Package 'nnspat'

August 30, 2022
Type Package
Title Nearest Neighbor Methods for Spatial Patterns
Version 0.1.1
Author Elvan Ceyhan
Maintainer Elvan Ceyhan elvanceyhan@gmail.com
Description Contains the functions for testing the spatial patterns (of segregation, spatial symmetry, association, disease clustering, species correspondence and reflexivity) based on nearest neighbor relations, especially using contingency tables such as nearest neighbor contingency tables (Ceyhan (2010) doi:10.1007/s10651-008-0104-x and Ceyhan (2017) doi:10.1016/j.jkss.2016.10.002 and references therein), nearest neighbor symmetry contingency tables (Ceyhan (2014) doi:10.1155/2014/698296), species correspondence contingency tables and reflexivity contingency tables (Ceyhan (2018) doi:10.2436/20.8080.02.72)
for two (or higher) dimensional data. Also contains functions for generating patterns of segregation, association,
uniformity in a multi-class setting (Ceyhan (2014) doi:10.1007/s00477-013-0824-9), and various non-
random labeling patterns for disease clustering in two dimensional cases (Ceyhan (2014) doi:10.1002/sim.6053), and for visualization of all these patterns for the two dimensional data. The tests are usually (asymptotic) normal z-tests and chi-square tests.

License GPL-2
Encoding UTF-8
LazyData TRUE
Imports MASS, stats, graphics, pcds, Rdpack (>= 0.7)
RdMacros Rdpack
RoxygenNote 7.1.2
NeedsCompilation no
Repository CRAN
Date/Publication 2022-08-30 07:00:07 UTC

R topics documented:

.onAttach 5
.onLoad 6
aij.theta 6
asycovTkTl 8
asyvarTk 9
bvnorm.pdf 11
cellsTij 12
ceTk 14
ceTkinv 15
ceTrun 17
cov.nnct 18
cov.nnsym 20
cov.seg.coeff 22
cov.tct 23
covNrow2col 25
covTcomb 27
covTkTl 29
dist.std.data 30
dist2full 31
euc.dist 32
EV.Nii 33
EV.nnct 35
EV.rct 36
EV.Tcomb 37
EV.tct 39
EV.tctI 40
EV.Tkinv 41
exact.nnct 42
exact.pval1s 44
exact.pval2s 46
funs.auxcovtct 48
funs.base.class.spec 50
funs.cell.spec.ss 52
funs.class.spec 55
funs.covNii 58
funs.covtct 60
funs.kNNdist 61
funs.kNNdist2cl 63
funs.overall.nnct 66
funs.overall.seg 68
funs.overall.tct 71
funs.pijPij 74
funs.scct 76
funs.seg.coeff 78
funs.varNii 80
funs.vartct 82
R topics documented:3
funsAijmat 83
funsC_MI_II 84
funsExpTk 85
funsExpTrun 87
funsNNclass.spec 88
funsN_I_II 91
funsOnevsRest 92
funsPseg.ss 93
funsQandR 96
funsRowColSums 99
funsVarTk 100
funsVarTrun 103
funsW345values 105
funsXsq.nnref 106
funsXsq.nnsym.dx 108
funsXsq.nnsym.ss 111
funsXsq.seg.coeff 113
funsXsq.spec.cor 116
funsZcell.nnct 119
funsZcell.nnct.pval 121
funsZcell.spec 123
funsZcell.tct 126
funsZdir.nnct 129
funsZdir.nnct.ss 132
funsZmixed.nonref 134
funsZnnref 137
funsZnnself 140
funsZnnself.sum 144
funsZnnsym.dx 147
funsZnnsym.ss 150
funsZnnsym2cl.dx 153
funsZnnsym2cl.ss 155
funsZseg.coeff 158
funsZsegind 161
funsZself.ref 164
funsZTkinv 167
ind.nnsym 170
ind.seg.coeff 171
ipd.mat 171
ipd.mat.euc 173
kNN 174
mat2vec 175
matrix.sqrt 176
Ninv 177
NN 179
nnct 180
nnct.boot.dis 183
nnct.sub 185
NNdist 187
NNdist2cl 188
nnspat 190
NNsub 192
Nt.def 194
Ntkl 195
pairwise.lab 196
pick.min.max 197
pk 198
plot.Clusters 199
plot.SpatPatterns 200
print.cellhtest 200
print.Chisqtest 201
print.classhtest 202
print.Clusters 202
print.refhtest 203
print.SpatPatterns 203
print.summary.Clusters 204
print.summary.SpatPatterns 205
prob.nnct 205
QRval 206
Qsym.ct 208
Qsym.test 209
rassoc 212
rassocC 214
rassocG 216
rassocI 218
rassocU 220
rct 223
rdiag.clust 224
rhor.clust 226
rnonRL 228
rnonRLI 232
rnonRLII 235
rnonRLIII 239
rnonRLIV 242
rrot.clust 245
rseg 247
rself.ref 249
runif.circ 252
seg.ind 253
sharedNNmc 254
SkewTk 256
summary.Clusters 257
summary.SpatPatterns 258
swamptrees 259
Tcomb 260
tct 262
tocher.cor 263
Tval 265
var.nnct 266
var.nnsym 267
var.seg.coeff 269
var.tct 271
varPseg.coeff 272
varTkinv.sim 274
Wmat 275
Xsq.ceTk 277
Xsq.nnsym 279
ZceTk 281
Znnsym 283
Znnsym2cl 286
ZTcomb 288
ZTrun 291
Index 294
onAttach .onAttach start message

Description

.onAttach start message

Usage

.onAttach(libname, pkgname)

Arguments

libname	defunct
pkgname	defunct

Value

invisible()

```
.onLoad .onLoad getOption package settings
```


Description

.onLoad getOption package settings

Usage

.onLoad(libname, pkgname)

Arguments

libname	defunct
pkgname	defunct

Value

invisible()

Examples

getOption("nnspat.name")
aij.theta
Closeness or Proximity Matrix for Tango's Spatial Clustering Tests

Description

This function computes the $A=a_{i j}(\theta)$ matrix useful in calculations for Tango's test $T(\theta)$ for spatial (disease) clustering (see Eqn (2) of Tango (2007). Here, $A=a_{i j}(\theta)$ is any matrix of a measure of the closeness between two points i and j with aii $=0$ for all $i=1, \ldots, n$, and $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)^{t}$ denotes the unknown parameter vector related to cluster size and $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)^{t}$, where $\delta_{i}=1$ if z_{i} is a case and 0 otherwise. The test is then

$$
T(\theta)=\sum_{i=1}^{n} \sum_{j=1}^{n} \delta_{i} \delta_{j} a_{i j}(\theta)=\delta^{t} A(\theta) \delta
$$

where $A=a_{i j}(\theta)$.
$T(\theta)$ becomes Cuzick and Edwards T_{k} tests statistic (Cuzick and Edwards (1990)), if $a_{i j}=1$ if z_{j} is among the kNNs of z_{i} and 0 otherwise. In this case $\theta=k$ and aij. theta becomes aij.mat (more specifically, aij.mat (dat, k) and aij.theta(dat, k, model="NN").
In Tango's exponential clinal model (Tango (2000)), $a_{i j}=\exp \left(-4\left(\frac{d_{i j}}{\theta}\right)^{2}\right)$ if $i \neq j$ and 0 otherwise, where θ is a predetermined scale of cluster such that any pair of cases far apart beyond
the distance θ cannot be considered as a cluster and $d_{i j}$ denote the Euclidean distance between two points i and j.
In the exponential model (Tango (2007)), $a_{i j}=\exp \left(-\frac{d_{i j}}{\theta}\right)$ if $i \neq j$ and 0 otherwise, where θ and $d_{i j}$ are as above.

In the hot-spot model (Tango (2007)), $a_{i j}=1$ if $d_{i j} \leq \theta$ and $i \neq j$ and 0 otherwise, where θ and $d_{i j}$ are as above.
The argument model has four options, NN, exp.clinal, exponential, and hot. spot, with exp.clinal being the default. And the theta argument specifies the scale of clustering or the clustering parameter in the particular spatial disease clustering model.

See also (Tango (2007)) and the references therein.

Usage

aij.theta(dat, theta, model = "exp.clinal", ...)

Arguments

dat	The data set in one or higher dimensions, each row corresponds to a data point.
theta	A predetermined cluster scale so that any pair of cases farther apart then the distance θ is unlikely to be cluster.
model	Type of Tango's spatial clustering model with four options: NN, exp.clinal (default), exponential, and hot.spot.
\ldots	are for further arguments, such as method and p, passed to the dist function.

Value

The $A=a_{i j}(\theta)$ matrix useful in calculations for Tango's test $T(\theta)$.

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

Tango T (2000). "A test for spatial disease clustering adjusted for multiple testing." Statistics in Medicine, 19, 191-204.

Tango T (2007). "A class of multiplicity adjusted tests for spatial clustering based on case-control point data." Biometrics, 63, 119-127.

See Also

aij.mat, aij.nonzero and ceTk

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
k<-3#1 #try also 2,3
#aij for CE's Tk
Aij<-aij.theta(Y,k,model = "NN")
Aij2<-aij.mat(Y,k)
sum(abs(Aij-Aij2)) #check equivalence of aij.theta and aij.mat with model="NN"
Aij<-aij.theta(Y,k,method="max")
Aij2<-aij.mat(Y,k)
range(Aij-Aij2)
theta=. 2
aij.theta(Y,theta,model = "exp.clinal")
aij.theta(Y,theta,model = "exponential")
aij.theta(Y,theta,model = "hot.spot")
```

asycovTkTl

Description

This function computes the asymptotic covariance between T_{k} and T_{l} values which is used in the computation of the asymptotic variance of Cuzick and Edwards $T_{\text {comb }}$ test, which is a linear combination of some T_{k} tests. The limit is as n_{1} goes to infinity.

The argument, n_{1}, is the number of cases (denoted as n 1 as an argument). The number of cases are denoted as n_{1} and number of controls as n_{0} in this function to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).

The logical argument nonzero.mat (default=TRUE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE) in the computations.
See page 80 of (Cuzick and Edwards (1990)) for more details.

Usage

asycovTkTl(dat, n1, k, l, nonzero.mat = TRUE, ...)

Arguments

dat
n1
k, l

The data set in one or higher dimensions, each row corresponds to a data point.
Number of cases
Integers specifying the number of NNs (of subjects i and m in $a_{i j}(k) a_{m j}(l)$).
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computation of N_{s} and N_{t}. If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used.
$\ldots \quad$ are for further arguments, such as method and p, passed to the dist function.

Value

Returns the asymptotic covariance between T_{k} and T_{l} values.

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

covTkTl, covTcomb, and Ntkl

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
n1<-sum(cls==1)
k<-1 #try also 2,3 or sample(1:5,1)
l<-1 #try also 2,3 or sample(1:5,1)
c(k,l)
asycovTkTl(Y,n1,k,l)
asycovTkTl(Y, n1,k,l,nonzero.mat = FALSE)
asycovTkTl(Y, n1,k,l,method="max")
```


Description

This function computes the asymptotic variance of Cuzick and Edwards T_{k} test statistic based on the number of cases within kNNs of the cases in the data.

The argument, n_{1}, is the number of cases (denoted as n 1 as an argument). The number of cases are denoted as n_{1} and number of controls as n_{0} in this function to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).
The logical argument nonzero.mat (default=TRUE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE) for computing N_{s} and N_{t}, which are required in the computation of the asymptotic variance. N_{s} and N_{t} are defined on page 78 of (Cuzick and Edwards (1990)) as follows. $N_{s}=\sum_{i} \sum_{j} a_{i j} a_{j i}$ (i.e., number of ordered pairs for which kNN relation is symmetric) and $N_{t}=\sum \sum_{i \neq l} \sum a_{i j} a_{l j}$ (i.e, number of triplets $(i, j, l) i, j$, and l distinct so that j is among kNNs of i and j is among kNNs of l). For the A matrix, see the description of the functions aij.mat and aij. nonzero.
See (Cuzick and Edwards (1990)) for more details.

Usage

asyvarTk(dat, n1, k, nonzero.mat = TRUE, ...)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
n1 Number of cases
$k \quad$ Integer specifying the number of NNs (of subject i)
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computation of N_{s} and N_{t}. If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used.
... are for further arguments, such as method and p, passed to the dist function.

Value

A list with the elements
asy.var The asymptotic variance of Cuzick and Edwards T_{k} test statistic for disease clustering
Ns The N_{s} value standing for the number of ordered pairs for which kNN relation is symmetric, see the description.
$\mathrm{Nt} \quad$ The N_{t} value standing for the number of triplets $(i, j, l) i, j$, and l distinct so that j is among kNNs of i and j is among kNNs of l see the description.

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

ceTk, varTk, and varTkaij

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
n1<-sum(cls==1)
k<-3 #try also 2,3
asyvarTk(Y,n1,k)
asyvarTk(Y,n1,k,nonzero.mat=FALSE)
asyvarTk(Y,n1,k,method="max")
```

bvnorm.pdf pdf of the Bivariate Normal Distribution

Description

Computes the value of the probability density function (i.e. density) of the bivariate normal distribution at the specified point X, with mean mu and standard deviations of the first and second components being s_{1} and s_{2} (denoted as $s 1$ and $s 2$ in the arguments of the function, respectively) and correlation between them being rho (i.e., the covariance matrix is $\Sigma=S$ where $S_{11}=s_{1}^{2}$, $S_{22}=s_{2}^{2}, S_{12}=S_{21}=s_{1} s_{2} r h o$) .

Usage

bvnorm. pdf($\mathrm{X}, \mathrm{mu}=\mathrm{c}(0,0), \mathrm{s} 1=1, \mathrm{~s} 2=1$, rho $=0)$

Arguments

X
A set of 2D points of size n (i.e an $n \times 2$ matrix or array) at which the density of the bivariate normal distribution is to be computed.
mu
s1, s2
rho The correlation between the first and second components of the bivariate normal distribution with default $=0$.

Value

The value of the probability density function (i.e. density) of the bivariate normal distribution at the specified point X, with mean mu and standard deviations of the first and second components being s_{1} and s_{2} and correlation between them being rho.

Author(s)

Elvan Ceyhan

See Also

mvrnorm

Examples

```
mu<-c(0,0)
s1<-1
s2<-1
rho<-. }
n<-5
Xp<-cbind(runif(n),runif(n))
bvnorm.pdf(Xp,mu,s1,s2,rho)
```

cellsTij Entries for the Types I-IV cell-specific tests

Description

Returns a matrix of same dimension as, $c t$, whose entries are the values of the Types I-IV cellspecific test statistics, $T_{i j}^{I}-T_{i j}^{I V}$. The row and column names are inherited from ct. The type argument specifies the type of the cell-specific test among the types I-IV tests. Equivalent to the function tct in this package.
See also (Ceyhan (2017)) and the references therein.

Usage

cellsTij(ct, type = "III")

Arguments

ct	A nearest neighbor contingency table
type	The type of the cell-specific test, default="III". Takes on values "I"-"IV" (or equivalently $1-4, ~ r e s p e c t i v e l y . ~$

Value

A matrix of the values of Type I-IV cell-specific tests

Author(s)

Elvan Ceyhan

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

tct and nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
type.lab<-c("I","II","III","IV")
for (i in 1:4)
{ print(paste("T_ij values for cell specific tests for type",type.lab[i]))
    print(cellsTij(ct,i))
}
cellsTij(ct,"II")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
cellsTij(ct,2)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
cellsTij(ct,2)
ct<-matrix(c(0,10,5,5),ncol=2)
cellsTij(ct,2)
```

ceTk
Cuzick and Edwards T_k Test statistic

Description

This function computes Cuzick and Edwards T_{k} test statistic based on the number of cases within kNNs of the cases in the data.
For disease clustering, Cuzick and Edwards (1990) suggested a k-NN test based on number of cases among k NNs of the case points. Let z_{i} be the $i^{\text {th }}$ point and d_{i}^{k} be the number cases among k NNs of z_{i}. Then Cuzick-Edwards' k-NN test is $T_{k}=\sum_{i=1}^{n} \delta_{i} d_{i}^{k}$, where $\delta_{i}=1$ if z_{i} is a case, and 0 if z_{i} is a control.
The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc. lab should be provided in this fashion, if case.lab is provided, the labels are converted to 0 's and 1's accordingly. Also, T_{1} is identical to the count for cell $(1,1)$ in the nearest neighbor contingency table (NNCT) (See the function nnct for more detail on NNCTs).
See also (Ceyhan (2014); Cuzick and Edwards (1990)) and the references therein.

```
Usage
ceTk(dat, cc.lab, \(\mathrm{k}=1\), case.lab = NULL, ...)
```


Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
cc.lab Case-control labels, 1 for case, 0 for control
$\mathrm{k} \quad$ Integer specifying the number of NNs (of subject i), default is 1.
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL.
... are for further arguments, such as method and p, passed to the dist function.

Value

Cuzick and Edwards T_{k} test statistic for disease clustering

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 16621684.

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

Tcomb, seg.ind, Pseg.coeff and ceTkinv

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
ceTk(Y,cls)
ceTk(Y,cls,method="max")
ceTk(Y,cls,k=3)
ceTk(Y,cls+1,case.lab = 2)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ceTk(Y,fcls,case.lab="a") #try also ceTk(Y,fcls)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) # here ceTk(Y,cls) gives an error message
```

ceTkinv Cuzick and Edwards T_k^inv Test statistic

Description

This function computes Cuzick and Edwards $T_{k}^{i n v}$ test statistic based on the sum of number of cases closer to each case than the k-th nearest control to the case.
$T_{k}^{i n v}$ test statistic is an extension of the run length test allowing a fixed number of controls in the run sequence.
$T_{k}^{i n v}$ test statistic is defined as $T_{k}^{i n v}=\sum_{i=1}^{n} \delta_{i} \nu_{i}^{k}$ where $\delta_{i}=1$ if z_{i} is a case, and 0 if z_{i} is a control and ν_{i}^{k} is the number of cases closer to the index case than the k nearest control, i.e., number of cases encountered beginning at z_{i} until k -th control is encountered.
The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc.lab should be provided in this fashion, if case.lab is provided, the labels are converted to 0 's and 1 's accordingly.

Usage

ceTkinv(dat, k, cc.lab, case.lab = NULL, ...)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
$\mathrm{k} \quad$ Integer specifying the number of the closest controls to subject i.
cc.lab Case-control labels, 1 for case, 0 for control
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL.
... are for further arguments, such as method and p, passed to the dist function.

Value

A list with two elements
Tkinv Cuzick and Edwards $T_{k}^{i n v}$ test statistic for disease clustering
run.vec The vector of number of cases till the k-th control for each point in the data set

Author(s)

Elvan Ceyhan

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

ceTrun, ceTk, and Tcomb

Examples

```
n<-20
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
cls
k<-2 #also try 3,4
ceTkinv(Y,k,cls)
ceTkinv(Y,k,cls+1,case.lab = 2)
ceTkinv(Y,k,cls,method="max")
ceTrun(Y,cls)
ceTkinv(Y,k=1,cls)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ceTkinv(Y,k,fcls,case.lab="a") #try also ceTrun(Y,fcls)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
```

```
cls<-sample(1:4,n,replace \(=\) TRUE) \#here ceTkinv(Y,k,cls) \#gives error
```

ceTrun Cuzick and Edwards T_run Test statistic

Description

This function computes Cuzick and Edwards $T_{\text {run }}$ test statistic based on the sum of the number of successive cases from each cases until a control is encountered in the data for detecting rare large clusters.
$T_{\text {run }}$ test statistic is defined as $T_{\text {run }}=\sum_{i=1}^{n} \delta_{i} d_{i}^{r}$ where $\delta_{i}=1$ if z_{i} is a case, and 0 if z_{i} is a control and d_{i}^{r} is the number successive cases encountered beginning at z_{i} until a control is encountered.

The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc.lab should be provided in this fashion, if case. lab is provided, the labels are converted to 0's and 1's accordingly.
See also (Cuzick and Edwards (1990)) and the references therein.

Usage

ceTrun(dat, cc.lab, case.lab = NULL, ...)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
cc.lab Case-control labels, 1 for case, 0 for control
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL.
$\ldots \quad$ are for further arguments, such as method and p, passed to the dist function.

Value

A list with two elements

Trun	Cuzick and Edwards $T_{\text {run }}$ test statistic for disease clustering
run.vec	The vector of number of consecutive cases till the first control for each point in the data set

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

ceTk, Tcomb and ceTkinv

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
ceTrun(Y,cls)
ceTrun(Y,cls,method="max")
ceTrun(Y,cls+1,case.lab = 2)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ceTrun(Y,fcls,case.lab="a") #try also ceTrun(Y,fcls)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #here ceTrun(Y,cls) #gives an error message
```

cov.nnct Covariance Matrix of the Cell Counts in an NNCT

Description

Returns the covariance matrix of cell counts $N_{i j}$ for $i, j=1, \ldots, k$ in the NNCT, ct. The covariance matrix is of dimension $k^{2} \times k^{2}$ and its entries are $\operatorname{cov}\left(N_{i j}, N_{k l}\right)$ when $N_{i j}$ values are by default corresponding to the row-wise vectorization of ct . If byrow=FALSE, the column-wise vectorization of ct is used. These covariances are valid under RL or conditional on Q and R under CSR.
See also (Dixon (1994, 2002); Ceyhan (2010, 2017)).

Usage

cov.nnct (ct, $\operatorname{varN}, \mathrm{Q}, \mathrm{R}$, byrow $=$ TRUE)

Arguments

ct	A nearest neighbor contingency table
varN	The $k \times k$ variance matrix of cell counts of NNCT, ct.
Q	The number of shared NNs
R	The number of reflexive NNs (i.e., twice the number of reflexive NN pairs)
byrow	A logical argument (default=TRUE). If TRUE, rows of ct are appended to obtain the vector and if FALSE columns of ct are appended to obtain the vector.

Value

The $k^{2} \times k^{2}$ covariance matrix of cell counts $N_{i j}$ for $i, j=1, \ldots, k$ in the NNCT, ct

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

covNrow2col, cov.tct and cov.nnsym

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv,byrow=FALSE)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
```

```
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv,byrow=FALSE)
#1D data points
n<-20 #or try sample(1:20,1)
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)
```

cov.nnsym

Covariance Matrix of the Differences of the Off-Diagonal Cell Counts in an NNCT

Description

Returns the covariance matrix of the differences of the cell counts, $N_{i j}-N_{j i}$ for $i, j=1, \ldots, k$ and $i \neq j$, in the NNCT, ct. The covariance matrix is of dimension $k(k-1) / 2 \times k(k-1) / 2$ and its entries are $\operatorname{cov}\left(N_{i j}-N_{j i}, N_{k l}-N_{l k}\right)$ where the order of i, j for $N_{i j}-N_{j i}$ is as in the output of ind.nnsym(k). These covariances are valid under RL or conditional on Q and R under CSR.

The argument covN is the covariance matrix of $N_{i j}$ (concatenated rowwise).
See also (Dixon (1994); Ceyhan (2014)).

Usage

cov.nnsym(covN)

Arguments

covN
The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT

Value

The $k(k-1) / 2 \times k(k-1) / 2$ covariance matrix of the differences of the off-diagonal cell counts $N_{i j}-N_{j i}$ for $i, j=1, \ldots, k$ and $i \neq j$ in the NNCT, ct

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

See Also

var.nnsym, cov.tct, cov.nnct and cov.seg.coeff

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
cov.nnsym(covN)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cov.nnsym(covN)
```


Description

Returns the covariance matrix of the segregation coefficients in a multi-class case based on the NNCT, ct. The covariance matrix is of dimension $k(k+1) / 2 \times k(k+1) / 2$ and its entry i, j correspond to the entries in the rows i and j of the output of ind.seg.coeff (k). The segregation coefficients in the multi-class case are the extension of Pielou's segregation coefficient for the twoclass case. These covariances are valid under RL or conditional on Q and R under CSR.
The argument covN is the covariance matrix of $N_{i j}$ (concatenated rowwise).
See also (Ceyhan (2014)).

Usage

cov.seg.coeff(ct, covN)

Arguments

ct	A nearest neighbor contingency table
covN	The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT

Value

The $k(k+1) / 2 \times k(k+1) / 2$ covariance matrix of the segregation coefficients for the multi-class case based on the NNCT, ct

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

seg.coeff, var.seg.coeff, cov.nnct and cov.nnsym

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
```

```
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cov.seg.coeff(ct, covN)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
cov.seg.coeff(ct,covN)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cov.seg.coeff(ct,covN)
```

cov.tct

Description

Returns the covariance matrix of the entries $T_{i j}$ for $i, j=1, \ldots, k$ in the TCT for the types I, III, and IV cell-specific tests. The covariance matrix is of dimension $k^{2} \times k^{2}$ and its entries are $\operatorname{cov}\left(T_{i j}, T_{k l}\right)$ when $T_{i j}$ values are by default corresponding to the row-wise vectorization of TCT. The argument covN must be the covariance matrix of $N_{i j}$ values which are obtained from the NNCT by row-wise vectorization. The functions cov.tctIII and cov.tct3 are equivalent. These covariances are valid under RL or conditional on Q and R under CSR.

See also (Ceyhan (2017)).

Usage

cov.tct(ct, covN, type = "III")

Arguments

ct
covN
type

A nearest neighbor contingency table
The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized cell counts of NNCT, ct.
The type of the cell-specific test, default="III". Takes on values "I"-"IV" (or equivalently $1-4$, respectively.

Value

The $k^{2} \times k^{2}$ covariance matrix of the entries $T_{i j}$ for $i, j=1, \ldots, k$ in the Type I-IV TCTs

Author(s)

Elvan Ceyhan

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

cov.nnct and cov.nnsym

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cov.tct(ct,covN, type=1)
cov.tct(ct,covN,type="I")
cov.tct(ct,covN,type="II")
cov.tct(ct,covN,type="III")
cov.tct(ct,covN,type="IV")
cov.tctI(ct,covN)
cov.tct(ct,covN)
cov.tctIII(ct,covN)
cov.tct3(ct,covN)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
```

```
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cov.tct(ct, covN, type=3)
cov.tct(ct,covN,type="III")
cov.tctIII(ct,covN)
cov.tct3(ct,covN)
```

covNrow2col Conversion of the Covariance Matrix of the Row-wise Vectorized Cell Counts to Column-wise Vectorized Cell Counts in an NNCT

Description

Converts the $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized cell counts $N_{i j}$ for $i, j=1, \ldots, k$ in the NNCT, ct to the covariance matrix of column-wise vectorized cell counts. In the output, the covariance matrix entries are $\operatorname{cov}\left(N_{i j}, N_{k l}\right)$ when $N_{i j}$ values are corresponding to the column-wise vectorization of ct . These covariances are valid under RL or conditional on Q and R under CSR.

See also (Dixon (1994, 2002); Ceyhan (2010, 2017)).

Usage

covNrow2col(covN)

Arguments

$\operatorname{covN} \quad$ The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized cell counts of NNCT, ct.

Value

The $k^{2} \times k^{2}$ covariance matrix of column-wise vectorized cell counts $N_{i j}$ for $i, j=1, \ldots, k$ in the NNCT, ct.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

cov.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covNrow<-cov.nnct(ct,varN,Qv,Rv)
covNcol1<-cov.nnct(ct,varN,Qv,Rv, byrow=FALSE)
covNcol2<-covNrow2col(covNrow)
covNrow
covNcol1
covNcol2
all.equal(covNcol1,covNcol2)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
```

```
covNrow<-cov.nnct(ct,varN,Qv,Rv)
covNcol1<-cov.nnct(ct,varN,Qv,Rv,byrow=FALSE)
covNcol2<-covNrow2col(covNrow)
covNrow
covNcol1
covNcol2
all.equal(covNcol1,covNcol2)
#1D data points
n<-20 #or try sample(1:20,1)
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
cov.nnct(ct,varN,Qv,Rv)
```

covTcomb Covariance matrix for $T_{-} k$ values in Tcomb

Description

This function computes the covariance matrix for the T_{k} values used in the $T_{\text {comb }}$ test statistics, which is a linear combination of some T_{k} tests.

The argument, n_{1}, is the number of cases (denoted as n 1 as an argument). The number of cases is denoted as n_{1} to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).
The argument klist is the vector of integers specifying the indices of the T_{k} values used in obtaining the $T_{\text {comb }}$.
The logical argument nonzero.mat (default=TRUE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE) in the computations.

The logical argument asy.cov (default=FALSE) is for using the asymptotic covariance or the exact (i.e. finite sample) covariance for the vector of T_{k} values used in Tcomb. If asy.cov=TRUE, the asymptotic covariance is used, otherwise the exact covariance is used.
See page 87 of (Cuzick and Edwards (1990)) for more details.

Usage

covTcomb(dat, n1, klist, nonzero.mat = TRUE, asy.cov = FALSE, ...)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
n1
Number of cases
klist list of integers specifying the indices of the T_{k} values used in obtaining the $T_{\text {comb }}$.
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computation of N_{s} and N_{t}. If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used.
asy.cov A logical argument (default is FALSE) to determine whether asymptotic or exact (i.e., finite sample) covariances between T_{k} and T_{l} values are to be used to obtain the entries of the covariance matrix. If TRUE the asymptotic covariance values are used, otherwise exact covariance values are used.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns the covariance matrix for the T_{k} values used in Tcomb.

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

asycovTkTl, covTcomb, and Ntkl

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
n1<-sum(cls==1)
kl<-sample(1:5,3) #try also sample(1:5,2)
kl
covTcomb(Y,n1,kl)
covTcomb(Y, n1,kl,method="max")
covTcomb(Y,n1,kl,nonzero.mat = FALSE)
```

```
covTcomb(Y,n1,kl,asy=TRUE)
```

covTkT1 Finite Sample Covariance between $T_{-} k$ and $T_{-} l$ Values

Description

This function computes the exact (i.e., finite sample) covariance between T_{k} and T_{l} values which is used in the computation of the exact variance of Cuzick and Edwards $T_{\text {comb }}$ test, which is a linear combination of some T_{k} tests.
The logical argument nonzero.mat (default=TRUE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE) in the computations.
See page 80 of (Cuzick and Edwards (1990)) for more details.

Usage

covTkTl(dat, n1, k, l, nonzero.mat = TRUE, ...)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
n1 Number of cases
$\mathrm{k} \quad$ Integers specifying the number of NNs (of subjects i and m in $a_{i j}(k) a_{m j}(l)$).
1
Integers specifying the number of NNs (of subjects i and m in $a_{i j}(k) a_{m j}(l)$).
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computation of N_{s} and N_{t}. If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns the exact covariance between T_{k} and T_{l} values.

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

asycovTkTl, covTcomb, and Ntkl

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
n1<-sum(cls==1)
k<-1 #try also 2,3 or sample(1:5,1)
l<-1 #try also 2,3 or sample(1:5,1)
c(k,l)
covTkTl(Y,n1,k,l)
covTkTl(Y,n1,k,l,method="max")
asycovTkTl(Y, n1,k,l)
covTkTl(Y,n1,k,l,nonzero.mat = FALSE)
asycovTkTl(Y, n1,k,l,nonzero.mat = FALSE)
```

dist.std.data Interpoint Distance Matrix for Standardized Data

Description

This function computes and returns the distance matrix computed by using the specified distance measure to compute the distances between the rows of a data matrix which is standardized row or column-wise. That is, the output is the interpoint distance (IPD) matrix of the rows of the given set of points x dist function in the stats package of the standard R distribution. The argument column is the logical argument (default=TRUE) to determine row-wise or column-wise standardization. If TRUE each column is divided by its standard deviation, else each row is divided by its standard deviation. This function is different from the dist function in the stats package. dist returns the distance matrix in a lower triangular form, and dist.std.data returns in a full matrix of distances of standardized data set. ... are for further arguments, such as method and p, passed to the dist function.

Usage

dist.std.data(x, column = TRUE, ...)

Arguments

$x \quad$ A set of points in matrix or data frame form where points correspond to the rows.
column A logical argument (default is TRUE) to determine whether standardization is row-wise or column-wise. If TRUE it is column-wise else row-wise standardization.
... Additional parameters to be passed on the dist function.

Value

A distance matrix whose i, j-th entry is the distance between rows i and j of x , which is standardized row-wise or column-wise.

Author(s)

Elvan Ceyhan

See Also

dist, ipd.mat, and ipd.mat.euc

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
range(ipd)
ipd2<-dist.std.data(Y) #distance of standardized data
range(ipd2)
ipd2<-dist.std.data(Y,method="max") #distance of standardized data
range(ipd2)
#############
Y<-matrix(runif(60,0,100),ncol=3)
ipd<-ipd.mat(Y)
range(ipd)
ipd2<-dist.std.data(Y) #distance of standardized data
range(ipd2)
```

dist2full

Description

Converts a lower triangular distance matrix to a full distance matrix with zeroes in the diagonal. The input is usually the result of the dist function in the stats package. This function is adapted from Everitt's book (Everitt (2004))

Usage

dist2full(dis)

Arguments

dis

A lower triangular matrix, resulting from the dist function in the stats package

Value
A square (symmetric) distance matrix with zeroes in the diagonal.

Author(s)

Elvan Ceyhan

References

Everitt BS (2004). An R and S-Plus Companion to Multivariate Analysis. Springer-Verlag, London, UK.

See Also
dist

Examples

```
#3D data points
n<-3
X<-matrix(runif(3*n),ncol=3)
dst<-dist(X)
dist2full(dst)
```


Description

Returns the Euclidean distance between x and y which can be vectors or matrices or data frames of any dimension (x and y should be of same dimension).

This function is equivalent to Dist function in the pcds package but is different from the dist function in the stats package of the standard R distribution. dist requires its argument to be a data matrix and dist computes and returns the distance matrix computed by using the specified distance measure to compute the distances between the rows of a data matrix (Becker et al. (1988)), while euc. dist needs two arguments to find the distances between. For two data matrices A and B, dist(rbind(as.vector (A), as. $\operatorname{vector}(B))$) and euc.dist (A, B) yield the same result.

Usage

euc.dist(x, y)

Arguments

$x, y \quad$ Vectors, matrices or data frames (both should be of the same type).

Value

Euclidean distance between x and y

Author(s)

Elvan Ceyhan

References

Becker RA, Chambers JM, Wilks AR (1988). The New S Language. Wadsworth \& Brooks/Cole.

See Also

dist from the base package stats and Dist from the package pcds

Examples

```
B<-c(1,0); C<-c(1/2,sqrt(3)/2);
euc.dist(B,C);
euc.dist(B,B);
x<-runif(10)
y<-runif(10)
euc.dist(x,y)
xm<-matrix(x,ncol=2)
ym<-matrix(y,ncol=2)
euc.dist(xm,ym)
euc.dist(xm,xm)
dat.fr<-data.frame(b=B,c=C)
euc.dist(dat.fr,dat.fr)
euc.dist(dat.fr,cbind(B,C))
```

Expected Values of the Self Entries in a Species Correspondence Contingency Table (SCCT)

Description

Returns a vector of length k of expected values of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or the expected values of the diagonal entries $N_{i i}$ in an NNCT. These expected values are valid under RL or CSR.

The argument ct can be either the NNCT or SCCT.
See also (Ceyhan (2018)).

Usage

> EV.Nii (ct)

Arguments

ct The NNCT or SCCT

Value

A vector of length k whose entries are the expected values of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or of the diagonal entries in an NNCT.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2018). "A contingency table approach based on nearest neighbor relations for testing self and mixed correspondence." SORT-Statistics and Operations Research Transactions, 42(2), 125-158.

See Also

scct and EV.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
EV.Nii(ct)
ct<-scct(ipd,cls)
EV.Nii(ct)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
EV.Nii(ct)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
```

```
    ct<-nnct(ipd,cls)
    EV.Nii(ct)
    ct<-scct(ipd,cls)
    EV.Nii(ct)
```

 EV.nnct Expected Values of the Cell Counts in NNCT

Description

Returns a matrix of same dimension as, ct , whose entries are the expected cell counts of the NNCT under RL or CSR. The class sizes given as the row sums of $c t$ and the row and column names are inherited from ct.

See also (Dixon (1994); Ceyhan (2010)).

Usage

EV.nnct(ct)

Arguments

> ct A nearest neighbor contingency table

Value

A matrix of the expected values of cell counts in the NNCT.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

See Also

```
    nnct and EV.tct
```


Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
EV.nnct(ct)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
EV.nnct(ct)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
EV.nnct(ct)
ct<-matrix(c(0,10,5,5),ncol=2)
EV.nnct(ct)
```

EV.rct Expected Values of the Cell Counts in RCT

Description

Returns a matrix of same dimension as the RCT, rfct, whose entries are the expected cell counts of the RCT under RL or CSR.
See also (Ceyhan and Bahadir (2017)).

Usage

EV.rct(rfct, nvec)

Arguments

rfct	An RCT
nvec	The vector of class sizes

Value

A matrix of the expected values of cell counts in the RCT.

Author(s)

Elvan Ceyhan

References

Ceyhan E, Bahadir S (2017). "Nearest Neighbor Methods for Testing Reflexivity." Environmental and Ecological Statistics, 24(1), 69-108.

See Also

rct, EV.nnct and EV.tct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
nvec<-as.numeric(table(cls))
rfct<-rct(ipd,cls)
EV.rct(rfct,nvec)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
nvec<-as.numeric(table(fcls))
rfct<-rct(ipd,fcls)
EV.rct(rfct,nvec)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
rfct<-rct(ipd,cls)
EV.rct(rfct,nvec)
```


Description

This function computes the expected value of Cuzick \& Edwards $T_{\text {comb }}$ test statistic in disease clustering, where $T_{\text {comb }}$ is a linear combination of some T_{k} tests.

The argument, n_{1}, is the number of cases (denoted as n 1 as an argument). The number of cases is denoted as n_{1} to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).
The argument klist is the vector of integers specifying the indices of the T_{k} values used in obtaining the $T_{\text {comb }}$.
The argument sig is the covariance matrix of the vector of T_{k} values used in Tcomb, and can be computed via the the covTcomb function.
See page 87 of (Cuzick and Edwards (1990)) for more details.

Usage

EV.Tcomb(n1, n, klist, sig)

Arguments

n1 Number of cases
$\mathrm{n} \quad$ A positive integer representing the number of points in the data set
klist list of integers specifying the indices of the T_{k} values used in obtaining the $T_{\text {comb }}$.
sig The covariance matrix of the vector of T_{k} values used in Tcomb

Value

Returns the expected value of the $T_{c o m b}$ test statistic

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

Tcomb, and ZTcomb

Examples

```
n<-20 #or try sample(1:20,1) #try also n<-50, 100
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
n1<-sum(cls==1)
kl<-sample(1:5,3) #try also sample(1:5,2)
kl
sig<-covTcomb(Y,n1,kl)
EV.Tcomb(n1,n,kl,sig)
```


Description

Returns a matrix of same dimension as, ct, whose entries are the expected values of the $T_{i j}$ values which are the Types I-IV cell-specific test statistics (i.e., $T_{i j}^{I}-T_{i j}^{I V}$) under RL or CSR. The row and column names are inherited from ct. The type argument specifies the type of the cell-specific test among the types I-IV tests.
See also (Ceyhan (2017)) and the references therein.

Usage

EV.tct(ct, type = "III")

Arguments

ct
A nearest neighbor contingency table
type The type of the cell-specific test, default="III". Takes on values "I"-"IV" (or equivalently $1-4$, respectively.

Value

A matrix of the expected values of Type I-IV cell-specific tests.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

EV.tctI, tct and EV.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
EV.tct(ct,2)
EV.tct(ct,"II")
```

```
EV.tctI(ct)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
EV.tct(ct,2)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
EV.tct(ct,2)
ct<-matrix(c(0,10,5,5),ncol=2)
EV.tct(ct,2)
```


Description

Returns a matrix of same dimension as, ct, whose entries are the expected values of the Type I cell-specific test statistics, $T_{i j}^{I}$. The row and column names are inherited from ct. These expected values are valid under RL or CSR.

See also (Ceyhan (2017)) and the references therein.

Usage

EV.tctI (ct)

Arguments

ct
A nearest neighbor contingency table

Value

A matrix of the expected values of Type I cell-specific tests.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

EV.tct, tct and EV.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
EV.tctI(ct)
```

EV.Tkinv Expected Value of Cuzick and Edwards $T_{-} k^{\wedge}$ inv Test statistic

Description

This function computes the expected value of Cuzick and Edwards $T_{k}^{i n v}$ test statistic which is based on the sum of number of cases closer to each case than the k-th nearest control to the case.

The number of cases are denoted as n_{1} (denoted as n 1 as an argument) and number of controls as n_{0} for both functions (denoted as $n 0$ as an argument), to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).

See the function ceTkinv for the details of the $T_{k}^{i n v}$ test.
See (Cuzick and Edwards (1990)) and references therein.

Usage

EV.Tkinv(n1, n0, k)

Arguments

n1, n0 The number of cases and controls
$\mathrm{k} \quad$ Integer specifying the number of the closest controls to subject i.

Value

The expected value of Cuzick and Edwards $T_{k}^{i n v}$ test statistic for disease clustering

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

ceTkinv, ceTrun, and EV.Trun

Examples

```
n1<-20
n0<-25
k<-2 #try also 2, 3
EV.Tkinv(n1,n0,k)
EV.Tkinv(n1,n0,k=1)
EV.Trun(n1,n0)
```

exact.nnct Exact version of Pearson's chi-square test on NNCTs

Description

An object of class "htest" performing exact version of Pearson's chi-square test on nearest neighbor contingency tables (NNCTs) for the RL or CSR independence for 2 classes. Pearson's χ^{2} test is based on the test statistic $\mathcal{X}^{2}=\sum_{j=1}^{2} \sum_{i=1}^{2}\left(N_{i j}-\mu_{i j}\right)^{2} / \mu_{i j}$, which has χ_{1}^{2} distribution in the limit provided that the contingency table is constructed under the independence null hypothesis. The exact version of Pearson's test uses the exact distribution of \mathcal{X}^{2} rather than large sample χ^{2} approximation. That is, for the one-sided alternative, we calculate the p-values as in the function exact.pval1s; and for the two-sided alternative, we calculate the p-values as in the function exact.pval2s with double argument determining the type of the correction.

This test would be equivalent to Fisher's exact test fisher. test if the odds ratio=1 (which can not be specified in the current version), and the odds ratio for the RL or CSR independence null hypothesis is $\theta_{0}=\left(n_{1}-1\right)\left(n_{2}-1\right) /\left(n_{1} n_{2}\right)$ which is used in the function and the p-value and confidence interval computations are are adapted from fisher. test.
See Ceyhan (2014) for more details.

Usage

```
exact.nnct(
        ct,
        alternative = "two.sided",
        conf.level = 0.95,
        pval.type = "inc",
        double = FALSE
)
```


Arguments

ct

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for the odds ratio
pval.type The type of the p-value correction for the exact test on the NNCT, default="inc". Takes on values "inc", "exc", "mid", "tocher" (or equivalently 1-4, respectively) for table inclusive, table-exclusive, mid- p-value, and Tocher corrected p-value, respectively.
double A logical argument (default is FALSE) to determine whether type I or II correction should be applied to the two-sided p-value. Used only when al ternative="two. sided". If TRUE type I correction (for doubling the minimum of the one-sided p-value) is applied, otherwise, type II correction (using the probabilities for the more extreme tables) is applied.

Value

A list with the elements
statistic The test statistic, it is NULL for this function
p .value \quad The p-value for the hypothesis test for the corresponding alternative
conf.int Confidence interval for the odds ratio in the 2×2 NNCT at the given confidence level conf. level and depends on the type of alternative.
estimate Estimate, i.e., the observed odds ratio the 2×2 NNCT.
null.value Hypothesized null value for the odds ratio in the 2×2 NNCT, which is $\theta_{0}=$ $\left(n_{1}-1\right)\left(n_{2}-1\right) /\left(n_{1} n_{2}\right)$ for this function.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
data. name Name of the contingency table, ct

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

See Also

fisher.test, exact.pval1s, and exact.pval2s

Examples

```
n<-20
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
exact.nnct(ct)
fisher.test(ct)
exact.nnct(ct,alt="g")
fisher.test(ct,alt="g")
exact.nnct(ct,alt="l",pval.type = "mid")
##############
ct<-matrix(sample(10:20,9),ncol=3)
fisher.test(ct) #here exact.nnct(ct) gives error message, since number of classes > 2
```

```
exact.pval1s p-value correction to the one-sided version of exact NNCT test
```


Description

In using Fisher's exact test on the 2×2 nearest neighbor contingency tables (NNCTs) a correction may be needed for the p-value. For the one-sided alternatives, the probabilities of more extreme tables are summed up, including or excluding the probability of the table itself (or some middle way). Let the probability of the contingency table itself be $p_{t}=f\left(n_{11} \mid n_{1}, n_{2}, c_{1} ; \theta_{0}\right)$ where $\theta_{0}=$ $\left(n_{1}-1\right)\left(n_{2}-1\right) /\left(n_{1} n_{2}\right)$ which is the odds ratio under RL or CSR independence and f is the probability mass function of the hypergeometric distribution. For testing the one-sided alternative $H_{o}: \theta=\theta_{0}$ versus $H_{a}: \theta>\theta_{0}$, we consider the following four methods in calculating the p-value:

- [(i)] with $S=\left\{t: t \geq n_{11}\right\}$, we get the table-inclusive version which is denoted as $p_{\text {inc }}^{>}$,
- [(ii)] with $S=\left\{t: t>n_{11}\right\}$, we get the table-exclusive version, denoted as $p_{\text {exc }}^{>}$.
- [(iii)] Using $p=p_{\text {exc }}^{>}+p_{t} / 2$, we get the mid- p version, denoted as $p_{\text {mid }}^{>}$.
- [(iv)] We can also use Tocher corrected version which is denoted as $p_{\text {Toc }}^{>}$(see tocher. cor for details).

See (Ceyhan (2010)) for more details.

Usage

exact.pval1s(ptable, pval, type = "inc")

Arguments

$$
\begin{array}{ll}
\text { ptable } & \begin{array}{l}
\text { Probability of the observed } 2 \times 2 \text { NNCT under the null hypothesis using the } \\
\text { hypergeometric distribution for Fisher's exact test. }
\end{array} \\
\text { pval } & \text { Table inclusive } p \text {-value for Fisher's exact test on the NNCT. } \\
\text { type } & \text { The type of the } p \text {-value correction for the one-sided exact test on the NNCT, de- } \\
\text { fault="inc". Takes on values "inc", "exc", "mid", "tocher" (or equivalently } \\
1-4, \text { respectively) for table inclusive, table-exclusive, mid- } p \text {-value, and Tocher } \\
\text { corrected } p \text {-value, respectively. }
\end{array}
$$

Value

A modified p-value based on the correction specified in type.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "Exact Inference for Testing Spatial Patterns by Nearest Neighbor Contingency Tables." Journal of Probability and Statistical Science, 8(1), 45-68.

See Also

exact.pval2s and tocher.cor

Examples

```
ct<-matrix(sample(20:40,4),ncol=2)
ptab<-prob.nnct(ct)
pv<-. }
exact.pval1s(ptab,pv)
exact.pval1s(ptab,pv,type="exc")
exact.pval1s(ptab,pv,type="mid")
```

exact.pval2s \quad-value correction to the two-sided version of exact NNCT test

Description

In using Fisher's exact test on the 2×2 nearest neighbor contingency tables (NNCTs) a correction may be needed for the p-value. For the one-sided alternatives, the probabilities of more extreme tables are summed up, including or excluding the probability of the table itself (or some middle way).
There is additional complexity in p-values for the two-sided alternatives. A recommended method is adding up probabilities of the same size and smaller than the probability associated with the current table. Alternatively, one can double the one-sided p-value (see (Agresti (1992)).
Let the probability of the contingency table itself be $p_{t}=f\left(n_{11} \mid n_{1}, n_{2}, c_{1} ; \theta_{0}\right)$ where $\theta_{0}=\left(n_{1}-\right.$ 1) $\left(n_{2}-1\right) /\left(n_{1} n_{2}\right)$ which is the odds ratio under RL or CSR independence and f is the probability mass function of the hypergeometric distribution.
Type (I): For double the one-sided p-value, we propose the following four variants:

- [(i)] twice the minimum of $p_{\text {inc }}$ for the one-sided tests, which is table-inclusive version for this type of two-sided test, and denoted as $p_{i n c}^{I}$,
- [(ii)] twice the minimum of $p_{i n c}$ minus twice the table probability p_{t}, which is table-exclusive version of this type of two-sided test, and denoted as $p_{\text {exc }}^{I}$,
- [(iii)] table-exclusive version of this type of two-sided test plus p_{t}, which is mid- p-value for this test, and denoted as $p_{\text {midd }}^{I}$,
- [(iv)]Tocher corrected version (see tocher . cor for details).
**Type (II): ${ }^{* *}$ For summing the p-values of more extreme -than that of the table- cases in both directions, the following variants are obtained. The p-value is $p=\sum_{S} f\left(t \mid n_{1}, n_{2}, c_{1} ; \theta=1\right)$ with
- [(i)] $S=\left\{t: f\left(t \mid n_{1}, n_{2}, c_{1} ; \theta=1\right) \leq p_{t}\right\}$, which is called table-inclusive version, $p_{i n c}^{I I}$,
- [(ii)] the probability of the observed table is included twice, once for each side; that is $p=$ $p_{i n c}^{I I}+p_{t}$, which is called twice-table-inclusive version, $p_{\text {tinc }}^{I I}$,
- [(iii)] table-inclusive minus p_{t}, which is referred as table-exclusive version, $p_{\text {exc }}^{I I}$,
- [(iv)] table-exclusive plus one-half the p_{t}, which is called mid-p version, $p_{\text {mid }}^{I I}$ and,
- [(v)]Tocher corrected version, $p_{T o c}^{I I}$, is obtained as before.

See (Ceyhan (2010)) for more details.

Usage

exact.pval2s(ptable, pval, type = "inc", double = FALSE)

Arguments

ptable Probability of the observed 2×2 NNCT under the null hypothesis using the hypergeometric distribution for Fisher's exact test.
pval Table inclusive p-value for Fisher's exact test on the NNCT.
type The type of the p-value correction for the two-sided exact test on the NNCT, default="inc". Takes on values "inc", "exc", "mid", "tocher" (or equivalently $1-4$, respectively) for table inclusive, table-exclusive, mid- p-value, and Tocher corrected p-value, respectively.
double A logical argument (default is FALSE) to determine whether type I or II correction should be applied to the two-sided p-value. If TRUE type I correction (for doubling the minimum of the one-sided p-value) is applied, otherwise, type II correction (using the probabilities for the more extreme tables) is applied.

Value

A modified p-value based on the correction specified in type.

Author(s)

Elvan Ceyhan

References

Agresti A (1992). "A Survey of Exact Inference for Contingency Tables." Statistical Science, 7(1), 131-153.

Ceyhan E (2010). "Exact Inference for Testing Spatial Patterns by Nearest Neighbor Contingency Tables." Journal of Probability and Statistical Science, 8(1), 45-68.

See Also

exact.pval1s and tocher.cor

Examples

```
ct<-matrix(sample(20:40,4),ncol=2)
ptab<-prob.nnct(ct)
pv<-. }2
exact.pval2s(ptab,pv)
exact.pval2s(ptab,pv,type="exc")
exact.pval2s(ptab,pv,type="mid")
```

funs.auxcovtct Auxiliary Functions for Computing Covariances Between Cell Counts in the TCT

Description

Five functions: cov.2cells, cov.cell.col, covNijCk, cov2cols and covCiCj
These are auxiliary functions for computing covariances between entries in the TCT for the types I-IV cell-specific tests. The covariances between $T_{i j}$ values for $i, j=1, \ldots, k$ in the TCT require covariances between two cells in the NNCT, between a cell and column sum, and between two column sums in the NNCT. cov. 2cells computes the covariance between two cell counts $N_{i j}$ and $N_{k l}$ in an NNCT, cov.cell.col and covNijCk are equivalent and they compute the covariance between cell count $N_{i j}$ and sum of column k, C_{k}, cov2cols and covCiCj are equivalent and they compute the covariance between sums of two columns, C_{i} and C_{j}. The index arguments refer to which entry or column sum is intended in the NNCT. The argument covN must be the covariance between $N_{i j}$ values which are obtained from NNCT by row-wise vectorization. These covariances are valid under RL or conditional on Q and R under CSR.

Usage

```
cov.2cells(i, j, k, l, ct, covN)
cov.cell.col(i, j, k, ct, covN)
    covNijCk(i, j, k, ct, covN)
    cov.2cols(i, j, ct, covN)
    covCiCj(i, j, ct, covN)
```


Arguments

$i, j, k, l \quad$ Indices of the cell counts or column sums whose covariance is to be computed. All four are needed for cov. 2cells referring to cells (i, j) and (k, l); only three indices i, j, k are needed for cov. cell.col and covNijCk referring to cell (i, j) and column k; only two indices i, j are needed for cov2cols and covCiCj referring to columns i and j.
ct A nearest neighbor contingency table
covN The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized cell counts of NNCT, ct.

Value

cov. 2cells returns the covariance between two cell counts $N_{i j}$ and $N_{k l}$ in an NNCT, cov.cell.col and covNijCk return the covariance between cell count $N_{i j}$ and sum of column k, C_{k}, cov2cols and covCiCj return the covariance between sums of two columns, C_{i} and C_{j}.

Author(s)

Elvan Ceyhan

See Also

cov.tct and cov.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cov.2cells(1,1,1,2,ct,covN)
cov.cell.col(2,2,1,ct,covN)
covNijCk(2, 2,1,ct,covN)
cov.2cols(2,1,ct,covN)
covCiCj(2,1,ct,covN)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cov.2cells(2, 3,1,2,ct,covN)
cov.cell.col(1,1,2,ct,covN)
covNijCk(1,1,2,ct,covN)
cov.2cols(3,4,ct,covN)
covCiCj(3,4,ct,covN)
```

funs.base.class.spec Base Class-specific Chi-square Tests based on NNCTs

Description

Two functions: base.class.spec.ct and base.class.spec.
Both functions are objects of class "classhtest" but with different arguments (see the parameter list below). Each one performs class specific segregation tests due to Dixon for $k \geq 2$ classes. That is, each one performs hypothesis tests of deviations of entries in each row of NNCT from the expected values under RL or CSR for each row. Recall that row labels in the NNCT are base class labels. The test for each row i is based on the chi-squared approximation of the corresponding quadratic form and are due to Dixon (2002).

