2]])
r0<-eval(rexpr, weedenv)
cat("Sumsquares at 1,1,1 is ",sum(r0ˆ2),"\n")## Another way

## Sumsquares at 1,1,1 is 23521
expr <- wmodu
rho <- weedenv
rexpr<-call("-",wmodu[[3]], wmodu[[2]])
res0<-eval(rexpr, rho) # the base residuals
res0

## [1] -4.5769 -6.3592 -8.6854 -11.8840 -16.0757 -22.1945 -30.4439 -37.5583
## [9] -49.1561 -61.9480 -74.9950 -90.9720
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## Try the numericDeriv option
theta<-names(st)
nDnls<-numericDeriv(rexpr, theta, weedenv)
nDnls

## [1] -4.5769 -6.3592 -8.6854 -11.8840 -16.0757 -22.1945 -30.4439 -37.5583
## [9] -49.1561 -61.9480 -74.9950 -90.9720
## attr(,"gradient")
## [,1] [,2] [,3]
## [1,] 0.73106 -1.9661e-01 1.9661e-01
## [2,] 0.88080 -1.0499e-01 2.0999e-01
## [3,] 0.95257 -4.5177e-02 1.3553e-01
## [4,] 0.98201 -1.7663e-02 7.0651e-02
## [5,] 0.99331 -6.6481e-03 3.3240e-02
## [6,] 0.99753 -2.4664e-03 1.4799e-02
## [7,] 0.99909 -9.1028e-04 6.3715e-03
## [8,] 0.99966 -3.3569e-04 2.6817e-03
## [9,] 0.99988 -1.2350e-04 1.1106e-03
## [10,] 0.99995 -4.5300e-05 4.5395e-04
## [11,] 0.99998 -1.7166e-05 1.8311e-04
## [12,] 0.99999 -5.7220e-06 7.4387e-05
nDnlsR<-numericDerivR(rexpr, theta, weedenv)
nDnlsR

## [1] -4.5769 -6.3592 -8.6854 -11.8840 -16.0757 -22.1945 -30.4439 -37.5583
## [9] -49.1561 -61.9480 -74.9950 -90.9720
## attr(,"gradient")
## [,1] [,2] [,3]
## [1,] 0.73106 -1.9661e-01 1.9661e-01
## [2,] 0.88080 -1.0499e-01 2.0999e-01
## [3,] 0.95257 -4.5177e-02 1.3553e-01
## [4,] 0.98201 -1.7663e-02 7.0651e-02
## [5,] 0.99331 -6.6481e-03 3.3240e-02
## [6,] 0.99753 -2.4664e-03 1.4799e-02
## [7,] 0.99909 -9.1028e-04 6.3715e-03
## [8,] 0.99966 -3.3569e-04 2.6817e-03
## [9,] 0.99988 -1.2350e-04 1.1106e-03
## [10,] 0.99995 -4.5300e-05 4.5395e-04
## [11,] 0.99998 -1.7166e-05 1.8311e-04
## [12,] 0.99999 -5.7220e-06 7.4387e-05
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Appendix C: A comparison of nlsr::nlxb with nls and min-
pack::nlsLM
R has several tools for estimating nonlinear models and minimizing sums of squares functions. Sometimes
we talk of nonlinear regression and at other times of minimizing a sum of squares function. Many
workers conflate these two tasks. In this appendix, some of the differences between the tools available in R for
these two computational tasks are highlighted. In particular, we compare the tools from the package nlsr
(John C Nash and Duncan Murdoch (2019)), particularly function nlxb() with those from base-R nls() and
the nlsLM function of package minpack.lm (Elzhov et al. (2012)). We also compare how nlsr:nlfb() and
minpack.lm:nls.lm allow a sum of squares function to be minimized.