Each function yields the test statistic, p-value and df for each base class i, description of the alternative with the corresponding null values (i.e. expected values) for the row i, estimates for the entries in row i for $i=1, \ldots, k$. The functions also provide names of the test statistics, the method and the data set used.

The null hypothesis for each row is that the corresponding $N_{i j}$ entries in row i are equal to their expected values under RL or CSR.
See also (Dixon (2002); Ceyhan (2009)) and the references therein.

Usage

base.class.spec.ct(ct, covN)
base.class.spec(dat, lab, ...)

Arguments

ct A nearest neighbor contingency table, used in base.class.spec.ct only
covN The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT, ct ; used in base.class.spec.ct only.
dat The data set in one or higher dimensions, each row corresponds to a data point, used in base.class. spec only
lab The vector of class labels (numerical or categorical), used in base.class.spec only
... are for further arguments, such as method and p, passed to the dist function. used in base.class.spec only

Value

A list with the elements

type	Type of the class-specific test, which is "base" for this function
statistic	The vector of base class-specific test statistics

stat.names p.value df	Name of the test statistics The vector of p-values for the hypothesis test
estimate	Degrees of freedom for the chi-squared test, which is $k-1$ for this function.
null.value	Estimates of the parameters, NNCT, i.e., matrix of the observed $N_{i j}$ values which is the NNCT.
Matrix of hypothesized null values for the parameters which are expected values	
of the $N_{i j}$ values in the NNCT.	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2009). "Class-Specific Tests of Segregation Based on Nearest Neighbor Contingency Tables." Statistica Neerlandica, 63(2), 149-182.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

NN.class.spec.ct, NN.class.spec, class.spec.ct and class.spec

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
base.class.spec(Y,cls)
base.class.spec.ct(ct,covN)
base.class.spec(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
```

```
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
base.class.spec(Y,fcls)
base.class.spec.ct(ct,covN)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
base.class.spec(Y,cls)
base.class.spec.ct(ct,covN)
```

funs.cell.spec.ss
Pielou's Cell-specific Segregation Test with Normal Approximation (for Sparse Sampling)

Description

Two functions: cell.spec.ss.ct and cell.spec.ss.
Both functions are objects of class "cellhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of equality of the expected values of the cell counts (i.e., entries) in the NNCT for $k \geq 2$ classes. Each test is appropriate (i.e. have the appropriate asymptotic sampling distribution) when that data is obtained by sparse sampling.

Each cell-specific segregation test is based on the normal approximation of the entries in the NNCT and are due to Pielou (1961).

Each function yields a contingency table of the test statistics, p-values for the corresponding alternative, expected values, lower and upper confidence levels, sample estimates (i.e. observed values) and null value(s) (i.e. expected values) for the $N_{i j}$ values for $i, j=1,2, \ldots, k$ and also names of the test statistics, estimates, null values and the method and the data set used.

The null hypothesis is that all $E\left(N_{i j}\right)=n_{i} c_{j} / n$ where n_{i} is the sum of row i (i.e. size of class i) c_{j} is the sum of column j in the $k \times k$ NNCT for $k \geq 2$. In the output, the test statistic, p-value and the lower and upper confidence limits are valid only for (properly) sparsely sampled data.
See also (Pielou (1961); Ceyhan (2010)) and the references therein.

Usage

```
    cell.spec.ss.ct(
        ct,
        alternative = c("two.sided", "less", "greater"),
        conf.level = 0.95
    )
    cell.spec.ss(
        dat,
        lab,
        alternative = c("two.sided", "less", "greater"),
        conf.level = 0.95,
    )
```


Arguments

ct
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for the entries, $N_{i j}$ in the NNCT
dat The data set in one or higher dimensions, each row corresponds to a data point, used in cell.spec.ss only
lab The vector of class labels (numerical or categorical), used in cell.spec.ss only
... are for further arguments, such as method and p, passed to the dist function. used in cell.spec.ss only

Value

A list with the elements
statistic \quad The matrix of Z test statistics for cell-specific tests
stat.names Name of the test statistics
p.value The matrix of p-values for the hypothesis test for the corresponding alternative

LCL , UCL Matrix of Lower and Upper Confidence Levels for the entries $N_{i j}$ in the NNCT at the given confidence level conf. level and depends on the type of alternative.
conf.int The confidence interval for the estimates, it is NULL here, since we provide the UCL and LCL in matrix form.
cnf.lvl Level of the upper and lower confidence limits (i.e., conf.level) of the NNCT entries.
estimate Estimates of the parameters, i.e., matrix of the NNCT entries of the $k \times k$ NNCT, Nij for $i, j=1,2, \ldots, k$.
est.name, est.name2
Names of the estimates, former is a shorter description of the estimates than the latter.
null.value Hypothesized null value for the expected values of the NNCT entries, $\mathrm{E}(\mathrm{Nij})$ for $i, j=1,2, \ldots, k$.
null.name Name of the null values
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
ct.name Name of the contingency table, ct, returned by cell.spec.ss.ct only
data.name Name of the data set, dat, returned by cell.spec.ss only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

cell.spec.ct and cell.spec

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
cell.spec.ss(Y,cls)
cell.spec.ss.ct(ct)
cell.spec.ss.ct(ct,alt="g")
cell.spec.ss(Y, cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a", "b"),c(na,nb))
ct<-nnct(ipd,fcls)
cell.spec.ss(Y,fcls)
cell.spec.ss.ct(ct)
```

```
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
cell.spec.ss(Y,cls,alt="l")
cell.spec.ss.ct(ct)
cell.spec.ss.ct(ct,alt="l")
```


Description

Two functions: class.spec.ct and class.spec.
Both functions are objects of class "classhtest" but with different arguments (see the parameter list below). Each one performs class specific segregation tests for the rows if type="base" and columns if type="NN" for $k \geq 2$ classes. That is, each one performs hypothesis tests of deviations of entries in each row (column) of NNCT from the expected values under RL or CSR for each row (column) if type="base" ("NN"). Recall that row labels of the NNCT are base class labels and column labels in the NNCT are NN class labels. The test for each row (column) i is based on the chi-squared approximation of the corresponding quadratic form and are due to Dixon (2002) (Ceyhan (2009)).

The argument covN must be covariance of row-wise (column-wise) vectorization of NNCT if type="base" (type="NN").
Each function yields the test statistic, p-value and df for each base class i, description of the alternative with the corresponding null values (i.e. expected values) for the row (column) i, estimates for the entries in row (column) i for $i=1, \ldots, k$ if type="base" (type="NN"). The functions also provide names of the test statistics, the method and the data set used.

The null hypothesis for each row (column) is that the corresponding $N_{i j}$ entries in row (column) i are equal to their expected values under RL or CSR.

See also (Dixon (2002); Ceyhan (2009)) and the references therein.

Usage

class.spec.ct(ct, covN, type = "base")
class.spec(dat, lab, type = "base", ...)

Arguments

ct	A nearest neighbor contingency table, used in class.spec.ct only The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT, ct ; used in class. spec.ct only.
type	The type of the class-specific tests with default="base". Takes on values"base" for (Dixon's) base class-specific test and"NN" for NN class-specific test.
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in class.spec only
lab	The vector of class labels (numerical or categorical), used in class.spec only are for further arguments, such as method and p, passed to the dist function.
\ldots	used in class.spec only

Value

A list with the elements

type statistic	Type of the class-specific test, which is "base" or "NN" for this function stat. names vector of class-specific test statistics
p.value Name of the test statistics	
df	The vector of p-values for the hypothesis test
estimate	Degrees of freedom for the chi-squared test, which is $k-1$ for base class-specific test and k for NN class-specific test.
Estimates of the parameters, NNCT, i.e., the matrix of the observed $N_{i j}$ values	
for base class-specific test and transpose of the NNCT for the NN class-specific	
test.	

References

Ceyhan E (2009). "Class-Specific Tests of Segregation Based on Nearest Neighbor Contingency Tables." Statistica Neerlandica, 63(2), 149-182.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

base.class.spec.ct, base.class.spec, NN.class.spec.ct and NN.class.spec

Examples

```
n<-20
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
class.spec(Y,cls)
class.spec(Y,cls,type="NN")
class.spec.ct(ct,covN)
class.spec.ct(ct,covN,type="NN")
class.spec(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
class.spec(Y,fcls)
class.spec(Y,fcls,type="NN")
class.spec.ct(ct,covN)
class.spec.ct(ct,covN,type="NN")
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
class.spec(Y,cls)
class.spec(Y,cls,type="NN")
class.spec.ct(ct,covN)
class.spec.ct(ct,covN,type="NN")
```


Description

Two functions: covNii.ct and covNii.
Both functions return the covariance matrix of the self entries (i.e. first column entries) in a species correspondence contingency table (SCCT) but have different arguments (see the parameter list below). The covariance matrix is of dimension $k \times k$ and its entries are $\operatorname{cov}\left(S_{i}, S_{j}\right)$ where S_{i} values are the entries in the first column of SCCT (recall that S_{i} equals diagonal entry $N_{i i}$ in the NNCT). These covariances are valid under RL or conditional on Q and R under CSR.

The argument ct which is used in covNii.ct only, can be either the NNCT or SCCT. And the argument $\vee s q$ is the vector of variances of the diagonal entries $N_{i i}$ in the NNCT or the self entries (i.e. the first column) in the SCCT.

See also (Ceyhan (2018)).

Usage

covNii.ct(ct, Vsq, Q, R)
covNii(dat, lab, ...)

Arguments

ct The NNCT or SCCT, used in covNii.ct only
Vsq The vector of variances of the diagonal entries $N_{i i}$ in the NNCT or the self entries (i.e. the first column) in the SCCT, used in covNii. ct only
Q The number of shared NNs, used in covNii.ct only
R
The number of reflexive NNs (i.e., twice the number of reflexive NN pairs), used in covNii.ct only
dat The data set in one or higher dimensions, each row corresponds to a data point, used in covNii only
lab The vector of class labels (numerical or categorical), used in covNii only
... are for further arguments, such as method and p, passed to the dist function, used in covNii only

Value

A vector of length k whose entries are the variances of the self entries (i.e. first column) in a species correspondence contingency table (SCCT).
The $k \times k$ covariance matrix of cell counts S_{i} in the self (i.e., first) column of the SCCT or of the diagonal cell counts $N_{i i}$ for $i=1, \ldots, k$ in the NNCT.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2018). "A contingency table approach based on nearest neighbor relations for testing self and mixed correspondence." SORT-Statistics and Operations Research Transactions, 42(2), 125-158.

See Also

scct, cov.nnct, cov.tct and cov.nnsym

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
vsq<-varNii.ct(ct,Qv,Rv)
covNii(Y,cls)
covNii.ct(ct,vsq,Qv,Rv)
covNii(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
covNii(Y,fcls)
covNii.ct(ct,vsq,Qv,Rv)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
vsq<-varNii.ct(ct,Qv,Rv)
covNii(Y,cls)
```

covNii.ct(ct,vsq,Qv,Rv)
funs.covtct Functions for Covariances of the Entries of the Types I, III and IV TCTs

Description

Four functions: cov.tctI, cov.tctIII, cov.tct3 and cov.tctIV.
These functions return the covariances between between entries in the TCT for the types I, III, and IV cell-specific tests in matrix form which is of dimension $k^{2} \times k^{2}$. The covariance matrix entries are $\operatorname{cov}\left(T_{i j}, T_{k l}\right)$ when $T_{i j}$ values are by default corresponding to the row-wise vectorization of TCT. The argument CovN must be the covariance between $N_{i j}$ values which are obtained from the NNCT by row-wise vectorization. The functions cov.tctIII and cov.tct3 are equivalent. These covariances are valid under RL or conditional on Q and R under CSR.
See also (Ceyhan (2017)).

Usage

cov.tctI (ct, CovN)
cov.tctIII (ct, CovN)
cov.tct3(ct, CovN)
cov.tctIV (ct, CovN)

Arguments

ct A nearest neighbor contingency table
CovN The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized cell counts of NNCT, ct.

Value

Each of these functions returns a $k^{2} \times k^{2}$ covariance matrix, whose entries are the covariances of the entries in the TCTs for the corresponding type I-IV cell-specific test. The row and column names are inherited from ct.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

cov.tct and cov.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cov.tctI(ct,covN)
cov.tctIII(ct,covN)
cov.tctIV(ct,covN)
```


Description

Two functions: kthNNdist and kNNdist.
kthNNdist returns the distances between subjects and their $k^{t h}$ NNs. The output is an $n \times 2$ matrix where n is the data size and first column is the subject index and second column contains the corresponding distances to $k^{t h} \mathrm{NN}$ subjects.
kNNdist returns the distances between subjects and their k NNs. The output is an $n \times(k+1)$ matrix where n is the data size and first column is the subject index and the remaining k columns contain the corresponding distances to k NN subjects.

Usage

kthNNdist(x, k, is.ipd = TRUE, ...)
kNNdist(x, k, is.ipd = TRUE, ...)

Arguments

x
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
k
Integer specifying the number of NNs (of subjects).

is.ipd	A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
\ldots	are for further arguments, such as method and p, passed to the dist function.

Value

$k t h N N d i s t$ returns an $n \times 2$ matrix where n is data size (i.e. number of subjects) and first column is the subject index and second column is the $k^{t h} \mathrm{NN}$ distances.
kNNdist returns an $n \times(k+1)$ matrix where n is data size (i.e. number of subjects) and first column is the subject index and the remaining k columns contain the corresponding distances to k NN subjects.

Author(s)

Elvan Ceyhan

See Also

NNdist and NNdist2cl

Examples

```
#Examples for kthNNdist
#3D data points, gives NAs when n<=k
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
kthNNdist(ipd,3)
kthNNdist(Y,3,is.ipd = FALSE)
kthNNdist(ipd,5)
kthNNdist(Y,5,is.ipd = FALSE)
kthNNdist(Y,3,is.ipd = FALSE,method="max")
#1D data points
X<-as.matrix(runif(5)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(5) would not work
ipd<-ipd.mat(X)
kthNNdist(ipd,3)
#Examples for kNNdist
#3D data points, gives NAs if n<=k for n,n+1,\ldots..,kNNs
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
kNNdist(ipd,3)
kNNdist(ipd,5)
kNNdist(Y,5,is.ipd = FALSE)
kNNdist(Y,5,is.ipd = FALSE,method="max")
```

```
kNNdist(ipd,1)
kthNNdist(ipd,1)
#1D data points
X<-as.matrix(runif(5)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(5) would not work
ipd<-ipd.mat(X)
kNNdist(ipd,3)
```

funs. $\mathrm{kNNdist2cl}$ Functions for the k^{\wedge} th and $\mathrm{k} N N$ distances

Description

Two functions: kthNNdist2cl and kNNdist2cl.
kthNNdist2cl returns the distances between subjects from class i and their $k^{t h}$ NNs from class j. The output is a list with first entry (kth. nndist) is an $n_{i} \times 3$ matrix where n_{i} is the size of class i and first column is the subject index for class i, second column is the index of the $k^{t h} \mathrm{NN}$ of class i subjects among class j subjects and third column contains the corresponding $k^{t h} \mathrm{NN}$ distances. The other entries in the list are labels of base class and NN class and the value of k , respectively.
$\mathrm{kNNdist2cl}$ returns the distances between subjects from class i and their $\mathrm{k} N \mathrm{Ns}$ from class j. The output is a list with first entry (ind. knndist) is an $n_{i} \times(k+1)$ matrix where n_{i} is the size of class i, first column is the indices of class i subjects, 2 nd to $(k+1)$-st columns are the indices of k NNs of class i subjects among class j subjects. The second list entry (knndist) is an $n_{i} \times k$ matrix where n_{i} is the size of class i and the columns are the kNN distances of class i subjects to class j subjects. The other entries in the list are labels of base class and NN class and the value of k, respectively.

The argument within.class.ind is a logical argument (default=FALSE) to determine the indexing of the class i subjects. If TRUE, index numbering of subjects is within the class, from 1 to class size (i.e., $1: n_{-} \mathrm{i}$, according to their order in the original data; otherwise, index numbering within class is just the indices in the original data.
The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

Usage

kthNNdist2cl(x, k, i, j, lab, within.class.ind = FALSE, is.ipd = TRUE, ...)
kNNdist2cl(x, k, i, j, lab, within.class.ind = FALSE, is.ipd = TRUE, ...)

Arguments

x
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
$\mathrm{k} \quad$ Integer specifying the number of NNs (of subjects).

lab The vector of class labels (numerical or categorical)
within.class.ind
A logical parameter (default=FALSE). If TRUE, index numbering of subjects is within the class, from 1 to class size (i.e., $1: n_{-} \mathrm{i}$), according to their order in the original data; otherwise, index numbering within class is just the indices in the original data.
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value
 $k t h N N d i s t 2 c l$ returns the list of elements

kth.nndist $\quad n_{i} \times 3$ matrix where n_{i} is the size of class i and first column is the subject index for class i, second column is the index of the k -th NN of class i subjects among class j subjects and third column contains the corresponding k-th NN distances, , returned by Zseg.ind.ct only
base.class label of base class
nn.class label of NN class
k value of k in $k N N$
kNNdist2cl returns the list of elements
ind.knndist $\quad n_{i} \times(k+1)$ matrix where n_{i} is the size of class i, first column is the indices of class i subjects, 2nd to $(k+1)$-st columns are the indices of k NNs of class i subjects among class j subjects.
knndist $\quad n_{i} \times k$ matrix where n_{i} is the size of class i and the columns are the $k \mathrm{NN}$ distances of class i subjects to class j subjects.
base.class label of base class
nn.class label of NN class
$k \quad$ value of k in $k N N$

Author(s)

Elvan Ceyhan

See Also

NNdist2cl, kthNNdist and kNNdist

Examples

```
#Examples for kthNNdist2cl
#3D data points
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
#two class case
clab<-sample(1:2,n,replace=TRUE) #class labels
table(clab)
kthNNdist2cl(ipd,3,1,2,clab)
kthNNdist2cl(Y,3,1,2,clab,is.ipd = FALSE)
kthNNdist2cl(ipd,3,1,2,clab,within = TRUE)
#three class case
clab<-sample(1:3,n,replace=TRUE) #class labels
table(clab)
kthNNdist2cl(ipd,3,2,3,clab)
#1D data points
n<-15
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
#two class case
clab<-sample(1:2,n,replace=TRUE) #class labels
table(clab)
kthNNdist2cl(ipd, 3,1,2,clab) # here kthNNdist2cl(ipd,3,1,12,clab) #gives an error message
kthNNdist2cl(ipd,3,"1",2,clab)
#Examples for kNNdist2cl
#3D data points
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
#two class case
clab<-sample(1:2,n,replace=TRUE) #class labels
table(clab)
kNNdist2cl(ipd, 3,1,2,clab)
kNNdist2cl(Y, 3,1,2,clab,is.ipd = FALSE)
kNNdist2cl(ipd,3,1,2,clab,within = TRUE)
#three class case
clab<-sample(1:3,n,replace=TRUE) #class labels
table(clab)
kNNdist2cl(ipd, 3,1, 2, clab)
#1D data points
n<-15
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
```

```
ipd<-ipd.mat(X)
#two class case
clab<-sample(1:2,n,replace=TRUE) #class labels
table(clab)
kNNdist2cl(ipd,3,1,2,clab)
kNNdist2cl(ipd,3,"1",2,clab) #here kNNdist2cl(ipd,3,"a",2,clab) #gives an error message
```

funs.overall.nnct Dixon's Overall Test of Segregation for NNCT

Description

Two functions: overall.nnct.ct and overall.nnct.
Both functions are objects of class "Chisqtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of deviations of cell counts from the expected values under RL or CSR for all cells (i.e., entries) combined in the NNCT. That is, each test is Dixon's overall test of segregation based on NNCTs for $k \geq 2$ classes. This overall test is based on the chi-squared approximation of the corresponding quadratic form and are due to Dixon (1994, 2002). Both functions exclude the last column of the NNCT (in fact any column will do and last column is chosen without loss of generality), to avoid ill-conditioning of the covariance matrix (for its inversion in the quadratic form).

Each function yields the test statistic, p-value and df which is $k(k-1)$, description of the alternative with the corresponding null values (i.e. expected values) of NNCT entries, sample estimates (i.e. observed values) of the entries in NNCT. The functions also provide names of the test statistics, the method and the data set used.
The null hypothesis is that all $N_{i j}$ entries are equal to their expected values under RL or CSR.
See also (Dixon (1994, 2002); Ceyhan $(2010,2017)$) and the references therein.

Usage

overall.nnct.ct(ct, covN)
overall.nnct(dat, lab, ...)

Arguments

ct
covN The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT, ct ; used in overall.nnct.ct only.
dat The data set in one or higher dimensions, each row corresponds to a data point, used in overall. nnct only
lab The vector of class labels (numerical or categorical), used in overall.nnct only
are for further arguments, such as method and p, passed to the dist function. used in overall. nnct only

Value

A list with the elements
statistic The overall chi-squared statistic
stat. names Name of the test statistic
p .value \quad The p-value for the hypothesis test
df Degrees of freedom for the chi-squared test, which is $k(k-1)$ for this function.
estimate Estimates of the parameters, NNCT, i.e., matrix of the observed $N_{i j}$ values which is the NNCT.
est.name,est.name2
Names of the estimates, former is a longer description of the estimates than the latter.
null.value Matrix of hypothesized null values for the parameters which are expected values of the the $N_{i j}$ values in the NNCT.
null. name Name of the null values
method Description of the hypothesis test
ct.name Name of the contingency table, ct, returned by overall.nnct.ct only
data.name Name of the data set, dat, returned by overall.nnct only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

overall.seg.ct, overall.seg, overall.tct.ct and overall.tct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
```

```
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
overall.nnct(Y,cls)
overall.nnct.ct(ct,covN)
overall.nnct(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
overall.nnct(Y,fcls)
overall.nnct.ct(ct,covN)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
overall.nnct(Y,cls)
overall.nnct.ct(ct,covN)
```


Description

Two functions: overall.seg.ct and overall.seg.
All functions are objects of class "Chisqtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of deviations of cell counts from the expected values under RL or CSR for all cells (i.e., entries) combined in the NNCT or TCT. That is, each test is one of Dixon's or Types I-IV overall test of segregation based on NNCTs or TCTs for $k \geq 2$ classes. Each overall test is based on the chi-squared approximation of the corresponding quadratic form
and are due to Dixon $(1994,2002)$ and to Ceyhan $(2010,2017)$, respectively. All functions exclude some row and/or column of the TCT, to avoid ill-conditioning of the covariance matrix of the NNCT (for its inversion in the quadratic form), see the relevant functions under See also section below.
The type="dixon" or "nnct" refers to Dixon's overall test of segregation, and type="I"-"IV" refers to types I-IV overall tests, respectively.

Each function yields the test statistic, p-value and df which is $k(k-1)$ for type II and Dixon's test and $(k-1)^{2}$ for the other types, description of the alternative with the corresponding null values (i.e. expected values) of TCT entries, sample estimates (i.e. observed values) of the entries in TCT. The functions also provide names of the test statistics, the method and the data set used.
The null hypothesis is that all $N_{i j}$ or $T_{i j}$ entries for the specified type are equal to their expected values under RL or CSR, respectively.

See also (Dixon (1994, 2002); Ceyhan $(2010,2010)$) and the references therein.

Usage

overall.seg.ct(ct, covN, type)
overall.seg(dat, lab, type, ...)

Arguments

\(\left.\left.\left.$$
\begin{array}{ll}\text { ct } & \begin{array}{l}\text { A nearest neighbor contingency table, used in overall.seg.ct only } \\
\text { covN }\end{array} \\
\text { The } k^{2} \times k^{2} \text { covariance matrix of row-wise vectorized entries of NNCT, ct; } \\
\text { used in overall. seg.ct only. }\end{array}
$$\right] $$
\begin{array}{l}\text { The type of the overall test with no default. Takes on values "dixon" or "nnct" } \\
\text { for Dixon's overall test and "I"-"IV" for types I-IV cell-specific test (or equiv- } \\
\text { alently 1-6, respectively). }\end{array}
$$\right] \begin{array}{l}The data set in one or higher dimensions, each row corresponds to a data point,

used in overall. seg only\end{array}\right]\)| The vector of class labels (numerical or categorical), used in overall.seg |
| :--- |
| only |

Value

A list with the elements
statistic The overall chi-squared statistic for the specified type
stat.names Name of the test statistic
p.value The p-value for the hypothesis test
df Degrees of freedom for the chi-squared test, which is $k(k-1)$ for type II and Dixon's tests and $(k-1)^{2}$ for others.
estimate Estimates of the parameters, NNCT for Dixon's test and type I-IV TCT for others.
est.name, est. name 2
Names of the estimates, former is a longer description of the estimates than the

latter. null.value \begin{tabular}{l}
Matrix of hypothesized null values for the parameters which are expected values

of the the $N_{i j}$ values in the NNCT or $T_{i j}$ values in the TCT.

null.name

| Name of the null values |
| :--- | :--- |

method

ct.name

data.name

\quad

Description of the hypothesis test

Name of the contingency table, ct, returned by overall.seg.ct only

Name of the data set, dat, returned by overall.seg only
\end{tabular}

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "New Tests of Spatial Segregation Based on Nearest Neighbor Contingency Tables." Scandinavian Journal of Statistics, 37(1), 147-165.

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

overall.nnct.ct, overall.nnct, overall.tct.ct and overall.tct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
```

```
type<-"dixon" #try also "nnct", I", "II", "III", and "IV"
overall.seg(Y,cls,type)
overall.seg(Y,cls,type,method="max")
overall.seg(Y,cls,type="I")
overall.seg.ct(ct,covN, type)
overall.seg.ct(ct,covN,type="I")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
overall.seg(Y,fcls,type="I")
overall.seg.ct(ct,covN, type)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
overall.seg(Y,cls, type="I")
overall.seg.ct(ct,covN,type)
```

funs.overall.tct Types I-IV Overall Tests of Segregation for NNCT

Description

Two functions: overall.tct.ct and overall.tct.
All functions are objects of class "Chisqtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of deviations of cell counts from the expected values under RL or CSR for all cells (i.e., entries) combined in the TCT. That is, each test is one of Types I-IV overall test of segregation based on TCTs for $k \geq 2$ classes. This overall test is based on the chi-squared approximation of the corresponding quadratic form and are due to Ceyhan (2010, 2017). Both functions exclude some row and/or column of the TCT, to avoid ill-conditioning of the covariance matrix of the NNCT (for its inversion in the quadratic form). In particular, type-II removes the last column, and all other types remove the last row and column.
Each function yields the test statistic, p-value and df which is $k(k-1)$ for type II test and $(k-1)^{2}$ for the other types, description of the alternative with the corresponding null values (i.e. expected
values) of TCT entries, sample estimates (i.e. observed values) of the entries in TCT. The functions also provide names of the test statistics, the method and the data set used.
The null hypothesis is that all Tij entries for the specified type are equal to their expected values under RL or CSR.

See also (Ceyhan $(2010,2017)$) and the references therein.

Usage

overall.tct.ct(ct, covN, type = "III")
overall.tct(dat, lab, type = "III", ...)

Arguments

ct	A nearest neighbor contingency table, used in overall.tct.ct only
covN	The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT, ct ; used in overall.tct.ct only.
type	The type of the overall segregation test, default="III". Takes on values "I"- "IV" (or equivalently 1-4, respectively.
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in overall.tct only
lab	The vector of class labels (numerical or categorical), used in overall.tct only are for further arguments, such as method and p, passed to the dist function. used in overall.tct only

Value

A list with the elements

statistic stat. names p.value	The overall chi-squared statistic for the specified type Name of the test statistic
df	The p-value for the hypothesis test Degrees of freedom for the chi-squared test, which is $k(k-1)$ for type="II" and $(k-1)^{2}$ for others.
estimate	Estimates of the parameters, TCT, i.e., matrix of the observed $T_{i j}$ values which is the TCT.
est. name, est. name2	
Names of the estimates, former is a longer description of the estimates than the	
latter.	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "New Tests of Spatial Segregation Based on Nearest Neighbor Contingency Tables." Scandinavian Journal of Statistics, 37(1), 147-165.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

overall.seg.ct, overall.seg, overall.nnct.ct and overall.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
overall.tct(Y,cls)
overall.tct(Y,cls,type="I")
overall.tct(Y,cls,type="II")
overall.tct(Y,cls,type="III")
overall.tct(Y,cls,type="IV")
overall.tct(Y,cls,method="max")
overall.tct.ct(ct,covN)
overall.tct.ct(ct,covN,type="I")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
overall.tct(Y,fcls)
overall.tct.ct(ct,covN)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
```

```
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
overall.tct(Y,cls)
overall.tct.ct(ct,covN)
```

funs.pijPij

The functions for probability of selecting a number of points from respective classes

Description

The ancillary probability functions used in computation of the variance-covariance matrices of various NN spatial tests such as NNCT tests and tests based on other contingency tables. These functions can be classified as pij and Pij type functions. The pij functions are for individual probabilities and the corresponding Pij functions are the summed pij values. For example $p_{i i j k}$ is the probability of any 4 points with 2 from class i, and others are from classes j and k. These probabilities are for data from RL or CSR.

Usage

p11(k, n)

P11 (nvec)
p12(k, l, n)
P12(nvec)
p111(k, n)
P111 (nvec)
p1111(k, n)

P1111 (nvec)
p112(k, l, n)
P112(nvec)

```
p122(k, l, n)
p123(k, l, m, n)
P123(nvec)
p1234(k, l, m, p, n)
P1234(nvec)
p1223(k, l, m, n)
p1123(k, l, m, n)
P1123(nvec)
p1122(k, l, n)
P1122(nvec)
p1112(k, l, n)
P1112(nvec)
```


Arguments

$\mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{p} \quad$ Positive integers, usually representing the class sizes, used in pij type functions only. Number of these arguments required depends on the number of distinct indices of p, e.g. $p_{i j}$ requires $\mathrm{k}, \mathrm{l}, \mathrm{n}$ and $p_{i i j k}$ requires $\mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}$ as input.
n
A positive integer representing the size of the data set (i.e., number of observations in the data set).
nvec A vector ofpositive integers representing the sizes of classes in the data set, used in Pij type functions only.

Value

Probability values for the selected points being from the indicated classes.

See Also

pk

Description

Two functions: scct.ct and scct.
Both functions return the $k \times 2$ species correspondence contingency table (SCCT) but have different arguments (see the parameter list below).
SCCT is constructed by categorizing the NN pairs according to pair type as self or mixed. A baseNN pair is called a self pair, if the elements of the pair are from the same class; a mixed pair, if the elements of the pair are from different classes. Row labels in the RCT are the class labels and the column labels are "self" and "mixed". The $k \times 2$ SCCT (whose first column is self column with entries S_{i} and second column is mixed with entries M_{i}) is closely related to the $k \times k$ nearest neighbor contingency table (NNCT) whose entries are $N_{i j}$, where $S_{i}=N_{i i}$ and $M_{i}=n_{i}-N_{i i}$ with n_{i} is the size of class i.
The function scct.ct returns the SCCT given the inter-point distance (IPD) matrix or data set x, and the function scct returns the SCCT given the IPD matrix. SCCT is a $k \times 2$ matrix where k is number of classes in the data set. (See Ceyhan (2018) for more detail, where SCCT is labeled as CCT for correspondence contingency table).
The argument ties is a logical argument (default=FALSE for both functions) to take ties into account or not. If TRUE a NN contributes $1 / m$ to the NN count if it is one of the m tied NNs of a subject.

The argument nnct is a logical argument for scct.ct only (default=FALSE) to determine the structure of the argument x . If TRUE, x is taken to be the $k \times k$ NNCT, and if FALSE, x is taken to be the IPD matrix.

The argument lab is the vector of class labels (default=NULL when nnct=TRUE in the function scct.ct and no default specified for scct).

Usage

scct.ct(x, lab $=$ NULL, ties $=$ FALSE, nnct $=$ FALSE $)$
scct(dat, lab, ties = FALSE, ...)

Arguments
x
lab
ties
nnct

The IPD matrix (if nnct=FALSE) or the NNCT (if nnct=TRUE), used in scct.ct only
The vector of class labels (numerical or categorical), default=NULL when nnct=FALSE in the function scct.ct and no default specified for scct.
A logical argument (default=FALSE) to take ties into account or not. If TRUE a NN contributes $1 / m$ to the NN count if it is one of the m tied NNs of a subject.
A logical parameter (default=FALSE). If TRUE, x is taken to be the $k \times k$ NNCT, and if FALSE, x is taken to be the IPD matrix, used in scct.ct only.
dat The data set in one or higher dimensions, each row corresponds to a data point, used in scct only
are for further arguments, such as method and p, passed to the dist function, used in scct only

Value

Returns the $k \times 2 \mathrm{SCCT}$ where k is the number of classes in the data set.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2018). "A contingency table approach based on nearest neighbor relations for testing self and mixed correspondence." SORT-Statistics and Operations Research Transactions, 42(2), 125-158.

See Also

nnct, tct, rct and Qsym.ct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
NNCT<-nnct(ipd,cls)
NNCT
scct(Y,cls)
scct(Y,cls,method="max")
scct.ct(ipd,cls)
scct.ct(ipd,cls,ties = TRUE)
scct.ct(NNCT,nnct=TRUE)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
scct.ct(ipd,fcls)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
NNCT<-nnct(ipd,cls)
NNCT
```

```
scct(Y,cls)
scct.ct(ipd,cls)
scct.ct(NNCT, nnct=TRUE)
```

funs.seg.coeff Pielou's Segregation Coefficients for NNCTs

Description

Two functions: Pseg.coeff and seg.coeff.
Each function computes segregation coefficients based on NNCTs. The function Pseg. coeff computes Pielou's segregation coefficient (Pielou (1961)) for the two-class case (i.e., based on 2×2 NNCTs) and seg.coeff is the extension of Pseg.coeff to the multi-class case (i.e. for $k \times k$ NNCTs with $k \geq 2$) and provides a $k \times k$ matrix of segregation coefficients (Ceyhan (2014)). Both functions use the same argument, ct , for NNCT.
Pielou's segregation coefficient (for two classes) is $S_{P}=1-\left(N_{12}+N_{21}\right) /\left(E\left[N_{12}\right]+E\left[N_{21}\right]\right)$ and the extended segregation coefficents (for $k \geq 2$ classes) are $S_{c}=1-\left(N_{i i}\right) /\left(E\left[N_{i i}\right]\right)$ for the diagonal cells in the NNCT and $S_{c}=1-\left(N_{i j}+N_{j i}\right) /\left(E\left[N_{i j}\right]+E\left[N_{j i}\right]\right)$ for the off-diagonal cells in the NNCT.

Usage

Pseg.coeff(ct)
seg.coeff(ct)

Arguments

ct A nearest neighbor contingency table, used in both functions

Value

Pseg.coeff returns Pielou's segregation coefficient for 2×2 NNCT seg.coeff returns a $k \times k$ matrix of segregation coefficients (which are extended versions of Pielou's segregation coefficient)

Author(s)

Elvan Ceyhan
Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 16621684.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

seg.ind, Zseg.coeff.ct and Zseg.coeff

Examples

```
#Examples for Pseg.coeff
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
Pseg.coeff(ct)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
Pseg.coeff(ct)
##############
ct<-matrix(sample(1:25,9),ncol=3)
#Pseg.coeff(ct)
#Examples for seg.coeff
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
seg.coeff(ct)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
seg.coeff(ct)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
```

```
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
ct<-nnct(ipd,cls)
seg.coeff(ct)
```

funs.varNii Variances of the Self Entries in a Species Correspondence Contingency Table (SCCT)

Description

Two functions: varNii.ct and varNii.
Both functions return a vector of length k of variances of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or the variances of the diagonal entries $N_{i i}$ in an NNCT, but have different arguments (see the parameter list below). These variances are valid under RL or conditional on Q and R under CSR.

The argument ct which is used in varNii. ct only, can be either the NNCT or SCCT.
See also (Ceyhan (2018)).

Usage

varNii.ct(ct, Q, R)
varNii(dat, lab, ...)

Arguments

ct
Q
R The number of reflexive NNs (i.e., twice the number of reflexive NN pairs), used in varNii.ct only
dat The data set in one or higher dimensions, each row corresponds to a data point, used in varNii only
lab The vector of class labels (numerical or categorical), used in varNii only
... are for further arguments, such as method and p, passed to the dist function, used in varNii only

Value

A vector of length k whose entries are the variances of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or of the diagonal entries in an NNCT.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2018). "A contingency table approach based on nearest neighbor relations for testing self and mixed correspondence." SORT-Statistics and Operations Research Transactions, 42(2), 125-158.

See Also

scct, var. nnct, var.tct, var.nnsym and covNii

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varNii(Y,cls)
varNii.ct(ct,Qv,Rv)
varNii(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
varNii(Y,fcls)
varNii.ct(ct,Qv,Rv)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varNii(Y,cls)
varNii.ct(ct,Qv,Rv)
```


Description

Three functions: var.tctI, var.tctIII and var.tctIV.
These functions return the variances of $T_{i j}$ values for $i, j=1, \ldots, k$ in the TCT in matrix form which is of the same dimension as TCT for types I, III and IV tests. The argument covN must be the covariance between $N_{i j}$ values which are obtained from the NNCT by row-wise vectorization. These variances are valid under RL or conditional on Q and R under CSR.

See also (Ceyhan (2017)).

Usage

```
var.tctI(ct, covN)
var.tctIII(ct, covN)
var.tctIV(ct, covN)
```


Arguments

$\begin{array}{ll}\text { ct } & \text { A nearest neighbor contingency table } \\ \text { covN } & \text { The } k^{2} \times k^{2} \text { covariance matrix of row-wise vectorized cell counts of NNCT, ct. }\end{array}$

Value

Each of these functions returns a matrix of same dimension as, $c t$, whose entries are the variances of the entries in the TCT for the corresponding type of cell-specific test. The row and column names are inherited from ct.

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

funsAi jmat | Aij matrices for computation of Moments of Cuzick and Edwards $T_{-} k$ |
| :--- |
| Test statistic |

Description

Two functions: aij.mat and aij.nonzero.
The function aij.mat yields the $A=\left(a_{i j}(k)\right)$ matrix where $a_{i j}(k)=1$ if z_{j} is among the kNNs of z_{i} and 0 otherwise due to Tango (2007). This matrix is useful in calculation of the moments of Cuzick-Edwards T_{k} tests.

The function aij. nonzero keeps only nonzero entries, i.e., row and column entries where in each row, for the entry $\left(r_{1}, c_{1}\right) r_{1}$ is the row entry and c_{1} is the column entry. Rows are from 1 to n , which stands for the data point or observation, and column entries are from 1 to k , where k is specifying the number of kNNs (of each observation) considered. This function saves in storage memory, but needs to be carefully unfolded in the functions to represent the actual the A matrix.
See also (Tango (2007)).

Usage

aij.mat(dat, k, ...)
aij.nonzero(dat, k, ...)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
k Integer specifying the number of NNs (of subject i), default is 1 .
... are for further arguments, such as method and p, passed to the dist function.

Value

The function aij.mat returns the $A_{i j}$ matrix for computation of moments of Cuzick and Edwards T_{k} Test statistic while the function aij. nonzero returns the (locations of the) non-zero entries in the $A_{i j}$ matrix

Author(s)

Elvan Ceyhan

References

Tango T (2007). "A class of multiplicity adjusted tests for spatial clustering based on case-control point data." Biometrics, 63, 119-127.

See Also

aij.theta and EV.Tkaij

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
k<-3 #try also 2,3
Aij<-aij.mat(Y,k)
Aij
Aij2<-aij.mat(Y,k,method="max")
range(Aij,Aij2)
apply(Aij,2,sum) #row sums of Aij
aij.nonzero(Y,k)
aij.nonzero(Y,k,method="max")
```


Description

Two functions: correct.cf1 and correct.cf1.
Each function yields matrices which are used in obtaining covariance matrices of $T_{i j}$ values for types I and II tests from the usual Chi-Square test of contingency tables (i.e. Pielou's test) applied on NNCTs. The output matrices are to be term-by-term multiplied with the covariance matrix of the entries of NNCT. See Sections 3.1 and 3.2 in (Ceyhan (2010)) or Sections 3.5.1 and 3.5.2 in (Ceyhan (2008)) for more details.

Usage

correct.cf1(ct)
correct.cf2(ct)

Arguments

ct A nearest neighbor contingency table

Value

Both functions return a correction matrix which is to be multiplied with the covariance matrix of entries of the NNCT so as to obtain types I and II overall tests from Pielou's test of segregation. See the description above for further detail.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2008). "New Tests for Spatial Segregation Based on Nearest Neighbor Contingency Tables." https://arxiv.org/abs/0808.1409v3 [stat.ME]. Technical Report
\# KU-EC-08-6, Koç University, Istanbul, Turkey.

Ceyhan E (2010). "New Tests of Spatial Segregation Based on Nearest Neighbor Contingency Tables." Scandinavian Journal of Statistics, 37(1), 147-165.

See Also

nnct.cr1 and nnct.cr2

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
#correction type 1
CM1<-correct.cf1(ct)
CovN.cf1<-covN*CM1
#correction type 2
CM2<-correct.cf2(ct)
CovN.cf2<-covN*CM2
covN
CovN.cf1
CovN.cf2
```

funsExpTk Expected Value for Cuzick and Edwards T_k Test statistic

Description

Two functions: EV.Tk and EV.Tkaij.
Both functions compute the expected value of Cuzick and Edwards T_{k} test statistic based on the number of cases within kNNs of the cases in the data under RL or CSR independence.

The number of cases are denoted as n_{1} (denoted as n 1 as an argument) for both functions and number of controls as n_{0} (denoted as n 0 as an argument) in EV.Tk, to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).

The function EV. Tkaij uses Toshiro Tango's moments formulas based on the $A=\left(a_{i j}\right)$ matrix (and is equivalent to the function EV.Tk, see Tango (2007), where $a_{i j}(k)=1$ if z_{j} is among the kNNs of z_{i} and 0 otherwise.

See also (Ceyhan (2014)).

Usage

EV.Tk(k, n1, n0)

EV.Tkaij(k, n1, a)

Arguments

$\mathrm{k} \quad$ Integer specifying the number of NNs (of subject i).
$\mathrm{n} 1, \mathrm{n} 0 \quad$ The number of cases and controls, n_{1} used for both functions, and n_{0} used in EV. Tk only.
a
The $A=\left(a_{i j}\right)$ matrix

Value

The expected value of Cuzick and Edwards T_{k} test statistic for disease clustering

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 16621684.

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

Tango T (2007). "A class of multiplicity adjusted tests for spatial clustering based on case-control point data." Biometrics, 63, 119-127.

See Also

ceTk and EV.Tcomb

Examples

```
n1<-20
n0<-25
k<-1 #try also 3, 5, sample(1:5,1)
EV.Tk(k,n1,n0)
###
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE)
n1<-sum(cls==1)
n0<-sum(cls==0)
a<-aij.mat(Y,k)
EV.Tk(k,n1,n0)
EV.Tkaij(k,n1,a)
```

funsExpTrun Expected Value for Cuzick and Edwards T_run Test statistic

Description

Two functions: EV.Trun and EV.Trun.alt.
Both functions compute the expected value of Cuzick and Edwards $T_{r u n}$ test statistic based on the number of consecutive cases from the cases in the data under RL or CSR independence.
The number of cases are denoted as n_{1} (denoted as n 1 as an argument) and number of controls as n_{0} for both functions (denoted as $n 0$ as an argument), to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).
The function EV. Trun. alt uses a loop and takes slightly longer than the function EV. Trun, hence $E V$. Trun is used in other functions.

See also (Cuzick and Edwards (1990)).

Usage

EV.Trun(n1, n0)

EV.Trun.alt(n1, n0)

Arguments

$\mathrm{n} 1, \mathrm{n} 0 \quad$ The number of cases and controls used as arguments for both functions.

Value

The expected value of Cuzick and Edwards $T_{\text {run }}$ test statistic for disease clustering

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also
ceTrun and EV.Tk

Examples

n1<-20
n0<-25
EV. Trun(n1, n0)
funsNNclass.spec \quad NN Class-specific Chi-square Tests based on NNCTs

Description

Two functions: NN.class.spec.ct and NN. class.spec.
Both functions are objects of class "classhtest" but with different arguments (see the parameter list below). Each one performs class specific segregation tests for the columns, i.e., NN categories for $k \geq 2$ classes. That is, each one performs hypothesis tests of deviations of entries in each column of NNCT from the expected values under RL or CSR for each column. Recall that column labels in the NNCT are NN class labels. The test for each column i is based on the chi-squared approximation of the corresponding quadratic form and are due to Ceyhan (2009).

The argument covN must be covariance of column-wise vectorization of NNCT if the logical argument byrow=FALSE otherwise the function converts covN (which is done row-wise) to columnwise version with covNrow2col function.

Each function yields the test statistic, p-value and df for each base class i, description of the alternative with the corresponding null values (i.e. expected values) for the column i, estimates for the entries in column i for $i=1, \ldots, k$. The functions also provide names of the test statistics, the method and the data set used.

The null hypothesis for each column is that the corresponding $N_{i j}$ entries in column i are equal to their expected values under RL or CSR.

See also (Dixon (2002); Ceyhan (2009)) and the references therein.

Usage

```
NN.class.spec.ct(ct, covN, byrow = TRUE)
NN.class.spec(dat, lab, ...)
```


Arguments

ct A nearest neighbor contingency table, used in NN. class. spec.ct only
covN The $k^{2} \times k^{2}$ covariance matrix of column-wise vectorized entries of NNCT, ct ; used in NN. class. spec. ct only.
byrow A logical argument (default=TRUE). If TRUE, rows of ct are appended to obtain the vector of $N_{i j}$ values and covN is the covariance matrix for this vector and if FALSE columns of ct are appended to obtain the $N_{i j}$ vector and covN is converted to the row-wise version by covNrow2col function; used in NN. class. spec.ct only.
dat The data set in one or higher dimensions, each row corresponds to a data point, used in NN. class. spec only
lab The vector of class labels (numerical or categorical), used in NN. class.spec only
... are for further arguments, such as method and p, passed to the dist function. used in NN. class. spec only

Value

A list with the elements

type	Type of the class-specific test, which is "NN" for this function
statistic	The vector of NN class-specific test statistics
stat. names	Name of the test statistics
p.value	The vector of p-values for the hypothesis test
df	Degrees of freedom for the chi-squared test, which is k for this function.
estimate	Estimates of the parameters, transpose of the NNCT, i.e., transpose of the matrix of the observed $N_{i j}$ values which is the transpose of NNCT.
null.value	Transpose of the matrix of hypothesized null values for the parameters which are expected values of the $N_{i j}$ values in the NNCT.
null.name	Name of the null values
method	Description of the hypothesis test
ct.name	Name of the contingency table, ct, returned by NN.class.spec.ct only data.name
	Name of the data set, dat, returned by NN.class.spec only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2009). "Class-Specific Tests of Segregation Based on Nearest Neighbor Contingency Tables." Statistica Neerlandica, 63(2), 149-182.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

base.class.spec.ct, base.class.spec, class.spec.ct and class.spec

Examples

```
n<-20
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covNrow<-cov.nnct(ct,varN,Qv,Rv)
covNcol<-covNrow2col(covNrow)
NN.class.spec(Y,cls)
NN.class.spec(Y,cls,method="max")
NN.class.spec.ct(ct,covNrow)
NN.class.spec.ct(ct,covNcol,byrow = FALSE)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
NN.class.spec(Y,fcls)
NN.class.spec.ct(ct,covNrow)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covNrow<-cov.nnct(ct,varN,Qv,Rv)
```

covNcol<-covNrow2col(covNrow)
NN.class. $\operatorname{spec}(\mathrm{Y}, \mathrm{cls})$

NN.class.spec.ct(ct, covNrow)
NN.class.spec.ct(ct, covNcol,byrow = FALSE)
funsN_I_II Correction Matrices for the NNCT entries

Description

Two functions: nnct.cr1 and nnct.cr1.
Each function yields matrices which are used in obtaining the correction term to be added to the usual Chi-Square test of contingency tables (i.e. Pielou's test) applied on NNCTs to obtain types I and II overall tests. The output contingency tables are to be row-wise vectorized to obtain N_{I} and $N_{I I}$ vectors. See Sections 3.1 and 3.2 in (Ceyhan (2010)) or Sections 3.5.1 and 3.5.2 in (Ceyhan (2008)) for more details.

Usage

nnct. cr 1 (ct)
nnct.cr2(ct)

Arguments

ct A nearest neighbor contingency table

Value

Both functions return a $k \times k$ contingency table which is to be row-wise vectorized to obtain N_{I} and $N_{I I}$ vectors which are used in the correction summands to obtain types I and II overall tests from Pielou's test of segregation. See the description above for further detail.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2008). "New Tests for Spatial Segregation Based on Nearest Neighbor Contingency Tables." https://arxiv.org/abs/0808.1409v3 [stat.ME]. Technical Report
\# KU-EC-08-6, Koç University, Istanbul, Turkey.

Ceyhan E (2010). "New Tests of Spatial Segregation Based on Nearest Neighbor Contingency Tables." Scandinavian Journal of Statistics, 37(1), 147-165.

See Also

correct.cf1 and correct.cf2

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
#correction type 1
ct1<-nnct.cr1(ct)
#correction type 2
ct2<-nnct.cr2(ct)
    ct
ct1
ct2
```

funsOnevsRest Functions for one versus rest type labeling

Description

Two functions: lab. onevsrest and classirest.
Both functions relabel the points, keeping class i label as is and relabeling the other classes as "rest". Used in the one-vs-rest type comparisons after the overall segregation test is found to be significant. See also (Ceyhan (2017)).

Usage

lab.onevsrest(i, lab)
classirest(i, lab)

Arguments

$\begin{array}{ll}\text { i } & \text { label of the class that is to be retained in the post-hoc comparison. } \\ \text { lab } & \text { The vector of class labels (numerical or categorical) }\end{array}$

Value

Both functions return the data relabeled as class i label is retained and the remaining is relabeled as "rest".

Author(s)

Elvan Ceyhan

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

pairwise.lab

Examples

```
n<-20 #or try sample(1:20,1)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
lab.onevsrest(1,cls)
classirest(2,cls)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
lab.onevsrest("a",fcls)
lab.onevsrest("b",fcls)
classirest("b",fcls)
#cls as a factor
fcls<-rep(letters[1:4],rep(10,4))
lab.onevsrest("b",fcls)
classirest("b",fcls)
```


Description

Two functions: Pseg.ss.ct and Pseg.ss.
Both functions are objects of class "Chisqtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of deviations of cell counts from the expected values under independence for all cells (i.e., entries) combined in the NNCT. That is, each test is Pielou's overall test of segregation based on NNCTs for $k \geq 2$ classes. This overall test is based on the chisquared approximation, is equivalent to Pearson's chi-squared test on NNCT and is due to Pielou (1961). Each test is appropriate (i.e. have the appropriate asymptotic sampling distribution) when that data is obtained by sparse sampling.
Each function yields the test statistic, p-value and df which is $(k-1)^{2}$, description of the alternative with the corresponding null values (i.e. expected values) of NNCT entries, sample estimates (i.e.
observed values) of the entries in NNCT. The functions also provide names of the test statistics, the method and the data set used.
The null hypothesis is that $E\left(N_{i j}\right)=n_{i} c_{j} / n$ for all entries in the NNCT where n_{i} is the sum of row i (i.e. size of class i), c_{j} is the sum of column j in the $k \times k$ NNCT for $k \geq 2$. In the output, the test statistic and the p-value are valid only for (properly) sparsely sampled data.

See also (Pielou (1961); Ceyhan (2010)) and the references therein.

Usage

Pseg.ss.ct(ct, yates $=$ TRUE, sim $=$ FALSE, Nsim $=2000$)

Pseg.ss(dat, lab, yates = TRUE, sim = FALSE, Nsim = 2000, ...)

Arguments

ct	A nearest neighbor contingency table, used in Pseg.ss.ct only A logical parameter (default=TRUE). If TRUE, Yates continuity correction is ap- plied, and if FALSE the continuity correction is not applied. Equivalent to the correct argument in the base function chisq. test
sim	A logical parameter (default=FALSE). If TRUE, p-values are computed by Monte Carlo simulation and if FALSE the p-value is based on the chi-squared approx- imation. Equivalent to the simulate.p.value argument in the base function chisq.test
Nsim	A positive integer specifying the number of replicates used in the Monte Carlo test. Equivalent to the B argument in the base function chisq. test
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Pseg. ss only
lab	The vector of class labels (numerical or categorical), used in Pseg. ss only are for further arguments, such as method and p, passed to the dist function.
used in Pseg. ss only	

Value

A list with the elements
statistic The overall chi-squared statistic
stat.names \quad Name of the test statistic
p .value \quad The p-value for the hypothesis test
df Degrees of freedom for the chi-squared test, which is $(k-1)^{\wedge} 2$ for this function. Yields NA if sim=TRUE and NSim is provided.
estimate Estimates of the parameters, NNCT, i.e., matrix of the observed $N_{i j}$ values which is the NNCT.
est.name,est.name2
Names of the estimates, they are identical for this function.
null.value Matrix of hypothesized null values for the parameters which are expected values of the the $N_{i j}$ values in the NNCT.

null. name	Name of the null values
method	Description of the hypothesis test
ct. name	Name of the contingency table, ct, returned by Pseg.ss.ct only
data.name	Name of the data set, dat, returned by Pseg.ss only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

overall.nnct.ct, overall.nnct, overall.seg.ct, overall.seg and chisq.test

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
Pseg.ss(Y,cls)
Pseg.ss.ct(ct)
Pseg.ss.ct(ct,yates=FALSE)
Pseg.ss.ct(ct,yates=FALSE, sim=TRUE)
Pseg.ss.ct(ct,yates=FALSE, sim=TRUE,Nsim=10000)
Pseg.ss(Y,cls,method="max")
Pseg.ss(Y,cls,yates=FALSE, sim=TRUE,Nsim=10000,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
Pseg.ss(Y,fcls)
Pseg.ss.ct(ct)
#############
n<-40
```

```
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
Pseg.ss(Y,cls)
Pseg.ss.ct(ct,yates=FALSE)
Pseg.ss(Y,cls, sim = TRUE, Nsim = 2000)
Pseg.ss.ct(ct,yates=FALSE)
```

funsQandR Functions for the Number of Shared NNs, Shared NN vector and the number of reflexive NNs

Description

Four functions: Qval, Qvec, sharedNN and Rval.
Qval returns the Q value, the number of points with shared nearest neighbors (NNs), which occurs when two or more points share a NN, for data in any dimension.
Qvec returns the Q -value and also yields the Qv vector $Q v=\left(Q_{0}, Q_{1}, \ldots\right)$ as well for data in any dimension, where Q_{j} is the number of points shared as a NN by j other points.
sharedNN returns the vector of number of points with shared NNs, $Q=\left(Q_{0}, Q_{1}, \ldots\right)$ where Q_{i} is the number of points that are NN to i points, and if a point is a NN of i points, then there are $i(i-1)$ points that share a NN. So $Q=\sum_{i>1} i(i-1) Q_{i}$.
Rval returns the number of reflexive NNs, R (i.e., twice the number of reflexive NN pairs).
These quantities are used, e.g., in computing the variances and covariances of the entries of the nearest neighbor contingency tables used for Dixon's tests and other NNCT tests. The input must be the incidence matrix, W, of the NN digraph.

Usage

Qval(W)

Qvec(W)
sharedNN(W)
Rval(W)

Arguments

W
The incidence matrix, W, for the NN digraph

Value

Qval returns the Q value Qvec returns a list with two elements
$\mathrm{q} \quad$ the Q value, the number of shared NNs
quec the vector of Q_{j} values
sharedNN returns a matrix with 2 rows, where first row is the j values and second row is the corresponding vector of Q_{j} values Rvalthe R value, the number of reflexive NNs

See the description above for the details of these quantities.

Author(s)

Elvan Ceyhan

See Also

Tval, QRval, sharedNNmc and Ninv

Examples

```
#Examples for Qval
#3D data points
n<-10
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Qval(W)
#1D data points
X<-as.matrix(runif(10)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(10) would not work
ipd<-ipd.mat(X)
W<-Wmat(ipd)
Qval(W)
#with ties=TRUE in the data
Y<-matrix(round(runif(15)*10),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd,ties=TRUE)
Qval(W)
#with ties=TRUE in the data
Y<-matrix(round(runif(15)*10),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd,ties=TRUE)
Qval(W)
#Examples for Qvec
#3D data points
n<-10
Y<-matrix(runif(3*n),ncol=3)
```

```
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Qvec(W)
#2D data points
n<-15
Y<-matrix(runif(2*n),ncol=2)
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Qvec(W)
#1D data points
X<-as.matrix(runif(15)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(15) would not work
ipd<-ipd.mat(X)
W<-Wmat(ipd)
Qvec(W)
#with ties=TRUE in the data
Y<-matrix(round(runif(15)*10),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd,ties=TRUE)
Qvec(W)
#Examples for sharedNN
#3D data points
n<-10
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
sharedNN(W)
Qvec(W)
#1D data points
X<-as.matrix(runif(15)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(5) would not work
ipd<-ipd.mat(X)
W<-Wmat(ipd)
sharedNN(W)
Qvec(W)
#2D data points
n<-15
Y<-matrix(runif(2*n),ncol=2)
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
sharedNN(W)
Qvec(W)
#with ties=TRUE in the data
Y<-matrix(round(runif(30)*10),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd,ties=TRUE)
```

```
sharedNN(W)
#Examples for Rval
#3D data points
n<-10
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Rval(W)
#1D data points
X<-as.matrix(runif(15)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(5) would not work
ipd<-ipd.mat(X)
W<-Wmat(ipd)
Rval(W)
#with ties=TRUE in the data
Y<-matrix(round(runif(30)*10),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd,ties=TRUE)
Rval(W)
```

funsRowColSums Functions for row and column sums of a matrix

Description

Two functions: row. sum and col.sum.
row. sum returns the row sums of a given matrix (in particular a contingency table) as a vector and col.sum returns the column sums of a given matrix as a vector. row. sum is equivalent to rowSums function and col. sum is equivalent to colSums function in the base package.

Usage

row.sum(ct)
col.sum(ct)

Arguments

ct A matrix, in particular a contingency table

Value

row. sum returns the row sums of ct as a vector col . sum returns the column sums of ct as a vector

Author(s)

Elvan Ceyhan

See Also

rowSums and colSums

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
row.sum(ct)
rowSums(ct)
col.sum(ct)
colSums(ct)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
row.sum(ct)
rowSums(ct)
col.sum(ct)
colSums(ct)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
row.sum(ct)
rowSums(ct)
col.sum(ct)
colSums(ct)
```

funsVarTk Variance of Cuzick and Edwards T_k Test statistic

Description

Two functions: VarTk and VarTkaij.
Both functions compute the (finite sample) variance of Cuzick and Edwards T_{k} test statistic based on the number of cases within kNNs of the cases in the data under RL or CSR independence.
The common arguments for both functions are $n 1$, representing the number of cases and k. The number of cases are denoted as n_{1} and number of controls as n_{0} in this function to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).
The logical argument nonzero.mat (default=TRUE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE) for computing N_{s} and N_{t}, which are required in the computation of the variance. N_{s} and N_{t} are defined on page 78 of (Cuzick and Edwards (1990)) as follows. $N_{s}=\sum_{i} \sum_{j} a_{i j} a_{j i}$ (i.e., number of ordered pairs for which kNN relation is symmetric) and $N_{t}=\sum \sum_{i \neq l} \sum a_{i j} a_{l j}$ (i.e, number of triplets $(i, j, l) i, j$, and l distinct so that j is among kNNs of i and j is among kNNs of l).
The function VarTkaij uses Toshiro Tango's moments formulas based on the $A=\left(a_{i j}\right)$ matrix (and is equivalent to the function VarTk, see Tango (2007), where $a_{i j}(k)=1$ if z_{j} is among the kNNs of z_{i} and 0 otherwise.
The function varTkaij is equivalent to varTk (with \$var extension).
See (Cuzick and Edwards (1990); Tango (2007)).

Usage

varTk(dat, n1, k, nonzero.mat = TRUE, ...)
varTkaij(n1, k, a)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point, used in VarTk only.
n1 Number of cases
$\mathrm{k} \quad$ Integer specifying the number of NNs (of subject i)
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computation of N_{s} and N_{t}. If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used. Used in VarTk only.
... are for further arguments, such as method and p, passed to the dist function. Used in VarTk only.
a The $A=\left(a_{i j}\right)$ matrix, used in VarTkaij only.

Value

The function VarTk returns a list with the elements
var.Tk The (finite sample) variance of Cuzick and Edwards T_{k} test statistic for disease clustering

The N_{s} value standing for the number of ordered pairs for which kNN relation is symmetric, see the description.
Nt The N_{t} value standing for the number of triplets $(i, j, l) i, j$, and l distinct so that j is among kNNs of i and j is among kNNs of l see the description.

The function VarTkaij returns only var. Tk as above.

Author(s)

Elvan Ceyhan
Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

Tango T (2007). "A class of multiplicity adjusted tests for spatial clustering based on case-control point data." Biometrics, 63, 119-127.

See Also

asyvarTk

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
n1<-sum(cls==1)
k<-2 #try also 2,3
a<-aij.mat(Y,k)
varTk(Y,n1,k)
varTk(Y,n1,k,nonzero.mat=FALSE)
varTk(Y,n1,k,method="max")
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
n1<-sum(cls==1)
k<-1 #try also 2,3, sample(1:5,1)
a<-aij.mat(Y,k)
varTkaij(n1,k,a)
varTk(Y,n1,k)$var
```

funsVarTrun Variance of Cuzick and Edwards T_run Test statistic

Description

Two functions: varTrun and varTrun.sim.
The function varTrun computes the (finite sample) variance of Cuzick and Edwards $T_{\text {run }}$ test statistic which is based on the number of consecutive cases from the cases in the data under RL or CSR independence. And the function varTrun.sim estimates this variance based on simulations under the RL hypothesis.
The only common argument for both functions is dat, the data set used in the functions.
n_{1} is an argument for varTrun and is the number of cases (denoted as $n 1$ as an argument). The number of cases are denoted as n_{1} and number of controls as n_{0} in this function to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).

The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc.lab should be provided in this fashion, if case.lab is provided, the labels are converted to 0 's and 1 's accordingly. The argument Nsim represents the number of resamplings (without replacement) in the RL scheme, with default being 1000. cc.lab, case.lab and Nsim are arguments for varTrun. sim only.

The function varTrun might take a very long time when data size is large (even larger than 50), hence the need for the varTrun. sim function.

See (Cuzick and Edwards (1990)).

Usage

varTrun(dat, n1, ...)
varTrun.sim(dat, cc.lab, Nsim = 1000, case.lab = NULL)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point, used in both functions.
n1 Number of cases, used in varTrun only.
... are for further arguments, such as method and p, passed to the dist function. Used in varTrun only.
cc.lab Case-control labels, 1 for case, 0 for control, used in varTrun. sim only.

Nsim The number of simulations, i.e., the number of resamplings under the RL scheme to estimate the variance of $T_{\text {run }}$, used in varTrun. sim only.
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL, used in varTrun. sim only.

Value

The function varTrun returns the variance of Cuzick and Edwards $T_{\text {run }}$ test statistic under RL or CSR independence. And the function varTrun. sim estimates the same variance based on simulations under the RL hypothesis.

Author(s)

Elvan Ceyhan
Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

ceTrun and EV. Trun

Examples

```
n<-20 #or try sample(1:20,1) #try also 40, 50, 60
set.seed(123)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE)
n1<-sum(cls==1)
n0<-sum(cls==0)
c(n1,n0)
varTrun(Y,n1)
varTrun(Y,n1,method="max")
n<-15 #or try sample(1:20,1) #try also 40, 50, 60
set.seed(123)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE)
n1<-sum(cls==1)
varTrun(Y,n1) #the actual value (might take a long time if n is large)
Nmc<-1000
varTrun.sim(Y,cls,Nsim=Nmc)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
varTrun.sim(Y,fcls,Nsim=Nmc,case.lab="a")
```

funsW345values $\quad W _k$ values for Tango's T test statistic

Description

Three functions: W3val, W4val and W5val, each of which is needed to compute $E\left[T^{3}\right]$ (i.e., for the skewness of T) where $T=T(\theta)$ which is defined in Equation (2) of Tango (2007) as follows: Let $\left(z_{1}, \ldots, z_{n}\right), n=n_{0}+n_{1}$, denote the locations of the points in the combined sample when the indices have been randomly permuted so that the z_{i} contain no information about group membership.

$$
\left.T(\theta)=\sum_{i=1}^{n} \sum_{j=1}^{n} \delta_{i} \delta_{j} a_{i j}(\theta)=\boldsymbol{\delta}^{t} \boldsymbol{A}(\theta)\right) \boldsymbol{\delta}
$$

where $\delta_{i}=1$ if z_{i} is a case, and 0 if z_{i} is a control, $\boldsymbol{A}(\theta)=\left(a_{i j}(\theta)\right)$ could be any matrix of a measure of the closeness between two points i and j with $a_{i i}=0$ for all $i=1, \ldots, n$, and $\boldsymbol{\theta}=$ $\left(\theta_{1}, \ldots, \theta_{p}\right)^{t}$ denotes the unknown parameter vector related to cluster size and $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{n}\right)^{t}$. Here the number of cases are denoted as n_{1} and number of controls as n_{0} to match the case-control class labeling, which is just the reverse of the labeling in Tango (2007).
If $\theta=k$ in the nearest neighbors model with $a_{i j}(k)=1$ if z_{j} is among the k NNs of z_{i} and 0 otherwise, then the test statistic $T(\theta)=T_{k}$ is the Cuzick and Edwards k NN test statistic, T_{k} Cuzick and Edwards (1990), see also ceTk.
W_{k} values are used for Tango's correction to Cuzick and Edwards $k \mathrm{NN}$ test statistic, T_{k} and W_{k} here corresponds to W_{k-1} in Tango (2007) (defined for consistency with p_{k} 's and alphar having r distinct elements).
The argument of the function is the $A_{i j}$ matrix, a, which is the output of the function aij.mat. However, inside the function we symmetrize the matrix a as $b<-\left(a+a^{\wedge} t\right) / 2$, to facilitate the formulation.

Usage

W3val(a)
W4val(a)
W5val(a)

Arguments

a $A_{i j}$ matrix which is the output of the function aij.mat.

Value

Each function Wkval returns the W_{k} value for $k=3,4,5$.

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

Tango T (2007). "A class of multiplicity adjusted tests for spatial clustering based on case-control point data." Biometrics, 63, 119-127.

See Also

ceTk, EV.Tk, varTk, Xsq.ceTk

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
k<-sample(1:5,1) # try also 3, 5, sample(1:5,1)
k
a<-aij.mat(Y,k)
W3val(a)
W4val(a)
W5val(a)
a<-aij.mat(Y,k,method="max")
W3val(a)
W4val(a)
W5val(a)
```

funsXsq.nnref Reflexivity Test with Chi-square Approximation

Description

Two functions: Xsq. nnref.ct and Xsq. nnref.
Both functions are objects of class "Chisqtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of equality of the expected values of the diagonal cell counts (i.e., entries) under RL or CSR in the RCT for $k \geq 2$ classes. That is, each test performs an overall NN reflexivity test (for the vector of entries $(1,1)$ and $(2,2)$, respectively, in the RCT) which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan and Bahadir (2017) for more detail).
Each reflexivity test is based on the chi-squared approximation of the corresponding quadratic form for the vector of diagonal entries in the RCT and are due to Ceyhan and Bahadir (2017).

Each function yields the test statistic, p-value and $d f$ which is 2 , description of the alternative with the corresponding null values (i.e. expected values) of the diagonal entries and also the sample estimates (i.e. observed values) of the diagonal entries of RCT (as a vector). The functions also provide names of the test statistics, the method and the data set used.

The null hypothesis is that $E\left(N_{11}, N_{22}\right)=\left(R P_{a a}, R P_{a b}\right)$ in the RCT, where R is the number of reflexive NNs and $P_{a a}$ is the probability of any two points selected are being from the same class and $P_{a b}$ is the probability of any two points selected are being from two different classes.

Usage

Xsq.nnref.ct(rfct, nvec, Qv, Tv)
Xsq.nnref(dat, lab, ...)

Arguments

rfct	An RCT, used in Xsq. nnref.ct only
nvec	The vector of class sizes, used in Xsq. nnref.ct only
Qv	The number of shared NNs, used in Xsq. nnref.ct only
Tv	T value, which is the number of triplets $\left(z_{i}, z_{j}, z_{k}\right)$ with $N N\left(z_{i}\right)=N N\left(z_{j}\right)=$ z_{k} and $N N\left(z_{k}\right)=z_{j}$ where $N N(\cdot)$ is the nearest neighbor function, used in Xsq. nnref.ct only.
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Xsq. nnref only
lab	The vector of class labels (numerical or categorical), used in Xsq. nnref only are for further arguments, such as method and p, passed to the dist function, used in Xsq. nnref only

Value

A list with the elements
statistic The chi-squared test statistic for overall NN reflexivity test
p .value \quad The p-value for the hypothesis test
df Degrees of freedom for the chi-squared test, which is 2 for this function.
estimate Estimates of the parameters, i.e., the observed diagonal entries $(1,1)$ and $(2,2)$ in the RCT, rfct.
est.name, est.name2
Names of the estimates, they are identical for this function.
null.value Hypothesized null values for the diagonal entries $(1,1)$ and $(2,2)$ in the RCT, which are $E\left(N_{11}\right)=R P_{a a}$ and $E\left(N_{22}\right)=R P_{a b}$, respectively).
method Description of the hypothesis test
ct. name Name of the contingency table, rfct, returned by Xsq. nnref.ct only
data. name Name of the data set, dat, returned by Xsq. nnref only

Author(s)

Elvan Ceyhan

References

Ceyhan E, Bahadir S (2017). "Nearest Neighbor Methods for Testing Reflexivity." Environmental and Ecological Statistics, 24(1), 69-108.

See Also

Znnref.ct, Znnref, Zself.ref.ct, Zself.ref, Zmixed.nonref.ct and Zmixed.nonref

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
R<-Rval(W)
Tv<-Tval(W,R)
nvec<-as.numeric(table(cls))
rfct<-rct(ipd,cls)
Xsq.nnref(Y,cls)
Xsq.nnref.ct(rfct,nvec,Qv,Tv)
Xsq.nnref(Y,cls,method="max")
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
R<-Rval(W)
Tv<-Tval(W,R)
nvec<-as.numeric(table(cls))
rfct<-rct(ipd,cls)
Xsq.nnref(Y,cls)
Xsq.nnref.ct(rfct,nvec,Qv,Tv)
```

funsXsq.nnsym. $\mathrm{dx} \quad$| Dixon's NN Symmetry Test with Chi-square Approximation for multi- |
| :--- |
| ple classes | ple classes

Description

Two functions: Xsq.nnsym.dx.ct and Xsq. nnsym.dx.
Both functions are objects of class "Chisqtest" but with different arguments (see the parameter list below). Each one performs the hypothesis test of equality of the expected value of the off-diagonal cell counts (i.e., entries) under RL or CSR in the NNCT for $k \geq 2$ classes. That is, each performs Dixon's overall NN symmetry test. The test is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan (2014) for more detail).
Each symmetry test is based on the chi-squared approximation of the corresponding quadratic form and is an extension of Dixon's NN symmetry test, which is extended by Ceyhan (2014).
Each function yields the test statistic, p-value and df which is $k(k-1) / 2$, description of the alternative with the corresponding null values (i.e. expected values) of differences of the off-diagonal entries, (which is 0 for this function) and also the sample estimates (i.e. observed values) of absolute differences of the off-diagonal entries of NNCT (in the upper-triangular form). The functions also provide names of the test statistics, the method and the data set used.
The null hypothesis is that all $E\left(N_{i j}\right)=E\left(N_{j i}\right)$ entries for all $i \neq j$ (i.e., symmetry in the mixed NN structure).
See also (Ceyhan (2014)) and the references therein.

Usage

Xsq.nnsym.dx.ct(ct, covS)

Xsq.nnsym.dx(dat, lab, ...)

Arguments

ct A nearest neighbor contingency table, used in Xsq. nnsym.dx.ct only
covS The $k(k-1) / 2 \times k(k-1) / 2$ covariance matrix of the differences of the offdiagonal entries in the NNCT, ct, usually the output of the function cov.nnsym.
dat The data set in one or higher dimensions, each row corresponds to a data point, used in Xsq. nnsym.dx only
lab The vector of class labels (numerical or categorical), used in Xsq.nnsym.dx only
... are for further arguments, such as method and p, passed to the dist function. used in Xsq.nnsym.dx only

Value

A list with the elements

statistic	The chi-squared test statistic for Dixon's overall NN symmetry test
stat.names	Name of the test statistic
p.value	The p-value for the hypothesis test
df	Degrees of freedom for the chi-squared test, which is $k(k-1) / 2$ for this func- tion.

estimate	Estimates, i.e., absolute differences of the off-diagonal entries of NNCT (in the upper-triangular form).
est.name, est. name2	
Names of the estimates, former is a shorter description of the estimates than the	
latter.	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

See Also

Znnsym.dx.ct, Znnsym.dx, Znnsym, Xsq.nnsym, Xsq.nnsym.ss.ct, Xsq.nnsym.ss and Qsym.test

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
covS<-cov.nnsym(covN)
Xsq.nnsym.dx(Y,cls)
Xsq.nnsym.dx.ct(ct,covS)
Xsq.nnsym.dx(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
Xsq.nnsym.dx(Y,fcls)
```

```
Xsq.nnsym.dx.ct(ct,covS)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
covS<-cov.nnsym(covN)
Xsq.nnsym.dx(Y,cls)
Xsq.nnsym.dx.ct(ct,covS)
```

funsXsq.nnsym.ss Pielou's First Type of NN Symmetry Test with Chi-square Approximation for multiple classes (for Sparse Sampling)

Description

Two functions: Xsq.nnsym.ss.ct and Xsq.nnsym.ss.
Both functions are objects of class "Chisqtest" but with different arguments (see the parameter list below). Each one performs the hypothesis test of equality of the expected value of the off-diagonal cell counts (i.e., entries) under RL or CSR in the NNCT for $k \geq 2$ classes. That is, each performs Pielou's first type of NN symmetry test which is also equivalent to McNemar's test on the NNCT. The test is appropriate (i.e. have the appropriate asymptotic sampling distribution) provided that data is obtained by sparse sampling. (See Ceyhan (2014) for more detail).
Each symmetry test is based on the chi-squared approximation of the corresponding quadratic form and are due to Pielou (1961).

The argument cont.corr is a logical argument (default=TRUE) for continuity correction to this test. If TRUE the continuity correction to McNemar's test is implemented, and if FALSE such a correction is not implemented.
Each function yields the test statistic, p-value and df which is $k(k-1) / 2$, description of the alternative with the corresponding null values (i.e. expected values) of differences of the off-diagonal entries,(which is 0 for this function) and also the sample estimates (i.e. observed values) of absolute differences of th off-diagonal entries of NNCT (in the upper-triangular form). The functions also provide names of the test statistics, the method and the data set used.
The null hypothesis is that $E\left(N_{i j}\right)=E\left(N_{j i}\right)$ for all entries for $i \neq j$ (i.e., symmetry in the mixed NN structure). In the output, the test statistic, p-value and df are valid only for (properly) sparsely sampled data.
See also (Pielou (1961); Ceyhan (2014)) and the references therein.

Usage

Xsq.nnsym.ss.ct(ct, cont.corr $=$ TRUE)
Xsq.nnsym.ss(dat, lab, cont.corr = TRUE, ...)

Arguments

ct A nearest neighbor contingency table, used in Xsq. nnsym. ss.ct only
cont.corr A logical argument (default=TRUE). If TRUE the continuity correction to McNe mar's test is implemented, and if FALSE such a correction is not implemented.
dat The data set in one or higher dimensions, each row corresponds to a data point, used in Xsq. nnsym. ss only
lab The vector of class labels (numerical or categorical), used in Xsq. nnsym.ss only
... are for further arguments, such as method and p, passed to the dist function. used in Xsq. nnsym. ss only

Value

A list with the elements
statistic The chi-squared test statistic for Pielou's first type of NN symmetry test
stat. names Name of the test statistic
p.value The p-value for the hypothesis test
$\mathrm{df} \quad$ Degrees of freedom for the chi-squared test, which is $k(k-1) / 2$ for this function.
estimate Estimates, i.e., absolute differences of the off-diagonal entries of NNCT (in the upper-triangular form).
est.name, est.name2
Names of the estimates, former is a shorter description of the estimates than the latter.
null.value Hypothesized null values for the differences between the expected values of the off-diagonal entries, which is 0 for this function.
method Description of the hypothesis test
ct. name Name of the contingency table, ct, returned by Xsq.nnsym.ss.ct only
data.name Name of the data set, dat, returned by Xsq.nnsym.ss only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

Znnsym2cl.ss.ct, Znnsym2cl.ss, Znnsym.ss.ct, Znnsym.ss, Xsq.nnsym.dx.ct, Xsq.nnsym.dx and Qsym.test

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
Xsq.nnsym.ss(Y,cls)
Xsq.nnsym.ss.ct(ct)
Xsq.nnsym.ss(Y,cls,method="max")
Xsq.nnsym.ss(Y,cls,cont.corr=FALSE)
Xsq.nnsym.ss.ct(ct,cont.corr=FALSE)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Xsq.nnsym.ss(Y,fcls)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
Xsq.nnsym.ss(Y,cls)
Xsq.nnsym.ss.ct(ct)
Xsq.nnsym.ss.ct(ct,cont.corr = FALSE)
```


Description

Two functions: Xsq. seg.coeff.ct and Xsq. seg. coeff.
Each one performs hypothesis tests of (simultaneous) equality of the segregation coefficients in an NNCT to the ones under RL or CSR. That is, each performs the combined Chi-square test for segregation coefficients which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan (2014) for more detail).
Each test is based on the Chi-square approximation of the corresponding quadratic form for the segregation coefficients in an NNCT. The segregation coefficients in the multi-class case are the extension of Pielou's segregation coefficient for the two-class case. (See Ceyhan (2014) for more detail).
Each function yields the test statistic, p-value and df which is $k(k+1) / 2-1$, description of the alternative with the corresponding null values (i.e. expected values) of the segregation coefficients in the NNCT (which are 0 for this function) and also the sample estimates (i.e. observed values) of the segregation coefficients. The functions also provide names of the test statistics, the method and the data set used.
The null hypothesis for all cells (i, j) is that the corresponding segregation coefficients are all equal to the expected value (which is 0) under RL or CSR.

Usage

Xsq.seg.coeff.ct(ct, covSC)
Xsq.seg.coeff(dat, lab, ...)

Arguments

ct A nearest neighbor contingency table, used in Xsq. seg.coeff.ct only
covSC The covariance matrix for the segregation coefficients in the NNCT, used in Xsq.seg.coeff.ct only. Usually output of the function cov.seg.coeff
dat The data set in one or higher dimensions, each row corresponds to a data point, used in Xsq. seg. coeff only
lab The vector of class labels (numerical or categorical), used in Xsq. seg. coeff only
... are for further arguments, such as method and p, passed to the dist function. used in Xsq. seg. coeff only

Value

A list with the elements
statistic The chi-squared test statistic for the combined segregation coefficients
p .value \quad The p-value for the hypothesis test
df \quad Degrees of freedom for the chi-squared test, which is $k(k+1) / 2-1$ for this function.
estimate The vector of estimates of the parameters, i.e., observed values of segregation coefficients in the NNCT.

```
est.name,est.name2
```

Names of the estimates, they are identical for this function.
null.value The null value of the parameters, i.e., expected values of segregation coefficients in the NNCT under RL or CSR (which is 0).
method Description of the hypothesis test
ct.name Name of the contingency table, ct, returned by Xsq. seg.coeff.ct only
data.name Name of the data set, dat, returned by Xsq. seg.coeff only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

seg.coeff, Zseg.coeff.ct and Zseg.coeff

Examples

```
n<-20
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
covSC<-cov.seg.coeff(ct,covN)
Xsq.seg.coeff(Y,cls)
Xsq.seg.coeff.ct(ct,covSC)
Xsq.seg.coeff(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
Xsq.seg.coeff.ct(ct,covSC)
#############
n<-40
```

```
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
covSC<-cov.seg.coeff(ct, covN)
Xsq.seg.coeff(Y,cls)
Xsq.seg.coeff.ct(ct,covSC)
```

funsXsq.spec.cor Overall Species Correspondence Test with Chi-square Approximation

Description

Two functions: Xsq.spec.cor.ct and Xsq.spec.cor.
Each one performs hypothesis tests of (simultaneous) equality of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or the expected values of the diagonal entries $N_{i i}$ in an NNCT to the ones under RL or CSR. That is, each performs the overall species correspondence test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan (2018) for more detail).

Each test is based on the Chi-square approximation of the corresponding quadratic form for the first column in a species correspondence contingency table (SCCT) or the diagonal entries $N_{i i}$ in an NNCT and are due to (Ceyhan 2018).

Each function yields the test statistic, p-value and df which is k, description of the alternative with the corresponding null values (i.e. expected values) of the self entries (i.e. first column) in the SCCT or the diagonal entries in the NNCT and also the sample estimates (i.e. observed values) of these entries. The functions also provide names of the test statistics, the method and the data set used.

The null hypothesis is that all $E\left[S_{1}, S_{2}, \ldots, S_{k}\right]=E\left[N_{11}, N_{22}, \ldots, N_{k k}\right]=\left(\left(n_{1}\left(n_{1}-1\right) /(n-\right.\right.$ 1), $\left(n_{2}\left(n_{2}-1\right) /(n-1), \ldots,\left(n_{k}\left(n_{k}-1\right) /(n-1)\right)\right.$ where n_{i} is the size of class i and n is the data size.

Usage

Xsq.spec.cor.ct(ct, covSC, nnct = FALSE)
Xsq.spec.cor(dat, lab, ...)

Arguments

ct The NNCT or SCCT, used in Xsq. spec.cor.ct only
covSC The covariance matrix for the self entries (i.e. first column) in the SCCT or the diagonal entries in the NNCT, used in Xsq.spec.cor.ct only. Usually output of the functions covNii.ct or covNii.
nnct A logical parameter (default=FALSE). If TRUE, x is taken to be the $k \times k$ NNCT, and if FALSE, x is taken to be the IPD matrix, used in Xsq. spec.cor.ct only
dat The data set in one or higher dimensions, each row corresponds to a data point, used in Xsq. spec.cor only
lab The vector of class labels (numerical or categorical), used in Xsq. spec.cor only
... are for further arguments, such as method and p, passed to the dist function. used in Xsq. spec.cor only

Value

A list with the elements
statistic The chi-squared test statistic for overall species correspondence test
p .value \quad The p-value for the hypothesis test
df Degrees of freedom for the chi-squared test, which is k for this function.
estimate The vector of estimates of the parameters, i.e., observed values of self entries in the SCCT or diagonal entries in the NNCT.
est.name,est.name2
Names of the estimates, they are identical for this function.
null.value The vector of null values of the parameters, i.e., expected values of self entries in the SCCT or diagonal entries in the NNCT under RL or CSR.
method Description of the hypothesis test
ct.name Name of the contingency table, ct, returned by Xsq. spec.cor.ct only
data.name Name of the data set, dat, returned by Xsq.spec.cor only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2018). "A contingency table approach based on nearest neighbor relations for testing self and mixed correspondence." SORT-Statistics and Operations Research Transactions, 42(2), 125-158.

See Also

Zself.ref.ct, Zself.ref, Xsq.nnref.ct and Xsq.nnref

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-scct(ipd,cls)
ct
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
vsq<-varNii.ct(ct,Qv,Rv)
cv<-covNii.ct(ct,vsq,Qv,Rv)
Xsq.spec.cor.ct(ct,cv)
Xsq.spec.cor(Y,cls)
Xsq.spec.cor(Y,cls,method="max")
ct<-nnct(ipd,cls)
Xsq.spec.cor.ct(ct,cv,nnct = TRUE)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-scct(ipd,fcls)
Xsq.spec.cor.ct(ct,cv)
Xsq.spec.cor(Y,fcls)
ct<-nnct(ipd,fcls)
Xsq.spec.cor.ct(ct,cv,nnct=TRUE)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-scct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
vsq<-varNii.ct(ct,Qv,Rv)
cv<-covNii.ct(ct,vsq,Qv,Rv)
Xsq.spec.cor.ct(ct,cv)
ct<-nnct(ipd,cls)
Xsq.spec.cor.ct(ct,cv,nnct = TRUE)
Xsq.spec.cor(Y,cls)
```


Description

Two functions: Zcell.nnct.ct and Zcell.nnct.
Both functions are objects of class "cellhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of deviations of cell counts from the expected values under RL or CSR for each cell (i.e., entry) in the NNCT. The test for each cell i, j is based on the normal approximation of the corresponding cell count, $N_{i j}$ and are due to Dixon (1994, 2002).
Each function yields a contingency table of the test statistics, p-values for the corresponding alternative, expected values (i.e., null value(s)), lower and upper confidence levels, sample estimates (i.e. observed values) for the cell counts and also names of the test statistics, estimates, null values and the method and the data set used.
The null hypothesis for each cell i, j is that the corresponding cell count is equal to the expected value under RL or CSR, that is $E\left[N_{i i}\right]=n_{i}\left(n_{i}-1\right) /(n-1)$ and $E\left[N_{i j}\right]=n_{i} n_{j} /(n-1)$ where n_{i} is the size of class i and n is the size of the data set.
See also (Dixon (1994, 2002); Ceyhan (2010)).

Usage

```
Zcell.nnct.ct(
        ct,
        varN,
        alternative = c("two.sided", "less", "greater"),
        conf.level = 0.95
    )
    Zcell.nnct(
        dat,
        lab,
        alternative = c("two.sided", "less", "greater"),
        conf.level = 0.95,
    )
```


Arguments

ct A nearest neighbor contingency table, used in Zcell. nnct.ct only
$\operatorname{varN} \quad$ The variance matrix for cell counts in the NNCT, ct ; used in Zcell.nnct.ct only
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for the cell counts, i.e. $N_{i j}$ values

dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Zcell. nnct only
lab	The vector of class labels (numerical or categorical), used in Zcell. nnct only
\ldots	are for further arguments, such as method and p, passed to the dist function, used in Zcell.nnct only

Value

A list with the elements

statistic	The matrix of Dixon's cell-specific test statistics
stat.names	Name of the test statistics
p.value	The matrix of p-values for the hypothesis test for the corresponding alternative
LCL, UCL	Matrix of Lower and Upper Confidence Levels for the cell counts at the given confidence level conf. level and depends on the type of alternative.
conf.int	The confidence interval for the estimates, it is NULL here, since we provide the UCL and LCL in matrix form.
cnf.lvl	Level of the upper and lower confidence limits of the cell counts, provided in conf.level.
estimate	Estimates of the parameters, i.e., matrix of the observed cell counts which is the NNCT
est.name, est.name2	
	Names of the estimates, both are same in this function
null.value	Matrix of hypothesized null values for the parameters which are expected values of the cell counts.
null. name	Name of the null values
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater"
method	Description of the hypothesis test
ct. name	Name of the contingency table, ct, returned by Zcell.nnct.ct only
data. name	Name of the data set, dat, returned by Zcell .nnct only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

Zcell.nnct.2s, Zcell.nnct.rs, Zcell.nnct.ls, Zcell.nnct.pval and Zcell.tct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
varN
Zcell.nnct(Y,cls)
Zcell.nnct(Y,cls,alt="g")
Zcell.nnct.ct(ct,varN)
Zcell.nnct.ct(ct,varN,alt="g")
Zcell.nnct(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Zcell.nnct(Y,cls)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
Zcell.nnct(Y,cls)
Zcell.nnct.ct(ct,varN)
```


Description

Four functions: Zcell.nnct.2s, Zcell.nnct.rs, Zcell.nnct.ls and Zcell.nnct.pval.
These functions yield a contingency table (i.e., a matrix) of the p-values for the cell-specific Z test statistics for the NNCT and take the cell-specific Z test statistics in matrix form as their argument. Zcell.nnct.pval yields an array of size $k \times k \times 3$ where 1st entry of the array is the matrix of p values for the two-sided alternative, 2nd entry of the array is the matrix of p-values for the left-sided alternative and 3rd entry of the array is the matrix of p-values for the right-sided alternative. And each of Zcell. nnct. 2 s , Zcell.nnct.rs and Zcell.nnct.ls yield a $k \times k$ matrix of p-values for the two-sided, right-sided and left-sided alternative, respectively.
The functions Zcell.nnct. 2s, Zcell.nnct.rs and Zcell.nnct.ls are equivalent to Zcell.nnct (. . . alt) \$p. val where alt="two-sided", "greater" and "less", respectively, with the appropriate arguments for the function Zcell. nnct (see the examples below).
See also (Dixon (1994, 2002); Ceyhan (2010)).

Usage

Zcell.nnct.pval(zt)
Zcell.nnct.2s(zt)
Zcell.nnct.ls(zt)
Zcell.nnct.rs(zt)

Arguments

zt A $k \times k$ matrix of the cell-specific Z test statistics

Value

Zcell.nnct. pval returns a $k \times k \times 3$ array whose 1 st entry is the matrix of p-values for the twosided alternative, 2nd entry is the matrix of p-values for the left-sided alternative and 3rd entry is the matrix of p-values for the right-sided alternative Zcell. nnct. 2 s returns a $k \times k$ matrix of p-values for the two-sided alternative Zcell. nnct.rs returns a $k \times k$ matrix of p-values for the right-sided alternative Zcell.nnct.ls returns a $k \times k$ matrix of p-values for the left-sided alternative

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

Zcell.nnct and Zcell.nnct.ct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
TS<-Zcell.nnct(Y,cls)$statistic
TS
pv<-Zcell.nnct.pval(TS)
pv
Zcell.nnct(Y,cls,alt="t")$p.val
Zcell.nnct(Y,cls,alt="l")$p.val
Zcell.nnct(Y,cls,alt="g")$p.val
Zcell.nnct.2s(TS)
Zcell.nnct.ls(TS)
Zcell.nnct.rs(TS)
```

funsZcell.spec Cell-specific Z Tests of Segregation for NNCTs

Description

Two functions: Zcell.spec.ct and Zcell.spec.
All functions are objects of class "cellhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of deviations of entries of NNCT or types I-IV TCTs from the expected values under RL or CSR for each entry. The test for each entry i, j is based on the normal approximation of the corresponding $T_{i j}$ value and are due to Dixon (2002) and Ceyhan (2017), respectively.

The type="dixon" or "nnct" refers to Dixon's cell-specific test of segregation, and type="I""IV" refers to types I-IV cell-specific tests, respectively.
Each function yields a contingency table of the test statistics, p-values for the corresponding alternative, expected values (i.e. null value(s)), lower and upper confidence levels and sample estimates (i.e. observed values) for the $N_{i j}$ or $T_{i j}$ values and also names of the test statistics, estimates, null values and the method and the data set used.
The null hypothesis for each entry i, j is that the corresponding value $N_{i j}$ or $T_{i j}$ is equal to the expected value under RL or CSR.
See also (Dixon (1994, 2002); Ceyhan $(2010,2017)$) and the references therein.