Principal differences

The main differences in the tools relate to the following features:

• the way in which derivative information is computed for the Jacobian of the modelling function
• specification of the model as an R programmatic function is unavailable in nlsr::nlxb()
• the use of a Marquardt stabilization for solution of the linearized least squares problem at each iteration
• details of the criterion used to terminate the iteration
• the structure of the output of the tools
• how models are predicted for new data.

Derivative information

As detailed above, nlsr::nlxb() attempts to use symbolic and algorithmic tools to obtain the derivatives
of the model expression that are needed for the Jacobian matrix that is used in creating a linearized
sub-problem at each iteration of an attempted solution of the minimization of the sum of squared residuals.
As discussed in the section “Analytic versus approximate Jacobians” and using the code in Appendix B, nls()
and minpack.lm::nlsLM() use a very simple forward-difference approximation for the partial derivatives for
the Jacobian.

Forward difference approximations are less accurate than central differences, and both are subject to numerical
error when the modelling function is “flat”, so that there is a large amount of digit cancellation in the
subtraction necessary to compute the derivative approximation.

minpack.lm::nlsLM uses the same derivatives as far as I can determine. The loss of information compared
to the analytic or algorithmic derivatives of nlsr::nlxb() is important in that it can lead to Jacobian
matrices that are computationally singular, where nls() will stop with “singular gradient”. (It is actually the
Jacobian which is singular here, and I will stay with that terminology.) minpack.lm::nlsLM() may fail to
get started if the initial Jacobian is singular, but is less susceptible in general, as described in the sub-section
on Marquardt stabilization which follows.

Consequences of different derivative computations While readers might expect that the precise
derivative information of nlsr::nlxb() would mean a faster solution, this is quite often not the case.
Approximate derivatives may allow faster approach to the solution by “ironing out” wrinkles in the function
surface. In my opinion, the main advantage of precise derivative information is in testing that we actually
have arrived at a solution.

There are even some cases where the approximation may be helpful, though users may not realize the potential
danger. Thanks to Karl Schilling for an example of modelling with the function

a * (x ˆ b)

where x is our data and we wish to estimate a and b. Now the partial derivative of this function w.r.t. b is
partialderiv <- D(expression(a * (x ˆ b)),"b")
print(partialderiv)
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## a * (x^b * log(x))

The danger here is that we may have data values x = 0, in which case the derivative is not defined,
though the model can still be evaluated. Thus nlsr::nlxb() will not compute a solution, while nls() and
minpack.lm::nlsLM() will generally proceed. A workaround is to provide a very small value instead of zero
for the data, though I find this inelegant. Another approach is to drop the offending element of the data,
though this risks altering the model estimated. A proper treatment might be to develop the limit of the
derivative as the data value goes to zero, but finding general software that can detect and deal with this is a
large project.

Timing comparisons Let us compare timings on the (scaled) Hobbs weed problem.
require(microbenchmark)
## nls on Hobbs scaled model
wmods <- weed ~ 100*b1/(1+10*b2*exp(-0.1*b3*tt))
stx<-c(b1=2, b2=5, b3=3)
tnls<-microbenchmark((anls<-nls(wmods, start=stx, data=weeddf)), unit="us")
tnls

## Unit: microseconds
## expr min lq mean median
## (anls <- nls(wmods, start = stx, data = weeddf)) 825.42 832.05 862.23 835.97
## uq max neval
## 865.07 1226.2 100
## nlsr::nlfb() on Hobbs scaled model
tnlxb<-microbenchmark((anlxb<-nlsr::nlxb(wmods, start=stx, data=weeddf)), unit="us")
tnlxb

## Unit: microseconds
## expr min lq mean
## (anlxb <- nlsr::nlxb(wmods, start = stx, data = weeddf)) 1229.1 1239.8 1275.3
## median uq max neval
## 1249.5 1291.7 1531.4 100
## minpack.lm::nlsLM() on Hobbs scaled model
tnlsLM<-microbenchmark((anlsLM<-minpack.lm::nlsLM(start=stx, formula=wmods, data=weeddf)),

unit="us")
tnlsLM

## Unit: microseconds
## expr
## (anlsLM <- minpack.lm::nlsLM(start = stx, formula = wmods, data = weeddf))
## min lq mean median uq max neval
## 602.78 608.51 621.86 610.7 614.81 1018.6 100

Programmatic modelling functions

A consequence of the symbolic derivative approach in nlsr::nlxb() is that it cannot be applied to a modelling
expression that includes an R function i.e., sub-program.