Usage

```
cell.spec.ct(
        ct,
        covN,
        type,
        alternative = c("two.sided", "less", "greater"),
        conf.level \(=0.95\)
    )
    cell.spec (
        dat,
        lab,
        type,
        alternative = c("two.sided", "less", "greater"),
        conf.level = 0.95,
    )
```


Arguments

ct A nearest neighbor contingency table, used in Zcell. spec.ct only
covN The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT, ct ; used in Zcell.spec.ct only.
type The type of the cell-specific test with no default. Takes on values "dixon" or "nnct" for Dixon's cell-specific tests and "I"-"IV" for types I-IV cell-specific tests (or equivalently 1-6, respectively).
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for the $N_{i j}$ or $T_{i j}$ values
dat The data set in one or higher dimensions, each row corresponds to a data point, used in Zcell. spec only
lab The vector of class labels (numerical or categorical), used in Zcell. spec only are for further arguments, such as method and p, passed to the dist function, used in Zcell. spec only

Value

A list with the elements
statistic The matrix of cell-specific test statistics
stat.names Name of the test statistics
p.value The matrix of p-values for the hypothesis test for the corresponding alternative

LCL , UCL Matrix of Lower and Upper Confidence Levels for the $N_{i j}$ or $T_{i j}$ values at the given confidence level conf. level and depends on the type of alternative.

conf.int	The confidence interval for the estimates, it is NULL here, since we provide the UCL and LCL in matrix form.
cnf.lvl	Level of the upper and lower confidence limits of the entries, provided in conf. level.
estimate	Estimates of the parameters, NNCT or TCT, i.e., matrix of the observed $N_{i j}$ or $T_{i j}$ values which is NNCT or TCT, respectively.
est.name, est.name2	
Names of the estimates, both are same in this function	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

Zcell.nnct.ct, Zcell.nnct, Zcell.tct.ct and Zcell.tct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
```

```
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
type<-"IV" #"dixon" #try also "nnct", "I", "II", "III", and "IV"
cell.spec(Y,cls,type)
cell.spec(Y,cls,type,alt="g")
cell.spec.ct(ct,covN,type)
cell.spec.ct(ct,covN,type="II",alt="g")
cell.spec(Y,cls,type,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
cell.spec(Y,cls,type="I")
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
cell.spec(Y,cls,type)
cell.spec.ct(ct,covN,type)
```


Description

Two functions: Zcell.tct.ct and Zcell.tct.
All functions are objects of class "cellhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of deviations of entries of types I-IV TCT, $T_{i j}$, from their expected values under RL or CSR for each entry. The test for each entry i, j is based on the normal approximation of the corresponding $T_{i j}$ value and are due to Ceyhan (2017).

Each function yields a contingency table of the test statistics, p-values for the corresponding alternative, expected values (i.e. null value(s)), lower and upper confidence levels and sample estimates
(i.e. observed values) for the $T_{i j}$ values and also names of the test statistics, estimates, null values and the method and the data set used.
The null hypothesis for each entry i, j is that the corresponding value $T_{i j}$ is equal to the expected value under RL or CSR, see Ceyhan (2017) for more detail.
See also (Ceyhan (2017)) and references therein.

Usage

```
Zcell.tct.ct(
    ct,
    covN,
    type = "III",
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
Zcell.tct(
    dat,
    lab,
    type = "III",
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

ct	A nearest neighbor contingency table, used in Zcell.tct.ct only
covN	The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized cell counts of NNCT, ct ; used in Zcell.tct.ct only. The type of the cell-specific test, default="III". Takes on values "I"-"IV" (or
type	equivalently 1-4, respectively.
alternative	Type of the alternative hypothesis in the test, one of "two. sided", "less" or "greater".
conf.level	Level of the upper and lower confidence limits, default is 0.95, for the $T_{i j}$ values dat\quadThe data set in one or higher dimensions, each row corresponds to a data point, used in Zcell.tct only
lab	The vector of class labels (numerical or categorical), used in Zcell.tct only are for further arguments, such as method and p, passed to the dist function, used in Zcell.tct only

Value

A list with the elements
statistic The matrix of Types I-IV cell-specific test statistics

stat.names	Name of the test statistics
p.value	The matrix of p-values for the hypothesis test for the corresponding alternative
LCL, UCL	Matrix of Lower and Upper Confidence Levels for the $T_{i j}$ values at the given confidence level conf. level and depends on the type of alternative.
conf.int	The confidence interval for the estimates, it is NULL here, since we provide the UCL and LCL in matrix form.
cnf.lvl	Level of the upper and lower confidence limits of the entries, provided in conf. level.
estimate	Estimates of the parameters, i.e., matrix of the observed $T_{i j}$ values which is the TCT
est.name, est.name2	
	Names of the estimates, both are same in this function
null.value	Matrix of hypothesized null values for the parameters which are expected values of $T_{i j}$ values in the TCT.
null. name	Name of the null values
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater"
method	Description of the hypothesis test
ct.name	Name of the contingency table, ct, returned by Zcell.tct.ct only
data. name	Name of the data set, dat, returned by Zcell. tct only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

Zcell.nnct.ct and Zcell.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
```

```
type<-"I" #try also "II", "III", and "IV"
Zcell.tct(Y,cls,type)
Zcell.tct(Y,cls,type,alt="g")
Zcell.tct(Y, cls,type,method="max")
Zcell.tct.ct(ct,covN)
Zcell.tct.ct(ct,covN,type)
Zcell.tct.ct(ct,covN,type,alt="g")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Zcell.tct(Y,cls,type)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
Zcell.tct(Y,cls,type)
Zcell.tct.ct(ct,covN,type)
```


Description

Two functions: Zdir.nnct.ct and Zdir. nnct.
Both functions are objects of class "htest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of equality of the expected value of the the difference between the phat estimates in a 2×2 NNCT to the one under RL or CSR (which is $-1 /(n-1)$) where phat estimates are N_{11} / n_{1} and N_{21} / n_{2}. That is, each performs directional (i.e. one-sided) tests based on the 2×2 NNCT (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan (2010) for more detail).

The one-sided (or directional) test has two types, specified with the type argument, with default type="II". The second type is $Z_{I I}=\left(T_{n}-E T_{n}\right) / \sqrt{\operatorname{Var}\left(T_{n}\right)}$ where $T_{n}=N_{11} / n_{1}-N_{21} / n_{2}$ (which is the difference between phat values) and the first type is $Z_{I}=U_{n} T_{n}$ where $U_{n}=$ $\sqrt{n_{1} n_{2} /\left(C_{1} C_{2}\right)}$. Each test is based on the normal approximation of the Z_{I} and $Z_{I I}$ based on the 2×2 NNCT and are due to (Ceyhan 2010).

Each function yields the test statistic, p-value for the corresponding alternative, the confidence interval, sample estimate (i.e. observed value) and null (i.e., expected) value for the difference in phat values which is $-1 /(n-1)$ for this function and method and name of the data set used.
The null hypothesis is that all $E\left[Z_{I I}\right]=0$ and $E\left[Z_{I}\right]$ converges to 0 as class sizes go to infinity (or T_{n} has mean equal to $-1 /(n-1)$ where n is the data size.

Usage

```
Zdir.nnct.ct(
    ct,
    covN,
    type = "II",
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
Zdir.nnct(
    dat,
    lab,
    type = "II",
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
    )
```


Arguments

ct	The NNCT, used in Zdir.nnct. ct only
covN	The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT type
The type of the directional (i.e. one-sided) test with default="II". Takes on val-	
ues "I" and "II" for types I and II directional tests (see the description above).	

Value

A list with the elements
statistic The Z test statistic for the directional (i.e. one-sided) test of segregation based on the NNCT

p.value conf.int	The p-value for the hypothesis test for the corresponding alternative Confidence interval for the difference in phat values in an NNCT at the given confidence level conf. level and depends on the type of alternative.
estimate	Estimate of the parameter, i.e., the observed difference in phat values in an NNCT.
null.value	Hypothesized null value for the difference in phat values in an NNCT which is $-1 /(n-1)$ for this function.
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method	Description of the hypothesis test
ct.name	Name of the contingency table, ct, returned by Zdir.nnct.ct only data. name

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "Directional clustering tests based on nearest neighbour contingency tables." Journal of Nonparametric Statistics, 22(5), 599-616.

See Also

Zdir.nnct.ss.ct, Zdir.nnct.ss, overall.nnct.ct and overall.nnct

Examples

```
n<-20
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
Zdir.nnct(Y,cls)
Zdir.nnct.ct(ct,covN)
Zdir.nnct(Y,cls,alt="g")
Zdir.nnct.ct(ct,covN,type="I",alt="l")
Zdir.nnct(Y,cls,method="max")
#cls as a factor
```

```
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
Zdir.nnct(Y,fcls)
Zdir.nnct.ct(ct,covN)
##############
ct<-matrix(1:4,ncol=2)
Zdir.nnct.ct(ct,covN) #gives an error message if ct is defined as ct<-matrix(1:9,ncol=3)
```

funsZdir.nnct.ss Directional Segregation Testfor Two Classes with Normal Approximation (for Sparse Sampling)

Description

Two functions: Zdir.nnct.ss.ct and Zdir.nnct.ss.
Both functions are objects of class "htest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of independence in the 2×2 NNCT which implies $Z_{P}=0$ or equivalently $N_{11} / n_{1}=N_{21} / n_{2} . Z_{P}=\left(N_{11} / n_{1}-N_{21} / n_{2}\right) \sqrt{n_{1} n_{2} n /\left(C_{1} C_{2}\right)}$ where $N_{i j}$ is the cell count in entry i, j, n_{i} is the sum of row i (i.e. size of class i), c_{j} is the sum of column j in the $2 \times 2 \mathrm{NNCT} ; N_{11} / n_{1}$ and N_{21} / n_{2} are also referred to as the phat estimates in row-wise binomial framework for 2×2 NNCT (see Ceyhan (2010)).

That is, each performs directional (i.e. one-sided) tests based on the 2×2 NNCT and is appropriate (i.e. have the appropriate asymptotic sampling distribution) when that data is obtained by sparse sampling. (See Ceyhan (2010) for more detail).
Each test is based on the normal approximation of Z_{P} which is the directional Z-tests for the chisquared tests of independence for the contingency tables (Bickel and Doksum 1977).
Each function yields the test statistic, p-value for the corresponding alternative, the confidence interval, sample estimate (i.e. observed value) and null (i.e., expected) value for the difference in the phat values (which is 0 for this test) in an NNCT, and method and name of the data set used.

The null hypothesis is that $E\left[Z_{P}\right]=0$ or equivalently $N_{11} / n_{1}=N_{21} / n_{2}$.

Usage

Zdir.nnct.ss.ct(
ct,
alternative = c("two.sided", "less", "greater"), conf.level = 0.95
)

Zdir.nnct.ss(
dat,
lab,

```
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

ct The NNCT, used in Zdir.nnct.ss.ct only
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the confidence limits, default is 0.95 , for the difference in phat values in the NNCT
dat The data set in one or higher dimensions, each row corresponds to a data point, used in Zdir.nnct.ss only
lab The vector of class labels (numerical or categorical), used in Zdir.nnct.ss only
... are for further arguments, such as method and p, passed to the dist function. used in Zdir. nnct. ss only

Value

A list with the elements

statistic	The Z test statistic for the directional (i.e. one-sided) test of segregation based on the NNCT
p.value	The p-value for the hypothesis test for the corresponding alternative
conf.int	Confidence interval for the difference in phat values in the NNCT at the given confidence level conf.level and depends on the type of alternative.
estimate	Estimate of the parameter, i.e., the observed difference in phat values in the NNCT.
null.value	Hypothesized null value for the difference in phat values in the NNCT which is 0 for this function.
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method	Description of the hypothesis test
ct.name	Name of the contingency table, ct, returned by Zdir.nnct.ss.ct only
data.name	Name of the data set, dat, returned by Zdir.nnct.ss only

Author(s)

Elvan Ceyhan

References

Bickel PJ, Doksum AK (1977). Mathematical Statistics, Basic Ideas and Selected Topics. Prentice Hall, Englewood Cliffs, NJ.

Ceyhan E (2010). "Directional clustering tests based on nearest neighbour contingency tables." Journal of Nonparametric Statistics, 22(5), 599-616.

See Also

Zdir.nnct.ct, Zdir.nnct, Pseg.ss.ct and Pseg.ss

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
Zdir.nnct.ss(Y,cls)
Zdir.nnct.ss.ct(ct)
Zdir.nnct.ss(Y,cls,alt="g")
Zdir.nnct.ss(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
Zdir.nnct.ss(Y,fcls)
Zdir.nnct.ss.ct(ct)
##############
ct<-matrix(1:4,ncol=2)
Zdir.nnct.ss.ct(ct) #gives an error message if ct<-matrix(1:9,ncol=3)
```

funsZmixed.nonref Mixed-Non-Reflexivity Test with Normal Approximation

Description

Two functions: Zmixed.nonref.ct and Zmixed. nonref.
Both functions are objects of class "htest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of mixed non-reflexivity in the NN structure using the number of mixed-non-reflexive NN pairs (i.e. the second diagonal entry, $(2,2)$) in the RCT for
$k \geq 2$ classes. That is, each test performs a test of mixed non-reflexivity corresponding to entry $(2,2)$ in the RCT) which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan and Bahadir (2017) for more detail).
The mixed non-reflexivity test is based on the normal approximation of the diagonal entry $(2,2)$ in the RCT and are due to Ceyhan and Bahadir (2017).

Each function yields the test statistic, p-value for the corresponding alternative, the confidence interval, sample estimate (i.e. observed value) and null (i.e., expected) value for the mixed nonreflexivity value (i.e., diagonal entry $(2,2)$ value, respectively) in the RCT, and method and name of the data set used.
The null hypothesis is that $E\left(N_{22}\right)=R P_{a b}$ in the RCT, where R is the number of reflexive NNs and $P_{a b}$ is the probability of any two points selected are being from two different classes.

```
Usage
    Zmixed.nonref.ct(
        rfct,
        nvec,
        Qv,
    Tv,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
    Zmixed.nonref(
        dat,
        lab,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

rfct An RCT, used in Zmixed.nonref.ct only
nvec The vector of class sizes, used in Zmixed. nonref.ct only
Qv The number of shared NNs, used in Zmixed. nonref.ct only
Tv $\quad T$ value, which is the number of triplets $\left(z_{i}, z_{j}, z_{k}\right)$ with " $N N\left(z_{i}\right)=N N\left(z_{j}\right)=$ z_{k} and $N N\left(z_{k}\right)=z_{j}$ where $N N(\cdot)$ is the nearest neighbor function, used in Zmixed.nonref.ct only.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for the difference of the off-diagonal entries, $N_{12}-N_{21}$
dat The data set in one or higher dimensions, each row corresponds to a data point, used in Zmixed. nonref only
lab The vector of class labels (numerical or categorical), used in Zmixed. nonref only
are for further arguments, such as method and p, passed to the dist function. used in Zmixed. nonref only

Value

A list with the elements

statistic	The Z test statistic for mixed non-reflexivity corresponding to entry $(2,2)$ in the RCT
p.value	The p-value for the hypothesis test for the corresponding alternative
conf.int	Confidence interval for the mixed non-reflexivity value (i.e., diagonal entry $(2,2)$ value) in the RCT at the given confidence level conf. level and depends on the type of alternative.
estimate	Estimate of the parameter, i.e., the observed diagonal entry $(2,2)$ in the RCT, rfct.
null.value	Hypothesized null value for the mixed non-reflexivity value (i.e., expected value of the diagonal entry $(2,2)$ which is $\left.E\left(N_{22}\right)=R P_{a b}\right)$ in the RCT.
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method	Description of the hypothesis test
ct. name	Name of the contingency table, rfct, returned by Zmixed. nonref.ct only
data. name	Name of the data set, dat, returned by Zmixed. nonref only

Author(s)

Elvan Ceyhan

References

Ceyhan E, Bahadir S (2017). "Nearest Neighbor Methods for Testing Reflexivity." Environmental and Ecological Statistics, 24(1), 69-108.

See Also

Zself.ref.ct, Zself.ref, Znnref.ct and Znnref

Examples

```
n<-20
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
R<-Rval(W)
```

```
Tv<-Tval(W,R)
nvec<-as.numeric(table(cls))
rfct<-rct(ipd,cls)
Zmixed.nonref(Y,cls)
Zmixed.nonref.ct(rfct,nvec,Qv,Tv)
Zmixed.nonref(Y,cls,alt="g")
Zmixed.nonref(Y,cls,method="max")
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
R<-Rval(W)
Tv<-Tval(W,R)
nvec<-as.numeric(table(cls))
rfct<-rct(ipd,cls)
Zmixed.nonref(Y,cls,alt="g")
Zmixed.nonref.ct(rfct,nvec,Qv,Tv)
Zmixed.nonref.ct(rfct,nvec,Qv,Tv,alt="l")
```

funsZnnref Z Tests for NN Reflexivity

Description

Two functions: Znnref.ct and Znnref.
Both functions are objects of class "refhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of equality of the expected values of the diagonal cell counts (i.e., entries) under RL or CSR in the RCT for $k \geq 2$ classes. That is, each test performs NN reflexivity test (i.e., a test of self reflexivity and a test of mixed non-reflexivity, corresponding to entries $(1,1)$ and $(2,2)$, respectively, in the RCT) which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan and Bahadir (2017) for more detail).
The reflexivity test is based on the normal approximation of the diagonal entries in the RCT and are due to Ceyhan and Bahadir (2017).

Each function yields the test statistics, p-values for the corresponding alternative, expected values (i.e. null value(s)), confidence intervals and sample estimates (i.e. observed values)for the self
reflexivity and mixed non-reflexivity values (i.e., entries $(1,1)$ and $(2,2)$ values, respectively) in the RCT. Each function also gives names of the test statistics, null values and the method and the data set used.
The null hypothesis is that $E\left(N_{11}\right)=R P_{a a}$ and $E\left(N_{22}\right)=R P_{a b}$ in the RCT, where R is the number of reflexive NNs and $P_{a a}$ is the probability of any two points selected are being from the same class and $P_{a b}$ is the probability of any two points selected are being from two different classes.

The $Z n n r e f$ functions (i.e. Znnref.ct and $Z n n r e f$) are different from the Znnself functions (i.e. Znnself.ct and Znnself) and from Zself.ref functions (i.e. Zself.ref.ct and Zself.ref), and also from Znnself. sum functions (i.e. Znnself. sum.ct and Znnself. sum). Znnref functions are for testing the self reflexivity and mixed non-reflexivity using the diagonal entries in the RCT while Znnself functions are testing the self reflexivity at a class-specific level (i.e. for each class) using the first column in the SCCT, and Zself. ref functions are for testing the self reflexivity for the entire data set using entry $(1,1)$ in RCT, and Znnself. sum functions are testing the cumulative species correspondence using the sum of the self column (i.e., the first column) in the SCCT.

Usage

```
Znnref.ct(
    rfct,
    nvec,
    Qv,
    Tv,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
Znnref(
    dat,
    lab,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

rfct An RCT, used in Znnref.ct only
nvec The vector of class sizes, used in Znnref.ct only
Qv The number of shared NNs, used in Znnref.ct only
Tv T value, which is the number of triplets $\left(z_{i}, z_{j}, z_{k}\right)$ with " $N N\left(z_{i}\right)=N N\left(z_{j}\right)=$ z_{k} and $N N\left(z_{k}\right)=z_{j}$ where $N N(\cdot)$ is the nearest neighbor function, used in Znnref.ct only.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for the difference of the off-diagonal entries, $N_{12}-N_{21}$

dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Znnref only
lab	The vector of class labels (numerical or categorical), used in Znnref only
\ldots	are for further arguments, such as method and p, passed to the dist function, used in Znnref only

Value

A list with the elements

statistic	The Z test statistics for self reflexivity and mixed non-reflexivity, corresponding to entries $(1,1)$ and $(2,2)$ in the RCT
stat.names	Name of the test statistics
p.value	The p-values for self reflexivity and mixed non-reflexivity tests
conf.int	Confidence intervals for the self reflexivity and mixed non-reflexivity values (i.e., diagonal entries $(1,1)$ and $(2,2)$ values, respectively) in the RCT at the given confidence level conf. level and depends on the type of alternative.
cnf.lvl	Level of the onfidence intervals of the diagonal entries, provided in conf. level.
estimate	Estimates of the parameters, i.e., the observed diagonal entries $(1,1)$ and $(2,2)$ in the RCT, rfct.
null.value	Hypothesized null values for the self reflexivity and mixed non-reflexivity values (i.e., expected values of the diagonal entries $(1,1)$ and $(2,2)$ values, which are $E\left(N_{11}\right)=R P_{a a}$ and $E\left(N_{22}\right)=R P_{a b}$, respectively) in the RCT.
null.name	Name of the null values
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method	Description of the hypothesis test
ct.name	Name of the contingency table, rfct, returned by Znnref.ct only
data.name	Name of the data set, dat, returned by Znnref only

Author(s)

Elvan Ceyhan

References

Ceyhan E, Bahadir S (2017). "Nearest Neighbor Methods for Testing Reflexivity." Environmental and Ecological Statistics, 24(1), 69-108.

See Also

Znnself.ct, Znnself, Zmixed.nonref.ct, Zmixed.nonref, Xsq.nnref.ct and Xsq.nnref

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
Tv<-Tval(W,Rv)
nvec<-as.numeric(table(cls))
rfct<-rct(ipd,cls)
Znnref(Y,cls)
Znnref(Y,cls,method="max")
Znnref.ct(rfct,nvec,Qv,Tv)
Znnref.ct(rfct,nvec,Qv,Tv,alt="g")
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
R<-Rval(W)
Tv<-Tval(W,R)
nvec<-as.numeric(table(cls))
rfct<-rct(ipd,cls)
Znnref(Y,cls,alt="g")
Znnref.ct(rfct,nvec,Qv,Tv)
Znnref.ct(rfct,nvec,Qv,Tv,alt="l")
```

funsZnnself Self-Reflexivity Tests with Normal Approximation

Description

Two functions: Znnself.ct and Znnself.
Both functions are objects of class "cellhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of equality of the expected values of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or the expected values of
the diagonal entries $N_{i i}$ in an NNCT to the ones under RL or CSR. That is, each performs NN self reflexivity for each class test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. NN self reflexivity is for each class can be viewed as a decomposition of species correspondence for each class. (See Ceyhan (2018) for more detail).
Each test is based on the normal approximation of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or the diagonal entries $N_{i i}$ in an NNCT and are due to (Ceyhan 2018).

Each function yields a vector of length k of the test statistics, p-values for the corresponding alternative, null values (i.e. expected values), sample estimates (i.e. observed values) of self entries in the SCCT or diagonal entries in the NNCT, a $k \times 2$ matrix of confidence intervals (where each row is the confidence interval for self entry S_{i} in the SCCT or diagonal entry $N_{i i}$ in the NNCT) and also names of the test statistics, estimates, null values and the method and the data set used.
The null hypothesis is that all $E\left[S_{i}\right]=E\left[N_{i i}\right]=n_{i}\left(n_{i}-1\right) /(n-1)$ where n_{i} is the size of class i and n is the data size.
The Znnself functions (i.e. Znnself.ct and Znnself) are different from the Znnref functions (i.e. Znnref.ct and Znnref) and from Zself.ref functions (i.e. Zself.ref.ct and Zself.ref) and also from Znnself. sum functions (i.e. Znnself. sum.ct and Znnself. sum). Znnself functions are testing the self reflexivity at a class-specific level (i.e. for each class) using the first column in the SCCT, while Zself.ref functions are for testing the self reflexivity for the entire data set using entry $(1,1)$ in RCT, and Znnref functions are for testing the self reflexivity and mixed non-reflexivity using the diagonal entries in the RCT, and Znnself. sum functions are testing the cumulative species correspondence using the sum of the self column (i.e., the first column) in the SCCT.

```
Usage
    Znnself.ct(
    ct,
    VarNii,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
Znnself(
    dat,
    lab,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

$$
\mathrm{ct}
$$

ct
The NNCT or SCCT, used in Znnself.ct only
VarNii The variance vector of differences of self entries in the SCCT or diagonal entries in the NNCT, used in Znnself.ct only
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".

conf.level	Level of the upper and lower confidence limits, default is 0.95, for the self entries in the SCCT or diagonal entries in the NNCT
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Znnself only
lab	The vector of class labels (numerical or categorical), used in Znnself only are for further arguments, such as method and p, passed to the dist function. used in Znnself only

Value

A list with the elements

statistic	The vector (of length k) of Z test statistics for NN self reflexivity test
stat.names	Name of the test statistics
p.value	The vector of p-values for the hypothesis test for the corresponding alternative
LCL, UCL	Lower and Upper Confidence Levels, it is NULL here since we provide confidence intervals as a $k \times 2$ matrix.
conf.int	The $k \times 2$ matrix of confidence intervals for the estimates, (where each row is the confidence interval for self entry S_{i} in the SCCT or diagonal entry $N_{i i}$ in the NNCT).
cnf.lvl	Level of the confidence intervals (i.e., conf.level) for the self entries in the SCCT or diagonal entries in the NNCT.
estimate	The vector of estimates of the parameters, i.e., observed values of self entries in the SCCT or diagonal entries in the NNCT.
est.name, est.name2	
	Names of the estimates, both are same in this function.
null.value	The vector of null values of the parameters, i.e., expected values of self entries in the SCCT or diagonal entries in the NNCT under RL or CSR.
null. name	Name of the null values
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method	Description of the hypothesis test
ct. name	Name of the contingency table, ct, returned by Znnself.ct only
data. name	Name of the data set, dat, returned by Znnself only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2018). "A contingency table approach based on nearest neighbor relations for testing self and mixed correspondence." SORT-Statistics and Operations Research Transactions, 42(2), 125-158.

See Also

```
Zself.ref.ct, Zself.ref, Znnref.ct, Znnref, Xsq.spec.cor and Xsq.spec.cor.ct
```


Examples

```
n<-20
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
VarN.diag<-varNii.ct(ct,Qv,Rv)
Znnself(Y,cls)
Znnself(Y,cls,alt="g")
Znnself.ct(ct,VarN.diag)
Znnself.ct(ct,VarN.diag,alt="g")
Znnself(Y,cls,method="max")
ct<-scct(ipd,cls)
Znnself.ct(ct,VarN.diag)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
Znnself(Y,fcls)
Znnself.ct(ct,VarN.diag)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
VarN.diag<-varNii.ct(ct,Qv,Rv)
Znnself(Y,cls,alt="l")
Znnself.ct(ct,VarN.diag)
Znnself.ct(ct,VarN.diag,alt="l")
```


Description

Two functions: Znnself. sum.ct and Znnself.sum.
Both functions are objects of class "htest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of equality of the expected value of the sum of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or the expected values of the sum of the diagonal entries $N_{i i}$ in an NNCT to the one under RL or CSR. That is, each performs a cumulative species correspondence test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan (2018) for more detail).
Each test is based on the normal approximation of the sum of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or the sum of the diagonal entries $N_{i i}$ in an NNCT and are due to (Ceyhan 2018).

Each function yields the test statistic, p-value for the corresponding alternative, the confidence interval, sample estimate (i.e. observed value) and null (i.e., expected) value for the sum of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or the sum of the diagonal entries $N_{i i}$ in an NNCT, and method and name of the data set used.
The null hypothesis is that all $E[S]=\sum_{i=1}^{k} n_{i}\left(n_{i}-1\right) /(n-1)$ where S is the sum of the self column in the SCCT, n_{i} is the size of class i and n is the data size.

The Znnself.sum functions (i.e. Znnself.sum.ct and Znnself.sum) are different from the Znnself functions (i.e. Znnself.ct and Znnself), and from the Znnref functions (i.e. Znnref.ct and Znnref) and also from Zself.ref functions (i.e. Zself.ref.ct and Zself.ref). Znnself.sum functions are testing the cumulative species correspondence using the sum of the self column (i.e., the first column) in the SCCT, while Znnself functions are testing the self reflexivity at a classspecific level (i.e. for each class) using the first column in the SCCT, while Zself.ref functions are for testing the self reflexivity for the entire data set using entry $(1,1)$ in RCT, and Znnref functions are for testing the self reflexivity and mixed non-reflexivity using the diagonal entries in the RCT.

Usage

```
Znnself.sum.ct(
    ct,
    covSC,
    nnct = FALSE,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
Znnself.sum(
    dat,
    lab,
```

```
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

ct	The NNCT or SCCT, used in Znnself. sum. ct only
covSC	The covariance matrix for the self entries (i.e. first column) in the SCCT or the diagonal entries in the NNCT, used in Znnself.sum. ct only. Usually output of the functions covNii.ct or covNii.
nnct	A logical parameter (default=FALSE). If TRUE, x is taken to be the $k \times k$ NNCT, and if FALSE, x is taken to be the IPD matrix, used in Znnself. sum.ct only
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level	Level of the upper and lower confidence limits, default is 0.95 , for the self entries in the SCCT or diagonal entries in the NNCT
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Znnself. sum only
lab	The vector of class labels (numerical or categorical), used in Znnself.sum only
	are for further arguments, such as method and p, passed to the dist function. used in Znnself. sum only

Value

A list with the elements

statistic p.value conf.int	The Z test statistic for the overall species correspondence test The p-value for the hypothesis test for the corresponding alternative Confidence interval for the sum of the self entries (i.e. first column) in a species correspondence contingency table (SCCT) or the sum of the diagonal entries
$N_{i i}$ in an NNCT at the given confidence level conf. level and depends on the	
type of alternative.	
Estimate of the parameter, i.e., the observed sum of the self entries (i.e. first	
column) in a species correspondence contingency table (SCCT) or the sum of	
the diagonal entries $N_{i i}$ in an NNCT.	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2018). "A contingency table approach based on nearest neighbor relations for testing self and mixed correspondence." SORT-Statistics and Operations Research Transactions, 42(2), 125-158.

See Also

Znnself.ct, Znnself, Znnref.ct, Znnref, Zself.ref.ct and Zself.ref

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-scct(ipd,cls)
ct
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
vsq<-varNii.ct(ct,Qv,Rv)
cv<-covNii.ct(ct,vsq,Qv,Rv)
Znnself.sum(Y,cls)
Znnself.sum.ct(ct,cv)
Znnself.sum.ct(ct,cv,alt="g")
Znnself.sum(Y,cls,method="max")
ct<-nnct(ipd,cls)
Znnself.sum.ct(ct,cv,nnct = TRUE)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
ct<-scct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
vsq<-varNii.ct(ct,Qv,Rv)
cv<-covNii.ct(ct,vsq,Qv,Rv)
```

```
Znnself.sum(Y,cls)
Znnself.sum.ct(ct,cv)
Znnself.sum.ct(ct,cv,alt="g")
ct<-nnct(ipd,cls)
Znnself.sum.ct(ct,cv,nnct = TRUE)
Znnself.sum(Y,cls,alt="g")
```

funsZnnsym.dx Dixon's Pairwise NN Symmetry Test with Normal Approximation

Description

Two functions: Znnsym.dx.ct and Znnsym.dx.
Both functions are objects of class "cellhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of equality of the expected values of the off-diagonal cell counts (i.e., entries) for each pair i, j of classes under RL or CSR in the NNCT for $k \geq 2$ classes. That is, each performs Dixon's NN symmetry test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Dixon (1994); Ceyhan (2014) for more detail).
Each symmetry test is based on the normal approximation of the difference of the off-diagonal entries in the NNCT and are due to Dixon (1994).
Each function yields a contingency table of the test statistics, p-values for the corresponding alternative, expected values (i.e. null value(s)), lower and upper confidence levels and sample estimates (i.e. observed values) for the $N_{i j}-N_{j i}$ values for $i \neq j$ (all in the upper-triangular form except for the null value, which is 0 for all pairs) and also names of the test statistics, estimates, null values and the method and the data set used.
The null hypothesis is that all $E\left(N_{i j}\right)=E\left(N_{j i}\right)$ for $i \neq j$ in the $k \times k$ NNCT (i.e., symmetry in the mixed NN structure) for $k \geq 2$. In the output, the test statistic, p-value and the lower and upper confidence limits are valid for completely mapped data.
See also (Dixon (1994); Ceyhan (2014)) and the references therein.

Usage

Znnsym.dx.ct(ct,
varS,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95
)
Znnsym.dx(

```
    dat,
    lab,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

ct	A nearest neighbor contingency table, used in Znnsym.dx.ct only
vars	The variance vector of differences of off-diagonal cell counts in NNCT, ct, usually output of var.nnsym function.
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level	Level of the upper and lower confidence limits, default is 0.95, for the difference of the off-diagonal entries, $N_{i j}-N_{j i}$
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Znnsym. dx only
lab	The vector of class labels (numerical or categorical), used in Znnsym. dx only are for further arguments, such as method and p, passed to the dist function. used in Znnsym.dx only

Value

A list with the elements

statistic	The matrix of Z test statistics for Dixon's NN symmetry test (in the uppertriangular form)
stat.names	Name of the test statistics
p.value	The matrix of p-values for the hypothesis test for the corresponding alternative (in the upper-triangular form)
LCL, UCL	Matrix of Lower and Upper Confidence Levels (in the upper-triangular form) for the $N_{i j}-N_{j i}$ values for $i \neq j$ at the given confidence level conf. level and depends on the type of alternative.
conf.int	The confidence interval for the estimates, it is NULL here, since we provide the UCL and LCL in matrix form.
cnf.lvl	Level of the upper and lower confidence limits (i.e., conf.level) of the differences of the off-diagonal entries.
estimate	Estimates of the parameters, i.e., matrix of the difference of the off-diagonal entries (in the upper-triangular form) of the $k \times k$ NNCT, $N_{i j}-N_{j i}$ for $i \neq j$.
est.name, est.name2	
	Names of the estimates, former is a shorter description of the estimates than the latter.
null.value	Hypothesized null value for the expected difference between the off-diagonal entries, $E\left(N_{i j}\right)-E\left(N_{j i}\right)$ for $i \neq j$ in the $k \times k$ NNCT, which is 0 for this function.

null.name	Name of the null values alternative
Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"	
method	Description of the hypothesis test
ct.name	Name of the contingency table, ct, returned by Znnsym.dx.ct only
data.name	Name of the data set, dat, returned by Znnsym.dx only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

See Also

Znnsym2cl.dx.ct, Znnsym2cl.dx, Znnsym.ss.ct, Znnsym.ss, Xsq.nnsym.dx.ct and Xsq.nnsym.dx

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
varS<-var.nnsym(covN)
Znnsym.dx(Y,cls)
Znnsym.dx.ct(ct,varS)
Znnsym.dx(Y,cls,method="max")
Znnsym.dx(Y,cls,alt="g")
Znnsym.dx.ct(ct,varS,alt="g")
#cls as a factor
na<-floor(n/2); nb<-n-na
```

```
fcls<-rep(c("a","b"),c(na,nb))
Znnsym.dx(Y,fcls)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
varS<-var.nnsym(covN)
Znnsym.dx(Y,cls)
Znnsym.dx.ct(ct,varS)
```

Pielou's Pairwise NN Symmetry Test with Normal Approximation (for Sparse Sampling)

Description

Two functions: Znnsym. ss.ct and Znnsym.ss.
Both functions are objects of class "cellhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of equality of the expected values of the off-diagonal cell counts (i.e., entries) for each pair i, j of classes under RL or CSR in the NNCT for $k \geq 2$ classes. That is, each performs Pielou's first type of NN symmetry test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) provided that data is obtained by sparse sampling. (See Ceyhan (2014) for more detail).
Each symmetry test is based on the normal approximation of the differences of the off-diagonal entries in the NNCT and are due to Pielou (1961).

Each function yields a contingency table of the test statistics, p-values for the corresponding alternative, expected values, lower and upper confidence levels, sample estimates (i.e. observed values) and null value(s) (i.e. expected values) for the $N_{i j}-N_{j i}$ values for $i \neq j$ (all in the upper-triangular form except for the null value, which is 0 for all pairs) and also names of the test statistics, estimates, null values and the method and the data set used.

The null hypothesis is that all $E\left(N_{i j}\right)=E\left(N_{j i}\right)$ for $i \neq j$ in the $k \times k$ NNCT (i.e., symmetry in the mixed NN structure) for $k \geq 2$. In the output, the test statistic, p-value and the lower and upper confidence limits are valid only for (properly) sparsely sampled data.
See also (Pielou (1961); Ceyhan (2014)) and the references therein.

Usage

```
Znnsym.ss.ct(
    ct,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
    Znnsym.ss(
        dat,
        lab,
        alternative = c("two.sided", "less", "greater"),
        conf.level = 0.95,
    )
```


Arguments

ct	A nearest neighbor contingency table, used in Znnsym.ss.ct only
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf. level	Level of the upper and lower confidence limits, default is 0.95, for the difference of the off-diagonal entries, $N_{i j}-N_{j i}$
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Znnsym. ss only
lab	The vector of class labels (numerical or categorical), used in Znnsym. ss only are for further arguments, such as method and p, passed to the dist function. used in Znnsym.ss only

Value

A list with the elements
statistic The matrix of Z test statistics for Pielou's first type of NN symmetry test (in the upper-triangular form)
stat.names Name of the test statistics
p.value The matrix of p-values for the hypothesis test for the corresponding alternative (in the upper-triangular form)
LCL, UCL Matrix of Lower and Upper Confidence Levels (in the upper-triangular form) for the $N_{i j}-N_{j i}$ values for $i \neq j$ at the given confidence level conf. level and depends on the type of alternative.
conf.int The confidence interval for the estimates, it is NULL here, since we provide the UCL and LCL in matrix form.
cnf.lvl Level of the upper and lower confidence limits (i.e., conf.level) of the differences of the off-diagonal entries.
estimate Estimates of the parameters, i.e., matrix of the difference of the off-diagonal entries (in the upper-triangular form) of the $k \times k$ NNCT, $N_{i j}-N_{j i}$ for $i \neq j$.
est.name, est.name2
Names of the estimates, former is a shorter description of the estimates than the latter.
null.value Hypothesized null value for the expected difference between the off-diagonal entries, $E\left(N_{i j}\right)-E\left(N_{j i}\right)$ for $i \neq j$ in the $k \times k$ NNCT, which is 0 for this function.
null. name Name of the null values
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
ct. name Name of the contingency table, ct, returned by Znnsym.ss.ct only
data.name Name of the data set, dat, returned by Znnsym. ss only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

Znnsym.dx.ct, Znnsym.dx, Znnsym2cl.ss.ct and Znnsym2cl.ss

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
Znnsym.ss(Y,cls)
Znnsym.ss.ct(ct)
Znnsym.ss(Y, cls,method="max")
Znnsym.ss(Y,cls,alt="g")
Znnsym.ss.ct(ct,alt="g")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a", "b"),c(na,nb))
```

```
Znnsym.ss(Y,fcls)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
Znnsym.ss(Y,cls)
Znnsym.ss.ct(ct)
```

funsZnnsym2cl.dx | Dixon's NN Symmetry Test with Normal Approximation for Two |
| :--- |
| Classes |

Description

Two functions: Znnsym2cl.dx.ct and Znnsym2cl.dx.
Both functions are objects of class "htest" but with different arguments (see the parameter list below). Each one performs the hypothesis test of equality of the expected value of the off-diagonal cell counts (i.e., entries) under RL or CSR in the NNCT for $k=2$ classes. That is, each performs Dixon's NN symmetry test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan (2014) for more detail).
Each symmetry test is based on the normal approximation of the difference of the off-diagonal entries in the NNCT and are due to Dixon (1994).

Each function yields the test statistic, p-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is the difference of the offdiagonal entries in the NNCT), and method and name of the data set used.
The null hypothesis is that all $E\left(N_{12}\right)=E\left(N_{21}\right)$ in the 2×2 NNCT (i.e., symmetry in the mixed NN structure).
See also (Dixon (1994); Ceyhan (2014)) and the references therein.

Usage

Znnsym2cl.dx.ct(
ct,
Q,
R,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95
)

Znnsym2cl.dx(
dat,

```
    lab,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

ct	A nearest neighbor contingency table, used in Znnsym2cl.dx.ct only
Q	The number of shared NNs, used in Znnsym2cl.dx.ct only
R	The number of reflexive NNs (i.e., twice the number of reflexive NN pairs), used in Znnsym2cl.dx.ct only
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level	Level of the upper and lower confidence limits, default is 0.95, for the difference of the off-diagonal entries, $N_{12}-N_{21}$
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Znnsym2cl.dx only
lab	The vector of class labels (numerical or categorical), used in Znnsym2cl.dx only are for further arguments, such as method and p, passed to the dist function. used in Znnsym2cl.dx only

Value

A list with the elements

statistic	The Z test statistic for Pielou's first type of NN symmetry test
p.value	The p-value for the hypothesis test for the corresponding alternative
conf.int	Confidence interval for the difference of the off-diagonal entries, $N_{12}-N_{21}$ in the 2×2 NNCT at the given confidence level conf.level and depends on the type of alternative.
estimate	Estimate, i.e., the difference of the off-diagonal entries of the $2 \times 2 \mathrm{NNCT}$, $N_{12}-N_{21}$.
null.value	Hypothesized null value for the expected difference between the off-diagonal entries, $E\left(N_{12}\right)-E\left(N_{21}\right)$ in the 2×2 NNCT, which is 0 for this function.
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method	Description of the hypothesis test data.name

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

See Also

Znnsym2cl.ss.ct, Znnsym2cl.ss, Znnsym.dx.ct, Znnsym.dx, Xsq.nnsym.dx.ct and Xsq.nnsym.dx

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
Znnsym2cl.dx(Y,cls)
Znnsym2cl.dx.ct(ct,Qv,Rv)
Znnsym2cl.dx(Y,cls,method="max")
Znnsym2cl.dx(Y,cls,alt="g")
Znnsym2cl.dx.ct(ct,Qv,Rv,alt="g")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Znnsym2cl.dx(Y,fcls)
#############
ct<-matrix(sample(1:20,4),ncol=2)
Znnsym2cl.dx.ct(ct,Qv,Rv) #gives an error message if ct<-matrix(sample(1:20,9),ncol=3)
#here, Qv and Rv values are borrowed from above, to highlight a point
```


Description

Two functions: Znnsym2cl.ss.ct and Znnsym2cl.ss.
Both functions are objects of class "htest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of equality of the expected value of the off-diagonal cell counts (i.e., entries) under RL or CSR in the NNCT for $k=2$ classes. That is, each performs Pielou's first type of NN symmetry test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) provided that data is obtained by sparse sampling. (See Ceyhan (2014) for more detail).

Each symmetry test is based on the normal approximation of the difference of the off-diagonal entries in the NNCT and are due to Pielou (1961).
Each function yields the test statistic, p-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is the difference of the offdiagonal entries in the NNCT), and method and name of the data set used.

The null hypothesis is that $E\left(N_{12}\right)=E\left(N_{21}\right)$ in the 2×2 NNCT (i.e., symmetry in the mixed NN structure). In the output, the test statistic, p-value and the confidence interval are valid only for (properly) sparsely sampled data.
See also (Pielou (1961); Ceyhan (2014)) and the references therein.

Usage

```
Znnsym2cl.ss.ct(
    ct,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
    Znnsym2cl.ss(
        dat,
        lab,
        alternative = c("two.sided", "less", "greater"),
        conf.level = 0.95,
    )
```


Arguments

ct A nearest neighbor contingency table, used in Znnsym2cl.ss.ct only
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for the difference of the off-diagonal entries, $N_{12}-N_{21}$
dat The data set in one or higher dimensions, each row corresponds to a data point, used in Znnsym2cl.ss only
lab The vector of class labels (numerical or categorical), used in Znnsym2cl.ss only
... are for further arguments, such as method and p, passed to the dist function. used in Znnsym2cl.ss only

Value

A list with the elements
statistic The Z test statistic for Pielou's first type of NN symmetry test
p.value The p-value for the hypothesis test for the corresponding alternative
conf.int Confidence interval for the difference of the off-diagonal entries, $N_{12}-N_{21}$ in the 2×2 NNCT at the given confidence level conf. level and depends on the type of alternative.
estimate Estimate, i.e., the difference of the off-diagonal entries of the 2×2 NNCT, $N_{12}-N_{21}$.
null.value Hypothesized null value for the expected difference between the off-diagonal entries, $E\left(N_{12}\right)-E\left(N_{21}\right)$ in the 2×2 NNCT, which is 0 for this function.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
data.name Name of the data set, dat, or name of the contingency table, ct

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

Xsq.nnsym.ss.ct, Xsq.nnsym.ss, Znnsym.ss.ct and Znnsym.ss

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
Znnsym2cl.ss(Y,cls)
Znnsym2cl.ss.ct(ct)
```

```
Znnsym2cl.ss(Y,cls,method="max")
Znnsym.ss.ct(ct)
Znnsym2cl.ss(Y,cls,alt="g")
Znnsym2cl.ss.ct(ct,alt="g")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Znnsym2cl.ss(Y,fcls)
#############
ct<-matrix(sample(1:20,4),ncol=2)
Znnsym2cl.ss.ct(ct) #gives an error message if ct<-matrix(sample(1:20,9),ncol=3)
```

funsZseg.coeff Z Tests for Segregation Coefficients

Description

Two functions: Zseg.coeff.ct and Zseg. coeff.
Both functions are objects of class "cellhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of deviations of segregation coefficients from their expected values under RL or CSR for each segregation coefficient in the NNCT.
The test for each cell i, j is based on the normal approximation of the corresponding segregation coefficient. That is, each performs the segregation coefficient tests which are appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. The segregation coefficients in the multi-class case are the extension of Pielou's segregation coefficient for the twoclass case. (See Ceyhan (2014) for more detail).
Each function yields a contingency table of the test statistics, p-values for the corresponding alternative, lower and upper confidence levels, sample estimates (i.e. observed values) and null value (i.e. expected value, which is 0) for the segregation coefficients and also names of the test statistics, estimates, null value and the method and the data set used.
The null hypothesis for each cell i, j is that the corresponding segregation coefficient equal to the expected value (which is 0) under RL or CSR.
See also (Ceyhan (2014)).

Usage

```
Zseg.coeff.ct(
    ct,
    VarSC,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
```

```
Zseg.coeff(
    dat,
    lab,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
    ...
)
```


Arguments

ct	A nearest neighbor contingency table, used in Zseg. coeff.ct only
VarSC	The variance matrix for the segregation coefficients in the NNCT, ct ; used in Zseg.coeff.ct only
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level	Level of the upper and lower confidence limits, default is 0.95, for the segrega- tion coefficients
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Zseg. coeff only
lab	The vector of class labels (numerical or categorical), used in Zseg. coeff only are for further arguments, such as method and p, passed to the dist function. used in Zseg.coeff only

Value

A list with the elements
statistic The matrix of test statistics for the segregation coefficients
stat.names Name of the test statistics
p.value The matrix of p-values for the hypothesis test for the corresponding alternative

LCL , UCL Matrix of Lower and Upper Confidence Levels for the segregation coefficients at the given confidence level conf. level and depends on the type of alternative.
conf.int Confidence interval for segregation coefficients, it is NULL here since we provide the upper and lower confidence limits as $k \times k$ matrices.
cnf.lvl Level of the upper and lower confidence limits of the segregation coefficients, provided in conf. level.
estimate Estimate of the parameter, i.e., matrix of the observed segregation coefficients est.name, est.name2

Names of the estimates, both are same in this function
null.value Hypothesized null values for the parameters, i.e. expected values of the segregation coefficients, which are all 0 under RL or CSR.
null. name Name of the null value
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater"

method	Description of the hypothesis test
ct. name	Name of the contingency table, ct, returned by Zseg.coeff.ct only
data.name	Name of the data set, dat, returned by Zseg.coeff only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

seg.coeff and Zseg.ind

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
varT<-var.seg.coeff(ct,covN)
Zseg.coeff(Y,cls)
Zseg.coeff.ct(ct,varT)
Zseg.coeff(Y,cls,method="max")
Zseg.coeff(Y,cls,alt="g")
Zseg.coeff.ct(ct,varT,alt="g")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
Zseg.coeff.ct(ct,varT)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
```

```
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
varT<-var.seg.coeff(ct,covN)
Zseg.coeff(Y,cls)
Zseg.coeff.ct(ct,varT)
Zseg.coeff(Y,cls,alt="g")
Zseg.coeff.ct(ct,varT,alt="g")
```

funsZsegind Z Tests for Segregation Indices

Description

Two functions: Zseg.ind.ct and Zseg.ind.
Both functions are objects of class "cellhtest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of deviations of segregation indices from their expected values under RL or CSR for each segregation index in the NNCT. The test for each cell i, j is based on the normal approximation of the corresponding segregation index.
Each function yields a contingency table of the test statistics, p-values for the corresponding alternative, lower and upper confidence levels, sample estimates (i.e. observed values) and null value(s) (i.e. expected values) for the segregation indices and also names of the test statistics, estimates, null value and the method and the data set used.
The null hypothesis for each cell i, j is that the corresponding segregation index equal to the expected value (which is 0) under RL or CSR.

See also (Ceyhan (2014)).

Usage

Zseg.ind.ct(ct,
varN,
inf.corr = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95
)

```
Zseg.ind(
    dat,
    lab,
    inf.corr = FALSE,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

ct	A nearest neighbor contingency table, used in Zseg. ind.ct only
varN	The variance matrix for cell counts in the NNCT, ct ; used in Zseg.ind.ct only
inf.corr	A logical argument (default=FALSE). If TRUE, indices are modified so that they are finite and if FALSE the above definition in the description is used.
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level	Level of the upper and lower confidence limits, default is 0.95, for the segrega- tion indices
dat	The data set in one or higher dimensions, each row corresponds to a data point, used in Zseg. ind only
lab	The vector of class labels (numerical or categorical), used in Zseg. ind only are for further arguments, such as method and p, passed to the dist function, used in Zseg.ind only

Value

A list with the elements

statistic	The matrix of test statistics for the segregation indices
stat.names	Name of the test statistics
p.value	The matrix of p-values for the hypothesis test for the corresponding alternative
LCL, UCL	Matrix of Lower and Upper Confidence Levels for the segregation indices at the given confidence level conf.level and depends on the type of alternative.
cnf.lvl	Level of the upper and lower confidence limits of the segregation indices, provided in conf.level.
estimate	Estimate of the parameter, i.e., matrix of the observed segregation indices
est.name, est.name2	
	Names of the estimates, both are same in this function
null.value	Hypothesized values for the parameters, i.e. the null values of the segregation indices, which are all 0 under RL or CSR.
null.name	Name of the null value
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater"

method	Description of the hypothesis test
ct. name	Name of the contingency table, ct, returned by Zseg.ind.ct only
data.name	Name of the data set, dat, returned by Zseg.ind only

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

seg. ind and Zseg. coeff

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
seg.ind(ct)
seg.ind(ct,inf.corr=TRUE)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
varN
Zseg.ind(Y,cls)
Zseg.ind(Y,cls,inf.corr=TRUE)
Zseg.ind.ct(ct,varN)
Zseg.ind(Y,cls,alt="g")
Zseg.ind.ct(ct,varN,alt="g")
Zseg.ind(Y,cls,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Zseg.ind(Y,cls)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
```

```
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
varN
Zseg.ind(Y,cls)
Zseg.ind(Y,cls,inf.corr = TRUE)
Zseg.ind.ct(ct,varN)
Zseg.ind.ct(ct,varN,inf.corr = TRUE)
#1D data points
n<-20 #or try sample(1:20,1)
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
Zseg.ind(X,cls)
Zseg.ind.ct(ct,varN)
Zseg.ind.ct(ct,varN,inf.corr=TRUE)
```

funsZself.ref Self-Reflexivity Test with Normal Approximation

Description

Two functions: Zself.ref.ct and Zself.ref.
Both functions are objects of class "htest" but with different arguments (see the parameter list below). Each one performs hypothesis tests of self reflexivity in the NN structure using the number of self-reflexive NN pairs (i.e. the first diagonal entry, $(1,1)$) in the RCT for $k \geq 2$ classes. That is, each test performs a test of self reflexivity corresponding to entry $(1,1)$ in the RCT) which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data. (See Ceyhan and Bahadir (2017) for more detail).

The self reflexivity test is based on the normal approximation of the diagonal entry $(1,1)$ in the RCT and are due to Ceyhan and Bahadir (2017).

Each function yields the test statistic, p-value for the corresponding alternative, the confidence interval, sample estimate (i.e. observed value) and null (i.e., expected) value for the self reflexivity value (i.e., diagonal entry $(1,1)$ value, respectively) in the RCT, and method and name of the data set used.
The null hypothesis is that $E\left(N_{11}\right)=R P_{a a}$ in the RCT, where R is the number of reflexive NNs and $P_{a a}$ is the probability of any two points selected are being from the same class.
The Zself.ref functions (i.e. Zself.ref.ct and Zself.ref) are different from the Znnref functions (i.e. Znnref.ct and Znnref) and from Znnself functions (i.e. Znnself.ct and Znnself), and also from Znnself. sum functions (i.e. Znnself. sum. ct and Znnself. sum). Zself.ref functions are for testing the self reflexivity for the entire data set using entry $(1,1)$ in RCT while Znnself functions are testing the self reflexivity at a class-specific level (i.e. for each class) using the first column in the SCCT, Znnref functions are for testing the self reflexivity and mixed non-reflexivity using the diagonal entries in the RCT, and Znnself. sum functions are testing the cumulative species correspondence using the sum of the self column (i.e., the first column) in the SCCT.