This limitation could be overcome using appropriate automatic differentiation code (to provide derivative
computations based on transformation of the modelling function’s programmatic form). The present work-
around is to use numerical approximation by specifying the control element japprox.
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Functional expression of residuals and Jacobian

require(microbenchmark)
## nlsr::nlfb() on Hobbs scaled
tnlfb<-microbenchmark((anlfb<-nlsr::nlfb(start=st1, resfn=shobbs.res, jacfn=shobbs.jac)), unit="us")
tnlfb

## Unit: microseconds
## expr
## (anlfb <- nlsr::nlfb(start = st1, resfn = shobbs.res, jacfn = shobbs.jac))
## min lq mean median uq max neval
## 4239.5 4311.1 4536.9 4414.2 4536.8 8056.2 100
## minpack.lm::nls.lm() on Hobbs scaled
tnls.lm<-microbenchmark((anls.lm<-minpack.lm::nls.lm(par=st1, fn=shobbs.res, jac=shobbs.jac)))
tnls.lm

## Unit: microseconds
## expr
## (anls.lm <- minpack.lm::nls.lm(par = st1, fn = shobbs.res, jac = shobbs.jac))
## min lq mean median uq max neval
## 115.8 117.76 123.45 118.3 119.66 248.22 100

Marquardt stabilization

All three of the R functions under consideration try to minimize a sum of squares. If the model is provided in
the form

y ~ (some expression)

then the residuals are computed by evaluating the difference between (some expression) and y. My own
preference, and that of K F Gauss, is to use (some expression) - y. This is to avoid having to be concerned
with the negative sign – the derivative of the residual defined in this way is the same as the derivative of the
modelling function, and we avoid the chance of a sign error. The Jacobian matrix is made up of elements
where element i, j is the partial derivative of residual i w.r.t. parameter j.

nls() attempts to minimize a sum of squared residuals by a Gauss-Newton method. If we compute a Jacobian
matrix J and a vector of residuals r from a vector of parameters x, then we can define a linearized problem

JTJδ = −JT r

This leads to an iteration where, from a set of starting parameters x0, we compute

xi+1 = xi + δ

This is commonly modified to use a step factor step

xi+1 = xi + step ∗ δ

It is in the mechanisms to choose the size of step and to decide when to terminate the iteration that
Gauss-Newton methods differ. Indeed, though I have tried several times, I find the very convoluted code
behind nls() very difficult to decipher. Unfortunately, its authors have (at 2018 as far as I am aware) all
ceased to maintain the code.

Both nlsr::nlxb() and minpack.lm::nlsLM use a Levenberg-Marquardt stabilization of the iteration.
(Marquardt (1963), Levenberg (1944)), solving
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(JTJ + λD)δ = −JT r

where D is some diagonal matrix and lambda is a number of modest size initially. Clearly for λ = 0 we
have a Gauss-Newton method. Typically, the sum of squares of the residuals calculated at the “new” set of
parameters is used as a criterion for keeping those parameter values. If so, the size of λ is reduced. If not, we
increase the size of λ and compute a new δ. Note that a new J , the expensive step in each iteration, is NOT
required.

As for Gauss-Newton methods, the details of how to start, adjust and terminate the iteration lead to many
variants, increased by different possibilities for specifying D. See Nash (1979). There are also a number of
ways to solve the stabilized Gauss-Newton equations, some of which do not require the explicit JTJ matrix.