Usage

```
Zself.ref.ct(
    rfct,
    nvec,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
)
Zself.ref(
    dat,
    lab,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
)
```


Arguments

rfct An RCT, used in Zself.ref.ct only
nvec The vector of class sizes, used in Zself.ref.ct only
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for the difference of the off-diagonal entries, $N_{12}-N_{21}$
dat The data set in one or higher dimensions, each row corresponds to a data point, used in Zself.ref only
lab The vector of class labels (numerical or categorical), used in Zself.ref only are for further arguments, such as method and p, passed to the dist function, used in Zself.ref only

Value

A list with the elements
statistic \quad The Z test statistic for self reflexivity corresponding to entry $(1,1)$ in the RCT
p.value The p-value for the hypothesis test for the corresponding alternative
conf.int Confidence interval for the self reflexivity value (i.e., diagonal entry $(1,1)$ value) in the RCT at the given confidence level conf. level and depends on the type of alternative.
estimate Estimate of the parameter, i.e., the observed diagonal entry $(1,1)$ in the RCT, rfct.
null.value Hypothesized null value for the self reflexivity value (i.e., expected value of the diagonal entry $(1,1)$ which is $\left.E\left(N_{11}\right)=R P_{a a}\right)$ in the RCT.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
ct. name Name of the contingency table, rfct, returned by Zself.ref.ct only
data. name Name of the data set, dat, returned by Zself.ref only

Author(s)

Elvan Ceyhan

References

Ceyhan E, Bahadir S (2017). "Nearest Neighbor Methods for Testing Reflexivity." Environmental and Ecological Statistics, 24(1), 69-108.

See Also

Znnref.ct, Znnref, Zmixed.nonref.ct and Zmixed.nonref

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
nvec<-as.numeric(table(cls))
rfct<-rct(ipd,cls)
Zself.ref(Y,cls)
Zself.ref(Y,cls,method="max")
Zself.ref.ct(rfct,nvec)
Zself.ref.ct(rfct,nvec,alt="g")
#############
```

```
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
nvec<-as.numeric(table(cls))
rfct<-rct(ipd,cls)
Zself.ref(Y,cls,alt="g")
Zself.ref.ct(rfct,nvec)
Zself.ref.ct(rfct,nvec,alt="l")
```

funsZTkinv Z-Test for Cuzick and Edwards T_k^inv statistic

Description

Two functions: ZTkinv and ZTkinv. sim, each of which is an object of class "htest" performing a z-test for Cuzick and Edwards $T_{k}^{i n v}$ test statistic. See ceTkinv for a description of $T_{k}^{i n v}$ test statistic.

The function ZTkinv performs a Z-test for $T_{k}^{i n v}$ using asymptotic normality with a simulation estimated variance under RL of cases and controls to the given points. And the function ZTkinv. sim performs test for $T_{k}^{i n v}$ based on MC simulations under the RL hypothesis.
Asymptotic normality for the $T_{k}^{i n v}$ is not established yet, but this seems likely according to Cuzick and Edwards (1990). If asymptotic normality holds, it seems a larger sample size would be needed before this becomes an effective approximation. Hence the simulation-based test ZTkinv.sim is recommended for use to be safe. When ZTkinv is used, this is also highlighted with the warning "asymptotic normality of $T_{k}^{i n v}$ is not yet established, so simulation-based test is recommended".
All arguments are common for both functions, except for ..., Nvar.sim which are used in ZTkinv only, and Nsim, which is used in ZTkinv. sim only.

The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc.lab should be provided in this fashion, if case.lab is provided, the labels are converted to 0's and 1's accordingly. The argument Nvar. sim represents the number of resamplings (without replacement) in the RL scheme, with default being 1000 for estimating the variance of $T_{k}^{i n v}$ statistic in ZTkinv. The argument Nsim represents the number of resamplings (without replacement) in the RL scheme, with default being 1000 for estimating the $T_{k}^{i n v}$ values in ZTkinv. sim.
Both functions might take a very long time when data size is large or Nsim is large.
See also (Cuzick and Edwards (1990)) and the references therein.

Usage

ZTkinv(
dat,
k,

```
    cc.lab,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
    case.lab = NULL,
    Nvar.sim = 1000,
)
ZTkinv.sim(
    dat,
    k,
    cc.lab,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
    case.lab = NULL,
    Nsim = 1000
)
```


Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point, used in both functions.
$\mathrm{k} \quad$ Integer specifying the number of the closest controls to subject i, used in both functions.
cc.lab Case-control labels, 1 for case, 0 for control, used in both functions.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater", used in both functions.
conf.level Level of the upper and lower confidence limits, default is 0.95 , for Cuzick and Edwards $T_{k}^{i n v}$ statistic. Used in both functions.
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL, used in both functions.
Nvar.sim The number of simulations, i.e., the number of resamplings under the RL scheme to estimate the variance of Tkinv, used in ZTkinv only.
... are for further arguments, such as method and p, passed to the dist function. Used in ZTkinv only.
Nsim The number of simulations, i.e., the number of resamplings under the RL scheme to estimate the $T_{k}^{i n v}$ values, used in ZTkinv. sim only.

Value

A list with the elements
statistic The Z test statistic for the Cuzick and Edwards $T_{k}^{i n v}$ test
p.value The p-value for the hypothesis test for the corresponding alternative. In ZTkinv this is computed using the standard normal distribution, while in ZTkinv.sim, it is based on which percentile the observed $T_{k}^{i n v}$ value is among the generated $T_{k}^{i n v}$ values.
conf.int Confidence interval for the Cuzick and Edwards $T_{k}^{i n v}$ value at the given confidence level conf. level and depends on the type of alternative.
z-critical values are used in the construction of the confidence interval in ZTkinv, while the percentile values are used in the generated sample of $T_{k}^{i n v}$ values in ZTkinv.sim
estimate Estimate of the parameter, i.e., the Cuzick and Edwards $T_{k}^{i n v}$ value.
null. value Hypothesized null value for the Cuzick and Edwards $T_{k}^{i n v}$ value which is $k n_{1}\left(n_{1}-\right.$ 1) $/\left(n_{0}+1\right)$ under RL, where the number of cases are denoted as n_{1} and number of controls as n_{0}.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
data.name Name of the data set, dat

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

ceTkinv and EV.Tkinv

Examples

```
n<-10 #try also 20, 50, 100
set.seed(123)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
k<-2
ZTkinv(Y,k,cls)
ZTkinv(Y,k,cls+1,case.lab = 2,alt="l")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a", "b"),c(na,nb))
ZTkinv(Y,k,fcls,case.lab="a")
n<-10 #try also 20, 50, 100
set.seed(123)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
k<-2 # try also 3,5
ZTkinv.sim(Y,k,cls)
ZTkinv.sim(Y,k,cls,conf=.9,alt="g")
```

```
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ZTkinv.sim(Y,k,fcls,case.lab="a")
#with k=1
ZTkinv.sim(Y,k=1,cls)
ZTrun(Y,cls)
```

ind.nnsym Index Matrix for Computing the Covariance of Dixon's Overall NN
Symmetry Test

Description

Returns the index matrix for choosing the entries in the covariance matrix for NNCT used for computing the covariance for Dixon's NN symmetry test. The matrix is $k(k-1) / 2 \times 2$ with each row is the i, j corresponding to $N_{i j}$ in the NNCT.

Usage

ind.nnsym(k)

Arguments

k
An integer specifying the number of classes in the data set

Value

The $k(k-1) / 2 \times 2$ index matrix with each row is the i, j corresponding to $N_{i j}$ in the NNCT

Author(s)

Elvan Ceyhan

See Also

cov.nnsym and ind.seg.coeff

ind.seg.coeff \quad| Index Matrix for Computing the Covariance of Segregation Coeffi- |
| :--- |
| cients |

Description

Returns the index matrix for choosing the entries in the covariance matrix for NNCT used for computing the covariance for the extension of Pielou's segregation coefficient to the multi-class case. The matrix is $k(k+1) / 2 \times 2$ with each row is the i, j corresponding to $N_{i j}$ in the NNCT.

Usage

ind.seg.coeff(k)

Arguments

$k \quad$ An integer specifying the number of classes in the data set

Value

The $k(k+1) / 2 \times 2$ index matrix with each row is the i, j corresponding to $N_{i j}$ in the NNCT

Author(s)

Elvan Ceyhan

See Also

cov.seg.coeff, seg.coeff and ind.nnsym
ipd.mat Interpoint Distance Matrix

Description

This function computes and returns the distance matrix computed by using the specified distance measure to compute the distances between the rows of the set of points x and y using the dist function in the stats package of the standard R distribution. If y is provided (default=NULL) it yields a matrix of distances between the rows of x and rows of y. Otherwise, it provides a square matrix with i, j-th entry being the distance between row i and row j of x . This function is different from the dist function in the stats package. dist returns the distance matrix in a lower triangular form, and ipd.mat returns in a full matrix. ... are for further arguments, such as method and p, passed to the dist function.

Usage

ipd.mat(x, y = NULL, ...)

Arguments

x
A set of points in matrix or data frame form where points correspond to the rows.
y
A set of points in matrix or data frame form where points correspond to the rows (default=NULL).
... Additional parameters to be passed on the dist function.

Value

A distance matrix whose i, j-th entry is the distance between row i of x and row j of y if y is provided, otherwise i, j-th entry is the distance between rows i and j of x .

Author(s)

Elvan Ceyhan

See Also

dist, ipd.mat.euc, dist.std.data

Examples

```
#3D data points
n<-3
X<-matrix(runif(3*n),ncol=3)
mtd<-"euclidean" #try also "maximum", "manhattan", "canberra", "binary"
ipd.mat(X,method=mtd)
ipd.mat(X,method="minkowski",p=6)
n<-5
Y<-matrix(runif(3*n),ncol=3)
ipd.mat(X,Y,method=mtd)
ipd.mat(X[1,],Y,method=mtd)
ipd.mat(c(.1,.2,.3),Y,method=mtd)
ipd.mat(X[1,],Y[3,],method=mtd)
#1D data points
X<-as.matrix(runif(3)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(3) would not work
ipd.mat(X)
Y<-as.matrix(runif(5))
ipd.mat(X,Y)
ipd.mat(X[1,],Y)
ipd.mat(X[1,],Y[3,])
```


Description

Returns the Euclidean interpoint distance (IPD) matrix of a given the set of points x and y using two for loops with the euc. dist function of the current package. If y is provided (default=NULL) it yields a matrix of Euclidean distances between the rows of x and rows of y, otherwise it provides a square matrix with i, j-th entry being the Euclidean distance between row i and row j of x . This function is different from the ipd.mat function in this package. ipd.mat returns the full distance matrix for a variety of distance metrics (including the Euclidean metric), while ipd.mat.euc uses the Euclidean distance metric only. ipd.mat.euc (X) and ipd.mat (X) yield the same output for a set of points X, as the default metric in ipd.mat is also "euclidean".

Usage

ipd.mat.euc(x, y = NULL)

Arguments

$x \quad$ A set of points in matrix or data frame form where points correspond to the rows.
y A set of points in matrix or data frame form where points correspond to the rows (default=NULL).

Value

A distance matrix whose i, j-th entry is the Euclidean distance between row i of x and row j of y if y is provided, otherwise i, j-th entry is the Euclidean distance between rows i and j of x .

Author(s)

Elvan Ceyhan

See Also

dist, ipd.mat.euc, dist.std.data

Examples

```
#3D data points
n<-3
X<-matrix(runif(3*n),ncol=3)
ipd.mat.euc(X)
n<-5
Y<-matrix(runif(3*n),ncol=3)
ipd.mat.euc(X,Y)
```

```
ipd.mat.euc(X[1,],Y)
ipd.mat.euc(c(.1,.2,.3),Y)
ipd.mat.euc(X[1,],Y[3,])
#1D data points
X<-as.matrix(runif(3)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(3) would not work
ipd.mat.euc(X)
Y<-as.matrix(runif(5))
ipd.mat.euc(X,Y)
ipd.mat.euc(X[1,],Y)
ipd.mat.euc(X[1,],Y[3,])
```


Description

Returns the indices of the k nearest neighbors of subject i given data set or IPD matrix x . Subject indices correspond to rows (i.e. rows $1: n$) if x is the data set and to rows or columns if x is the IPD matrix.

The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

Usage

kNN(x, i, k, is.ipd = TRUE, ...)

Arguments

x
i index of (i.e., row number for) the subject whose NN is to be found.
$\mathrm{k} \quad$ Integer specifying the number of NNs (of subject i).
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns the indices (i.e. row numbers) of the k NNs of subject i
mat2vec

Author(s)

Elvan Ceyhan

See Also

NN, NNdist and NNdist2cl

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
k<-sample(1:5,1)
k
NN(ipd,1)
kNN(ipd,1,k)
kNN(Y,1,k,is.ipd = FALSE)
kNN(Y,1,k,is.ipd = FALSE,method="max")
NN(ipd,5)
kNN(ipd,5,k)
kNN(Y,5,k,is.ipd = FALSE)
#1D data points
X<-as.matrix(runif(15)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(5) would not work
ipd<-ipd.mat(X)
kNN(ipd,3,k)
#with possible ties in the data
Y<-matrix(round(runif(30)*10),ncol=3)
ny<-nrow(Y)
ipd<-ipd.mat(Y)
for (i in 1:ny)
    cat(i,":",kNN(ipd,i,k),"\n")
```

 mat2vec
 Conversion of a Matrix to a Vector

Description

Converts the contingency table (or any matrix) ct to a vector by default row-wise (i.e., by appending each row one after the other) or column-wise, and also returns the entry indices (in the original matrix ct) in a $k^{2} \times 2$ matrix

Usage

mat2vec (ct, byrow = TRUE)

Arguments

ct	A matrix, in particular a contingency table
byrow	A logical argument (default=TRUE). If TRUE, rows of ct are appended to obtain the vector and if FALSE columns of $c t$ are appended to obtain the vector.

Value

A list with two elements

vec	The vectorized form the matrix ct , by default appending the rows of ct
ind	The $k^{2} \times 2$ matrix of entry indices (in the original matrix ct) whose i-th row corresponds to the i-th entry in vec.

Author(s)

Elvan Ceyhan

See Also

ind.nnsym and ind.seg.coeff,

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
mat2vec(ct)
mat2vec(ct,byrow=FALSE)
#an arbitrary 3x3 matrix
M<-matrix(sample(10:20,9),ncol=3)
M
mat2vec(M)
mat2vec(M,byrow=FALSE)
```

matrix.sqrt \quad Square root of a matrix

Description

Computes the square root of the matrix A, where A does not have to be a square matrix, when the square root exists. See https://people.orie.cornell.edu/davidr/SDAFE2/Rscripts/SDAFE2.R

Usage

matrix.sqrt(A)

Arguments

A A matrix, not necessarily square

Value

Returns the square root of A, if exists, otherwise gives an error message.

Author(s)

Elvan Ceyhan

Examples

```
A<-matrix(sample(20:40,4),ncol=2)
matrix.sqrt(A)
A<-matrix(sample(20:40,16),ncol=4)
matrix.sqrt(A)
#sqrt of inverse of A, or sqrt inverse of A
matrix.sqrt(solve(A))
#non-square matrix
A<-matrix(sample(20:40,20),ncol=4)
matrix.sqrt(A)
```

Ninv
Vector of Shared NNs and Number of Reflexive NNs

Description

Returns the Qvec and R where $Q v e c=\left(Q_{0}, Q_{1}, \ldots\right)$ with Q_{j} is the number of points shared as a NN by j other points i.e. number of points that are NN of i points, for $i=0,1,2, \ldots$ and R is the number of reflexive pairs where A and B are reflexive iff they are NN to each other.

Usage

Ninv(x, is.ipd = TRUE, ...)

Arguments

x
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns a list with two elements

Qvec	vector of Q_{j} values
R	number of reflexive points

Author(s)

Elvan Ceyhan

See Also

Qval, Qvec, sharedNN, Rval and QRval

Examples

```
#3D data points
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
sharedNN(W)
Qvec(W)
Ninv(ipd)
Ninv(Y,is.ipd = FALSE)
Ninv(Y,is.ipd = FALSE,method="max")
#1D data points
n<-15
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
W<-Wmat(ipd)
sharedNN(W)
Qvec(W)
Ninv(ipd)
#with possible ties in the data
Y<-matrix(round(runif(30)*10),ncol=3)
ny<-nrow(Y)
ipd<-ipd.mat(Y)
```

```
W<-Wmat(ipd)
sharedNN(W)
Qvec(W)
Ninv(ipd)
```


Description

Returns the index (or indices) of the nearest neighbor(s) of subject i given data set or IPD matrix x. It will yield a vector if there are ties, and subject indices correspond to rows (i.e. rows $1: n$) if x is the data set and to rows or columns if x is the IPD matrix.

The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

Usage

NN(x, i, is.ipd = TRUE, ...)

Arguments

x
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
i index of (i.e., row number for) the subject whose NN is to be found.
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
$\ldots \quad$ are for further arguments, such as method and p, passed to the dist function.

Value

Returns the index (indices) i.e. row number(s) of the NN of subject i

Author(s)

Elvan Ceyhan

See Also

kNN and NNsub

Examples

```
#3D data points
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
NN(ipd,1)
NN(Y,1,is.ipd = FALSE)
NN(ipd,5)
NN(Y,5,is.ipd = FALSE)
NN(Y,5,is.ipd = FALSE,method="max")
#1D data points
X<-as.matrix(runif(15)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(5) would not work
ipd<-ipd.mat(X)
NN(ipd,1)
NN(ipd,5)
#with possible ties in the data
Y<-matrix(round(runif(30)*10),ncol=3)
ny<-nrow(Y)
ipd<-ipd.mat(Y)
for (i in 1:ny)
    cat(i,":",NN(ipd,i),"|",NN(Y,i,is.ipd = FALSE),"\n")
```

nnct Nearest Neighbor Contingency Table (NNCT)

Description

Returns the $k \times k$ NNCT given the IPD matrix or data set x where k is the number of classes in the data set. Rows and columns of the NNCT are labeled with the corresponding class labels.

The argument ties is a logical argument (default=FALSE) to take ties into account or not. If TRUE a NN contributes $1 / m$ to the NN count if it is one of the m tied NNs of a subject.

The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

See also (Dixon (1994, 2002); Ceyhan $(2010,2017)$) and the references therein.

Usage

nnct (x, lab, ties = FALSE, is.ipd = TRUE, ...)

Arguments

X
lab
ties A logical argument (default=FALSE) to take ties into account or not. If TRUE a NN contributes $1 / m$ to the NN count if it is one of the m tied NNs of a subject.
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns the $k \times k$ NNCT where k is the number of classes in the data set.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

nnct. sub, scct, rct, and tct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
nnct(ipd,cls)
nnct(ipd,cls,ties = TRUE)
nnct(Y,cls,is.ipd = FALSE)
nnct(Y,cls,is.ipd = FALSE,method="max")
nnct(Y,cls,is.ipd = FALSE,method="mink",p=6)
```

```
#with one class, it works but really uninformative
cls<-rep(1,n)
nnct(ipd,cls)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
nnct(ipd,fcls)
#cls as an unsorted factor
fcls1<-sample(c("a","b"),n,replace = TRUE)
nnct(ipd,fcls1)
fcls2<-sort(fcls1)
nnct(ipd,fcls2) #ipd needs to be sorted as well, otherwise this result will not agree with fcls1
nnct(Y,fcls1,ties = TRUE,is.ipd = FALSE)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
nnct(ipd,cls)
nnct(Y,cls,is.ipd = FALSE)
#cls as a factor
fcls<-rep(letters[1:4],rep(10,4))
nnct(ipd,fcls)
#1D data points
n<-20 #or try sample(1:20,1)
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
nnct(ipd,cls)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
nnct(ipd,fcls)
#with possible ties in the data
Y<-matrix(round(runif(3*n)*10),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
nnct(ipd,cls)
nnct(ipd,cls,ties = TRUE)
```


Description

Returns the $k \times k$ NNCT with sampling replacement of the points for each base point. That is, for each base point, the rows in the IPD matrix are sampled with replacement and the NN counts are updated accordingly. Row and columns of the NNCT are labeled with the corresponding class labels.
The argument self is a logical argument (default=TRUE) for including the base point in the resampling or not. If TRUE, for each base point all entries in the row are sampled (with replacement) so the point itself can also be sampled multiple times and if FALSE the point is excluded from the resampling (i.e. other points are sampled with replacement).
The argument ties is a logical argument (default=FALSE) to take ties into account or not. If TRUE a NN contributes $1 / m$ to the NN count if it is one of the m tied NNs of a subject.
The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

Usage

nnct.boot.dis(x, lab, self = TRUE, ties = TRUE, is.ipd = TRUE, ...)

Arguments

x
lab The vector of class labels (numerical or categorical)
self A logical argument (default=TRUE). If TRUE, for each base point, all entries in the row are sampled (with replacement) and if FALSE the point is excluded from the resampling (i.e. other points are sampled with replacement).
ties A logical argument (default=FALSE) to take ties into account or not. If TRUE a NN contributes $1 / m$ to the NN count if it is one of the m tied NNs of a subject.
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns the $k \times k$ NNCT where k is the number of classes in the data set with sampling replacement of the rows of the IPD matrix.

Author(s)

Elvan Ceyhan

See Also

nnct and nnct.sub

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
nnct.boot.dis(ipd,cls)
nnct.boot.dis(Y,cls,is.ipd = FALSE) #may give different result from above due to random sub-sampling
nnct.boot.dis(ipd,cls,self = FALSE)
nnct.boot.dis(ipd,cls, ties = FALSE) #differences are due to ties and resampling of distances
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
nnct.boot.dis(ipd,fcls)
#cls as an unsorted factor
fcls<-sample(c("a","b"),n,replace = TRUE)
nnct.boot.dis(ipd,fcls)
fcls<-sort(fcls)
nnct.boot.dis(ipd,fcls)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
nnct.boot.dis(ipd,cls)
#cls as a factor
fcls<-rep(letters[1:4],rep(10,4))
nnct.boot.dis(ipd,fcls)
#1D data points
n<-20 #or try sample(1:20,1)
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
nnct.boot.dis(ipd,cls)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
nnct.boot.dis(ipd,fcls)
#with possible ties in the data
Y<-matrix(round(runif(3*n)*10),ncol=3)
```

```
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
nnct.boot.dis(ipd,cls)
nnct.boot.dis(ipd,cls,self = FALSE)
nnct.boot.dis(ipd,cls,ties = FALSE) #differences are due to ties and resampling of distances
```

nnct.sub

Nearest Neighbor Contingency Table (NNCT) with (only) base points restricted to a subsample

Description

Returns the $k \times k$ NNCT with (only) base points are restricted to be in the subset of indices ss using the IPD matrix or data set x where k is the number of classes in the data set. That is, the base points are the points with indices in ss but for the NNs the function checks all the points in the data set (including the points in ss). Row and columns of the NNCT are labeled with the corresponding class labels.
The argument ties is a logical argument (default=FALSE) to take ties into account or not. If TRUE a NN contributes $1 / m$ to the NN count if it is one of the m tied NNs of a subject.
The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

Usage

nnct.sub(ss, x, lab, ties $=$ FALSE, is.ipd $=$ TRUE, ...)

Arguments

SS
X
lab
ties
is.ipd
indices of subjects (i.e., row indices in the data set) chosen to be the base points
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
The vector of class labels (numerical or categorical)
A logical argument (default=FALSE) to take ties into account or not. If TRUE a NN contributes $1 / m$ to the NN count if it is one of the m tied NNs of a subject.
A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
$\ldots \quad$ are for further arguments, such as method and p, passed to the dist function.

Value

Returns the $k \times k$ NNCT where k is the number of classes in the data set with (only) base points restricted to a subsample ss.

Author(s)

Elvan Ceyhan

See Also

nnct and nnct.boot.dis

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
nnct(ipd,cls)
#subsampling indices
ss<-sample(1:n,floor(n/2))
nnct.sub(ss,ipd,cls)
nnct.sub(ss,Y,cls,is.ipd = FALSE)
nnct.sub(ss,ipd,cls,ties = TRUE)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
nnct.sub(ss,ipd,fcls)
#cls as an unsorted factor
fcls<-sample(c("a","b"),n,replace = TRUE)
nnct(ipd,fcls)
nnct.sub(ss,ipd,fcls)
fcls<-sort(fcls)
nnct.sub(ss,ipd,fcls)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ss<-sample(1:40,30)
nnct.sub(ss,ipd,cls)
#cls as a factor
fcls<-rep(letters[1:4],rep(10,4))
nnct.sub(ss,ipd,cls)
#1D data points
n<-20 #or try sample(1:20,1)
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
```

```
nnct(ipd,cls)
#subsampling indices
ss<-sample(1:n,floor(n/2))
nnct.sub(ss,ipd,cls)
#with possible ties in the data
Y<-matrix(round(runif(120)*10),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ss<-sample(1:40,30)
nnct.sub(ss,ipd,cls)
nnct.sub(ss,ipd,cls,ties = TRUE)
```

NNdist Distances between subjects and their NNs

Description

Returns the distances between subjects and their NNs. The output is an $n \times 2$ matrix where n is the data size and first column is the subject index and second column contains the corresponding distances to NN subjects.
The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

Usage

NNdist(x, is.ipd = TRUE, ...)

Arguments

x
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns an $n \times 2$ matrix where n is data size (i.e. number of subjects) and first column is the subject index and second column is the NN distances.

Author(s)

Elvan Ceyhan

See Also

kthNNdist, kNNdist, and NNdist2cl

Examples

```
#3D data points
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
NNdist(ipd)
NNdist(Y,is.ipd = FALSE)
NNdist(Y,is.ipd = FALSE,method="max")
#1D data points
X<-as.matrix(runif(5)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(5) would not work
ipd<-ipd.mat(X)
NNdist(ipd)
NNdist(X,is.ipd = FALSE)
```

NNdist2cl Distances between subjects from class i and their NNs from class j

Description

Returns the distances between subjects from class i and their nearest neighbors (NNs) from class j. The output is a list with first entry (nndist) being an $n_{i} \times 3$ matrix where n_{i} is the size of class i and first column is the subject index in class i, second column is the subject index in NN class j, and third column contains the corresponding distances of each class i subject to its NN among class j subjects. Class i is labeled as base class and class j is labeled as NN class.

The argument within.class.ind is a logical argument (default=FALSE) to determine the indexing of the class i subjects. If TRUE, index numbering of subjects is within the class, from 1 to class size (i.e., $1: n _i$), according to their order in the original data; otherwise, index numbering within class is just the indices in the original data.

The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

Usage

NNdist2cl(x, i, j, lab, within.class.ind = FALSE, is.ipd = TRUE, ...)

Arguments

X
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
i, j class label of base class and NN classes, respectively.
lab The vector of class labels (numerical or categorical)
within.class.ind
A logical parameter (default=FALSE). If TRUE, index numbering of subjects is within the class, from 1 to class size (i.e., $1: n_{-} \mathrm{i}$), according to their order in the original data; otherwise, index numbering within class is just the indices in the original data.
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns a list with three elements

```
nndist }\quad\mp@subsup{n}{i}{}\times3\mathrm{ matrix where }\mp@subsup{n}{i}{}\mathrm{ is the size of class }i\mathrm{ and first column is the subject index
        in class i, second column is the subject index in NN class j, and third column
        contains the corresponding distances of each class i subject to its NN among
        class j subjects.
base.class label of base class
nn.class label of NN class
```


Author(s)

Elvan Ceyhan

See Also

kthNNdist, kNNdist, and NNdist2cl

Examples

```
#3D data points
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
#two class case
clab<-sample(1:2,n,replace=TRUE) #class labels
table(clab)
NNdist2cl(ipd,1,2,clab)
NNdist2cl(Y,1,2,clab,is.ipd = FALSE)
NNdist2cl(ipd,1,2,clab,within = TRUE)
```

```
#three class case
clab<-sample(1:3,n,replace=TRUE) #class labels
table(clab)
NNdist2cl(ipd, 2,1,clab)
#1D data points
n<-15
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
#two class case
clab<-sample(1:2,n,replace=TRUE) #class labels
table(clab)
NNdist2cl(ipd,1,2,clab)
NNdist2cl(X,1,2,clab,is.ipd = FALSE)
```

nnspat
nnspat: A package for NN Methods and Their Use in Testing Spatial Patterns

Description

nnspat is a package for computation of spatial pattern tests based on NN relations and generation of various spatial patterns.

Details

The nnspat package contains the functions for segregation/association tests based on nearest neighbor contingency tables (NNCTs), and tests for species correspondence, NN symmetry and reflexivity based on the corresponding contingency tables and functions for generating patterns of segregation, association, uniformity and various non-random labeling (RL) patterns for disease clustering for data in two (or more) dimensions. See (Dixon (1994); Ceyhan (2010, 2017)).

The nnspat functions

The nnspat functions can be grouped as Auxiliary Functions, NNCT Functions, SCCT Functions, RCT Functions NN-Symmetry Functions and the Pattern (Generation) Functions.

Auxiliary Functions

Contains the auxiliary functions used in NN methods, such as indices of NNs, number of shared NNs, Q, R and T values, and so on. In all these functions the data sets are either matrices or data frames.

NNCT Functions

Contains the functions for testing segregation/association using the NNCT. The types of the tests are cell- specific tests, class-specific tests and overall tests of segregation. See (Ceyhan $(2009,2010)$).

SCCT Functions

Contains the functions used for testing species correspondence using the NNCT. The types are NN self and self-sum tests and the overall test of species correspondence. See (Ceyhan (2018)).

RCT Functions

Contains the functions for testing reflexivity using the reflexivity contingency table (RCT). The types are NN self reflexivity and NN mixed-non reflexivity. See (Ceyhan and Bahadir (2017); Bahadir and Ceyhan (2018)).

Symmetry Functions

Contains the functions for testing NN symmetry using the NNCT and Q-symmetry contingency table. The types are NN symmetry and symmetry in shared NN structure. See (Ceyhan (2014)).

Pattern Functions

Contains the functions for generating and visualization of spatial patterns of segregation, association, uniformity clustering and non-RL. See (Ceyhan (2014, 2014)).

References

Bahadir S, Ceyhan E (2018). "On the Number of reflexive and shared nearest neighbor pairs in one-dimensional uniform data." Probability and Mathematical Statistics, 38(1), 123-137.

Ceyhan E (2009). "Class-Specific Tests of Segregation Based on Nearest Neighbor Contingency Tables." Statistica Neerlandica, 63(2), 149-182.

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Ceyhan E (2010). "Exact Inference for Testing Spatial Patterns by Nearest Neighbor Contingency Tables." Journal of Probability and Statistical Science, 8(1), 45-68.

Ceyhan E (2010). "New Tests of Spatial Segregation Based on Nearest Neighbor Contingency Tables." Scandinavian Journal of Statistics, 37(1), 147-165.

Ceyhan E (2010). "Directional clustering tests based on nearest neighbour contingency tables." Journal of Nonparametric Statistics, 22(5), 599-616.

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

Ceyhan E (2014). "Simulation and characterization of multi-class spatial patterns from stochastic point processes of randomness, clustering and regularity." Stochastic Environmental Research and Risk Assessment (SERRA), 38(5), 1277-1306.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

Ceyhan E (2018). "A contingency table approach based on nearest neighbor relations for testing self and mixed correspondence." SORT-Statistics and Operations Research Transactions, 42(2), 125-158.

Ceyhan E, Bahadir S (2017). "Nearest Neighbor Methods for Testing Reflexivity." Environmental and Ecological Statistics, 24(1), 69-108.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Description

Returns the index (indices) of the nearest neighbor(s) of subject i (other than subject i) among the indices of points provided in the subsample ss using the given data set or IPD matrix x . The indices in ss determine the columns of the IPD matrix to be used in this function. It will yield a vector if there are ties, and subject indices correspond to rows (i.e. rows $1: n$) if x is the data set and to rows or columns if x is the IPD matrix.

The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

Usage

NNsub(ss, x, i, is.ipd = TRUE, ...)

Arguments

SS

X
i
is.ipd
indices of subjects (i.e., row indices in the data set) among with the NN of subject is to be found
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
index of (i.e., row number for) the subject whose NN is to be found.
A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns a list with the elements
base.ind index of the base subject
ss.ind the index (indices) i.e. row number(s) of the NN of subject i among the subjects with indices provided in ss
ss.dis distance from subject i to its NN among the subjects in ss

Author(s)

Elvan Ceyhan

See Also

NN and kNN

Examples

```
#3D data points bura
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
#indices of the subsample ss
ss<-sample(1:n,floor(n/2),replace=FALSE)
NNsub(ss,ipd, 2)
NNsub(ss,Y,2,is.ipd = FALSE)
NNsub(ss,ipd,5)
#1D data points
n<-15
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
#two class case
clab<-sample(1:2,n,replace=TRUE) #class labels
#indices of the subsample ss
ss<-sample(1:n,floor(n/2),replace=FALSE)
NNsub(ss,ipd,2)
NNsub(ss,ipd,5)
#with possible ties in the data
Y<-matrix(round(runif(60)*10),ncol=3)
ipd<-ipd.mat(Y)
ss<-sample(1:20,10,replace=FALSE) #class labels
NNsub(ss,ipd, 2)
NNsub(ss,ipd,5)
```

Nt.def $\quad N _t$ Value (found with the definition formula)

Description

This function computes the N_{t} value which is required in the computation of the asymptotic variance of Cuzick and Edwards T_{k} test. Nt is defined on page 78 of (Cuzick and Edwards (1990)) as follows. $N_{t}=\sum \sum_{i \neq l} \sum a_{i j} a_{l j}$ (i.e, number of triplets $(i, j, l) i, j$, and l distinct so that j is among $k \mathrm{NNs}$ of i and j is among $k \mathrm{NNs}$ of l).
This function yields the same result as the asyvarTk and varTk functions with $\$ N t$ inserted at the end.

See (Cuzick and Edwards (1990)) for more details.

Usage

Nt. $\operatorname{def}(\mathrm{a})$

Arguments

a
The $A=\left(a_{i j}\right)$ matrix. The argument a is the A matrix, obtained as output fromm aij.mat.

Value

Returns the N_{t} value standing for the number of triplets $(i, j, l) i, j$, and l distinct so that j is among k NNs of i and j is among k NNs of l. See the description.

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

asyvarTk, varTk, and varTkaij

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
k<-2 #try also 2,3
a<-aij.mat(Y,k)
Nt.def(a)
```

Ntkl N_tkl Value

Description

This function computes the $N_{t k l}$ value which is required in the computation of the exact and asymptotic variance of Cuzick and Edwards $T_{\text {comb }}$ test, which is a linear combination of some T_{k} tests. $N_{t k l}$ is defined on page 80 of (Cuzick and Edwards (1990)) as follows. Let $a_{i j}(k)$ be 1 if j is a k NN of i and zero otherwise and $N_{t}(k, l)=\sum \sum_{i \neq m} \sum a_{i j}(k) a_{m j}(l)$.
The logical argument nonzero.mat (default=TRUE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE) in the computations.

See (Cuzick and Edwards (1990)) for more details.

Usage

Ntkl(dat, k, l, nonzero.mat = TRUE, ...)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
$\mathrm{k}, \mathrm{l} \quad$ Integers specifying the number of NNs (of subjects i and m in $a_{i j}(k) a_{m j}(l)$).
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computation of N_{s} and N_{t} (argument is passed on to asycovTkTl and covTkTl). If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns the $N_{t k l}$ value. See the description.

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

asycovTkTl, and covTkTl

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
k<-1 #try also 2,3 or sample(1:5,1)
l<-1 #try also 2,3 or sample(1:5,1)
c(k,l)
Ntkl(Y,k,l)
Ntkl(Y,k,l,nonzero.mat = FALSE)
Ntkl(Y,k,l,method="max")
```

pairwise.lab
Keeping the pair of the specified labels in the data

Description

Keeps only the specified labels i and j and returns the data from classes with these labes and also the corresponding label vector having class labels i and j only.
See also (Ceyhan (2017)).

Usage

pairwise.lab(dat, lab, i, j)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
lab The vector of class labels (numerical or categorical)
i, j
Label of the classes that are to be retained in the post-hoc comparison.

Value

A list with two elements
data.pair The type of the pattern from which points are to be generated
lab.pair The "main" title for the plot of the point pattern

Author(s)

Elvan Ceyhan

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

lab. onevsrest and classirest

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
pairwise.lab(Y,cls,1,2)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
pairwise.lab(Y,cls,2,3)
#cls as a factor
fcls<-rep(letters[1:4],rep(10,4))
pairwise.lab(Y,fcls,"b","c")
```

pick.min.max Smallest and Largest Distances in a Distance Matrix

Description

This function finds and returns the k smallest and k largest distances in a distance matrix or distance object, and also provides pairs of objects these distances correspond to. The code is adapted from http://people.stat.sc.edu/Hitchcock/chapter1_R_examples.txt.

Usage

pick.min.max(ds, k = 1)

Arguments

ds
k

A distance matrix or a distance object
A positive integer representing the number of (min and max) distances to be presented, default is $k=1$

Value

A list with the elements
min.dis The k smallest distances in ds
ind.min.dis The indices (i.e. row numbers) of the k pairs of object which has the k smallest distances in ds
max.dis The k largest distances in ds
ind.max.dis The indices (i.e. row numbers) of the k pairs of object which has the k largest distances in ds

Author(s)

Elvan Ceyhan

See Also

dist, ipd.mat, and ipd.mat.euc

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
pick.min.max(ipd)
#or
pick.min.max(dist(Y))
pick.min.max(ipd,2)
```

pk
Probability of k items selected from the class with size $n _1$

Description

Returns the ratio $n_{1}\left(n_{1}-1\right) \cdots\left(n_{1}-(k-1)\right) /(n(n-1) \cdots(n-(k-1))$, which is the probability that the k selected objects are from class 1 with size n_{1} (denoted as n 1 as an argument) and the total data size is n . This probability is valid under RL or CSR.
This function computes the p_{k} value which is required in the computation of the variance of Cuzick and Edwards T_{k} test. p_{k} is defined as the ratio $n_{1}\left(n_{1}-1\right) \cdots\left(n_{1}-(k-1)\right) /(n(n-1) \cdots(n-$ $(k-1)$).
The argument, n_{1}, is the number of cases (denoted as n 1 as an argument). The number of cases are denoted as n_{1} and number of controls as n_{0} in this function to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).
See (Cuzick and Edwards (1990)) for more details.

Usage

$\mathrm{pk}(\mathrm{n}, \mathrm{n} 1, \mathrm{k})$
$\mathrm{pk}(\mathrm{n}, \mathrm{n} 1, \mathrm{k})$

Arguments

n
n1
k

A positive integer representing the number of points in the data set
Number of cases
Integer specifying the number of NNs (of subject i)

Value

Returns the probability of k items selected from n items are from the class of interest (i.e., from the class whose size is n_{1})
Returns the p_{k} value. See the description.

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

p 11 and p12 etc.
asyvarTk, varTk, and varTkaij

```
plot.Clusters Plot a Clusters object
```


Description

Plots the points generated from the pattern (color coded for each class) together with the study window

Usage

\#\# S3 method for class 'Clusters'
plot(x, asp = NA, xlab = "x", ylab = "y", ...)

Arguments

x
asp
xlab, ylab
...

Object of class Clusters.
A numeric value, giving the aspect ratio for y axis to x-axis y / x (default is NA), see the official help for asp by typing "? asp".
Titles for the x and y axes, respectively (default is $x l a b=" x "$ and $y l a b=" y ")$.
Additional parameters for plot.

Value
None

Examples

\#TBF

Description

Plots the points generated from the pattern (color coded for each class) together with the study window

Usage

```
## S3 method for class 'SpatPatterns'
plot(x, asp = NA, xlab = "x", ylab = "y", ...)
```


Arguments

x	Object of class SpatPatterns.
asp	A numeric value, giving the aspect ratio for y axis to $x-a x i s ~$ see the official help for asp by typing "? asp".
$x l a b, y l a b$	Titles for the x and y axes, respectively (default is $x l a b=" x "$ and $y l a b=" y ")$.
\ldots	Additional parameters for plot.

Value

None

Examples

\#TBF

```
print.cellhtest Print a summary of a cellhtest object
```


Description

Printing objects of class "cellhtest" by simple print methods.

Usage

```
## S3 method for class 'cellhtest'
```

print(x, digits = getOption("digits"), prefix = "\t", ...)

Arguments

x
object of class "summary.cellhtest"
digits number of significant digits to be used.
prefix string, passed to strwrap for displaying the method component of the classhtest object.
... Additional parameters for print.

Value

None

```
print.Chisqtest Print a summary of a Chisqtest object
```


Description

Printing objects of class "Chisqtest" by simple print methods.

Usage

\#\# S3 method for class 'Chisqtest'
print(x, digits = getOption("digits"), prefix = "\t", ...)

Arguments

x
object of class "summary. Chisqtest"
digits number of significant digits to be used.
prefix string, passed to strwrap for displaying the method component of the classhtest object.
... Additional parameters for print.

Value

None

```
print.classhtest Print a summary of a classhtest object
```


Description

Printing objects of class "classhtest" by simple print methods.

Usage

\#\# S3 method for class 'classhtest'
print(x, digits = getOption("digits"), prefix = "\t", ...)

Arguments

x	object of class "summary. classhtest"
digits	number of significant digits to be used. prefix
string, passed to strwrap for displaying the method component of the classhtest object.	
\ldots	Additional parameters for print.

Value

None
print.Clusters Print a Clusters object

Description

Prints the call of the object of class 'Clusters' and also the type (or description) of the pattern).

Usage

\#\# S3 method for class 'Clusters'
print(x, ...)

Arguments

x
... Additional arguments for the S3 method 'print'.

Value

The call of the object of class 'Clusters' and also the type (or description) of the pattern).

See Also

summary.Clusters, print.summary.Clusters, and plot.Clusters

Examples

```
#TBF (to be filled)
```

```
print.refhtest Print a summary of a refhtest object
```


Description

Printing objects of class "refhtest" by simple print methods.

Usage

\#\# S3 method for class 'refhtest'
print(x, digits = getOption("digits"), prefix = "\t", ...)

Arguments

$x \quad$ object of class "summary.refhtest"
digits number of significant digits to be used.
prefix string, passed to strwrap for displaying the method component of the classhtest object.
... Additional parameters for print.

Value

None
print.SpatPatterns
Print a SpatPatterns object

Description

Prints the call of the object of class 'SpatPatterns' and also the type (or description) of the pattern).

Usage

\#\# S3 method for class 'SpatPatterns'
print(x, ...)

Arguments

$\begin{array}{ll}x & \text { A SpatPatterns object. } \\ \ldots & \text { Additional arguments for the S3 method 'print'. }\end{array}$

Value

The call of the object of class 'SpatPatterns' and also the type (or description) of the pattern).

See Also

summary.SpatPatterns, print.summary.SpatPatterns, and plot.SpatPatterns

Examples

```
#TBF (to be filled)
```

```
print.summary.Clusters
```

 Print a summary of a Clusters object

Description

Prints some information about the object.

Usage

```
\#\# S3 method for class 'summary.Clusters'
print(x, ...)
```


Arguments

x object of class "summary.Clusters", generated by summary.Clusters.
... Additional parameters for print.

Value

None

See Also

print.Clusters, summary.Clusters, and plot.Clusters

```
print.summary.SpatPatterns
```

Print a summary of a SpatPatterns object

Description

Prints some information about the object.

Usage

\#\# S3 method for class 'summary.SpatPatterns'
print(x, ...)

Arguments

x
... Additional parameters for print.

Value

None

See Also
print.SpatPatterns, summary.SpatPatterns, and plot.SpatPatterns
prob.nnct Probability of the current nearest neighbor contingency table

Description

Computes the probability of the observed 2×2 nearest neighbor contingency table (NNCT) $p_{t}=$ $f\left(n_{11} \mid n_{1}, n_{2}, c_{1} ; \theta\right)$ where $\theta=\left(n_{1}-1\right)\left(n_{2}-1\right) /\left(n_{1} n_{2}\right)$ which is the odds ratio under RL or CSR independence and f is the probability mass function of the hypergeometric distribution. That is, given the margins of the current NNCT, the probability of obtaining the current table with the odds ratio θ being the value under the null hypothesis. This value is used to compute the table-inclusive and exclusive p-values for the exact inference on NNCTs.
See (Ceyhan (2010)) for more details.

Usage

prob.nnct(ct)

Arguments

> ct

A NNCT

Value

The probability of getting the observed NNCT, ct, under the null hypothesis.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "Exact Inference for Testing Spatial Patterns by Nearest Neighbor Contingency Tables." Journal of Probability and Statistical Science, 8(1), 45-68.

See Also

exact.pval1s and exact.pval2s

Examples

ct<-matrix(sample(20:40,4),ncol=2)
prob.nnct(ct)
ct<-matrix(sample(20:40,4),ncol=2)
prob.nnct(ct)

QRval Number of Shared and Reflexive NNs

Description

Returns the Q and R values where Q is the number of points shared as a NN by other points i.e. number of points that are NN of other points (which occurs when two or more points share a NN, for data in any dimension) and R is the number of reflexive pairs where A and B are reflexive iff they are NN to each other.
These quantities are used, e.g., in computing the variances and covariances of the entries of the nearest neighbor contingency tables used for Dixon's tests and other NNCT tests.

Usage

QRval(njr)

Arguments

njr A list that is the output of Ninv (with first entry in the list is vector of number of shared NNs and second is the R value, number of reflexive points)

Value

A list with two elements

Q	the Q value, the number of shared NNs
R	the R value, the number of reflexive NNs

Author(s)

Elvan Ceyhan

See Also

Qval, Qvec, sharedNN, Rval and Ninv

Examples

```
#3D data points
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
ninv<-Ninv(ipd)
QRval(ninv)
W<-Wmat(ipd)
Qvec(W)$q
#1D data points
n<-15
X<-as.matrix(runif(n))# need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(n) would not work
ipd<-ipd.mat(X)
ninv<-Ninv(ipd)
QRval(ninv)
W<-Wmat(ipd)
Qvec(W)$q
#with possible ties in the data
Y<-matrix(round(runif(30)*10),ncol=3)
ny<-nrow(Y)
ipd<-ipd.mat(Y)
ninv<-Ninv(ipd)
QRval(ninv)
W<-Wmat (ipd)
Qvec(W)$q
```

Qsym.ct $\quad Q$-symmetry Contingency Table (QCT)

Description

Returns the $k \times 3$ contingency table for Q-symmetry (i.e. Q-symmetry contingency table (QCT)) given the IPD matrix or data set x where k is the number of classes in the data set. Each row in the QCT is the vector of number of points with shared NNs, $Q_{i}=\left(Q_{i 0}, Q_{i 1}, Q_{i 2}\right)$ where $Q_{i j}$ is the number of class i points that are NN to class j points for $j=0,1$ and $Q_{i 2}$ is the number of class i points that are NN to class j or more points. That is, this function pools the cells 3 or larger together for k classes, so Q_{2}, Q_{3} etc. are pooled, so the column labels are Q_{0}, Q_{1} and Q_{2} with the last one is actually sum of Q_{j} for $j \geq 2$. Rows the QCT are labeled with the corresponding class labels.
Q-symmetry is also equivalent to Pielou's second type of NN symmetry or the symmetry in the shared NN structure for all classes.

The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

See also (Pielou (1961); Ceyhan (2014)) and the references therein.

Usage

Qsym.ct(x, lab, is.ipd = TRUE, ...)