Criterion used to terminate the iteration

nls() and nlsr use a form of the relative offset convergence criterion, Bates, Douglas M. and Watts, Donald
G. (1981). minpack.lm uses a somewhat different and more complicated set of tests. Unfortunately, the
relative offset criterion as implemented in nls() is unsuited to problems where the residuals can be zero.
As of R 4.1.0, there is a work-around in providing a non-zero value to the control element scaleOffset as
documented in the manual page of nls(). See An illustrative nonlinear regression problem below.

Output of the modelling functions

nls() and nlsLM() return the same solution structure. Let us examine this for one of our example results
(we will choose one that does NOT have small residuals, so that all the functions “work”).
str(nlsy0t0ax)

## List of 6
## $ m :List of 16
## ..$ resid :function ()
## ..$ fitted :function ()
## ..$ formula :function ()
## ..$ deviance :function ()
## ..$ lhs :function ()
## ..$ gradient :function ()
## ..$ conv :function ()
## ..$ incr :function ()
## ..$ setVarying:function (vary = rep_len(TRUE, np))
## ..$ setPars :function (newPars)
## ..$ getPars :function ()
## ..$ getAllPars:function ()
## ..$ getEnv :function ()
## ..$ trace :function ()
## ..$ Rmat :function ()
## ..$ predict :function (newdata = list(), qr = FALSE)
## ..- attr(*, "class")= chr "nlsModel"
## $ convInfo :List of 5
## ..$ isConv : logi TRUE
## ..$ finIter : int 6
## ..$ finTol : num 3.9e-10
## ..$ stopCode : int 0
## ..$ stopMessage: chr "converged"
## $ data : symbol edta
## $ call : language nls(formula = y1 ~ a * (t0a^b), data = edta, start = start1, control = list( maxiter = 10000, tol = 1e-05, mi| __truncated__ ...
## $ dataClasses: Named chr "numeric"
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## ..- attr(*, "names")= chr "t0a"
## $ control :List of 7
## ..$ maxiter : num 10000
## ..$ tol : num 1e-05
## ..$ minFactor : num 0.000977
## ..$ printEval : logi FALSE
## ..$ warnOnly : logi FALSE
## ..$ scaleOffset: num 0
## ..$ nDcentral : logi FALSE
## - attr(*, "class")= chr "nls"

The minpack.lm::nlsLM output has the same structure, which could be revealed by the R command
str(nlsLMy1t0a). Note that this structure has a lot of special functions in the sub-list m. By contrast, the
nlsr() output is much less flamboyant. There are, in fact, no functions as part of the structure.
str(nlsry1t0a)

## List of 12
## $ resid : num [1:20] 4.00e-05 -2.03e-09 -1.70e-09 -1.41e-09 -1.16e-09 ...
## ..- attr(*, "gradient")= num [1:20, 1:2] 0.00001 1 1.18921 1.31607 1.41421 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : NULL
## .. .. ..$ : chr [1:2] "a" "b"
## $ jacobian : num [1:20, 1:2] 0.00001 1 1.18921 1.31607 1.41421 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:2] "a" "b"
## $ feval : num 7
## $ jeval : num 7
## $ coefficients: Named num [1:2] 4 0.25
## ..- attr(*, "names")= chr [1:2] "a" "b"
## $ ssquares : num 1.6e-09
## $ lower : num [1:2] -Inf -Inf
## $ upper : num [1:2] Inf Inf
## $ maskidx : int(0)
## $ weights : NULL
## $ formula :Class 'formula' language y1 ~ a * (t0a^b)
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## $ resfn :function (prm)
## - attr(*, "class")= chr "nlsr"

Which of these approaches is “better” can be debated. My preference is for the results of optimization
computations to be essentially data, including messages, though some tools within some of my packages will
return functions for specific reasons, e.g., to return a function from an expression. However, I prefer to use
specified functions such as predict.nlsr() below to obtain predictions. I welcome comment and discussion,
as this is not, in my view, a closed topic.

Prediction

Let us predict our models at the mean of the data. Because nlxb() returns a different structure from that
found by nls() and nlsLM() the code for predict() for an object from nlsr is different. minpack.lm uses
predict.nls since the output structure of the modelling step is equivalent to that from nls().
nudta <- colMeans(edta)
predict(nlsy0t0ax, newdata=nudta)

## [1] 7.0225
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predict(nlsLMy1t0a, newdata=nudta)

## [1] 7.0225
predict(nlsry1t0a, newdata=nudta)

## [1] 7.0225
## attr(,"class")
## [1] "predict.nlsr"
## attr(,"pkgname")
## [1] "nlsr"

An illustrative nonlinear regression problem

So we can illustrate some of the issues, let us create some example data for a seemingly straightforward
computational problem.
# Here we set up an example problem with data
# Define independent variable
t0 <- 0:19
t0a<-t0
t0a[1]<-1e-20 # very small value
# Drop first value in vectors
t0t<-t0[-1]
y1 <- 4 * (t0ˆ0.25)
y1t<-y1[-1]
n <- length(t0)
fuzz <- rnorm(n)
range <- max(y1)-min(y1)
## add some "error" to the dependent variable
y1q <- y1 + 0.2*range*fuzz
edta <- data.frame(t0=t0, t0a=t0a, y1=y1, y1q=y1q)
edtat <- data.frame(t0t=t0t, y1t=y1t)

Let us try this example modelling y0 against t0. Note that this is a zero-residual problem, so nls() should
complain or fail, which it appears to do by exceeding the iteration limit, which is not very communicative of
the underlying issue. The nls() documentation warns

"Warning

Do not use nls on artificial “zero-residual” data."

It goes on to recommend that users add “error” to the data to avoid such problems. I feel this is a very
unsatisfactory kludge. It is NOT due to a genuine mathematical issue, but due to the relative offset
convergence criterion used to terminate the method. Using the contr

Here is the output.

cprint <- function(obj){
# print object if it exists

sobj<-deparse(substitute(obj))
if (exists(sobj)) {

print(obj)
} else {

cat(sobj," does not exist\n")
}
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# return(NULL)
}
start1 <- c(a=1, b=1)
try(nlsy0t0 <- nls(formula=y1~a*(t0ˆb), start=start1, data=edta))

nls

## Error in nls(formula = y1 ~ a * (t0^b), start = start1, data = edta) :
## number of iterations exceeded maximum of 50
cprint(nlsy0t0)

## nlsy0t0 does not exist
# Since this fails to converge, let us increase the maximum iterations
try(nlsy0t0x <- nls(formula=y1~a*(t0ˆb), start=start1, data=edta,

control=nls.control(maxiter=10000)))

## Error in nls(formula = y1 ~ a * (t0^b), start = start1, data = edta, control = nls.control(maxiter = 10000)) :
## number of iterations exceeded maximum of 10000
cprint(nlsy0t0x)

## nlsy0t0x does not exist
try(nlsy0t0ax <- nls(formula=y1~a*(t0aˆb), start=start1, data=edta,

control=nls.control(maxiter=10000)))
cprint(nlsy0t0ax)

## Nonlinear regression model
## model: y1 ~ a * (t0a^b)
## data: edta
## a b
## 4.00 0.25
## residual sum-of-squares: 1.6e-09
##
## Number of iterations to convergence: 6
## Achieved convergence tolerance: 3.9e-10
try(nlsy0t0t <- nls(formula=y1t~a*(t0tˆb), start=start1, data=edtat))

## Error in nls(formula = y1t ~ a * (t0t^b), start = start1, data = edtat) :
## number of iterations exceeded maximum of 50
cprint(nlsy0t0t)