Arguments

x
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
lab The vector of class labels (numerical or categorical)
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns the $k \times 3$ QCT where k is the number of classes in the data set.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

sharedNNmc, Qsym.test and scct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(n*3),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
Qsym.ct(ipd,cls)
Qsym.ct(Y,cls,is.ipd = FALSE)
Qsym.ct(Y,cls,is.ipd = FALSE,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Qsym.ct(ipd,fcls)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
Qsym.ct(ipd,cls)
```

Pielou's Second Type of NN Symmetry Test with Chi-square Approximation

Description

An object of class "Chisqtest" performing the hypothesis test of equality of the probabilities for the rows in the Q-symmetry contingency table (QCT). Each row of the QCT is the vector of $\mathrm{Q} i j$ values where $Q_{i j}$ is the number of class i points that are NN to j points. That is, the test performs Pielou's second type of NN symmetry test which is also equivalent to Pearson's test on the QCT (Pielou (1961)). Pielou's second type of NN symmetry is the symmetry in the shared NN structure for all classes, which is also called Q-symmetry. The test is appropriate (i.e. have the appropriate asymptotic sampling distribution) provided that data is obtained by sparse sampling,
although simulations suggest it seems to work for completely mapped data as well. (See Ceyhan (2014) for more detail).

The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.
The argument combine is a logical argument (default=TRUE) to determine whether to combine the 3 rd column and the columns to the left. If TRUE, this function pools the cells 3 or larger together for k classes in the QCT, so Q_{2}, Q_{3} etc. are pooled, so the column labels are Q_{0}, Q_{1} and Q_{2} with the last one is actually sum of Q_{j} for $j \geq 2$ in the QCT. If FALSE, the function does not perform the pooling of the cells.
The function yields the test statistic, p-value and df which is $(k-1)\left(n_{c}-1\right)$ where n_{c} is the number of columns in QCT (which reduces to $2(k-1$), if combine=TRUE). It also provides the description of the alternative with the corresponding null values (i.e. expected values) of the entries of the QCT and also the sample estimates of the entries of QCT (i.e., the observed QCT). The function also provides names of the test statistics, the method and the data set used.

The null hypothesis is the symmetry in the shared NN structure for each class, that is, all $E\left(Q_{i j}\right)=$ $n_{i} Q_{j} / n$ where n_{i} the size of class i and Q_{j} is the sum of column j in the QCT (i.e., the total number of points serving as NN to class j other points). (i.e., symmetry in the mixed NN structure).
See also (Pielou (1961); Ceyhan (2014)) and the references therein.

Usage

Qsym.test(x, lab, is.ipd = TRUE, combine = TRUE, ...)

Arguments

x	The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is. ipd = FALSEALSE).
lab	The vector of class labels (numerical or categorical)
is.ipd	A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix (IPD matrix), otherwise, x is taken as the data set with rows representing the data points.
combine	A logical parameter (default=TRUE). If TRUE, the cells in column 3 or columns to the left are merged in the QCT, so Q_{2}, Q_{3} etc. are pooled, so the column labels are Q_{0}, Q_{1} and Q_{2} with the last one is actually sum of Q_{j} for $j \geq 2$ in the QCT. If FALSE, the function does not perform the pooling of the cells.
\ldots	are for further arguments, such as method and p, passed to the dist function.

Value

A list with the elements

statistic	The chi-squared test statistic for Pielou's second type of NN symmetry test (i.e.,
Q-symmetry which is equivalent to symmetry in the shared NN structure)	
p.value	The p-value for the hypothesis test

df Degrees of freedom for the chi-squared test, which is $(k-1)\left(n_{c}-1\right)$ where n_{c} is the number of columns in QCT (which reduces to $2(k-1)$ if combine=TRUE).
estimate Estimates, i.e., the observed QCT.
est.name,est.name2
Names of the estimates, they are identical for this function.
null.value Hypothesized null values for the entries of the QCT, i.e., the matrix with entries $E\left(Q_{i j}\right)=n_{i} Q_{j} / n$ where n_{i} the size of class i and Q_{j} is the sum of column j in the QCT (i.e., the total number of points serving as NN to class j other points).
method Description of the hypothesis test
data.name Name of the data set, x

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

Znnsym and Xsq. nnsym

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
Qsym.ct(ipd,cls)
Qsym.test(ipd,cls)
Qsym.test(Y,cls,is.ipd = FALSE)
Qsym.test(Y,cls,is.ipd = FALSE,method="max")
Qsym.test(ipd,cls,combine = FALSE)
#cls as a faqctor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Qsym.test(ipd,fcls)
Qsym.test(Y,fcls,is.ipd = FALSE)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
```

```
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
Qsym.test(ipd,cls)
Qsym.test(Y,cls,is.ipd = FALSE)
```

rassoc Generation of Points Associated with a Given Set of Points

Description

An object of class "SpatPatterns".
Generates $\mathrm{n}_{_} 22 \mathrm{D}$ points associated with the given set of points (i.e. reference points) X_{1} in the type=type fashion with the parameter=asc.par which specifies the level of association. The generated points are intended to be from a different class, say class 2 (or X_{2} points) than the reference (i.e. X_{1} points, say class 1 points, denoted as X 1 as an argument of the function), say class 1 points).

To generate n_{2} (denoted as n 2 as an argument of the function) X_{2} points, n_{2} of X_{1} points are randomly selected (possibly with replacement) and for a selected X 1 point, say $x_{1 r e f}$, a new point from the class 2 , say $x_{2 n e w}$, is generated from a distribution specified by the type argument.
In type I association, i.e., if type="I", first a $\operatorname{Uniform}(0,1)$ number, U, is generated. If $U \leq$ $p, x_{2 n e w}$ is generated (uniform in the polar coordinates) within a circle with radius equal to the distance to the closest X_{1} point, else it is generated uniformly within the smallest bounding box containing X_{1} points.
In the type C association pattern the new point from the class $2, x_{2 n e w}$, is generated (uniform in the polar coordinates) within a circle centered at $x_{1 r e f}$ with radius equal to r_{0}, in type U association pattern $x_{2 n e w}$ is generated similarly except it is uniform in the circle.
In type G association, $x_{2 \text { new }}$ is generated from the bivariate normal distribution centered at $x_{1 \text { ref }}$ with covariance σI_{2} where I_{2} is 2×2 identity matrix.
See Ceyhan (2014) for more detail.

Usage

rassoc(X1, n2, asc.par, type)

Arguments

X1 A set of 2D points representing the reference points, also referred as class 1 points. The generated points are associated in a type=type sense with these points.
n2 A positive integer representing the number of class 2 points to be generated.
asc.par A positive real number representing the association parameter. For type="I", it is attraction probability, p, of class 2 points associated with a randomly selected class 1 point; for type=" C " or " U ", it is the radius of association, $r 0$, of class 2 points associated with a randomly selected class 1 point; for type=" G ", it is the variance of the Gaussian marginals, where the bivariate normal distribution has covariance σI_{2} with I_{2} being the 2×2 identity matrix.
type The type of the association pattern. Takes on values "I", "C", "U" and "G" for types I, C, U and G association patterns (see the description above).

Value

A list with the elements
pat.type $\quad=$ "ref.gen" for the bivariate pattern of association of class 2 points with the reference points (i.e. X_{1}), indicates reference points are required to be entered as an argument in the function
type \quad The type of the point pattern
parameters The asc.par value specifying the level of association
ref.points The input set of reference points X_{1}, i.e., points with which generated class 2 points are associated.
desc.pat Description of the point pattern
mtitle The "main" title for the plot of the point pattern
num. points The vector of two numbers, which are the number of generated class 2 points and the number of reference (i.e. X_{1}) points.
xlimit,ylimit The possible ranges of the x - and y-coordinates of the generated and the reference points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Simulation and characterization of multi-class spatial patterns from stochastic point processes of randomness, clustering and regularity." Stochastic Environmental Research and Risk Assessment (SERRA), 38(5), 1277-1306.

See Also

rassocI, rassocC, rassocU, and rassocG

Examples

```
n1<-20; n2<-1000; #try also n1<-10; n2<-1000;
#with default bounding box (i.e., unit square)
X1<-cbind(runif(n1),runif(n1))
Xdat<-rassoc(X1,n2,asc.par=.05,type="G") #try other types as well
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#with type U association
```

```
Xdat<-rassoc(X1,n2,asc.par=.1,type="U")
Xdat
summary (Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#with type C association
Xdat<-rassoc(X1,n2,asc.par=.1,type=2) #2 is for "C"
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rassocC

Generation of Points Associated in the Type C Sense with a Given Set of Points

Description

An object of class "SpatPatterns".

Generates $n_{2} 22$ points associated with the given set of points (i.e. reference points) X_{1} in the type C fashion with a radius of association r_{0} (denoted as r 0 as an argument of the function) which is a positive real number. The generated points are intended to be from a different class, say class 2 (or X_{2} points) than the reference (i.e. X_{1} points, say class 1 points, denoted as X1 as an argument of the function), say class 1 points). To generate $n_{2} X_{2}$ points, n_{2} of X_{1} points are randomly selected (possibly with replacement) and for a selected X1 point, say $x_{1 r e f}$, a new point from the class 2 , say $x_{2 \text { new }}$, is generated within a circle with radius equal to r_{0} (uniform in the polar coordinates). That is, $x_{2 \text { new }}=x_{1 \text { ref }}+r_{u} c\left(\cos \left(t_{u}\right), \sin \left(t_{u}\right)\right)$ where $r_{u} \sim U\left(0, r_{0}\right)$ and $t_{u} \sim U(0,2 \pi)$. Note that, the level of association increases as r_{0} decreases, and the association vanishes when r_{0} is sufficiently large.
For type C association, it is recommended to take $r_{0} \leq 0.25$ times length of the shorter edge of a rectangular study region, or take $r_{0}=1 /(k \sqrt{\hat{\rho}})$ with the appropriate choice of k to get an association pattern more robust to differences in relative abundances (i.e. the choice of k implies $r_{0} \leq 0.25$ times length of the shorter edge to have alternative patterns more robust to differences in sample sizes). Here $\hat{\rho}$ is the estimated intensity of points in the study region (i.e., \# of points divided by the area of the region).
Type C association is closely related to Type U association, see the function rassocC and the other association types. In the type U association pattern the new point from the class $2, x_{2 \text { new }}$, is generated uniformly within a circle centered at $x_{1 r e f}$ with radius equal to r_{0}. In type G association, $x_{2 n e w}$ is generated from the bivariate normal distribution centered at $x_{1 \text { ref }}$ with covariance σI_{2} where I_{2} is 2×2 identity matrix. In type I association, first a $\operatorname{Uniform}(0,1)$ number, U, is generated. If $U \leq p, x_{2 \text { new }}$ is generated (uniform in the polar coordinates) within a circle with radius equal to the distance to the closest X_{1} point, else it is generated uniformly within the smallest bounding box containing X_{1} points.
See Ceyhan (2014) for more detail.

Usage

```
rassocC(X1, n2, r0)
```


Arguments

X1 A set of 2D points representing the reference points, also referred as class 1 points. The generated points are associated in a type C sense (in a circular/radial fashion) with these points.
n2 A positive integer representing the number of class 2 points to be generated.
r0 A positive real number representing the radius of association of class 2 points associated with a randomly selected class 1 point (see the description below).

Value

A list with the elements
pat.type $\quad=" r e f . g e n "$ for the bivariate pattern of association of class 2 points with the reference points (i.e. X_{1}), indicates reference points are required to be entered as an argument in the function
type The type of the point pattern
parameters Radius of association controlling the level of association
gen. points The output set of generated points (i.e. class 2 points) associated with reference (i.e. X_{1} points)
ref.points The input set of reference points X_{1}, i.e., points with which generated class 2 points are associated.
desc.pat Description of the point pattern
mtitle The "main" title for the plot of the point pattern
num. points The vector of two numbers, which are the number of generated class 2 points and the number of reference (i.e. X_{1}) points.
xlimit, ylimit The possible ranges of the x - and y-coordinates of the generated and the reference points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Simulation and characterization of multi-class spatial patterns from stochastic point processes of randomness, clustering and regularity." Stochastic Environmental Research and Risk Assessment (SERRA), 38(5), 1277-1306.

See Also

rassocI, rassocG, rassocU, and rassoc

Examples

```
n1<-20; n2<-1000; #try also n1<-10; n2<-1000;
r0<-. }15\mathrm{ #try also . }10\mathrm{ and .20, runif(1)
#with default bounding box (i.e., unit square)
X1<-cbind(runif(n1),runif(n1)) #try also X1<-1+cbind(runif(n1),runif(n1))
Xdat<-rassocC(X1,n2,r0)
Xdat
summary (Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#radius adjusted with the expected NN distance
x<-range(X1[,1]); y<-range(X1[,2])
ar<-(y[2]-y[1])*(x[2]-x[1]) #area of the smallest rectangular window containing X1 points
rho<-n1/ar
r0<-1/(2*sqrt(rho)) #r0=1/(2rho) where \code{rho} is the intensity of X1 points
Xdat<-rassocC(X1,n2,r0)
Xdat
summary (Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rassocG Generation of Points Associated in the Type G Sense with a Given Set
of Points

Description

An object of class "SpatPatterns".
Generates $\mathrm{n} _2$ 2D points associated with the given set of points (i.e. reference points) X_{1} in the type G fashion with the parameter sigma which is a positive real number representing the variance of the Gaussian marginals. The generated points are intended to be from a different class, say class 2 (or X_{2} points) than the reference (i.e. X_{1} points, say class 1 points, denoted as X 1 as an argument of the function), say class 1 points). To generate n_{2} (denoted as n 2 as an argument of the function) X_{2} points, n_{2} of X_{1} points are randomly selected (possibly with replacement) and for a selected X1 point, say $x_{1 \text { ref }}$, a new point from the class 2 , say $x_{2 \text { new }}$, is generated from a bivariate normal distribution centered at $x_{1 \text { ref }}$ where the covariance matrix of the bivariate normal is a diagonal matrix with sigma in the diagonals. That is, $x_{2 \text { new }}=x_{1 \text { ref }}+V$ where $V \sim B V N\left((0,0), \sigma I_{2}\right)$ with I_{2} being the 2×2 identity matrix. Note that, the level of association increases as sigma decreases, and the association vanishes when sigma goes to infinity.
For type G association, it is recommended to take $\sigma \leq 0.10$ times length of the shorter edge of a rectangular study region, or take $r_{0}=1 /(k \sqrt{\hat{\rho}})$ with the appropriate choice of k to get an association pattern more robust to differences in relative abundances (i.e. the choice of k implies $\sigma \leq 0.10$ times length of the shorter edge to have alternative patterns more robust to differences in
sample sizes). Here $\hat{\rho}$ is the estimated intensity of points in the study region (i.e., \# of points divided by the area of the region).
Type G association is closely related to Types C and U association, see the functions rassocC and rassocU and the other association types. In the type C association pattern the new point from the class $2, x_{2 n e w}$, is generated (uniform in the polar coordinates) within a circle centered at $x_{1 r e f}$ with radius equal to r_{0}, in type U association pattern $x_{2 n e w}$ is generated similarly except it is uniform in the circle. In type I association, first a $\operatorname{Uniform}(0,1)$ number, U, is generated. If $U \leq p, x_{2 n e w}$ is generated (uniform in the polar coordinates) within a circle with radius equal to the distance to the closest X_{1} point, else it is generated uniformly within the smallest bounding box containing X_{1} points.
See Ceyhan (2014) for more detail.

Usage

rassocG(X1, n2, sigma)

Arguments

X1 A set of 2D points representing the reference points, also referred as class 1 points. The generated points are associated in a type G sense with these points.
n2 A positive integer representing the number of class 2 points to be generated.
sigma A positive real number representing the variance of the Gaussian marginals, where the bivariate normal distribution has covariance $\operatorname{BVN}((0,0)$, sigma*I_2) with I_{2} being the 2×2 identity matrix.

Value

A list with the elements

pat.type	$=" r e f . g e n "$ for the bivariate pattern of association of class 2 points with the reference points (i.e. X_{1}), indicates reference points are required to be entered as an argument in the function
type	The type of the point pattern
parameters	The variance of the Gaussian marginals controlling the level of association, where the bivariate normal distribution has covariance σI_{2} with I_{2} being the 2×2 identity matrix.
gen.points	The output set of generated points (i.e. class 2 points) associated with reference (i.e. X_{1} points)
ref.points \quadThe input set of reference points X_{1}, i.e., points with which generated class 2 points are associated.	
desc.pat \quadDescription of the point pattern mtitle num.points\quadThe "main" title for the plot of the point pattern The vector of two numbers, which are the number of generated class 2 points and the number of reference (i.e. X_{1}) points.	
xlimit,ylimit \quadThe possible ranges of the x - and y-coordinates of the generated and the refer- ence points	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Simulation and characterization of multi-class spatial patterns from stochastic point processes of randomness, clustering and regularity." Stochastic Environmental Research and Risk Assessment (SERRA), 38(5), 1277-1306.

See Also

rassocI, rassocG, rassocC, and rassoc

Examples

```
n1<-20; n2<-1000; #try also n1<-10; n2<-1000;
stdev<-. 05 #try also . }075\mathrm{ and . }1
#with default bounding box (i.e., unit square)
X1<-cbind(runif(n1),runif(n1)) #try also X1<-1+cbind(runif(n1),runif(n1))
Xdat<-rassocG(X1, n2, stdev)
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#sigma adjusted with the expected NN distance
x<-range(X1[,1]); y<-range(X1[,2])
ar<-(y[2]-y[1])*(x[2]-x[1]) #area of the smallest rectangular window containing X1 points
rho<-n1/ar
stdev<-1/(4*sqrt(rho)) #r0=1/(2rho) where \code{rho} is the intensity of X1 points
Xdat<-rassocG(X1,n2,stdev)
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rassocI | Generation of Points Associated in the Type I Sense with a Given Set |
| :--- |
| of Points |

Description

An object of class "SpatPatterns".
Generates $\mathrm{n}_{2} 2$ 2D points associated with the given set of points (i.e. reference points) X_{1} in the type I fashion with circular (or radial) between class attraction parameter p , which is a probability
value between 0 and 1 . The generated points are intended to be from a different class, say class 2 (or X_{2} points) than the reference (i.e. X_{1} points, say class 1 points, denoted as X 1 as an argument of the function). To generate n_{2} (denoted as n 2 as an argument of the function) X_{2} points, n_{2} of X_{1} points are randomly selected (possibly with replacement) and for a selected X 1 point, say $x_{1 r e f}$, a $\operatorname{Uniform}(0,1)$ number, U, is generated. If $U \leq p$, a new point from the class 2 , say $x_{2 \text { new }}$, is generated within a circle with radius equal to the distance to the closest X_{1} point (uniform in the polar coordinates), else the new point is generated uniformly within the smallest bounding box containing X_{1} points. That is, if $U \leq p, x_{2 n e w}=x_{1 r e f}+r_{u} c\left(\cos \left(t_{u}\right), \sin \left(t_{u}\right)\right)$ where $r_{u} \sim U(0, r a d)$ and $t_{u} \sim U(0,2 \pi)$ with $r a d=\min \left(d\left(x_{1 \text { ref }}, X_{1} \backslash\left\{x_{1 \text { ref }}\right\}\right)\right)$, else $x_{2 n e w} \sim$ $\operatorname{rect}\left(X_{1}\right)$ where $\operatorname{rect}\left(X_{1}\right)$ is the smallest bounding box containing X_{1} points. Note that, the level of association increases as p increases, and the association vanishes when p approaches to 0 .

Type I association is closely related to Type C association in Ceyhan (2014), see the function rassocC and also other association types. In the type C association pattern the new point from the class $2, x_{2 n e w}$, is generated (uniform in the polar coordinates) within a circle centered at $x_{1 \text { ref }}$ with radius equal to r_{0}, in type U association pattern $x_{2 \text { new }}$ is generated similarly except it is uniform in the circle. In type G association, $x_{2 n e w}$ is generated from the bivariate normal distribution centered at $x_{1 r e f}$ with covariance σI_{2} where I_{2} is 2×2 identity matrix.

Usage

rassocI(X1, n2, p)

Arguments

X1 A set of 2D points representing the reference points, also referred as class 1 points. The generated points are associated in a type I sense (in a circular/radial fashion) with these points.
n2
A positive integer representing the number of class 2 (i.e. X_{2}) points to be generated.
p A real number between 0 and 1 representing the attraction probability of class 2 points associated with a randomly selected class 1 point (see the description below).

Value

A list with the elements
pat.type equals "ref.gen" for the bivariate pattern of association of class 2 (i.e. X_{2}) points with the reference points (i.e. X_{1}), indicates reference points are required to be entered as an argument in the function
type The type of the point pattern
parameters Radial (i.e. circular) between class attraction parameter controlling the level of association
gen.points The output set of generated points (i.e. class 2 points) associated with reference (i.e. X_{1} points)
ref.points The input set of reference points X_{1}, i.e., points with which generated class 2 points are associated.

desc.pat	Description of the point pattern
lab	The class labels of the generated points, it is NULL for this function, since only class 2 points are generated in this pattern
mtitle	The "main" title for the plot of the point pattern
num. points	The vector of two numbers, which are the number of generated class 2 points and the number of reference (i.e. X_{1}) points.
xlimit,ylimit	The possible ranges of the x - and y-coordinates of the generated and the refer- ence points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Simulation and characterization of multi-class spatial patterns from stochastic point processes of randomness, clustering and regularity." Stochastic Environmental Research and Risk Assessment (SERRA), 38(5), 1277-1306.

See Also

rassocC, rassocG, rassocU, and rassoc

Examples

```
n1<-20; n2<-1000; #try also n1<-10; n2<-1000;
p<- . }75\mathrm{ #try also . 25, .5, . 9, runif(1)
#with default bounding box (i.e., unit square)
X1<-cbind(runif(n1),runif(n1)) #try also X1<-1+cbind(runif(n1),runif(n1))
Xdat<-rassocI(X1,n2,p)
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rassocU

Description

An object of class "SpatPatterns".
Generates $\mathrm{n}_{-} 22 \mathrm{D}$ points associated with the given set of points (i.e. reference points) X_{1} in the type U fashion with a radius of association r_{0} (denoted as r 0 as an argument of the function) which is a positive real number. The generated points are intended to be from a different class, say class 2 (or X_{2} points) than the reference (i.e. X_{1} points, say class 1 points, denoted as X1 as an argument of the function), say class 1 points). To generate n_{2} (denoted as n 2 as an argument of the function) X_{2} points, n_{2} of X_{1} points are randomly selected (possibly with replacement) and for a selected X1 point, say $x_{1 r e f}$, a new point from the class 2 , say $x_{2 n e w}$, is generated uniformly within a circle with radius equal to r_{0}. That is, $x_{2 n e w}=x_{1 r e f}+r_{u} c\left(\cos \left(t_{u}\right), \sin \left(t_{u}\right)\right)$ where $r_{u}=\operatorname{sqrt}(U) * r_{0}$ with $U \sim U(0,1)$ and $t_{u} \sim U(0,2 \pi)$. Note that, the level of association increases as r_{0} decreases, and the association vanishes when r_{0} is sufficiently large.
For type U association, it is recommended to take $r_{0} \leq 0.10$ times length of the shorter edge of a rectangular study region, or take $r_{0}=1 /(k \sqrt{\hat{\rho}})$ with the appropriate choice of k to get an association pattern more robust to differences in relative abundances (i.e. the choice of k implies $r_{0} \leq 0.10$ times length of the shorter edge to have alternative patterns more robust to differences in sample sizes). Here $\hat{\rho}$ is the estimated intensity of points in the study region (i.e., \# of points divided by the area of the region).
Type U association is closely related to Type C association, see the function rassocC and the other association types. In the type C association pattern the new point from the class $2, x_{2 n e w}$, is generated (uniform in the polar coordinates) within a circle centered at $x_{1 r e f}$ with radius equal to r_{0}. In type G association, $x_{2 \text { new }}$ is generated from the bivariate normal distribution centered at $x_{1 \text { ref }}$ with covariance σI_{2} where I_{2} is 2×2 identity matrix. In type I association, first a $\operatorname{Uniform}(0,1)$ number, U, is generated. If $U \leq p, x_{2 n e w}$ is generated (uniform in the polar coordinates) within a circle with radius equal to the distance to the closest X_{1} point, else it is generated uniformly within the smallest bounding box containing X_{1} points.
See Ceyhan (2014) for more detail.

Usage

rassocU(X1, n2, r0)

Arguments

X1 A set of 2D points representing the reference points, also referred as class 1 points. The generated points are associated in a type U sense (in a circular/radial fashion) with these points.
n2 A positive integer representing the number of class 2 points to be generated.
r0 A positive real number representing the radius of association of class 2 points associated with a randomly selected class 1 point (see the description below).

Value

A list with the elements

$$
\begin{array}{ll}
\text { pat.type } & =" \text { ref.gen" for the bivariate pattern of association of class } 2 \text { points with the } \\
\text { reference points (i.e. } X_{1} \text {), indicates reference points are required to be entered } \\
\text { as an argument in the function }
\end{array}
$$

type	The type of the point pattern
parameters	Radius of association controlling the level of association
gen.points	The output set of generated points (i.e. class 2 points) associated with reference (i.e. X_{1} points)
ref.points	The input set of reference points X_{1}, i.e., points with which generated class 2 points are associated.
desc.pat	Description of the point pattern
mtitle	The "main" title for the plot of the point pattern
num.points	The vector of two numbers, which are the number of generated class 2 points and the number of reference (i.e. X_{1}) points. The possible ranges of the x - and y-coordinates of the generated and the refer- ence points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Simulation and characterization of multi-class spatial patterns from stochastic point processes of randomness, clustering and regularity." Stochastic Environmental Research and Risk Assessment (SERRA), 38(5), 1277-1306.

See Also

rassocI, rassocG, rassocC, and rassoc

Examples

```
n1<-20; n2<-1000; #try also n1<-10; n2<-1000;
r0<-. }15\mathrm{ #try also . }10\mathrm{ and . }2
#with default bounding box (i.e., unit square)
X1<-cbind(runif(n1),runif(n1)) #try also X1<-1+cbind(runif(n1),runif(n1))
Xdat<-rassocU(X1,n2,r0)
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#radius adjusted with the expected NN distance
x<-range(X1[,1]); y<-range(X1[,2])
ar<-(y[2]-y[1])*(x[2]-x[1]) #area of the smallest rectangular window containing X1 points
rho<-n1/ar
r0<-1/(2*sqrt(rho)) #r0=1/(2rho) where \code{rho} is the intensity of X1 points
Xdat<-rassocU(X1,n2,r0)
Xdat
summary(Xdat)
```

```
plot(Xdat,asp=1)
plot(Xdat)
```

rct Reflexivity Contingency Table (RCT)

Description

Returns the RCT given the IPD matrix or data set x, the RCT is 2×2 regardless of the number of classes in the data set.

RCT is constructed by categorizing the NN pairs according to pair type as self or mixed and whether the pair is reflexive or non-reflexive. A base-NN pair is called a reflexive pair, if the elements of the pair are NN to each other; a non-reflexive pair, if the elements of the pair are not NN to each other; a self pair, if the elements of the pair are from the same class; a mixed pair, if the elements of the pair are from different classes. Row labels in the RCT are "ref" for reflexive and "non-ref" for non-reflexive and column labels are "self" and "mixed".

The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.
See also (Ceyhan and Bahadir (2017); Bahadir and Ceyhan (2018)) and the references therein.

Usage

$\operatorname{rct}(x$, lab, is.ipd = TRUE, ...)

Arguments

x
lab The vector of class labels (numerical or categorical)
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns the 2×2 RCT, see the description above for more detail.

Author(s)

Elvan Ceyhan

References

Bahadir S, Ceyhan E (2018). "On the Number of reflexive and shared nearest neighbor pairs in one-dimensional uniform data." Probability and Mathematical Statistics, 38(1), 123-137.

Ceyhan E, Bahadir S (2017). "Nearest Neighbor Methods for Testing Reflexivity." Environmental and Ecological Statistics, 24(1), 69-108.

See Also

nnct, tct and scct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
rct(ipd,cls)
rct(Y,cls,is.ipd = FALSE)
rct(Y,cls,is.ipd = FALSE,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
rct(ipd,fcls)
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
rct(ipd,cls)
```


Description

An object of class "Clusters".
Generates n 2 D points with $\mathrm{k}(k \geq 2)$ clusters along the first diagonal where about n / k points belongs to each cluster.
If distribution="uniform", the points are uniformly generated in their square supports where one square is the unit square (i.e., with vertices $(0,0),(1,0),(1,1),(0,1))$, and the others are unit squares translated $j \sqrt{2} d$ units along the first diagonal for $j=1,2, \ldots, k-1$ (i.e. with vertices $(j d, j d),(1+j d, j d),(1+j d, 1+j d),(j d, 1+j d))$.

If distribution="bvnormal", the points are generated from the bivariate normal distribution with means equal to the centers of the above squares (i.e. for each cluster with mean=($(1+j d) / 2,(1+$ $j d) / 2)$ for $j=0,1, \ldots, k-1$ and the covariance matrix $s d I_{2}$, where I_{2} is the 2×2 identity matrix.
Notice that the clusters are more separated, i.e., generated data indicates more clear clusters as d increases in either positive or negative direction with $d=0$ indicating one cluster in the data. For a fixed d, when distribution="bvnormal", the clustering gets stronger if the variance of each component, $s d^{2}$, gets smaller, and clustering gets weaker as the variance of each component gets larger where default is $s d=1 / 6$.

Usage

rdiag.clust(n, k, d, sd = 1/6, distribution = c("uniform", "bvnormal"))

Arguments

$n \quad$ A positive integer representing the number of points to be generated from the two clusters
$k \quad$ A positive integer representing the number of clusters to be generated
d Shift in the first diagonal indicating the level of clustering in the data. Larger absolute values in either direction (i.e. positive or negative) would yield stronger clustering.
sd The standard deviation of the components of the bivariate normal distribution with default $s d=1 / 6$, used only when distribution="bvnormal".
distribution The argument determining the distribution of each cluster. Takes on values "uniform" and "bvnormal" whose centers are d units apart along the first diagonal direction.

Value
A list with the elements
type \quad The type of the clustering pattern
parameters The number of clusters, k, the diagonal shift d representing the level of clustering (for both distribution types) and standard deviation, sd, for the bivariate normal distribution only
gen.points The output set of generated points from the clusters.
desc.pat Description of the clustering pattern
mtitle The "main" title for the plot of the point pattern
num. points The number of generated points.
xlimit, ylimit The possible ranges of the x - and y-coordinates of the generated points

Author(s)

Elvan Ceyhan

See Also

rhor.clust and rrot.clust

Examples

```
n<-20 #or try sample(1:20,1); #try also n<-50; n<-1000;
d<-. 5 #try also -75,.75, 1
k<-3 #try also 5
#data generation
Xdat<-rdiag.clust(n,k,d)
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#data generation (bvnormal)
n<-20 #or try sample(1:20,1); #try also n<-50; n<-1000;
d<-. 5 #try also -.75,.75, 1
k<-3 #try also 5
Xdat<-rdiag.clust(n,k,d,distr="bvnormal") #try also Xdat<-rdiag.clust(n,k,d,sd=.09,distr="bvnormal")
Xdat
```

summary (Xdat)
plot(Xdat, asp=1)
plot(Xdat)
rhor.clust Generation of Points with Clusters along the Horizontal Axis

Description

An object of class "Clusters".
Generates n 2 D points with $\mathrm{k}(k \geq 2)$ clusters along the horizontal axis where about n / k points belongs to each cluster.
If distribution="uniform", the points are uniformly generated in their square supports where one square is the unit square (i.e., with vertices $(0,0),(1,0),(1,1),(0,1)$), and the others are d units shifted horizontally from each other so that their lower end vertices are $(j-1)+(j-1) d$ for $j=1,2, \ldots, k$.
If distribution="bvnormal", the points are generated from the bivariate normal distribution with means equal to the centers of the above squares (i.e. for each cluster with mean $=(\mathrm{j}+(\mathrm{j}-1) \mathrm{d}-1 / 2,1 / 2)$ for $j=1,2, \ldots, k$ and the covariance matrix $s d I_{2}$, where I_{2} is the 2×2 identity matrix.
Notice that the clusters are more separated, i.e., generated data indicates more clear clusters as d increases in either direction with $d=0$ indicating one cluster in the data. For a fixed d, when distribution="bvnormal", the clustering gets stronger if the variance of each component, $s d^{2}$, gets smaller, and clustering gets weaker as the variance of each component gets larger where default is $s d=1 / 6$.

Usage

```
rhor.clust(n, k, d, sd = 1/6, distribution = c("uniform", "bvnormal"))
```


Arguments

$n \quad$ A positive integer representing the number of points to be generated from all the clusters
$k \quad$ A positive integer representing the number of clusters to be generated
d Horizontal shift indicating the level of clustering in the data. Larger absolute values in either direction (i.e. positive or negative) would yield stronger clustering.
sd The standard deviation of the components of the bivariate normal distribution with default $s d=1 / 6$, used only when distribution="bvnormal".
distribution The argument determining the distribution of each cluster. Takes on values "uniform" and "bvnormal" whose centers are d units apart along the horizontal direction.

Value

A list with the elements
type \quad The type of the clustering pattern
parameters The number of clusters, k, and the horizontal shift, d , representing the level of clustering (for both distribution types) and standard deviation, sd, for the bivariate normal distribution only.
gen.points The output set of generated points from the k clusters.
desc.pat Description of the clustering pattern
mtitle The "main" title for the plot of the point pattern
num. points The number of generated points.
xlimit,ylimit The possible ranges of the x - and y-coordinates of the generated points

Author(s)

Elvan Ceyhan

See Also

rdiag.clust and rrot.clust

Examples

```
n<-100; #try also n<-50; or n<-1000;
d<-.5 #try also -.5,.75, 1
k<-3 #try also 5
#data generation
Xdat<-rhor.clust(n,k,d)
```

```
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#data generation (bvnormal)
n<-100; #try also n<-50; n<-1000;
d<-.1 #try also -.1, .75, 1
k<-3 #try also 5
Xdat<-rhor.clust(n,k,d,distr="bvnormal") #try also Xdat<-rhor.clust(n,k,d,sd=.15,distr="bvnormal")
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rnonRL Non-Random Labeling of a Given Set of Points

Description

An object of class "SpatPatterns".
Given the set of n points, dat, in a region, this function assigns some of them as cases, and the rest as controls in a non-RL type=type fashion.
Type I nonRL pattern assigns $n_{1}=$ round ($n *$ prop, 0) of the data points as cases, and the rest as controls with first selecting a point, Z_{i}, as a case and assigning the label case to the remaining points with infection probabilities prob=c(prop+((1-prop)*rho)/(1:k)) where rho is a parameter adjusting the NN dependence of infection probabilities.
Type II nonRL pattern assigns $n_{1}=$ round ($n * u l t$. prop, 0) of them as cases, and the rest as controls with first selecting $k_{0}=$ round ($n *$ init.prop, 0) as cases initially, then selecting a contagious case and then assigning the label case to the remaining points with infection probabilities inversely proportional to their position in the kNNs.
Type III nonRL pattern assigns $n_{1}=r o u n d(n * p r o p, 0)$ of them as cases, and the rest as controls with first selecting a point, Z_{i}, as a case and assigning the label case to the remaining points with infection probabilities $\operatorname{prob}=r h o\left(1-d_{i j} / d_{\max }\right)^{\text {pow }}$ where $d_{i j}$ is the distance from Z_{j} to Z_{i} for $j \neq i, d_{\max }$ is the maximum of $d_{i j}$ values, rho is a scaling parameter for the infection probabilities and pow is a parameter in the power adjusting the distance dependence.
Type IV nonRL pattern assigns $n_{1}=$ round ($n * u l t$.prop, 0) of them as cases, and the rest as controls with first selecting $k_{0}=$ round ($\mathrm{n} *$ init.prop, 0) as cases initially and assigning the label case to the remaining points with infection probabilities equal to the scaled bivariate normal density values at those points.

The number of cases in Types I and III will be n_{1} on the average if the argument poisson=TRUE (i.e., $n_{1}=\operatorname{rpois}(1, \operatorname{round}(n * \operatorname{prop}, 0))$), otherwise $n_{1}=\operatorname{round}(\mathrm{n} * \operatorname{prop}, 0)$. The initial and ultimate number of cases in Types II and IV will be k_{0} and n_{1} on the average if the argument poisson=TRUE
(i.e., $k_{0}=r \operatorname{pois}(1$, round $(\mathrm{n} *$ init. $p r o p, 0))$ and $n_{1}=r p o i s(1$, round $(\mathrm{n} * u l t . p r o p, 0))$), otherwise they will be exactly equal to $n_{1}=r o u n d(n * u l t . p r o p, 0)$ and $k_{0}=r o u n d(n * i n i t . p r o p, 0)$.
At each type, we stop when we first exceed n_{1} cases. That is, the procedure ends when number of cases n_{c} exceed n_{1}, and $n_{c}-n_{1}$ of the cases (other than the initial case(s)) are randomly selected and relabeled as controls, i.e. 0 s , so that the number of cases is exactly n_{1}.

In the output cases are labeled as 1 and controls as 0 , and initial contagious case is marked with a red cross in the plot of the pattern.
See Ceyhan (2014) and the functions rnonRLI, rnonRLII, rnonRLIII, and rnonRLIV for more detail on each type of non-RL pattern.

Although the non-RL pattern is described for the case-control setting, it can be adapted for any twoclass setting when it is appropriate to treat one of the classes as cases or one of the classes behave like cases and other class as controls.
The parameters of the non-RL patterns are specified in the argument par.vec, and the logical arguments rand.init and poisson pass on to the types where required. rand.init is not used in type I but used in all other types, poisson is used in all types, and init.from.cases is used in type I non-RL only.

Usage

```
rnonRL(
    dat,
    par.vec,
    type,
    rand.init = TRUE,
    poisson = FALSE,
    init.from.cases = TRUE
)
```


Arguments

dat A set of points the non-RL procedure is applied to obtain cases and controls randomly in the type=type fashion (see the description).
par.vec The parameter vector. It is c (prop, k, rho) for type $I, c(k, r h o, p o w, i n i t . p r o p, u l t . p r o p) ~$ for type II, c (prop, rho, pow) for type III, and c(init. prop, ult. prop, s1, s2, rho) for type IV non-RL patterns. The parameters must be entered in this order in par.vec as a vector. See the respective functions for more detail on the parameters.
type \quad The type of the non-RL pattern. Takes on values "I"-"IV" for types I-IV nonRL patterns (see the description above).
rand.init A logical argument (default is TRUE) to determine the choice of the initial case(s) in the data set, dat for types II-IV non-RL pattern. If rand. init=TRUE then the initial case(s) is (are) selected randomly from the data points, and if rand. init=FALSE, the first one is labeled as a case for type III and the first init. prop*n entries in the data set, dat, are labeled as the cases types II and IV.
poisson A logical argument (default is FALSE) to determine whether the number of cases is random or fixed. In types II and IV initial and ultimate number of cases, k_{0}
and n_{1}, will be random if poisson=TRUE and fixed otherwise. In types I and III the number of cases, n_{1}, will be random if poisson=TRUEURE and fixed otherwise. See the description.
init.from.cases
A logical argument (default is TRUE) to determine whether the initial cases at each round will be take from cases or controls in type I non-RL pattern. The initial cases are taken from cases if init. from. cases=TRUE, and from controls otherwise. See the function rnonRLI.

Value

A list with the elements
pat.type $\quad=" c c "$ for the case-control patterns for RL or non-RL of the given data points, dat
type \quad The type of the point pattern
parameters par.vec, the parameters required for each type of non-RL pattern. See the description in the parameter list.
lab The labels of the points as 1 for cases and 0 for controls after the nonRL procedure is applied to the data set, dat. Cases are denoted as red dots and controls as black circles in the plot.
init. cases The initial cases in the data set, dat. Marked with red crosses in the plot of the points.
cont. cases The contagious cases in the data set, dat in type II non-RL pattern. Denoted as blue points in the plot of the points.
gen. points, ref.points
Both are NULL for this function, as initial set of points, dat, are provided for all of the non-RL procedures.
desc.pat Description of the point pattern
mtitle The "main" title for the plot of the point pattern
num. points The vector of two numbers, which are the number of cases and controls.
xlimit,ylimit The possible ranges of the x - and y-coordinates of the generated and the reference points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

rnonRLI, rnonRLII, rnonRLIII, and rnonRLIV

Examples

```
#data generation
n<-40; #try also n<-20; n<-100;
dat<-cbind(runif(n,0,1),runif(n,0,1))
#Type I non-RL pattern
#c(prop,k,rho) for type I
prop<-.5; knn<-3; rho<- . 3
prv<-c(prop,knn,rho)
Xdat<-rnonRL(dat,type="I",prv) #labeled data
# or try Xdat<-rnonRL(dat,type="I",prv) for type I non-RL
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#Type II non-RL pattern
#c(k,rho,pow,init.prop,ult.prop) for type II
rho<-.8; pow<-2; knn<-5; ip<-.3; up<-. 5
prv<-c(knn,rho,pow,ip,up)
Xdat<-rnonRL(dat,type="II",prv) #labeled data
# or try Xdat<-rnonRL(dat,type="I",prv) for type I non-RL
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#Type III non-RL pattern
#c(prop,rho,pow) for type III
prop<- .5; rho<-.8; pow<-2
prv<-c(prop,rho,pow)
Xdat<-rnonRL(dat,type="III",prv) #labeled data
# or try Xdat<-rnonRL(dat,type="I",prv) for type I non-RL
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#Type IV non-RL pattern
#c(init.prop,ult.prop,s1,s2,rho) for type IV
```

```
ult<-.5; int<- .1; s1<-s2<-.4; rho<- . }
prv<-c(int,ult,s1,s2,rho)
Xdat<-rnonRL(dat,type="IV",prv) #labeled data
# or try Xdat<-rnonRL(dat,type="I",prv) for type I non-RL
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```


rnonRLI

Type I Non-Random Labeling of a Given Set of Points

Description

An object of class "SpatPatterns".
Given the set of n points, dat, in a region, this function assigns $n_{1}=r o u n d(n * p r o p, 0)$ of them as cases, and the rest as controls with first selecting a point, Z_{i}, as a case and assigning the label case to the remaining points with infection probabilities prob=c (prop+((1-prop)*rho)/(1:k)) where rho is a parameter adjusting the NN dependence of infection probabilities. The number of cases will be n_{1} on the average if the argument poisson=TRUE (i.e., $n_{1}=\operatorname{rpois}(1$, round ($\mathrm{n} * \mathrm{prop}, 0)$)), otherwise $n_{1}=$ round ($\mathrm{n} *$ prop, 0). We stop when we first exceed n_{1} cases. rho must be between -prop/ (1-prop) and 1 for the infection probabilities to be valid. The init. from. cases is a logical argument (with default=TRUE) to determine the initial cases are from the cases or controls (the first initial case is always from controls), so if TRUE, initial cases (other than the first initial case) are selected randomly among the cases (as if they are contagious), otherwise, they are selected from controls as new cases infecting their kNNs. otherwise first entry is chosen as the case (or case is recorded as the first entry) in the data set, dat.
Algorithmically, first all dat points are treated as non-cases (i.e. controls or healthy subjects). Then the function follows the following steps for labeling of the points:
step 0: n_{1} is generated randomly from a Poisson distribution with mean $=\mathrm{n} * \mathrm{prop}$, so that the average number of cases is $n * p r o p$.
step 0: n_{1} is generated randomly from a Poisson distribution with mean $=$ round ($n * \operatorname{prop}, 0$), so that the average number of cases will be round($n * p r o p, 0$) if the argument poisson=TRUE, else $n_{1}=$ round ($\mathrm{n} *$ prop, 0).
step 1: Initially, one point from dat is selected randomly as a case. In the first round this point is selected from the controls, and the subsequent rounds, it is selected from cases if the argument init.from. cases=TRUE, and from controls otherwise. Then it assigns the label case to the kNNs among controls of the initial case selected in step 1 with infection probabilities prob=c (prop+((1-prop)*rho)/(1:k)), see the description for the details of the parameters in the prob.
step 2: Then this initial case and cases among its kNNs (possibly all $k+1$ points) in step 2 are removed from the data, and for the remaining control points step 1 is applied where initial point is from cases or control based on the argument init.from.cases.
step 3: The procedure ends when number of cases n_{c} exceeds n_{1}, and $n_{c}-n_{1}$ of the cases (other than the initial cases) are randomly selected and relabeled as controls, i.e. 0 s , so that the number of cases is exactly n_{1}.
In the output cases are labeled as 1 and controls as 0 . Note that the infection probabilities of the kNNs of each initial case increase with increasing rho, and infection probability decreases for increasing k in the kNNs.

See Ceyhan (2014) for more detail where type I non-RL pattern is the case 1 of non-RL pattern considered in Section 6 with n_{1} is fixed as a parameter rather than being generated from a Poisson distribution and init=FALSEALSE.

Although the non-RL pattern is described for the case-control setting, it can be adapted for any twoclass setting when it is appropriate to treat one of the classes as cases or one of the classes behave like cases and other class as controls.

Usage

rnonRLI(dat, prop $=0.5, \mathrm{k}$, rho, poisson $=$ FALSE, init.from.cases $=$ TRUE)

Arguments

dat A set of points the non-RL procedure is applied to obtain cases and controls randomly in the type I fashion (see the description).
prop A real number between 0 and 1 (inclusive) representing the proportion of new cases (on the average) infected by the initial cases, i.e., number of newly infected cases (in addition to the initial cases) is Poisson with mean=round(n*prop) where n is the number of points in dat, if the argument poisson=TRUE, else it is round ($\mathrm{n} * \mathrm{prop}$).
$\mathrm{k} \quad$ An integer representing the number of NNs considered for each initial case, i.e., kNNs of each initial case are candidates to be infected to become cases.
rho A parameter for labeling the kNNs of each initial case as cases such that kNNs of each initial case is infected with decreasing probabilities prob=c(prop+((1-prop)*rho)/(1:k)) where rho has to be between -prop/(1-prop) and 1 for prob to be a vector of probabilities.
poisson A logical argument (default is FALSE) to determine whether the number of cases n_{1}, will be random or fixed. If poisson=TRUE then the n_{1} is from a Poisson distribution, $n_{1}=\operatorname{rpois}\left(1\right.$, round $(\mathrm{n} * \operatorname{prop}, 0)$) otherwise it is fixed, $n_{1}=\operatorname{round}(\mathrm{n} * \mathrm{prop}, 0)$.
init.from.cases
A logical argument (default is TRUE) to determine whether the initial cases at each round will be take from cases or controls. At first round, the initial cases are taken from controls. And in the subsequent rounds, the initial cases are taken from cases if init. from. cases=TRUE, and from controls otherwise.

Value

A list with the elements
pat.type $\quad=" c c "$ for the case-control patterns for RL or non-RL of the given data points, dat

type	
parameters	The type of the point pattern prop, rho, and k values for this non-RL pattern, see the description for these parameters.
dat.points	The set of points non-RL procedure is applied to obtain cases and controls ran- domly in the type I fashion
lab	The labels of the points as 1 for cases and 0 for controls after the type I nonRL procedure is applied to the data set, dat. Cases are denoted as red dots and controls as black circles in the plot.
init.cases	The initial cases in the data set, dat. Marked with red crosses in the plot of the points.
gen.points, ref. points	
Both are NULL for this function, as initial set of points, dat, are provided for the	
non-RL procedure.	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

rnonRLII, rnonRLIII, rnonRLIV, and rnonRL

Examples

```
n<-40; #try also n<-20; n<-100;
#data generation
dat<-cbind(runif(n,0,1),runif(n, 0,1))
prop<-.5; #try also .25, .75
rho<- . }
knn<-3 #try 2 or 5
Xdat<-rnonRLI(dat,prop,knn,rho,poisson=FALSE,init=FALSE)
#labeled data try also poisson=TRUE or init=FALSE
Xdat
table(Xdat$lab)
```

```
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#normal original data
n<-40; #try also n<-20; n<-100;
#data generation
dat<-cbind(rnorm(n,0,1),rnorm(n,0,1))
prop<-.50; #try also . 25, .75
rho<- . }
knn<-5 #try 2 or 3
Xdat<-rnonRLI(dat,prop,knn,rho,poisson=FALSE) #labeled data try also poisson=TRUE
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rnonRLII
Type II Non-Random Labeling of a Given Set of Points

Description

An object of class "SpatPatterns".
Given the set of n points, dat, in a region, this function assigns $n_{1}=$ round ($\mathrm{n} * u l t . p r o p, 0$) of them as cases, and the rest as controls with first selecting $k_{0}=$ round($n *$ init.prop, 0) as cases initially, then selecting a contagious case and then assigning the label case to the remaining points with infection probabilities inversely proportional to their position among the kNNs.
The initial and ultimate number of cases will be k_{0} and n_{1} on the average if the argument poisson=TRUE (i.e., $k_{0}=\operatorname{rpois}(1, \operatorname{round}(\mathrm{n} *$ init.prop, 0$))$ and $n_{1}=\operatorname{rpois}(1$, round(n*ult.prop, 0$\left.)\right)$), otherwise they will be exactly equal to $n_{1}=r o u n d(n * u l t . p r o p, 0)$ and $k_{0}=r o u n d(n * i n i t . p r o p, 0)$. More specifically, let $z_{1}, \ldots, z_{k_{0}}$ be the initial cases. Then one of the cases is selected as a contagious case, say z_{j} and then its kNNs (among the non-cases) are found. Then label these kNN noncase points as cases with infection probabilities prob equal to the value of the rho* $(1 /(1: k))^{\wedge}$ pow values at these points, where rho is a scaling parameter for the infection probabilities and pow is a parameter in the power adjusting the kNN dependence. We stop when we first exceed n_{1} cases. rho has to be in $(0,1)$ for prob to be a vector of probabilities, and for a given rho, pow must be $>\ln (r h o) / \ln (k)$. If rand. init=TRUE, first k_{0} entries are chosen as the initial cases in the data set, dat, otherwise, k_{0} initial cases are selected randomly among the data points.
Algorithmically, first all dat points are treated as non-cases (i.e. controls or healthy subjects). Then the function follows the following steps for labeling of the points:
step 0: n_{1} is generated randomly from a Poisson distribution with mean = round($\left.n * u l t . \operatorname{prop}, 0\right)$, so that the average number of ultimate cases will be round ($n * u l t$. prop, 0) if the argument poisson=TRUE,
else $n_{1}=$ round ($\mathrm{n} * \mathrm{ult}$. prop, 0). And k_{0} is generated randomly from a Poisson distribution with mean $=$ round ($n * i n i t . p r o p, 0$), so that the average number of initial cases will be round ($n * i n i t . p r o p, 0$) if the argument poisson=TRUE, else $k_{0}=$ round ($\mathrm{n} *$ init.prop, 0).
step 1: Initially, k_{0} many points from dat are selected as cases. The selection of initial cases are determined based on the argument rand.init (with default=TRUE) where if rand.init=TRUE then the initial cases are selected randomly from the data points, and if rand.init= FALSE, the first k_{0} entries in the data set, dat, are selected as the cases.
step 2: Then it selects a contagious case among the cases, and randomly labels its k control NNs as cases with decreasing infection probabilities $\operatorname{prob}=r h o *(1 /(1: k))^{\wedge}$ pow. See the description for the details of the parameters in the prob.
step 3: The procedure ends when number of cases n_{c} exceeds n_{1}, and $n_{c}-n_{1}$ of the cases (other than the initial cases) are randomly selected and relabeled as controls, i.e. 0 s, so that the number of cases is exactly n_{1}.
Note that the infection probabilities of the kNNs of each initial case increase with increasing rho; and probability of infection decreases as further NNs are considered from a contagious case (i.e. as k increases in the kNNs).
See Ceyhan (2014) for more detail where type II non-RL pattern is the case 2 of non-RL pattern considered in Section 6 with n_{1} is fixed as a parameter rather than being generated from a Poisson distribution and pow=1.
Although the non-RL pattern is described for the case-control setting, it can be adapted for any twoclass setting when it is appropriate to treat one of the classes as cases or one of the classes behave like cases and other class as controls.