## nlsy0t0t does not exist

nlsry1t0 <- try(nlxb(formula=y1~a*(t0ˆb), start=start1, data=edta))

nlsr

## Error in model2rjfun(formula, pnum, data = data) : Jacobian contains NaN
cprint(nlsry1t0)

## [1] "Error in model2rjfun(formula, pnum, data = data) : Jacobian contains NaN\n"
## attr(,"class")
## [1] "try-error"
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## attr(,"condition")
## <simpleError in model2rjfun(formula, pnum, data = data): Jacobian contains NaN>
nlsry1t0a <- nlxb(formula=y1~a*(t0aˆb), start=start1, data=edta)
cprint(nlsry1t0a)

## nlsr object: obj
## residual sumsquares = 1.6e-09 on 20 observations
## after 7 Jacobian and 7 function evaluations
## name coeff SE tstat pval gradient JSingval
## a 4 4.811e-06 831443 1.02e-96 -2.391e-13 72.97
## b 0.25 5.011e-07 498907 1.003e-92 -9.371e-13 1.95
nlsry1t0t <- nlxb(formula=y1t~a*(t0tˆb), start=start1, data=edtat)
cprint(nlsry1t0t)

## nlsr object: obj
## residual sumsquares = 6.3766e-27 on 19 observations
## after 7 Jacobian and 7 function evaluations
## name coeff SE tstat pval gradient JSingval
## a 4 9.883e-15 4.048e+14 2.612e-239 -2.416e-13 72.97
## b 0.25 1.029e-15 2.429e+14 1.541e-235 -8.636e-13 1.95

library(minpack.lm)
nlsLMy1t0 <- nlsLM(formula=y1~a*(t0ˆb), start=start1, data=edta)
nlsLMy1t0

minpack.lm

## Nonlinear regression model
## model: y1 ~ a * (t0^b)
## data: edta
## a b
## 4.00 0.25
## residual sum-of-squares: 0
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 1.49e-08
nlsLMy1t0a <- nlsLM(formula=y1~a*(t0aˆb), start=start1, data=edta)
nlsLMy1t0a

## Nonlinear regression model
## model: y1 ~ a * (t0a^b)
## data: edta
## a b
## 4.00 0.25
## residual sum-of-squares: 1.6e-09
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 1.49e-08
nlsLMy1t0t <- nlsLM(formula=y1t~a*(t0tˆb), start=start1, data=edtat)
nlsLMy1t0t

## Nonlinear regression model
## model: y1t ~ a * (t0t^b)
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## data: edtat
## a b
## 4.00 0.25
## residual sum-of-squares: 0
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 1.49e-08

We have seemingly found a workaround for our difficulty, but I caution that initially I found very unsatisfactory
results when I set the “very small value” to 1.0e-7. The correct approach is clearly to understand what is
going on. Getting computers to provide that understanding is a serious challenge.

Problems that are NOT regressions

Some nonlinear least squares problems are NOT nonlinear regressions. That is, we do not have a formula
y ~ (some function) to define the problem. This is another reason to use the residual in the form (some
function) - y In many cases of interest we have no y.

The Brown and Dennis test problem (Moré, Garbow, and Hillstrom (1981), problem 16) is of this form.
Suppose we have m observations, then we create a scaled index t which is the “data” for the function. To run
the nonlinear least squares functions that use a formula, we do, however, need a “y” variable. Clearly adding
zero to the residual will not change the problem, so we set the data for “y” as all zeros. Note that nls() and
nlsLM() need some extra iterations to find the solution to this somewhat nasty problem.
m <- 20
t <- seq(1, m) / 5
y <- rep(0,m)
library(nlsr)
library(minpack.lm)

bddata <- data.frame(t=t, y=y)
bdform <- y ~ ((x1 + t * x2 - exp(t))ˆ2 + (x3 + x4 * sin(t) - cos(t))ˆ2)
prm0 <- c(x1=25, x2=5, x3=-5, x4=-1)
fbd <-model2ssgrfun(bdform, prm0, bddata)
cat("initial sumsquares=",as.numeric(crossprod(fbd(prm0))),"\n")