Usage

```
    rnonRLII(
        dat,
        k,
        rho,
        pow,
        init.prop,
        ult.prop,
        rand.init = TRUE,
        poisson = FALSE
    )
```


Arguments

rho A scaling parameter for the probabilities of labeling the points as cases (see the
dat
k
pow

A set of points the non-RL procedure is applied to obtain cases and controls randomly in the type II fashion (see the description).
k An integer representing the number of NNs considered for each contagious case, i.e., kNNs of each contagious case are candidates to be infected to become cases. description).
A parameter in the power adjusting the kNN dependence in the probabilities of labeling the points as cases (see the description).
init.prop A real number between 0 and 1 representing the initial proportion of cases in the data set, dat. The selection of the initial cases depends on the parameter rand.init (see the description).
ult.prop A real number between 0 and 1 representing the ultimate proportion of cases in the data set, dat after the non-RL assignment.
rand.init A logical argument (default is TRUE) to determine the choice of the initial cases in the data set, dat. If rand.init=TRUE then the initial cases are selected randomly from the data points, and if rand.init= FALSE, the first init.prop*n entries in the data set, dat, are labeled as the cases.
poisson A logical argument (default is FALSE) to determine whether the number of initial and ultimate cases, k_{0} and n_{1}, will be random or fixed. If poisson=TRUE then the k_{0} and n_{1} are from a Poisson distribution, $k_{0}=r$ pois (1 , round(n*init.prop, 0)) and $n_{1}=$ rpois (1 , round ($\mathrm{n} * \mathrm{ult}$.prop, 0)) otherwise they are fixed, $k_{0}=$ round ($\mathrm{n} *$ init. prop, 0) and $n_{1}=$ round ($n * u l t$.prop, 0).

Value

A list with the elements
pat.type $\quad=" c c "$ for the case-control patterns for RL or non-RL of the given data points, dat
type The type of the point pattern
parameters \quad Number of NNs, k, a scaling parameter for the infection probabilities of kNNs, rho, a parameter in the power adjusting the kNN dependence of the infection probabilities, initial proportion of cases, init.prop, and the ultimate proportion of cases, ult.prop.
dat.points The set of points non-RL procedure is applied to obtain cases and controls randomly in the type II fashion
lab The labels of the points as 1 for cases and 0 for controls after the type II nonRL procedure is applied to the data set, dat. Cases are denoted as red dots and controls as black circles in the plot.
init.cases The initial cases in the data set, dat. Denoted as red crosses in the plot of the points.
cont. cases The contagious cases in the data set, dat. Denoted as blue points in the plot of the points.
gen.points, ref.points
Both are NULL for this function, as initial set of points, dat, are provided for the non-RL procedure.
desc.pat Description of the point pattern
mtitle The "main" title for the plot of the point pattern
num. points The vector of two numbers, which are the number of cases and controls.
xlimit,ylimit The possible ranges of the x - and y-coordinates of the generated and the reference points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

rnonRLI, rnonRLIII, rnonRLIV, and rnonRL

Examples

```
n<-40; #try also n<-20; n<-100;
#data generation
dat<-cbind(runif(n,0,1),runif(n, 0,1))
rho<-. }
pow<-2
knn<-5 #try 2 or 3
ip<-. }3\mathrm{ #initial proportion
up<-. 5 #ultimate proportion
Xdat<-rnonRLII(dat,knn,rho, pow,ip,up, poisson=FALSE) #labeled data, try poisson=TRUE
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#normal original data
n<-40; #try also n<-20; n<-100;
#data generation
dat<-cbind(rnorm(n,0,1),rnorm(n,0,1))
rho<-0.8
pow<-2
knn<-5 #try 2 or 3
ip<-. }3\mathrm{ #initial proportion
up<-. 5 #ultimate proportion
Xdat<-rnonRLII(dat,knn,rho,pow,ip,up,poisson=FALSE) #labeled data, try poisson=TRUE
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rnonRLIII Type III Non-Random Labeling of a Given Set of Points

Description

An object of class "SpatPatterns".
Given the set of n points, dat, in a region, this function assigns $n_{1}=r o u n d(n * p r o p, 0)$ of them as cases, and the rest as controls with first selecting a point, Z_{i}, as a case and assigning the label case to the remaining points with infection probabilities $\operatorname{prob}=r h o\left(1-d_{i j} / d_{\max }\right)^{\text {pow }}$ where $d_{i j}$ is the distance from Z_{j} to Z_{i} for $j \neq i, d_{\max }$ is the maximum of $d_{i j}$ values, rho is a scaling parameter for the infection probabilities and pow is a parameter in the power adjusting the distance dependence. The number of cases will be n_{1} on the average if the argument poisson=TRUE (i.e., $n_{1}=\operatorname{rpois}(1, \operatorname{round}(n * \operatorname{prop}, 0))$), otherwise $n_{1}=\operatorname{round}(n * \operatorname{prop}, 0)$. We stop when we first exceed n_{1} cases. rho has to be positive for prob to be a vector of probabilities, and for a given rho, pow must be $>-\ln (r h o) / \ln \left(1-d_{i j} / d_{\max }\right)$, also, when pow is given, rho must be $<\left(1-d_{i j} / d_{\max }\right)^{-p o w}$. If rand.init=TRUE, initial case is selected randomly among the data points, otherwise first entry is chosen as the case (or case is recorded as the first entry) in the data set, dat.
Algorithmically, first all dat points are treated as non-cases (i.e. controls or healthy subjects). Then the function follows the following steps for labeling of the points:
step 0: n_{1} is generated randomly from a Poisson distribution with mean $=$ round ($n * p r o p, 0$), so that the average number of cases will be round(n*prop,0) if the argument poisson=TRUE, else $n_{1}=$ round ($\mathrm{n} *$ prop, 0).
step 1: Initially, one point from dat is selected as a case. The selection of initial case is determined based on the argument rand.init (with default=TRUE) where if rand.init=TRUE then the initial case is selected randomly from the data points, and if rand. init= FALSE, the first entry in the data set, dat, is selected as the case.
step 2: Then it assigns the label case to the remaining points with infection probabilities $p r o b=$ $r h o\left(1-d_{i j} / d_{\max }\right)^{\text {pow }}$, see the description for the details of the parameters in the prob.
step 3: The procedure ends when number of cases n_{c} exceeds n_{1}, and $n_{c}-n_{1}$ of the cases (other than the initial contagious case) are randomly selected and relabeled as controls, i.e. 0s, so that the number of cases is exactly n_{1}.
In the output cases are labeled as 1 and controls as 0 , and initial contagious case is marked with a red cross in the plot of the pattern. Note that the infection probabilities of the points is inversely proportional to their distances to the initial case and increase with increasing rho. This function might take a long time for certain choices of the arguments. For example, if pow is taken to be too large, the infection probabilities would be too small, and case assignment will take a rather long time.
See Ceyhan (2014) for more detail where type III non-RL pattern is the case 3 of non-RL pattern considered in Section 6 with n_{1} is fixed as a parameter rather than being generated from a Poisson distribution and $k_{\text {den }}=1$ and pow is represented as $k_{\text {pow }}$.
Although the non-RL pattern is described for the case-control setting, it can be adapted for any twoclass setting when it is appropriate to treat one of the classes as cases or one of the classes behave like cases and other class as controls.

Usage

rnonRLIII(dat, prop, rho, pow, rand.init = TRUE, poisson = FALSE)

Arguments

> dat A set of points the non-RL procedure is applied to obtain cases and controls randomly in the type III fashion (see the description).
> prop A real number between 0 and 1 (inclusive) representing the proportion of new cases (on the average) infected by the initial case, i.e., number of newly infected cases (in addition to the first case) is Poisson with mean=round ($n * p r o p$) where n is the number of points in dat, if the argument poisson=TRUE, else it is round ($n * p r o p$).
> rho A scaling parameter for the probabilities of labeling the points as cases (see the description).
> pow A parameter in the power adjusting the distance dependence in the probabilities of labeling the points as cases (see the description).
> rand.init A logical argument (default is TRUE) to determine the choice of the initial case in the data set, dat. If rand. init=TRUE then the initial case is selected randomly from the data points, and if rand.init= FALSE, the first entry in the data set, dat, is labeled as the initial case.
> poisson A logical argument (default is FALSE) to determine whether the number of cases n_{1}, will be random or fixed. If poisson=TRUE then the n_{1} is from a Poisson distribution, $n_{1}=\operatorname{rpois}(1, \operatorname{round}(\mathrm{n} * \operatorname{prop}, 0))$ otherwise it is fixed, $n_{1}=\operatorname{round}(\mathrm{n} * \mathrm{prop}, 0)$.

Value

A list with the elements
pat.type $\quad=" c c "$ for the case-control patterns for $R L$ or non-RL of the given data points, dat
type \quad The type of the point pattern
parameters rho and pow, where rho is the scalign parameter and pow is the parameter in the power adjusting the distance dependence in probabilities of labeling the points as cases.
dat.points The set of points non-RL procedure is applied to obtain cases and controls randomly in the type III fashion
lab The labels of the points as 1 for cases and 0 for controls after the type III nonRL procedure is applied to the data set, dat. Cases are denoted as red dots and controls as black circles in the plot.
init.cases The initial case in the data set, dat. Marked with a red cross in the plot of the points.
cont. cases The contagious cases in the data set, dat. Denoted as blue points in the plot of the points.
gen.points, ref.points
Both are NULL for this function, as initial set of points, dat, are provided for the non-RL procedure.

```
desc.pat Description of the point pattern
mtitle The "main" title for the plot of the point pattern
num.points The vector of two numbers, which are the number of cases and controls.
xlimit,ylimit The possible ranges of the x- and y-coordinates of the generated and the refer-
    ence points
```


Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

rnonRLI, rnonRLII, rnonRLIV, and rnonRL

Examples

```
n<-40; #try also n<-20; n<-100;
prop<- .5; #try also .25, . }7
#data generation
dat<-cbind(runif(n,0,1),runif(n,0,1))
rho<-. }
pow<-2
Xdat<-rnonRLIII(dat,prop,rho,pow,poisson=FALSE) #labeled data, try also poisson=TRUE
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#normal original data
n<-40; #try also n<-20; n<-100;
dat<-cbind(rnorm(n,0,1),rnorm(n,0,1))
prop<- .5; #try also .25, .75
rho<-. }
pow<-2
Xdat<-rnonRLIII(dat,prop,rho,pow,poisson=FALSE) #labeled data, try also poisson=TRUE
Xdat
table(Xdat$lab)
```

```
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rnonRLIV

Type IV Non-Random Labeling of a Given Set of Points

Description

An object of class "SpatPatterns".

Given the set of n points, dat, in a region, this function assigns $n_{1}=$ round($n * u l t . p r o p, 0$) of them as cases, and the rest as controls with first selecting $k_{0}=$ round($n * i n i t . p r o p, 0$) as cases initially and assigning the label case to the remaining points with infection probabilities equal to the scaled bivariate normal density values at those points. The initial and ultimate number of cases will be k_{0} and n_{1} on the average if the argument poisson=TRUE (i.e., $k_{0}=r$ pois (1 , round ($\mathrm{n} *$ init. prop, 0)) and $n_{1}=\operatorname{rpois}(1, \operatorname{round}(\mathrm{n} * \mathrm{ult} . \operatorname{prop}, 0))$), otherwise they will be exactly equal to $n_{1}=$ round ($\mathrm{n} * \mathrm{ult}$. prop, 0) and $k_{0}=\operatorname{round}\left(\mathrm{n} *\right.$ init.prop, 0). More specifically, let $z_{1}, \ldots, z_{k_{0}}$ be the initial cases and for $j=1,2, \ldots, k_{0}$ let $\phi_{G, j}\left(z_{i}\right)$ be the value of the pdf of the $B V N\left(z_{j}, s_{1}, s_{2}, r h o\right)$, which is the bivariate normal distribution mean=z_j and standard deviations of the first and second components being s_{1} and s_{2} (denoted as $s 1$ and $s 2$ as arguments of the function) and correlation between them being ρ (denoted as rho as an argument of the function) (i.e., the covariance matrix is $\Sigma=S$ where $\left.S_{11}=s_{1}^{2}, S_{22}=s_{2}^{2}, S_{12}=S_{21}=s_{1} s_{2} \rho\right)$. Add these pdf values as $p_{j}=\sum_{j=1}^{k_{0}} \phi_{G, j}\left(z_{i}\right)$ for each $i=1,2, \ldots, n$ and find $p_{\max }=\max p_{j}$. Then label the points (other than the initial cases) as cases with infection probabilities prob equal to the value of the $p_{j} / p_{\max }$ values at these points. We stop when we first exceed n_{1} cases. ρ has to be in $(-1,1)$ for prob to be a valid probability and s_{1} and s_{2} must be positive (actually these are required for the BVN density to be nondegenerately defined). If rand.init=TRUE, first k_{0} entries are chosen as the initial cases in the data set, dat, otherwise, k_{0} initial cases are selected randomly among the data points.

Algorithmically, first all dat points are treated as non-cases (i.e. controls or healthy subjects). Then the function follows the following steps for labeling of the points:
step 0: n_{1} is generated randomly from a Poisson distribution with mean = round($\mathrm{n} * u l \mathrm{lt} . \mathrm{prop}, 0$), so that the average number of ultimate cases will be round ($n * u l t$. prop, 0) if the argument poisson=TRUE, else $n_{1}=$ round ($\mathrm{n} * \mathrm{ult}$.prop, 0). And k_{0} is generated randomly from a Poisson distribution with mean $=$ round ($n *$ init. prop, 0), so that the average number of initial cases will be round($\mathrm{n} *$ init.prop, 0) if the argument poisson=TRUE, else $k_{0}=$ round($\mathrm{n} *$ init.prop, 0).
step 1: Initially, k_{0} many points from dat are selected as cases. The selection of initial cases are determined based on the argument rand.init (with default=TRUE) where if rand.init=TRUE then the initial cases are selected randomly from the data points, and if rand.init= FALSE, the first k_{0} entries in the data set, dat, are selected as the cases.
step 2: Then it assigns the label case to the remaining points with infection probabilities $p r o b=$ $\sum_{j=1}^{k_{0}} \phi_{G, j}\left(z_{i}\right) / p_{\max }$, which is the sum of the BVN densities scaled by the maximum of such sums. See the description for the details of the parameters in the prob.
step 3: The procedure ends when number of cases n_{c} exceed n_{1}, and $n_{c}-n_{1}$ of the cases (other than the initial cases) are randomly selected and relabeled as controls, i.e. 0s, so that the number of cases is exactly n_{1}.
In the output cases are labeled as 1 and controls as 0 , and initial contagious case is marked with a red cross in the plot of the pattern.

See Ceyhan (2014) for more detail where type IV non-RL pattern is the case 4 of non-RL pattern considered in Section 6 with n_{1} and k_{0} are fixed as parameters and rho is represented as $k_{\text {pow }}$ and $r h o / k_{\text {den }}=1$ in the article.
Although the non-RL pattern is described for the case-control setting, it can be adapted for any twoclass setting when it is appropriate to treat one of the classes as cases or one of the classes behave like cases and other class as controls.

Usage

```
rnonRLIV(
    dat,
    init.prop,
    ult.prop,
    s1,
    s2,
    rho,
    rand.init = TRUE,
    poisson = FALSE
)
```


Arguments

dat | A set of points the non-RL procedure is applied to obtain cases and controls |
| :--- |
| randomly in the type IV fashion (see the description). |
| init.prop |
| A real number between 0 and 1 representing the initial proportion of cases in |
| the data set, dat. The selection of the initial cases depends on the parameter |
| rand. init and the number of initial cases depends on the parameter poisson |
| (see the description). |
| Alt.prop real number between 0 and 1 representing the ultimate proportion of cases in |
| the data set, dat after the non-RL assignment. The number of ultimate cases |
| depends on the parameter poisson (see the description). |
| Positive real numbers representing the standard deviations of the first and second |
| components of the bivariate normal distribution. |

s1, s2 \quad| A real number between -1 and 1 representing the correlation between the first |
| :--- |
| and second components of the bivariate normal distribution. |

rand.init \quad| A logical argument (default is TRUE) to determine the choice of the initial case in |
| :--- |
| the data set, dat. If rand. init=TRUE then the initial case is selected randomly |
| from the data points, and if rand. init= FALSE, the first k_{0} entries in the data |
| set, dat, is labeled as the initial case. |

poisson | A logical argument (default is FALSE) to determine whether the number of initial |
| :--- |
| and ultimate cases, k_{0} and n_{1}, will be random or fixed. If poisson=TRUE then |

the k_{0} and n_{1} are from a Poisson distribution, $k_{0}=r$ pois (1 , round(n*init.prop, 0)) and $n_{1}=\operatorname{rpois}(1$, round ($\mathrm{n} * \mathrm{ult} . \operatorname{prop}, 0)$) otherwise they are fixed, $k_{0}=$ round($\mathrm{n} *$ init. prop, 0) and $n_{1}=$ round(n*ult.prop,0).

Value

A list with the elements
pat.type $\quad=" c c "$ for the case-control patterns for $R L$ or non-RL of the given data points, dat
type \quad The type of the point pattern
parameters initial and ultimate proportion of cases after the non-RL procedure is applied to the data, s1, s2 and rho which are standard deviations and the correlation for the components of the bivariate normal distribution.
dat.points The set of points non-RL procedure is applied to obtain cases and controls randomly in the type IV fashion
lab The labels of the points as 1 for cases and 0 for controls after the type IV nonRL procedure is applied to the data set, dat. Cases are denoted as red dots and controls as black circles in the plot.
init.cases The initial cases in the data set, dat. Marked with red crosses in the plot of the points.
gen. points, ref.points
Both are NULL for this function, as initial set of points, dat, are provided for the non-RL procedure.
desc.pat Description of the point pattern
mtitle The "main" title for the plot of the point pattern
num. points The vector of two numbers, which are the number of cases and controls.
xlimit, ylimit The possible ranges of the x - and y-coordinates of the generated and the reference points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

rnonRLI, rnonRLII, rnonRLIII, and rnonRL

Examples

```
n<-40; #try also n<-20; n<-100;
ult<-.5; #try also .25, . }7
#data generation
dat<-cbind(runif(n,0,1),runif(n, 0, 1))
int<-. }
s1<-s2<-.4
rho<- . }
Xdat<-rnonRLIV(dat,int,ult,s1,s2,rho,poisson=FALSE) #labeled data, try also with poisson=TRUE
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#normal original data
n<-40; #try also n<-20; n<-100;
dat<-cbind(rnorm(n,0,1),rnorm(n,0,1))
ult<-.5; #try also .25, . }7
int<-. }
s1<-s2<-.4
rho<-0.1
Xdat<-rnonRLIV(dat,int,ult,s1,s2,rho,poisson=FALSE) #labeled data, try also with poisson=TRUE
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

 rrot.clust Generation of Points with Rotational Clusters

Description

An object of class "Clusters".
Generates n 2 D points with $\mathrm{k}(k \geq 2)$ clusters with centers d unit away from origin and angles between the rays joining successive centers and origin is $2 \pi / k$ where about n / k points belongs to each cluster.

If distribution="uniform", the points are uniformly generated in their square supports with unit edge lengths and centers at $(d \cos (j 2 \pi / k), d \cos (j 2 \pi / k))$ for $j=1,2, \ldots, k$.

If distribution="bvnormal", the points are generated from the bivariate normal distribution with means equal to the centers of the above squares (i.e. for each cluster with mean $=(d \cos (j 2 \pi / k), d \cos (j 2 \pi / k))$ for $j=1,2, \ldots, k$ and the covariance matrix $s d I_{2}$, where $s d=d \sqrt{2(1-\cos (2 \pi / k))} / 3$ and I_{2} is the 2×2 identity matrix.
Notice that the clusters are more separated, i.e., generated data indicates more clear clusters as d increases in either direction with $d=0$ indicating one cluster in the data. For a fixed d, when distribution="bvnormal", the clustering gets stronger if the variance of each component, $s d^{2}$, gets smaller, and clustering gets weaker as the variance of each component gets larger where default is $s d=d \sqrt{2(1-\cos (2 \pi / k))} / 3$.

Usage

```
rrot.clust(
    n,
    k,
    d,
    sd = d * sqrt(2 * (1 - cos(2 * pi/k)))/3,
    distribution = c("uniform", "bvnormal")
)
```


Arguments

$n \quad$ A positive integer representing the number of points to be generated from all the clusters
$k \quad$ A positive integer representing the number of clusters to be generated
d Radial shift indicating the level of clustering in the data. Larger absolute values in either direction (i.e. positive or negative) would yield stronger clustering.
sd The standard deviation of the components of the bivariate normal distribution with default $s d=d \sqrt{2(1-\cos (2 \pi / k))} / 3$, used only when distribution="bvnormal".

$$
\begin{aligned}
& \text { distribution The argument determining the distribution of each cluster. Takes on values } \\
& \text { "uniform" and "bvnormal" whose centers are } d \text { units apart along the horizontal } \\
& \text { direction. }
\end{aligned}
$$

Value

A list with the elements
type \quad The type of the clustering pattern
parameters The number of clusters, k, and the radial shift, d , representing the level of clustering (for both distribution types) and standard deviation, sd, for the bivariate normal distribution only.
gen. points The output set of generated points from the k clusters.
desc.pat Description of the clustering pattern
mtitle The "main" title for the plot of the point pattern
num. points The number of generated points.
xlimit,ylimit \quad The possible ranges of the x - and y-coordinates of the generated points

Author(s)

Elvan Ceyhan

See Also

rdiag.clust and rhor.clust

Examples

```
n<-100; #try also n<-50; n<-1000;
d<- 1.5 #try also -1, 1, 1.5, 2
k<-3 #try also 5
#data generation
Xdat<-rrot.clust(n,k,d)
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#data generation (bvnormal)
n<-100; #try also n<-50; n<-1000;
d<- 1.5 #try also -1, 1, 1.5, 2
k<-3 #try also 5
Xdat<-rrot.clust(n,k,d,distr="bvnormal") #also try Xdat<-rrot.clust(n,k,d,sd=.5,distr="bvnormal")
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rseg

Generation of Points under Segregation of Two Classes

Description

An object of class "SpatPatterns".
Generates n_i 2D points from class j with parameters r_{j} for $j=1,2$. The generated points are from two different classes which are segregated from each other. The pattern generation starts with the initial points X1. init and X2. init (with default=NULL for both). If both X1.init=NULL and X2.init=NULL, both X1.init and X2.init are generated uniformly in the unit square. If only X 1 . init=NULL, X 1 . init is the sum of a point uniformly generated in the unit square and X 2 . init and if only X 2 . init=NULL, X 2 . init is the sum of a point uniformly generated in the unit square and X 1 .init. After the initial points from each class are available, n_{j} points from class j are generated as $\mathrm{Xj}[\mathrm{i}]<,-\mathrm{Xj}[(\mathrm{i}-1)]+,r u * \mathrm{c}(\cos (\mathrm{tu}), \sin (\mathrm{tu}))$ where ru<-runif(1, $0, r j)$ and tu<-runif $(1,0,2 * \mathrm{pi})$ for $i=2, \ldots, n_{j}$ with $\mathrm{Xj}[1]=$,Xj .init for $j=1,2$. That is, at each step the new point in class j is generated within a circle with radius equal to r_{j} (uniform in the polar
coordinates). Note that, the level of segregation is stronger if the initial points are further apart, and the level of segregation increases as the radius values gets smaller.

Usage

rseg(n1, n2, r1, r2, X1.init $=$ NULL, X2.init $=$ NULL)

Arguments

$\mathrm{n} 1, \mathrm{n} 2 \quad$ Positive integers representing the number of class 1 and class 2 (i.e. X_{1} and X_{2}) points to be generated under the segregation pattern.
$r 1, r 2 \quad$ Positive real numbers representing the radius of attraction within class, i.e. radius of the circle center and generated points are from the same class.
X1.init, X2.init
2 D points representing the initial points for the segregated classes, default=NULL for both. If both X1. init=NULL and X2. init=NULL, both X1. init and X2. init are generated uniformly in the unit square. If only X 1 .init=NULL, X 1 .init is the sum of a point uniformly generated in the unit square and X 2 .init and if only X2.init=NULL, X2.init is the sum of a point uniformly generated in the unit square and X 1 . init. The initial points are marked with crosses in the plot of the points.

Value

A list with the elements
pat.type " 2 c " for the 2-class pattern of segregation of the two classes
type \quad The type of the point pattern
parameters Radial (i.e. circular) within class radii of segregation, r1 and r2, controlling the level of segregation
lab The class labels of the generated points, it is 1 class 1 or X_{1} points and 2 for class 2 or X_{2} points
init. cases The initial points for class 1 and class 2, one initial point for each class.
gen.points The output set of generated points (i.e. class 1 and class 2 points) segregated from each other.
ref.points The input set of reference points, it is NULL for this function.
desc.pat Description of the point pattern
mtitle The "main" title for the plot of the point pattern
num.points The vector of two numbers, which are the number of generated class 1 and class 2 points.
xlimit, ylimit The possible ranges of the x - and y-coordinates of the generated and the initial points

Author(s)

Elvan Ceyhan

See Also

rassoc

Examples

```
n1<-20; #try also n1<-10; n1<-100;
n2<-20; #try also n1<-40; n2<-50
r1<-.3; r2<-.2
#data generation
Xdat<-rseg(n1,n2,r1,r2) #labeled data
Xdat
table(Xdat$lab)
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#with one initial point
X1init<-c(3,2)
Xdat<-rseg(n1,n2,r1,r2,X1.init=X1init)
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#with two initial points
X1init<-c(3,2)
X2init<-c(4,2)
Xdat<-rseg(n1,n2,r1,r2,X1init,X2init)
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

rself.ref
Generation of Points from Self Correspondence Pattern

Description

An object of class "SpatPatterns".
Generates $n_{1} 2 \mathrm{D}$ points from class 1 and n_{2} (denoted as n 2 as an argument) 2D points from class 2 in such a way that self-reflexive pairs are more frequent than expected under CSR independence.

If distribution="uniform", the points from class 1 , say X_{i} are generated as follows: $X_{i} \stackrel{i i d}{\sim}$ $\operatorname{Uniform}\left(S_{1}\right)$ for $S_{1}=(c 1 r[1], c 1 r[2])^{2}$ for $i=1,2, \ldots, n_{1 h}$ where $n_{1 h}=\left\lfloor n_{1} / 2\right\rfloor$, and for $k=n_{1 h},+1, \ldots, n_{1}, X_{k}=X_{k-n_{1 h}}+r\left(\cos \left(T_{k}\right), \sin \left(T_{k}\right)\right)$ where $r \sim \operatorname{Uniform}\left(0, r_{0}\right)$ and T_{k} are iid $\sim \operatorname{Uniform}(0,2 \pi)$. Similarly, the points from class 2 , say Y_{j} are generated as follows: $Y_{j} \stackrel{i i d}{\sim} \operatorname{Uniform}\left(S_{2}\right)$ for $S_{2}=(c 2 r[1], c 2 r[2])^{2}$ for $j=1,2, \ldots, n_{2 h}$ where $\left.n_{2 h}=\left\lfloor n_{2} / 2\right\rfloor\right)$, and for $l=n_{2 h},+1, \ldots, n_{2}, Y_{l}=Y_{l-n_{2 h}}+r\left(\cos \left(T_{l}\right), \sin \left(T_{l}\right)\right)$ where $r \sim \operatorname{Uniform}\left(0, r_{0}\right)$ and $T_{l} \stackrel{i i d}{\sim} \operatorname{Uniform}(0,2 \pi)$. This version is the case IV in the article (Ceyhan (2018)).
If distribution="bvnormal", the points from class 1 , say X_{i} are generated as follows: $X_{i} \stackrel{i i d}{\sim}$ $B V N\left(C M\left(S_{1}\right), I_{2 x}\right)$ where $C M\left(S_{1}\right)$ is the center of mass of S_{1} and I_2x is a 2×2 matrix with diagonals equal to s_{1}^{2} with $s_{1}=(c 1 r[2]-c 1 r[1]) / 3$ and off-diagonals are 0 for $i=1,2, \ldots, n_{1 h}$ where $n_{1 h}=\left\lfloor n_{1} / 2\right\rfloor$, and for $k=n_{1 h}+1, \ldots, n_{1}, X_{k}=Z_{k}+r\left(\cos \left(T_{k}\right), \sin \left(T_{k}\right)\right)$ where $Z_{k} \sim B V N\left(X_{k-n_{1 h}}, I_{2}\left(r_{0}\right)\right)$ with $I_{2}\left(r_{0}\right)$ being the 2×2 matrix with diagonals $r_{0} / 3$ and 0 offdiagonals, $r \sim \operatorname{Uniform}\left(0, r_{0}\right)$ and T_{k} are iid $\sim \operatorname{Uniform}(0,2 \pi)$. Similarly, the points from class 2, say Y_{j} are generated as follows: $Y_{j} \stackrel{i i d}{\sim} B V N\left(C M\left(S_{2}\right), I_{2 y}\right)$ where $C M\left(S_{1}\right)$ is the center of mass of S_{1} and I_2y is a 2×2 matrix with diagonals equal to s_{2}^{2} with $s_{2}=(c 2 r[2]-c 2 r[1]) / 3$ and off-diagonals are 0 for $j=1,2, \ldots, n_{2 h}$ where $n_{2 h}=\left\lfloor n_{2} / 2\right\rfloor$), and for $l=n_{2 h},+1, \ldots, n_{2}$, $Y_{l}=W_{k}+r\left(\cos \left(T_{l}\right), \sin \left(T_{l}\right)\right)$ where $W_{l} \sim B V N\left(Y_{l-n_{2 h}}, I_{2}\left(r_{0}\right)\right)$ with $I_{2}\left(r_{0}\right)$ being the 2×2 matrix with diagonals $r_{0} / 3$ and 0 off-diagonals, $r \sim \operatorname{Uniform}\left(0, r_{0}\right)$ and $T_{l} \stackrel{i i d}{\sim} \operatorname{Uniform}(0,2 \pi)$.
Notice that the classes will be segregated if the supports S_{1} and S_{2} are separated, with more separation implying stronger segregation. Furthermore, r_{0} (denoted as $r 0$ as an argument) determines the level of self-reflexivity or self correspondence, i.e. smaller r_{0} implies a higher level of self correspondence and vice versa for higher r_{0}.
See also (Ceyhan (2018)) and the references therein.

Usage

rself.ref(n1, n2, c1r, c2r, r0, distribution = c("uniform", "bvnormal"))

Arguments

$\mathrm{n} 1, \mathrm{n} 2 \quad$ Positive integers representing the numbers of points to be generated from the two classes
$c 1 r, c 2 r \quad$ Ranges of the squares which constitute the supports of the two classes
r0 The radius of attraction which determines the level of self-reflexivity (or self correspondence) in both the uniform and bvnormal distributions for the two classes
distribution The argument determining the distribution of each class. Takes on values "uniform" and "bvnormal" (see the description for the details).

Value

A list with the elements
pat.type "2c" for the 2-class pattern of self-correspondence of the two classes
type \quad The type of the spatial pattern
parameters \quad The radius of attraction r_{0} which determines the level of self-correspondence.

lab	The class labels of the generated points, it is 1 class 1 or X1 points and 2 for class 2 or X_{2} points
init.cases	The initial points for class 1 and class 2, one initial point for each class, marked with a cross in the plot.
gen.points	The output set of generated points from the self-correspondence pattern.
ref.points	The input set of reference points, it is NULL for this function.
desc.pat	Description of the species correspondence pattern
mtitle	The "main" title for the plot of the point pattern
num.points	The number of generated points.
xlimit,ylimit	The possible ranges of the x - and y-coordinates of the generated points

Author(s)

Elvan Ceyhan

See Also

```
Zself.ref and Xsq.spec.cor
```


Examples

```
n1<-50; #try also n1<-50; n1<-1000;
n2<-50; #try also n2<-50; n2<-1000;
c1r<-c(0,1) #try also c(0,5/6), C(0,3/4), c(0,2/3)
c2r<-c(0,1) #try also c(1/6,1), c(1/4,1), c(1/3,1)
r0<-1/9 #try also 1/7, 1/8
#data generation
Xdat<-rself.ref(n1,n2, c1r,c2r,r0)
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
#data generation (bvnormal)
Xdat<-rself.ref(n1,n2, c1r,c2r,r0,distr="bvnormal")
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```


Description

An object of class "SpatPatterns".
Generates $n 2 D$ points uniformly in the circle with center=cent and radius=rad using the rejection sampling approach (i.e., the function generates points in the smallest square containing the circle, keeping only the points inside the circle until n points are generated). The defaults for cent $=c(0,0)$ and rad=1.

Usage

runif.circ $(n$, cent $=c(0,0), r a d=1)$

Arguments

n	A positive integer representing the number of points to be generated uniformly in the circle
cent	A 2D point representing the center of the circle, with default=c $(0,0)$
rad	A positive real number representing the radius of the circle.

Value

A list with the elements
pat.type "1c" for the 1-class pattern of the uniform data in the circle
type \quad The type of the point pattern
parameters center of the circle, cent, and the radius of the circle, rad
lab The class labels of the generated points, NULL for this function, since points belong to the same class
init.cases The initial points, NULL for this function
gen.points The output set of generated points uniform in the circle.
ref.points The input set of reference points, it is NULL for this function.
desc.pat Description of the point pattern
mtitle The "main" title for the plot of the point pattern
num. points The number of generated points.
xlimit, ylimit The possible ranges of the x - and y-coordinates of the generated points

Author(s)

Elvan Ceyhan

See Also

runif

Examples

```
n<-20 #or try sample(1:20,1); #try also 10, 100, or 1000;
r<-.1; #try also r<-. 3 or . }
cent<-c(1,2)
#data generation
Xdat<-runif.circ(n, cent,r) #generated data
Xdat
summary(Xdat)
plot(Xdat,asp=1)
plot(Xdat)
```

seg.ind Dixon's Segregation Indices for NNCTs

Description

Returns Dixon's segregation indices in matrix form based on entries of the NNCT, ct. Segregation index for cell i, j is defined as $\log \left(N_{i i}\left(n-n_{i}\right) /\left(\left(n_{i}-N_{i i}\right)\left(n_{i}-1\right)\right)\right.$ if $i=j$ and as $\log \left(N_{i j}(n-\right.$ $\left.n_{j}-1\right) /\left(\left(n_{i}-N_{i j}\right)\left(n_{j}\right)\right)$ if $i \neq j$. See (Dixon (2002); Ceyhan (2014)).
The argument inf.corr is a logical argument (default=FALSE) to avoid $\pm \infty$ for the segregation indices. If TRUE indices are modified so that they are finite and if FALSE the above definition is used. (See Ceyhan (2014) for more detail).

Usage

seg.ind(ct, inf.corr = FALSE)

Arguments

ct A contingency table, in particular an NNCT
inf.corr A logical argument (default=FALSE). If TRUE, indices are modified so that they are finite and if FALSE the above definition in the description is used.

Value

Returns a matrix of segregation indices which is of the same dimension as ct.

Author(s)

Elvan Ceyhan

See Also

Pseg.coeff, seg.coeff, Zseg.ind and Zseg.ind.ct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
seg.ind(ct)
seg.ind(ct,inf.corr = TRUE)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
seg.ind(ct)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
seg.ind(ct)
seg.ind(ct,inf.corr = TRUE)
ct<-matrix(c(0,10,5,5),ncol=2)
seg.ind(ct)
seg.ind(ct,inf.corr = TRUE)
```

sharedNNmc

The Shared NN Vectors for Multiple Classes

Description

Returns a matrix with k rows where each row is the vector of number of points with shared NNs, $Q_{i}=\left(Q_{i 0}, Q_{i 1}, \ldots\right)$ where $Q_{i j}$ is the number of class i points that are NN to class j points. The function also returns the indices of columns with nonzero sums as a vector.

The output matrix of shared NNs is used in testing symmetry in shared NN structure (i.e. Q symmetry or Pielou's second type of symmetry), e.g., in functions Qsym. ct and Qsym. test.
See also (Pielou (1961); Ceyhan (2014)) and the references therein.

Usage

sharedNNmc (x, lab, is.ipd = TRUE, ...)

Arguments

x
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
lab The vector of class labels (numerical or categorical)
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix (IPD matrix), otherwise, x is taken as the data set with rows representing the data points.
$\ldots \quad$ are for further arguments, such as method and p, passed to the dist function.

Value

Qval returns the Q value Qvec returns a list with two elements
$\mathrm{q} \quad$ the Q value, the number of shared NNs
quec the vector of Q_{j} values
sharedNN returns a matrix with 2 rows, where first row is the j values and second row is the corresponding vector of Q_{j} values Rvalthe R value, the number of reflexive NNs

Returns a list with two elements

Nv	A k-row matrix of shared NNs by class where each row of the matrix is the
vector of number of points with shared NNs $Q_{i}=\left(Q_{i 0}, Q_{i 1}, \ldots\right)$ where $Q_{i j}$ is	
the number of class i points that are NN to j points.	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

Qval, Qvec and sharedNN

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
sharedNNmc(ipd,cls)
sharedNNmc(Y,cls,is.ipd = FALSE)
sharedNNmc(Y,cls,is.ipd = FALSE,method="max")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
sharedNNmc(ipd,fcls)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
sharedNNmc(ipd,cls)
```

SkewTk Skewness of Cuzick and Edwards T_k Test statistic

Description

This function estimates the skewness of Cuzick and Edwards T_{k} test statistic under the RL hypothesis. Skewness of a random variable T is defined as $E(T-\mu)^{3} /\left(E(T-\mu)^{2}\right)^{1.5}$ where $\mu=E T$.

Skewness is used for Tango's correction to Cuzick and Edwards kNN test statistic, T_{k}. Tango's correction is a chi-square approximation, and its degrees of freedom is estimated using the skewness estimate (see page 121 of Tango (2007)).

The argument, n_{1}, is the number of cases (denoted as n 1 as an argument) and k is the number of NNs considered in T_{k} test statistic. The argument of the function is the $A_{i j}$ matrix, a, which is the output of the function aij.mat. However, inside the function we symmetrize the matrix a as $\mathrm{b}<-$ $\left(a+a^{\wedge} t\right) / 2$, to facilitate the formulation.

The number of cases are denoted as n_{1} and number of controls as n_{0} in this function to match the case-control class labeling, which is just the reverse of the labeling in Cuzick and Edwards (1990).

Usage

SkewTk(n1, k, a)

Arguments

n1 Number of cases
$\mathrm{k} \quad$ Integer specifying the number of NNs (of subject i)
a
$A_{i j}$ matrix which is the output of the function aij.mat.

Value

The skewness of Cuzick and Edwards T_{k} test statistic for disease clustering

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

Tango T (2007). "A class of multiplicity adjusted tests for spatial clustering based on case-control point data." Biometrics, 63, 119-127.

See Also

ceTk, EV.Tk, and varTk

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE)
n1<-sum(cls==1)
k<-sample(1:5,1) # try also 3, 5, sample(1:5,1)
k
a<-aij.mat(Y,k)
SkewTk(n1,k,a)
```

summary.Clusters

Description

Returns the below information about the object:
call of the function defining the object, the type of the pattern, parameters of the pattern, study window, some sample points from the generated pattern, reference points (if any for the bivariate pattern), and number of points for each class

Usage

\#\# S3 method for class 'Clusters'
summary(object, ...)

Arguments

object	Object of class Clusters.
\ldots	Additional parameters for summary.

Value

The call of the object of class 'Clusters', the type of the pattern, parameters of the pattern, study window, some sample points from the generated pattern, reference points (if any for the bivariate pattern), and number of points for each class

Examples

> \#TBF

```
summary.SpatPatterns Return a summary of a SpatPatterns object
```


Description

Returns the below information about the object:
call of the function defining the object, the type of the pattern, parameters of the pattern, study window, some sample points from the generated pattern, reference points (if any for the bivariate pattern), and number of points for each class

Usage

\#\# S3 method for class 'SpatPatterns' summary (object, ...)

Arguments

object Object of class SpatPatterns.
... Additional parameters for summary.

Value

The call of the object of class 'SpatPatterns', the type of the pattern, parameters of the pattern, study window, some sample points from the generated pattern, reference points (if any for the bivariate pattern), and number of points for each class

Examples

\#TBF

Description

Locations and species classification of trees in a plot in the Savannah River, SC, USA. Locations are given in meters, rounded to the nearest 0.1 decimal. The data come from a one-hectare (200-by-50m) plot in the Savannah River Site. The 734 mapped stems included 156 Carolina ashes (Fraxinus caroliniana), 215 water tupelos (Nyssa aquatica), 205 swamp tupelos (Nyssa sylvatica), 98 bald cypresses (Taxodium distichum) and 60 stems from 8 additional three species (labeled as Others (OT)). The plots were set up by Bill Good and their spatial patterns described in (Good and Whipple (1982)), the plots have been maintained and resampled by Rebecca Sharitz and her colleagues of the Savannah River Ecology Laboratory. The data and some of its description are borrowed from the swamp data entry in the dixon package in the CRAN repository.
See also (Good and Whipple (1982); Jones et al. (1994); Dixon (2002)).

Usage

data(swamptrees)

Format

A data frame with 734 rows and 4 variables

Details

Text describing the variable (i.e., column) names in the data set.

- $x, y: x$ and y (i.e., Cartesian) coordinates of the trees
- live: a categorical variable that indicates the tree is alive (labeled as 1) or dead (labeled as 0)
- sp: species label of the trees:
- FX: Carolina ash (Fraxinus caroliniana)
- NS: Swamp tupelo (Nyssa sylvatica)
- NX: Water tupelo (Nyssa aquatica)
- TD: Bald cypress (Taxodium distichum)
- OT: Other species

Source

Prof. Philip Dixon's website

References

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

Good BJ, Whipple SA (1982). "Tree spatial patterns: South Carolina bottomland and swamp forests." Bulletin of the Torrey Botanical Club, 109(4), 529-536.

Jones RH, Sharitz RR, James SM, Dixon PM (1994). "Tree population dynamics in seven South Carolina mixed-species forests." Bulletin of the Torrey Botanical Club, 121(4), 360-368.

Examples

```
data(swamptrees)
plot(swamptrees$x,swamptrees$y, col=as.numeric(swamptrees$sp),pch=19,
xlab='',ylab='',main='Swamp Trees')
```

Tcomb Cuzick \& Edwards Tcomb Test Statistic

Description

This function computes the value of Cuzick \& Edwards $T_{\text {comb }}$ test statistic in disease clustering, where $T_{\text {comb }}$ is a linear combination of some T_{k} tests.
The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc.lab should be provided in this fashion, if case.lab is provided, the labels are converted to 0's and 1's accordingly.
The argument klist is the vector of integers specifying the indices of the T_{k} values used in obtaining the $T_{\text {comb }}$.
The logical argument nonzero.mat (default=TRUE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE) in the computations.
The logical argument asy.cov (default=FALSE) is for using the asymptotic covariance or the exact (i.e. finite sample) covariance for the vector of T_{k} values used in Tcomb in the standardization of $T_{\text {comb }}$. If asy.cov=TRUE, the asymptotic covariance is used, otherwise the exact covariance is used.
See page 87 of (Cuzick and Edwards (1990)) for more details.

```
Usage
    Tcomb(
        dat,
        cc.lab,
        klist,
        case.lab = NULL,
    nonzero.mat = TRUE,
    asy.cov = FALSE,
)
```


Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
cc.lab Case-control labels, 1 for case, 0 for control
klist list of integers specifying the indices of the T_{k} values used in obtaining the $T_{\text {comb }}$.
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL.
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computation of N_{s} and N_{t}. If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used.
asy.cov A logical argument (default is FALSE) to determine whether asymptotic or exact (i.e., finite sample) covariances between T_{k} and T_{l} values are to be used to obtain the entries of the covariance matrix. If TRUE the asymptotic covariance values are used, otherwise exact covariance values are used.
... are for further arguments, such as method and p, passed to the dist function.

Value

Returns the value of the $T_{\text {comb }}$ test statistic

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

ceTk, EV. Tcomb, and ZTcomb

Examples

```
n<-20 #or try sample(1:20,1) #try also n<-50, 100
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
n1<-sum(cls==1)
kl<-sample(1:5,3) #try also sample(1:5,2)
kl
Tcomb(Y,cls,kl)
Tcomb(Y,cls,kl,method="max")
Tcomb(Y,cls+1,kl,case.lab=2)
Tcomb(Y,cls,kl,nonzero.mat = FALSE)
Tcomb(Y,cls,kl,asy.cov = TRUE)
```

```
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Tcomb(Y,fcls,kl,case.lab="a")
```

 tct \(T\) Contingency Table (TCT)

Description

Returns the T contingency table (TCT), which is a matrix of same dimension as, ct , whose entries are the values of the Types I-IV cell-specific test statistics, $T_{i j}^{I}-T_{i j}^{I V}$. The row and column names are inherited from ct. The type argument specifies the type of the cell-specific test among the types I-IV tests.

See also (Ceyhan (2017)) and the references therein.

Usage

tct(ct, type = "III")

Arguments

ct	A nearest neighbor contingency table
type	The type of the cell-specific test, default="III". Takes on values "I"-"IV" (or equivalently $1-4$, respectively.

Value

A matrix of the values of Type I-IV cell-specific tests

Author(s)

Elvan Ceyhan

References

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

cellsTij and nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
type.lab<-c("I","II", "III","IV")
for (i in 1:4)
{ print(paste("T_ij values for cell specific tests for type",type.lab[i]))
    print(tct(ct,i))
}
tct(ct,"II")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
tct(ct,2)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
tct(ct,2)
ct<-matrix(c(0,10,5,5),ncol=2)
tct(ct,2)
```

tocher. cor

Tocher's randomized correction to the exact p-value

Description

Tocher's modification is used for the Fisher's exact test on the contingency tables making it less conservative, by including the probability for the current table based on a randomized test (Tocher (1950)). It is applied When table-inclusive version of the p-value, $p_{\text {inc }}^{>}$, is larger, but table-exclusive version, $p_{\text {exc }}^{>}$, is less than the level of the test α, a random number, U, is generated from uniform distribution in $(0,1)$, and if $U \leq\left(\alpha-p_{\text {exc }}^{>}\right) / p_{t}, p_{\text {exc }}^{>}$is used, otherwise $p_{i n c}$ is used as the p-value.
Table-inclusive and exclusive p-values are defined as follows. Let the probability of the contingency table itself be $p_{t}=f\left(n_{11} \mid n_{1}, n_{2}, c_{1} ; \theta\right)$ where θ is the odds ratio under the null hypothesis (e.g. $\theta=$ 1 under independence) and f is the probability mass function of the hypergeometric distribution. In testing the one-sided alternative $H_{o}: \theta=1$ versus $H_{a}: \theta>1$, let $p=\sum_{S} f\left(t \mid n_{1}, n_{2}, c_{1} ; \theta=1\right)$,
then with $S=\left\{t: t \geq n_{11}\right\}$, we get the table-inclusive version which is denoted as $p_{\text {inc }}^{>}$and with $S=\left\{t: t>n_{11}\right\}$, we get the table-exclusive version, denoted as $p_{\text {exc }}^{>}$.

See (Ceyhan (2010)) for more details.

Usage

tocher.cor(ptable, pval)

Arguments

ptable Probability of the contingency table under the null hypothesis using the hypergeometric distribution for Fisher's exact test.
pval Table inclusive p-value for Fisher's exact test on the contingency table.

Value

A modified p-value based on the Tocher's randomized correction.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "Exact Inference for Testing Spatial Patterns by Nearest Neighbor Contingency Tables." Journal of Probability and Statistical Science, 8(1), 45-68.

Tocher KD (1950). "Extension of the Neyman-Pearson theory of tests to discontinuous variates." Biometrika, 37, 130-144.

See Also

prob.nnct, exact.pval1s, and exact.pval2s

Examples

```
ptab<-.03
pval<-.06
tocher.cor(ptab,pval)
```


Description

Returns the T value, which is the number of triplets $\left(z_{i}, z_{j}, z_{k}\right)$ with " $N N\left(z_{i}\right)=N N\left(z_{j}\right)=z_{k}$ and $N N\left(z_{k}\right)=z_{j}$ " where $N N(\cdot)$ is the nearest neighbor function. Note that in the NN digraph, $T+R$ is the sum of the indegrees of the points in the reflexive pairs.
This quantity (together with Q and R) is used in computing the variances and covariances of the entries of the reflexivity contingency table. See (Ceyhan and Bahadir (2017)) for further details.

Usage

Tval(W, R)

Arguments

W
The incidence matrix, W, for the NN digraph
R
The number of reflexive NNs (i.e., twice the number of reflexive NN pairs)

Value

Returns the T value. See the description above for the details of this quantity.

Author(s)

Elvan Ceyhan

See Also

Qval, Qvec, sharedNN and Rval

Examples

```
#3D data points
n<-10
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd)
R<-Rval(W)
Tval(W,R)
#1D data points
X<-as.matrix(runif(15)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(5) would not work
ipd<-ipd.mat(X)
W<-Wmat(ipd)
R<-Rval(W)
```

```
Tval(W,R)
#with ties=TRUE in the data
Y<-matrix(round(runif(30)*10),ncol=3)
ipd<-ipd.mat(Y)
W<-Wmat(ipd,ties=TRUE)
R<-Rval(W)
Tval(W,R)
```

var.nnct Variances of Cell Counts in an NNCT

Description

Returns the variances of cell counts $N_{i j}$ for $i, j=1, \ldots, k$ in the NNCT, ct in matrix form which is of the same dimension as ct . These variances are valid under RL or conditional on Q and R under CSR.

See also (Dixon (1994, 2002); Ceyhan (2010, 2017)).

Usage

var.nnct(ct, Q, R)

Arguments

ct A nearest neighbor contingency table
Q
The number of shared NNs
$R \quad$ The number of reflexive NNs (i.e., twice the number of reflexive NN pairs)

Value

A matrix of same dimension as, $c t$, whose entries are the variances of the cell counts in the NNCT with class sizes given as the row sums of ct . The row and column names are inherited from ct .

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "On the use of nearest neighbor contingency tables for testing spatial segregation." Environmental and Ecological Statistics, 17(3), 247-282.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

See Also

var.tct, var.nnsym and cov.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
ct
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
var.nnct(ct,Qv,Rv)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
var.nnct(ct,Qv,Rv)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
var.nnct(ct,Qv,Rv)
```


Description

Returns the variances of differences of off-diagonal cell counts $N_{i j}-N_{j i}$ for $i, j=1, \ldots, k$ and $i \neq j$ in the NNCT, ct in a vector of length $k(k-1) / 2$, the order of i, j for $N_{i j}-N_{j i}$ is as in the output of ind. nnsym(k). These variances are valid under RL or conditional on Q and R under CSR.
See also (Dixon (1994); Ceyhan (2014)).

Usage

var.nnsym(covN)

Arguments

covN The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT

Value

A vector of length $k(k-1) / 2$, whose entries are the variances of differences of off-diagonal cell counts $N_{i j}-N_{j i}$ for $i, j=1, \ldots, k$ and $i \neq j$ in the NNCT.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

See Also

var.nnct, var.tct and cov.nnct

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv) #default is byrow
```

```
var.nnsym(covN)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
var.nnsym(covN)
```

 var.seg.coeff Variances of Segregation Coefficients in a Multi-class Case

Description

Returns the variances of segregation coefficients in a multi-class case based on the NNCT, ct in a vector of length $k(k+1) / 2$, the order of the variances are as in the order of rows output of ind. seg. coeff (k). These variances are valid under RL or conditional on Q and R under CSR.

See also (Ceyhan (2014)).
The argument covN is the covariance matrix of $N_{i j}$ (concatenated rowwise).

Usage

var.seg.coeff(ct, covN)

Arguments

ct	A nearest neighbor contingency table
covN	The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT

Value

A vector of length $k(k+1) / 2$, whose entries are the variances of segregation coefficients for the entry i, j in the NNCT, where the order of the variances are as in the order of rows output of ind.seg. coeff(k).

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

seg.coeff, cov.seg.coeff, var.nnsym and var.nnct and

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
var.seg.coeff(ct,covN)
varPseg.coeff(ct,covN)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
var.seg.coeff(ct,covN)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ipd<-ipd.mat(Y)
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
var.seg.coeff(ct,covN)
```

var.tct \quad Variances of Entries in a TCT

Description

Returns the variances of $T_{i j}$ values for $i, j=1, \ldots, k$ in the TCT in matrix form which is of the same dimension as TCT for types I-IV tests. The argument covN must be the covariance between $N_{i j}$ values which are obtained from the NNCT by row-wise vectorization. type determines the type of the test for which variances are to be computed, with default="III". These variances are valid under RL or conditional on Q and R under CSR.

See also (Ceyhan (2010, 2017)).

Usage

var.tct(ct, covN, type = "III")

Arguments

ct A nearest neighbor contingency table
covN The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized cell counts of NNCT, ct.
type The type of the cell-specific test, default="III". Takes on values "I"-"IV" (or equivalently $1-4$, respectively.

Value

A matrix of same dimension as, ct, whose entries are the variances of the entries in the TCT for the corresponding type of cell-specific test. The row and column names are inherited from ct.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "New Tests of Spatial Segregation Based on Nearest Neighbor Contingency Tables." Scandinavian Journal of Statistics, 37(1), 147-165.

Ceyhan E (2017). "Cell-Specific and Post-hoc Spatial Clustering Tests Based on Nearest Neighbor Contingency Tables." Journal of the Korean Statistical Society, 46(2), 219-245.

See Also

```
var.nnct, var.tctI, var.tctIII, var.tctIV and cov.tct
```


Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
var.tct(ct,covN,"I")
var.tct(ct,covN,2)
var.tct(ct,covN,"III")
var.tct(ct,covN,"IV")
##############
n<-40
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
var.tct(ct,covN,"I")
var.tct(ct,covN,2)
```

 varPseg. coeff Variance of Pielou's Segregation Coefficient for 2 Classes

Description

Returns the variance of Pielou's coefficient of segregation for the two-class case (i.e., based on 2×2 NNCTs)in a 2×2 NNCT. This variance is valid under RL or conditional on Q and R under CSR.

See also (Ceyhan (2014)) for more detail.

Usage

varPseg.coeff(ct, covN)

Arguments

ct	A nearest neighbor contingency table
covN	The $k^{2} \times k^{2}$ covariance matrix of row-wise vectorized entries of NNCT

Value

The variance of Pielou's coefficient of segregation for the two-class case.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 1662-1684.

See Also

Pseg.coeff, seg.coeff and var.seg.coeff

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
ct<-nnct(ipd,cls)
W<-Wmat(ipd)
Qv<-Qvec(W)$q
Rv<-Rval(W)
varN<-var.nnct(ct,Qv,Rv)
covN<-cov.nnct(ct,varN,Qv,Rv)
varPseg.coeff(ct,covN)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ct<-nnct(ipd,fcls)
varPseg.coeff(ct,covN)
##############
ct<-matrix(sample(1:25,9),ncol=3)
#varPseg.coeff(ct,covN)
```


Description

This function estimates the variance of Cuzick and Edwards $T_{k}^{i n v}$ test statistic by Monte Carlo simulations under the RL hypothesis.
The exact variance of $T_{k}^{i n v}$ is currently not available and (Cuzick and Edwards (1990)) say that "The permutational variance of $T_{k}^{i n v}$ becomes unwieldy for $k>1$ and is more easily simulated", hence we estimate the variance of $T_{k}^{i n v}$ by RL of cases and controls to the given point data.
The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc.lab should be provided in this fashion, if case.lab is provided, the labels are converted to 0's and 1's accordingly. The argument Nsim represents the number of resamplings (without replacement) in the RL scheme, with default being 1000.

See (Cuzick and Edwards (1990)).
See the function ceTkinv for the details of the $T_{k}^{i n v}$ test.

Usage

varTkinv.sim(dat, k, cc.lab, Nsim = 1000, case.lab = NULL)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point,
$\mathrm{k} \quad$ Integer specifying the number of the closest controls to subject i.
cc.lab Case-control labels, 1 for case, 0 for control

Nsim The number of simulations, i.e., the number of resamplings under the RL scheme to estimate the variance of $T_{k}^{i n v}$
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL.

Value

The simulation estimated variance of Cuzick and Edwards $T_{k}^{i n v}$ test statistic for disease clustering

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

ceTkinv and EV.Tkinv

Examples

```
set.seed(123)
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE)
n1<-sum(cls==1)
k<-2
Nmc<-1000
varTkinv.sim(Y,k, cls,Nsim=Nmc)
set.seed(1)
varTrun.sim(Y,cls,Nsim=Nmc)
set.seed(1)
varTkinv.sim(Y,k=1,cls,Nsim=Nmc)
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
varTkinv.sim(Y,k,fcls,Nsim=Nmc, case.lab="a")
```


Description

Returns the $W=\left(w_{i} j\right)$ matrix which is used to compute Q, R and T values in the NN structure. $w_{i j}=I($ point eqnj is a NN of point $\left.i)\right)$ i.e. $w_{i j}=1$ if point j is a NN of point i and 0 otherwise.
The argument ties is a logical argument (default=FALSE) to take ties into account or not. If TRUE the function takes ties into account by making $w_{i j}=1 / m$ if point j is a NN of point i and there are m tied NNs and 0 otherwise. If FALSE, $w_{i j}=1$ if point j is a NN of point i and 0 otherwise. The matrix W is equivalent to $A=\left(a_{i j}\right)$ matrix with $k=1$, i.e., $\operatorname{Wmat}(\mathrm{X})=\operatorname{aij} . \operatorname{mat}(\mathrm{X}, \mathrm{k}=1)$.
The argument is.ipd is a logical argument (default=TRUE) to determine the structure of the argument x. If TRUE, x is taken to be the inter-point distance (IPD) matrix, and if FALSE, x is taken to be the data set with rows representing the data points.

Usage

Wmat (x, ties $=$ FALSE, is.ipd $=$ TRUE, ...)

Arguments

x
The IPD matrix (if is.ipd=TRUE) or a data set of points in matrix or data frame form where points correspond to the rows (if is.ipd = FALSEALSE).
ties A logical parameter (default=FALSE) to take ties into account in computing the W matrix, so if it is TRUE, $w_{i j}=1 / m$ if point j is a NN of point i and there are m tied NNs and 0 otherwise and if FALSE, $w_{i j}=1$ if point j is a NN of point i and 0 otherwise.
is.ipd A logical parameter (default=TRUE). If TRUE, x is taken as the inter-point distance matrix, otherwise, x is taken as the data set with rows representing the data points.
... are for further arguments, such as method and p, passed to the dist function.

Value

The incidence matrix $W=\left(w_{i} j\right)$ where $w_{i j}=I$ (point eqnj is a NN of point $\left.i\right)$), i.e. $w_{i j}=1$ if point j is a NN of point i and 0 otherwise.

Author(s)

Elvan Ceyhan

See Also

aij.mat, aij.nonzero, and aij.theta

Examples

```
n<-3
X<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(X)
Wmat(ipd)
Wmat(X,is.ipd = FALSE)
n<-5
Y<-matrix(runif(3*n),ncol=3)
ipd<-ipd.mat(Y)
Wmat(ipd)
Wmat(Y,is.ipd = FALSE)
Wmat(Y,is.ipd = FALSE,method="max")
Wmat(Y,is.ipd = FALSE)
aij.mat(Y,k=1)
#1D data points
X<-as.matrix(runif(5)) # need to be entered as a matrix with one column
#(i.e., a column vector), hence X<-runif(5) would not work
ipd<-ipd.mat(X)
Wmat(ipd)
Wmat(X,is.ipd = FALSE)
```

```
#with ties=TRUE in the data
Y<-matrix(round(runif(15)*10),ncol=3)
ipd<-ipd.mat(Y)
Wmat(ipd,ties=TRUE)
Wmat(Y,ties=TRUE,is.ipd = FALSE)
```

Xsq.ceTk
Chi-square Approximation to Cuzick and Edwards $T _k$ Test statistic

Description

An object of class "Chisqtest" performing a chi-square approximation for Cuzick and Edwards T_{k} test statistic based on the number of cases within kNNs of the cases in the data.
This approximation is suggested by Tango (2007) since T_{k} statistic had high skewness rendering the normal approximation less efficient. The chi-square approximation is as follows: $\frac{T_{k}-E T_{k}}{\sqrt{\operatorname{Var} T_{k}}} \approx \frac{\chi_{\nu}^{2}-\nu}{\sqrt{2 \nu}}$ where χ_{ν}^{2} is a chi-square random variable with $\nu \mathrm{df}$, and $\nu=8 / \operatorname{skewnees}\left(T_{k}\right)$ (see SkewTk for the skewness).

The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc.lab should be provided in this fashion, if case.lab is provided, the labels are converted to 0's and 1's accordingly.
The logical argument nonzero.mat (default=FALSE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE).

The logical argument asy.var (default=FALSE) is for using the asymptotic variance or the exact (i.e. finite sample) variance for the variance of T_{k} in its standardization. If asy.var=TRUE, the asymptotic variance is used for $\operatorname{Var}\left[T_{k}\right]$ (see asyvarTk), otherwise the exact variance (see varTk) is used.

See also (Tango (2007)) and the references therein.

Usage

```
Xsq.ceTk(
```

 dat,
 cc.lab,
 k,
 case.lab = NULL,
 nonzero.mat = TRUE,
 asy.var \(=\) FALSE,
)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
cc.lab

Case-control labels, 1 for case, 0 for control
k
Integer specifying the number of NNs (of subject i).
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL.
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computations. If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used.
asy.var A logical argument (default is FALSE) to determine whether the asymptotic variance or the exact (i.e. finite sample) variance for the variance of T_{k} in its standardization. If TRUE, the asymptotic variance is used for $\operatorname{Var}\left[T_{k}\right]$, otherwise the exact variance is used.
... are for further arguments, such as method and p, passed to the dist function.

Value

A list with the elements
statistic The chi-squared test statistic for Tango's chi-square approximation to Cuzick \& Edwards' T_{k} test for disease clustering.
p.value The p-value for the hypothesis test
df Degrees of freedom for the chi-squared test, which is $8 /$ skewness where skewness is the output of SkewTk function.
estimate Estimates, i.e., the observed T_{k} value.
est.name,est.name2
Names of the estimates, they are almost identical for this function.
null. value \quad Hypothesized null value for Cuzick \& Edwards' T_{k}, which is $E T_{k}$.
method Description of the hypothesis test
data.name Name of the data set, dat

Author(s)

Elvan Ceyhan

References

Tango T (2007). "A class of multiplicity adjusted tests for spatial clustering based on case-control point data." Biometrics, 63, 119-127.

See Also

```
ceTk, ZceTk and SkewTk
```


Examples

```
set.seed(123)
n<-20
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE)
k<-sample(1:5,1) # try also 1, 3, 5,
k
Xsq.ceTk(Y,cls,k)
Xsq.ceTk(Y,cls,k,nonzero.mat=FALSE)
Xsq.ceTk(Y,cls+1,k,case.lab = 2)
Xsq.ceTk(Y,cls,k,method="max")
Xsq.ceTk(Y,cls,k,asy.var=TRUE)
```


Description

An object of class "Chisqtest" performing the hypothesis test of equality of the expected values of the off-diagonal cell counts (i.e., entries) under RL or CSR in the NNCT for $k \geq 2$ classes. That is, the test performs Dixon's or Pielou's (first type of) overall NN symmetry test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data or for sparsely sample data, respectively. (See Pielou (1961); Dixon (1994); Ceyhan (2014) for more detail).
The type="dixon" refers to Dixon's overall NN symmetry test and type="pielou" refers to Pielou's first type of overall NN symmetry test. The symmetry test is based on the chi-squared approximation of the corresponding quadratic form and type="dixon" yields an extension of Dixon's NN symmetry test, which is extended by Ceyhan (2014) and type="pielou" yields Pielou's overall NN symmetry test.
The function yields the test statistic, p-value and df which is $k(k-1) / 2$, description of the alternative with the corresponding null values (i.e. expected values) of differences of the off-diagonal entries, (which is 0 for this function) and also the sample estimates (i.e. observed values) of absolute differences of the off-diagonal entries of NNCT (in the upper-triangular form). The functions also provide names of the test statistics, the method and the data set used.
The null hypothesis is that all $E\left(N_{i j}\right)=E\left(N_{j i}\right)$ for $i \neq j$ in the $k \times k$ NNCT (i.e., symmetry in the mixed NN structure) for $k \geq 2$. In the output, if if type="pielou", the test statistic, p-value and the df are valid only for (properly) sparsely sampled data.
See also (Pielou (1961); Dixon (1994); Ceyhan (2014)) and the references therein.

Usage

Xsq.nnsym(dat, lab, type = "dixon", ...)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
lab The vector of class labels (numerical or categorical)
type The type of the overall NN symmetry test with default="dixon". Takes on values "dixon" and "pielou" for Dixon's and Pielou's (first type) overall NN symmetry test
... are for further arguments, such as method and p, passed to the dist function

Value

A list with the elements

statistic	The chi-squared test statistic for Dixon's or Pielou's (first type of) overall NN symmetry test
stat.names	Name of the test statistic p.value df
The p-value for the hypothesis test	
estimate	Degrees of freedom for the chi-squared test, which is $k(k-1) / 2$ for this func- tion.
estimates, i.e., absolute differences of the off-diagonal entries of NNCT (in the	
upper-triangular form).	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

Znnsym.ss, Znnsym.dx and Znnsym2cl

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
Xsq.nnsym(Y,cls)
Xsq.nnsym(Y,cls,method="max")
Xsq.nnsym(Y,cls,type="pielou")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Xsq.nnsym(Y,fcls)
Xsq.nnsym(Y,fcls,type="pielou")
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
Xsq.nnsym(Y,cls)
Xsq.nnsym(Y,cls,type="pielou")
```

ZceTk Z-test for Cuzick and Edwards T_k statistic

Description

An object of class "htest" performing a z-test for Cuzick and Edwards T_{k} test statistic based on the number of cases within kNNs of the cases in the data.
For disease clustering, Cuzick and Edwards (1990) suggested a k-NN test T_{k} based on number of cases among k NNs of the case points. Under RL of n_{1} cases and n_{0} controls to the given locations in the study region, T_{k} approximately has $N\left(E\left[T_{k}\right], \operatorname{Var}\left[T_{k}\right] / n_{1}\right)$ distribution for large n_{1}.
The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc.lab should be provided in this fashion, if case.lab is provided, the labels are converted to 0 's and 1's accordingly. Also, T_{1} is identical to the count for cell $(1,1)$ in the nearest neighbor contingency table (NNCT) (See the function nnct for more detail on NNCTs). Thus, the z-test for T_{k} is same as the cell-specific z-test for cell $(1,1)$ in the NNCT (see cell. spec).
The logical argument nonzero.mat (default=TRUE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE) in the computations.
The logical argument asy.var (default=FALSE) is for using the asymptotic variance or the exact (i.e. finite sample) variance for the variance of T_{k} in its standardization. If asy.var=TRUE, the asymptotic variance is used for $\operatorname{Var}\left[T_{k}\right]$ (see asyvarTk), otherwise the exact variance (see varTk) is used.
See also (Ceyhan (2014); Cuzick and Edwards (1990)) and the references therein.

Usage

```
ZceTk(
    dat,
    cc.lab,
    k,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
    case.lab = NULL,
    nonzero.mat = TRUE,
    asy.var = FALSE,
    )
```


Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
cc.lab Case-control labels, 1 for case, 0 for control
$\mathrm{k} \quad$ Integer specifying the number of NNs (of subject i).
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for Cuzick and Edwards T_{k} statistic
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computation of N_{s} and N_{t} (argument is passed on to asyvarTk). If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used.
asy.var A logical argument (default is FALSE) to determine whether the asymptotic variance or the exact (i.e. finite sample) variance for the variance of T_{k} in its standardization. If TRUE, the asymptotic variance is used for $\operatorname{Var}\left[T_{k}\right]$, otherwise the exact variance is used.
... are for further arguments, such as method and p, passed to the dist function.

Value

A list with the elements

statistic	The Z test statistic for the Cuzick and Edwards T_{k} test
p.value	The p-value for the hypothesis test for the corresponding alternative
conf.int	Confidence interval for the Cuzick and Edwards T_{k} value at the given confidence level conf.level and depends on the type of alternative.
estimate	Estimate of the parameter, i.e., the Cuzick and Edwards T_{k} value. null.value\quadHypothesized null value for the Cuzick and Edwards T_{k} value which is $k n_{1}\left(n_{1}-\right.$ $1) /(n-1)$ for this function.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
data.name Name of the data set, dat

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 16621684.

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

```
ceTk, cell.spec, and Xsq.ceTk
```


Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
k<-1 #try also 2,3, sample(1:5,1)
ZceTk(Y,cls,k)
ZceTk(Y,cls,k,nonzero.mat=FALSE)
ZceTk(Y,cls,k,method="max")
ZceTk(Y,cls+1,k,case.lab = 2,alt="l")
ZceTk(Y,cls,k,asy.var=TRUE,alt="g")
```

Znnsym

NN Symmetry Test with Normal Approximation

Description

An object of class "cellhtest" performing hypothesis test of equality of the expected values of the off-diagonal cell counts (i.e., entries) for each pair i, j of classes under RL or CSR in the NNCT for $k \geq 2$ classes. That is, the test performs Dixon's or Pielou's (first type of) NN symmetry test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data or for sparsely sample data, respectively. (See Pielou (1961); Dixon (1994); Ceyhan (2014) for more detail).

The type="dixon" refers to Dixon's NN symmetry test and type="pielou" refers to Pielou's first type of NN symmetry test. The symmetry test is based on the normal approximation of the difference of the off-diagonal entries in the NNCT and are due to Pielou (1961); Dixon (1994).
The function yields a contingency table of the test statistics, p-values for the corresponding alternative, expected values (i.e. null value(s)), lower and upper confidence levels and sample estimate for the $N_{i j}-N_{j i}$ values for $i \neq j$ (all in the upper-triangular form except for the null value, which is 0 for all pairs) and also names of the test statistics, estimates, null values and the method and the data set used.

The null hypothesis is that all $E\left(N_{i j}\right)=E\left(N_{j i}\right)$ for $i \neq j$ in the $k \times k$ NNCT (i.e., symmetry in the mixed NN structure) for $k \geq 2$. In the output, if if type="pielou", the test statistic, p-value and the lower and upper confidence limits are valid only for (properly) sparsely sampled data.
See also (Pielou (1961); Dixon (1994); Ceyhan (2014)) and the references therein.

Usage

```
Znnsym(
    dat,
    lab,
    type = "dixon",
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
    )
```


Arguments

dat
lab
type
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for the difference of the off-diagonal entries, $N_{12}-N_{21}$
... are for further arguments, such as method and p, passed to the dist function

Value

A list with the elements
statistic The matrix of Z test statistics for the NN symmetry test (in the upper-triangular form)
stat.names Name of the test statistics
p.value The matrix of p-values for the hypothesis test for the corresponding alternative (in the upper-triangular form)

LCL, UCL Matrix of Lower and Upper Confidence Levels (in the upper-triangular form) for the $N_{i j}-N_{j i}$ values for $i \neq j$ at the given confidence level conf. level and depends on the type of alternative.
conf.int The confidence interval for the estimates, it is NULL here, since we provide the UCL and LCL in matrix form.
$\mathrm{cnf} . l \mathrm{l} \mathrm{L} \quad$ Level of the upper and lower confidence limits (i.e., conf.level) of the differences of the off-diagonal entries.
estimate Estimates of the parameters, i.e., matrix of the difference of the off-diagonal entries (in the upper-triangular form) of the $k \times k$ NNCT, $N_{i j}-N_{j i}$ for $i \neq j$.
est.name,est.name2
Names of the estimates, former is a shorter description of the estimates than the latter.
null.value Hypothesized null value for the expected difference between the off-diagonal entries, $E\left(N_{i j}\right)-E\left(N_{j i}\right)$ for $i \neq j$ in the $k \times k$ NNCT, which is 0 for this function.
null. name Name of the null values
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
data. name Name of the data set, dat, or name of the contingency table, ct

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

Znnsym.ss.ct, Znnsym.ss, Znnsym.dx.ct, Znnsym.dx and Znnsym2cl

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
Znnsym(Y,cls)
```

```
Znnsym(Y,cls,method="max")
Znnsym(Y,cls,type="pielou")
Znnsym(Y, cls,type="pielou",method="max")
Znnsym(Y,cls,alt="g")
Znnsym(Y,cls, type="pielou",alt="g")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
Znnsym(Y,fcls)
#############
n<-40
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:4,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
Znnsym(Y,cls)
Znnsym(Y,cls,type="pielou")
```

Znnsym2cl NN Symmetry Test with Normal Approximation for Two Classes

Description

An object of class "htest" performing hypothesis test of equality of the expected value of the offdiagonal cell counts (i.e., entries) under RL or CSR in the NNCT for $k=2$ classes. That is, the test performs Dixon's or Pielou's (first type of) NN symmetry test which is appropriate (i.e. have the appropriate asymptotic sampling distribution) for completely mapped data and for sparsely sample data, respectively. (See Ceyhan (2014) for more detail).
The symmetry test is based on the normal approximation of the difference of the off-diagonal entries in the NNCT and are due to Pielou (1961); Dixon (1994).
The type="dixon" refers to Dixon's NN symmetry test and type="pielou" refers to Pielou's first type of NN symmetry test.
The function yields the test statistic, p-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is the difference of the off-diagonal entries in the NNCT), and method and name of the data set used.

The null hypothesis is that all $E\left(N_{12}\right)=E\left(N_{21}\right)$ in the 2×2 NNCT (i.e., symmetry in the mixed NN structure).
See also (Pielou (1961); Dixon (1994); Ceyhan (2014)) and the references therein.

Usage

Znnsym2cl(
dat,
lab,

```
        type = "dixon",
        alternative = c("two.sided", "less", "greater"),
        conf.level = 0.95
)
```


Arguments

dat	The data set in one or higher dimensions, each row corresponds to a data point.
lab	
type	The vector of class labels (numerical or categorical) The type of the NN symmetry test with default="dixon". Takes on values "dixon" and "pielou" for Dixon's and Pielou's (first type) NN symmetry test
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level	Level of the upper and lower confidence limits, default is 0.95, for the difference of the off-diagonal entries, $N_{12}-N_{21}$

Value

A list with the elements

statistic p.value conf.int	The Z test statistic for Pielou's first type of NN symmetry test The p-value for the hypothesis test for the corresponding alternative Confidence interval for the difference of the off-diagonal entries, $N_{12}-N_{21}$ in the 2×2 NNCT at the given confidence level conf.level and depends on the type of alternative.
estimate	Estimate, i.e., the difference of the off-diagonal entries of the 2×2 NNCT, $N_{12}-N_{21}$.
null.value	Hypothesized null value for the expected difference between the off-diagonal entries, $E\left(N_{12}\right)-E\left(N_{21}\right)$ in the 2×2 NNCT, which is 0 for this function. alternative\quadType of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method	Description of the hypothesis test
data.name	Name of the data set, dat, or name of the contingency table, ct

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Testing Spatial Symmetry Using Contingency Tables Based on Nearest Neighbor Relations." The Scientific World Journal, Volume 2014, Article ID 698296.

Dixon PM (1994). "Testing spatial segregation using a nearest-neighbor contingency table." Ecology, 75(7), 1940-1948.

Pielou EC (1961). "Segregation and symmetry in two-species populations as studied by nearestneighbor relationships." Journal of Ecology, 49(2), 255-269.

See Also

Znnsym2cl.ss.ct, Znnsym2cl.ss, Znnsym2cl.dx.ct, Znnsym2cl.dx, Znnsym.ss.ct, Znnsym.ss, Znnsym.dx.ct, Znnsym.dx, Znnsym.dx.ct, Znnsym.dx and Znnsym

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(1:2,n,replace = TRUE) #or try cls<-rep(1:2,c(10,10))
Znnsym2cl(Y,cls)
Znnsym2cl(Y,cls,type="pielou")
Znnsym2cl(Y,cls,alt="g")
Znnsym2cl(Y,cls,type="pielou",alt="g")
```

ZTcomb Z-test for Cuzick and Edwards T_comb statistic

Description

An object of class "htest" performing a z-test for Cuzick and Edwards $T_{\text {comb }}$ test statisticin disease clustering, where $T_{\text {comb }}$ is a linear combination of some T_{k} tests.
For disease clustering, Cuzick and Edwards (1990) developed a k-NN test T_{k} based on number of cases among k NNs of the case points, and also proposed a test combining various T_{k} tests, denoted as $T_{\text {comb }}$.
See page 87 of (Cuzick and Edwards (1990)) for more details.
Under RL of n_{1} cases and n_{0} controls to the given locations in the study region, $T_{c o m b}$ approximately has $N\left(E\left[T_{\text {comb }}\right], \operatorname{Var}\left[T_{\text {comb }}\right]\right)$ distribution for large n_{1}.

The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc. lab should be provided in this fashion, if case.lab is provided, the labels are converted to 0 's and 1's accordingly.
The argument klist is the vector of integers specifying the indices of the T_{k} values used in obtaining the $T_{\text {comb }}$.
The logical argument nonzero.mat (default=TRUE) is for using the A matrix if FALSE or just the matrix of nonzero locations in the A matrix (if TRUE) in the computations.

The logical argument asy. cov (default=FALSE) is for using the asymptotic covariance or the exact (i.e. finite sample) covariance for the vector of T_{k} values used in Tcomb in the standardization of $T_{\text {comb }}$. If asy. cov=TRUE, the asymptotic covariance is used, otherwise the exact covariance is used.
See also (Ceyhan (2014); Cuzick and Edwards (1990)) and the references therein.

Usage

```
ZTcomb (
    dat,
    cc.lab,
    klist,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95,
    case.lab = NULL,
    nonzero.mat = TRUE,
    asy.cov \(=\) FALSE,
    ...
    )
```


Arguments

dat
The data set in one or higher dimensions, each row corresponds to a data point.
cc.lab

Case-control labels, 1 for case, 0 for control
klist list of integers specifying the indices of the T_{k} values used in obtaining the $T_{\text {comb }}$.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for Cuzick and Edwards $T_{\text {comb }}$ statistic
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL.
nonzero.mat A logical argument (default is TRUE) to determine whether the A matrix or the matrix of nonzero locations of the A matrix will be used in the computation of covariance of T_{k} values forming the $T_{-}\{c o m b\}$ statistic (argument is passed on to covTcomb). If TRUE the nonzero location matrix is used, otherwise the A matrix itself is used.
asy.cov A logical argument (default is FALSE) to determine whether asymptotic or exact (i.e., finite sample) covariances between T_{k} and T_{l} values are to be used to obtain the entries of the covariance matrix.
... are for further arguments, such as method and p, passed to the dist function.

Value

A list with the elements
statistic \quad The Z test statistic for the Cuzick and Edwards $T_{\text {comb }}$ test
p .value The p-value for the hypothesis test for the corresponding alternative
conf.int Confidence interval for the Cuzick and Edwards $T_{\text {comb }}$ value at the given confidence level conf. level and depends on the type of alternative.
estimate Estimate of the parameter, i.e., the Cuzick and Edwards $T_{\text {comb }}$ value.

null. value	Hypothesized null value for the Cuzick and Edwards $T_{\text {comb }}$ value which is $E\left[T_{\text {comb }}\right]$ for this function, which is the output of EV. Tcomb function.
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method	Description of the hypothesis test
data.name	Name of the data set, dat

Author(s)

Elvan Ceyhan

References

Ceyhan E (2014). "Segregation indices for disease clustering." Statistics in Medicine, 33(10), 16621684.

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

Tcomb, EV. Tcomb, and covTcomb

Examples

```
n<-20 #or try sample(1:20,1)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
kl<-sample(1:5,3) #try also sample(1:5,2)
ZTcomb(Y,cls,kl)
ZTcomb(Y,cls,kl,method="max")
ZTcomb(Y,cls,kl,nonzero.mat=FALSE)
ZTcomb(Y,cls+1,kl,case.lab = 2,alt="l")
ZTcomb(Y,cls,kl,conf=.9,alt="g")
ZTcomb(Y,cls,kl,asy=TRUE,alt="g")
#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"),c(na,nb))
ZTcomb(Y,fcls,kl,case.lab="a")
```

ZTrun Z-test for Cuzick and Edwards T_run statistic

Description

An object of class "htest" performing a z-test for Cuzick and Edwards $T_{r u n}$ test statistic which is based on the number of consecutive cases from the cases in the data under RL or CSR independence.
Under RL of n_{1} cases and n_{0} controls to the given locations in the study region, $T_{\text {run }}$ approximately has $N\left(E\left[T_{\text {run }}\right], \operatorname{Var}\left[T_{\text {run }}\right]\right)$ distribution for large n.
The argument cc.lab is case-control label, 1 for case, 0 for control, if the argument case.lab is NULL, then cc.lab should be provided in this fashion, if case. lab is provided, the labels are converted to 0's and 1's accordingly.
The logical argument var.sim (default=FALSE) is for using the simulation estimated variance or the exact variance for the variance of $T_{\text {run }}$ in its standardization. If var.sim=TRUE, the simulation estimated variance is used for $\operatorname{Var}\left[T_{\text {run }}\right]$ (see varTrun.sim), otherwise the exact variance (see varTrun) is used. Moreover, when var. sim=TRUE, the argument Nvar. sim represents the number of resamplings (without replacement) in the RL scheme, with default being 1000.
The function varTrun might take a very long time when data size is large (even larger than 50); in this case, it is recommended to use var. sim=TRUE in this function.

See also (Cuzick and Edwards (1990)) and the references therein.

Usage

ZTrun(dat, cc.lab, alternative = c("two.sided", "less", "greater"), conf.level = 0.95, case.lab = NULL, var.sim = FALSE, Nvar.sim $=1000$,
)

Arguments

dat The data set in one or higher dimensions, each row corresponds to a data point.
cc.lab Case-control labels, 1 for case, 0 for control
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less" or "greater".
conf.level Level of the upper and lower confidence limits, default is 0.95 , for Cuzick and Edwards $T_{\text {run }}$ statistic
case.lab The label used for cases in the cc.lab (if cc.lab is not provided then the labels are converted such that cases are 1 and controls are 0), default is NULL.

var.sim	A logical argument (default is FALSE) to determine whether the simulation es- timated variance or the exact variance be used for the variance of $T_{\text {run }}$ in its standardization. If var.sim=TRUE, the simulation estimated variance is used for Var $\left[T_{r u n}\right]$ (see varTrun.sim), otherwise the exact variance (see varTrun) is used.
Nvar.sim	The number of simulations, i.e., the number of resamplings under the RL scheme to estimate the variance of $T_{\text {run }}$, used only when var.sim=TRUE.
\ldots	are for further arguments, such as method and p, passed to the dist function.

Value

A list with the elements

statistic	The Z test statistic for the Cuzick and Edwards $T_{\text {run }}$ test
p.value	The p-value for the hypothesis test for the corresponding alternative
conf.int	Confidence interval for the Cuzick and Edwards $T_{r u n}$ value at the given confi- dence level conf.level and depends on the type of alternative.
estimate	Estimate of the parameter, i.e., the Cuzick and Edwards $T_{\text {run }}$ value.
null.value	Hypothesized null value for the Cuzick and Edwards $T_{\text {run }}$ value which is $n_{1}\left(n_{1}-\right.$ $1) /\left(n_{0}+1\right)$ for this function.
alternative	Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method	Description of the hypothesis test
data.name	Name of the data set, dat

Author(s)

Elvan Ceyhan

References

Cuzick J, Edwards R (1990). "Spatial clustering for inhomogeneous populations (with discussion)." Journal of the Royal Statistical Society, Series B, 52, 73-104.

See Also

ceTrun, ZceTk, and ZTcomb

Examples

```
n<-20 #or try sample(1:20,1) #try also 40, 50, 60
set.seed(123)
Y<-matrix(runif(3*n),ncol=3)
cls<-sample(0:1,n,replace = TRUE) #or try cls<-rep(0:1,c(10,10))
ZTrun(Y,cls)
ZTrun(Y,cls,method="max")
ZTrun(Y,cls,var.sim=TRUE)
```

ZTrun(Y,cls+1, case.lab = 2,alt="l") \#try also ZTrun(Y,cls,conf=.9,alt="g")
\#cls as a factor
na<-floor(n/2); nb<-n-na
fcls<-rep(c("a","b"), c(na,nb))
ZTrun(Y,fcls, case.lab="a")

Index

```
* datasets
    swamptrees, }25
.onAttach,5
.onLoad, }
aij.mat, 7, 105, 256, 257, 276
aij.mat (funsAijmat), }8
aij.nonzero, 7, 276
aij.nonzero(funsAijmat), 83
aij.theta, 6, 83, 276
asycovTkTl, 8, 28, 29,195
asyvarTk, 9, 102, 194,199
base.class.spec, 56, }9
base.class.spec (funs.base.class.spec),
        50
base.class.spec.ct, 56,90
bvnorm.pdf,11
cell.spec, 54, 281,283
cell.spec (funsZcell.spec), 123
cell.spec.ct,54
cell.spec.ss(funs.cell.spec.ss), 52
cellsTij, 12, 262
ceTk, 7, 11, 14, 16, 18, 86, 105, 106, 257, 261,
        278,283
ceTkinv, 15, 15, 18, 41, 42, 167, 169, 274, 275
ceTrun, 16, 17, 42, 88, 104, 292
chisq.test, 94, }9
class.spec, 51,90
class.spec (funs.class.spec),55
class.spec.ct, 51, }9
classirest,197
classirest (funsOnevsRest), 92
col.sum (funsRowColSums), }9
colSums, 99, 100
correct.cf1,92
correct.cf1 (funsC_MI_II), 84
correct.cf2,92
correct.cf2 (funsC_MI_II), 84
```

cov.2cells (funs.auxcovtct), 48
cov.2cols (funs. auxcovtct), 48
cov.cell.col (funs.auxcovtct), 48
cov.nnct, 18, 21, 22, 24, 26, 49, 59, 61, 267, 268
cov.nnsym, 19, 20, 22, 24, 59, 109, 170
cov.seg.coeff, 21, 22, 114, 171, 270
cov.tct, 19, 21, 23, 49, 59, 61, 271
cov.tct3 (funs.covtct), 60
cov.tctI (funs.covtct), 60
cov.tctIII (funs.covtct), 60
cov.tctIV (funs.covtct), 60
covCiCj (funs. auxcovtct), 48
covNii, 81, 117, 145
covNii (funs.covNii), 58
covNii.ct, 117, 145
covNijCk (funs.auxcovtct), 48
covNrow2col, 19, 25, 88
covTcomb, 9, 27, 28, 29, 38, 290
covTkTl, 9, 29, 195
Dist, 32, 33
dist, $7,9,10,14,16,17,28-33,50,53,56$, $58,62,64,66,69,72,77,80,83,89$, 94, 101, 103, 107, 109, 112, 114,
$117,120,124,127,130,133,136$, $139,142,145,148,151,154,157$,
$159,162,165,168,171-174,178$,
179, 181, 183, 185, 187, 189, 192,
195, 198, 208, 210, 223, 255, 261,
276, 278, 280, 282, 284, 289, 292
dist.std.data, 30, 172, 173
dist2full, 31
euc.dist, 32, 173
EV.Nii, 33
EV.nnct, 34, 35, 37, 39, 41
EV.rct, 36
EV.Tcomb, 37, 86, 261, 290
EV.tct, 35, 37, 39, 41

EV.tctI, 39, 40
EV.Tk, 88, 106, 257
EV.Tk (funsExpTk), 85
EV.Tkaij, 83
EV.Tkaij (funsExpTk), 85
EV.Tkinv, 41, 169, 275
EV. Trun, 42, 104
EV.Trun (funsExpTrun), 87
exact.nnct, 42
exact.pval1s, 42, 44, 44, 47, 206, 264
exact.pval2s, 42, 44, 45, 46, 206, 264
fisher.test, 42, 44
funs.auxcovtct, 48
funs.base.class.spec, 50
funs.cell.spec.ss, 52
funs.class.spec, 55
funs.covNii, 58
funs.covtct, 60
funs.kNNdist, 61
funs.kNNdist2cl, 63
funs.overall.nnct, 66
funs.overall.seg, 68
funs.overall.tct, 71
funs.pijPij, 74
funs.scct, 76
funs.seg.coeff, 78
funs.varNii, 80
funs. vartct, 82
funsAijmat, 83
funsC_MI_II, 84
funsExpTk, 85
funsExpTrun, 87
funsN_I_II, 91
funsNNclass.spec, 88
funsOnevsRest, 92
funsPseg.ss, 93
funsQandR, 96
funsRowColSums, 99
funsVarTk, 100
funsVarTrun, 103
funsW345values, 105
funsXsq.nnref, 106
funsXsq.nnsym.dx, 108
funsXsq.nnsym.ss, 111
funsXsq.seg.coeff, 113
funsXsq.spec.cor, 116
funsZcell.nnct, 119
funsZcell.nnct.pval, 121
funsZcell.spec, 123
funsZcell.tct, 126
funsZdir.nnct, 129
funsZdir.nnct.ss, 132
funsZmixed.nonref, 134
funsZnnref, 137
funsZnnself, 140
funsZnnself.sum, 144
funsZnnsym.dx, 147
funsZnnsym.ss, 150
funsZnnsym2cl.dx, 153
funsZnnsym2cl.ss, 155
funsZseg.coeff, 158
funsZsegind, 161
funsZself.ref, 164
funsZTkinv, 167
ind.nnsym, 20, 170, 171, 176, 268
ind.seg.coeff, 22, 170, 171, 176, 269
ipd.mat, 31, 171, 173, 198
ipd.mat.euc, 31, 172, 173, 173, 198
kNN, 174, 179, 193
kNNdist, 64, 188, 189
kNNdist (funs.kNNdist), 61
kNNdist2cl (funs.kNNdist2cl), 63
kthNNdist, 64, 188, 189
kthNNdist (funs.kNNdist), 61
kthNNdist2cl(funs.kNNdist2cl), 63
lab. onevsrest, 197
lab. onevsrest (funsOnevsRest), 92
mat2vec, 175
matrix.sqrt, 176
mvrnorm, 12
Ninv, 97, 177, 206, 207
NN, 175, 179, 193
NN. class.spec, 51, 56
NN. class. spec (funsNNclass. spec), 88
NN.class.spec.ct, 51, 56
nnct, 13, 14, 35, 77, 180, 184, 186, 224, 262, 281
nnct. boot.dis, 183, 186
nnct.cr1, 85
nnct.cr1 (funsN_I_II), 91
nnct.cr2, 85
nnct.cr2 (funsN_I_II), 91

INDEX
nnct. sub, 181, 184, 185
NNdist, 62, 175, 187
NNdist2cl, 62, 64, 175, 188, 188, 189
nnspat, 190
NNsub, 179, 192
Nt.def, 194
Ntkl, 9, 28, 29, 195
overall.nnct, $70,73,95,131$
overall.nnct (funs.overall.nnct), 66
overall.nnct.ct, 70, 73, 95, 131
overall.seg, 67, 73, 95
overall.seg (funs.overall.seg), 68
overall.seg.ct, 67, 73, 95
overall.tct, 67,70
overall.tct (funs.overall.tct), 71
overall.tct.ct, 67, 70
P11 (funs.pijPij), 74
p11, 199
p11 (funs.pijPij), 74
P111 (funs.pijPij), 74
p111 (funs.pijPij), 74
P1111 (funs.pijPij), 74
p1111 (funs.pijPij), 74
P1112 (funs.pijPij), 74
p1112 (funs.pijPij), 74
P112 (funs.pijPij), 74
p112 (funs.pijPij), 74
P1122 (funs.pijPij), 74
p1122 (funs.pijPij), 74
P1123 (funs.pijPij), 74
p1123 (funs.pijPij), 74
P12 (funs.pijPij), 74
p12, 199
p12 (funs.pijPij), 74
p122 (funs.pijPij), 74
p1223 (funs.pijPij), 74
P123 (funs.pijPij), 74
p123 (funs.pijPij), 74
P1234 (funs.pijPij), 74
p1234 (funs.pijPij), 74
pairwise.lab, 93, 196
pick.min.max, 197
pk, 75, 198
plot.Clusters, 199, 203, 204
plot.SpatPatterns, 200, 204, 205
print, 200-203
print.cellhtest, 200
print.Chisqtest, 201
print.classhtest, 202
print. Clusters, 202, 204
print.refhtest, 203
print.SpatPatterns, 203, 205
print. summary.Clusters, 203, 204
print. summary. SpatPatterns, 204, 205
prob.nnct, 205, 264
Pseg.coeff, 15, 254, 273
Pseg. coeff (funs.seg. coeff), 78
Pseg.ss, 134
Pseg.ss (funsPseg.ss), 93
Pseg.ss.ct, 134
QRval, 97, 178, 206
Qsym.ct, 77, 208, 254
Qsym.test, 110, 113, 209, 209, 254
Qval, 178, 207, 255, 265
Qval (funsQandR), 96
Qvec, 178, 207, 255, 265
Qvec (funsQandR), 96
rassoc, 212, 215, 218, 220, 222, 249
rassocC, 213, 214, 214, 217-222
rassocG, 213, 215, 216, 218, 220, 222
rassocI, 213, 215, 218, 218, 222
rassocu, 213, 215, 217, 220, 220
rct, 37, 77, 181, 223
rdiag. clust, 224, 227, 247
rhor.clust, 226, 226, 247
rnonRL, 228, 234, 238, 241, 244
rnonRLI, 229, 230, 232, 238, 241, 244
rnonRLII, 229, 230, 234, 235, 241, 244
rnonRLIII, 229, 230, 234, 238, 239, 244
rnonRLIV, 229, 230, 234, 238, 241, 242
row. sum (funsRowColSums), 99
rowSums, 99, 100
rrot.clust, 226, 227, 245
rseg, 247
rself.ref, 249
runif, 253
runif.circ, 252
Rval, 178, 207, 265
Rval (funsQandR), 96
scct, 34, 59, 81, 181, 209, 224
scct (funs. scct), 76
seg.coeff, 22, 115, 160, 171, 254, 270, 273
seg.coeff (funs.seg. coeff), 78
seg.ind, 15, 79, 163, 253
sharedNN, 178, 207, 255, 265
sharedNN (funsQandR), 96
sharedNNmc, 97, 209, 254
SkewTk, 256, 277, 278
strwrap, 201-203
summary.Clusters, 203, 204, 257
summary. SpatPatterns, 204, 205, 258
swamptrees, 259

Tcomb, 15, 16, 18, 38, 260, 290
tct, 12, 13, 39, 41, 77, 181, 224, 262
tocher.cor, 45-47, 263
Tval, 97, 265
var.nnct, 81, 82, 266, 268, 270, 271
var.nnsym, 21, 81, 267, 267, 270
var.seg.coeff, 22, 269, 273
var.tct, 81, 82, 267, 268, 271
var.tctI, 271
var.tctI (funs.vartct), 82
var.tctIII, 271
var.tctIII (funs.vartct), 82
var.tctIV, 271
var.tctIV (funs.vartct), 82
varNii (funs.varNii), 80
varPseg.coeff, 272
varTk, 11, 106, 194, 199, 257
varTk (funsVarTk), 100
varTkaij, 11, 194, 199
varTkaij (funsVarTk), 100
varTkinv.sim, 274
varTrun (funsVarTrun), 103
W3val (funsW345values), 105
W4val (funsW345values), 105
W5val (funsW345values), 105
Wmat, 275
Xsq. ceTk, 106, 277, 283
Xsq.nnref, 117, 139
Xsq.nnref (funsXsq.nnref), 106
Xsq.nnref.ct, 117, 139
Xsq.nnsym, 110, 211, 279
Xsq.nnsym.dx, 113, 149, 155
Xsq.nnsym.dx (funsXsq.nnsym.dx), 108
Xsq.nnsym.dx.ct, 113, 149, 155
Xsq.nnsym.ss, 110, 157
Xsq.nnsym.ss (funsXsq.nnsym.ss), 111

Xsq.nnsym.ss.ct, 110, 157
Xsq.seg.coeff (funsXsq.seg.coeff), 113
Xsq.spec.cor, 143, 251
Xsq.spec.cor (funsXsq.spec.cor), 116
Xsq.spec.cor.ct, 143
Zcell.nnct, 120, 122, 123, 125, 128
Zcell.nnct (funsZcell.nnct), 119
Zcell.nnct.2s, 121
Zcell.nnct.2s (funsZcell.nnct.pval), 121
Zcell.nnct.ct, 119, 120, 123, 125, 128
Zcell.nnct.ls, 121
Zcell.nnct.ls (funsZcell.nnct.pval), 121
Zcell.nnct.pval, 121
Zcell.nnct.pval (funsZcell.nnct.pval), 121
Zcell.nnct.rs, 121
Zcell.nnct.rs (funsZcell.nnct.pval), 121
Zcell.tct, 121, 125
Zcell.tct (funsZcell.tct), 126
Zcell.tct.ct, 125
ZceTk, 278, 281, 292
Zdir.nnct, 134
Zdir.nnct (funsZdir.nnct), 129
Zdir.nnct.ct, 134
Zdir.nnct.ss, 131
Zdir.nnct.ss (funsZdir.nnct.ss), 132
Zdir.nnct.ss.ct, 131
Zmixed. nonref, 108, 139, 166
Zmixed.nonref (funsZmixed.nonref), 134
Zmixed.nonref.ct, 108, 139, 166
Znnref, 108, 136, 141, 143, 144, 146, 165, 166
Znnref (funsZnnref), 137
Znnref.ct, 108, 136, 141, 143, 144, 146, 165, 166
Znnself, 138, 139, 146, 165
Znnself (funsZnnself), 140
Znnself.ct, 138, 139, 146, 165
Znnself.sum (funsZnnself.sum), 144
Znnsym, 110, 211, 283, 288
Znnsym.dx, 110, 152, 155, 280, 285, 288
Znnsym.dx (funsZnnsym.dx), 147
Znnsym.dx.ct, 110, 152, 155, 285, 288
Znnsym.ss, 113, 149, 157, 280, 285, 288
Znnsym.ss (funsZnnsym.ss), 150
Znnsym.ss.ct, 113, 149, 157, 285, 288
Znnsym2cl, 280, 285, 286
Znnsym2cl.dx, 149, 288
Znnsym2cl.dx (funsZnnsym2cl.dx), 153

Znnsym2cl.dx.ct, 149, 288
Znnsym2cl.ss, 113, 152, 155, 288
Znnsym2cl.ss (funsZnnsym2cl.ss), 155
Znnsym2cl.ss.ct, 113, 152, 155, 288
Zseg.coeff, 79, 115, 163
Zseg.coeff (funsZseg.coeff), 158
Zseg.coeff.ct, 79, 115
Zseg.ind, 160, 254
Zseg.ind (funsZsegind), 161
Zseg.ind.ct, 254
Zself.ref, 108, 117, 136, 138, 141, 143, 144, 146, 251
Zself.ref(funsZself.ref), 164
Zself.ref.ct, 108, 117, 136, 138, 141, 143, 144, 146
ZTcomb, 38, 261, 288, 292
ZTkinv (funsZTkinv), 167
ZTrun, 291