## initial sumsquares= 6.2832e+13
nlsrbd <- nlxb(bdform, start=prm0, data=bddata, trace=FALSE)
nlsrbd

## nlsr object: x
## residual sumsquares = 85822 on 20 observations
## after 28 Jacobian and 46 function evaluations
## name coeff SE tstat pval gradient JSingval
## x1 -11.5944 4.017 -2.886 0.01075 0.0005499 176
## x2 13.2036 1.231 10.73 1.025e-08 -0.0002686 28.1
## x3 -0.403439 28.08 -0.01437 0.9887 0.001689 3.917
## x4 0.236779 39.79 0.005951 0.9953 0.000661 1.624
nlsbd10k <- nls(bdform, start=prm0, data=bddata, trace=FALSE,

control=nls.control(maxiter=10000))
nlsbd10k

## Nonlinear regression model
## model: y ~ ((x1 + t * x2 - exp(t))^2 + (x3 + x4 * sin(t) - cos(t))^2)
## data: bddata
## x1 x2 x3 x4
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## -11.594 13.204 -0.403 0.237
## residual sum-of-squares: 85822
##
## Number of iterations to convergence: 867
## Achieved convergence tolerance: 9.76e-06
nlsLMbd10k <- nlsLM(bdform, start=prm0, data=bddata, trace=FALSE,

control=nls.lm.control(maxiter=10000, maxfev=10000))

## Warning in nls.lm(par = start, fn = FCT, jac = jac, control = control, lower =
## lower, : resetting `maxiter' to 1024!
nlsLMbd10k

## Nonlinear regression model
## model: y ~ ((x1 + t * x2 - exp(t))^2 + (x3 + x4 * sin(t) - cos(t))^2)
## data: bddata
## x1 x2 x3 x4
## -11.592 13.203 -0.404 0.237
## residual sum-of-squares: 85822
##
## Number of iterations to convergence: 242
## Achieved convergence tolerance: 1.49e-08

Let us try predicting the “residual” for some new data.
ndata <- data.frame(t=c(5,6), y=c(0,0))
predict(nlsLMbd10k, newdata=ndata)

## [1] 8835.3 112766.9
# now nls
predict(nlsbd10k, newdata=ndata)

## [1] 8834.9 112764.7
# now nlsr
predict(nlsrbd, newdata=ndata)

## [1] 8834.9 112764.7
## attr(,"class")
## [1] "predict.nlsr"
## attr(,"pkgname")
## [1] "nlsr"

We could, of course, try setting up a different formula, since the “residuals” can be computed in any way such
that their absolute value is the same. Therefore we could try moving the exponential part of the function for
each equation to the left hand side as in bdf2 below.
bdf2 <- (x1 + t * x2 - exp(t))ˆ2 ~ - (x3 + x4 * sin(t) - cos(t))ˆ2

However, we discover that the parsing of the model formula fails for this formulation.

A check on the Brown and Dennis calculation via function minimization

We can attack the Brown and Dennis problem by applying nonlinear function minimization programs to the
sum of squared “residuals” as a function of the parameters. The code below does this. We omit the output
for space reasons.
#' Brown and Dennis Function
#'
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#' Test function 16 from the More', Garbow and Hillstrom paper.
#'
#' The objective function is the sum of \code{m} functions, each of \code{n}
#' parameters.
#'
#' \itemize{
#' \item Dimensions: Number of parameters \code{n = 4}, number of summand
#' functions \code{m >= n}.
#' \item Minima: \code{f = 85822.2} if \code{m = 20}.
#' }
#'
#' @param m Number of summand functions in the objective function. Should be
#' equal to or greater than 4.
#' @return A list containing:
#' \itemize{
#' \item \code{fn} Objective function which calculates the value given input
#' parameter vector.
#' \item \code{gr} Gradient function which calculates the gradient vector
#' given input parameter vector.
#' \item \code{fg} A function which, given the parameter vector, calculates
#' both the objective value and gradient, returning a list with members
#' \code{fn} and \code{gr}, respectively.
#' \item \code{x0} Standard starting point.
#' }
#' @references
#' More', J. J., Garbow, B. S., & Hillstrom, K. E. (1981).
#' Testing unconstrained optimization software.
#' \emph{ACM Transactions on Mathematical Software (TOMS)}, \emph{7}(1), 17-41.
#' \url{https://doi.org/10.1145/355934.355936}
#'
#' Brown, K. M., & Dennis, J. E. (1971).
#' \emph{New computational algorithms for minimizing a sum of squares of
#' nonlinear functions} (Report No. 71-6).
#' New Haven, CT: Department of Computer Science, Yale University.
#'
#' @examples
#' # Use 10 summand functions
#' fun <- brown_den(m = 10)
#' # Optimize using the standard starting point
#' x0 <- fun$x0
#' res_x0 <- stats::optim(par = x0, fn = fun$fn, gr = fun$gr, method =
#' "L-BFGS-B")
#' # Use your own starting point
#' res <- stats::optim(c(0.1, 0.2, 0.3, 0.4), fun$fn, fun$gr, method =
#' "L-BFGS-B")
#'
#' # Use 20 summand functions
#' fun20 <- brown_den(m = 20)
#' res <- stats::optim(fun20$x0, fun20$fn, fun20$gr, method = "L-BFGS-B")
#' @export
#`
brown_den <- function(m = 20) {

list(
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fn = function(par) {
x1 <- par[1]
x2 <- par[2]
x3 <- par[3]
x4 <- par[4]

ti <- (1:m) * 0.2
l <- x1 + ti * x2 - exp(ti)
r <- x3 + x4 * sin(ti) - cos(ti)
f <- l * l + r * r
sum(f * f)

},
gr = function(par) {

x1 <- par[1]
x2 <- par[2]
x3 <- par[3]
x4 <- par[4]

ti <- (1:m) * 0.2
sinti <- sin(ti)
l <- x1 + ti * x2 - exp(ti)
r <- x3 + x4 * sinti - cos(ti)
f <- l * l + r * r
lf4 <- 4 * l * f
rf4 <- 4 * r * f
c(

sum(lf4),
sum(lf4 * ti),
sum(rf4),
sum(rf4 * sinti)

)
},
fg = function(par) {

x1 <- par[1]
x2 <- par[2]
x3 <- par[3]
x4 <- par[4]

ti <- (1:m) * 0.2
sinti <- sin(ti)
l <- x1 + ti * x2 - exp(ti)
r <- x3 + x4 * sinti - cos(ti)
f <- l * l + r * r
lf4 <- 4 * l * f
rf4 <- 4 * r * f

fsum <- sum(f * f)
grad <- c(

sum(lf4),
sum(lf4 * ti),
sum(rf4),
sum(rf4 * sinti)

)
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list(
fn = fsum,
gr = grad

)
},
x0 = c(25, 5, -5, 1)

)
}
mbd <- brown_den(m=20)
mbd
mbd$fg(mbd$x0)
bdsolnm <- optim(mbd$x0, mbd$fn, control=list(trace=0))
bdsolnm
bdsolbfgs <- optim(mbd$x0, mbd$fn, method="BFGS", control=list(trace=0))
bdsolbfgs

library(optimx)
methlist <- c("Nelder-Mead","BFGS","Rvmmin","L-BFGS-B","Rcgmin","ucminf")

solo <- opm(mbd$x0, mbd$fn, mbd$gr, method=methlist, control=list(trace=0))
summary(solo, order=value)

## A failure above is generally because a package in the 'methlist' is not installed.
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