
PACKAGE NP FAQ

JEFFREY S. RACINE

Contents

1. Overview and Current Version 5
2. Frequently Asked Questions 5
2.1. How do I cite the np package? 5
2.2. I have never used R before. Can you direct me to some introductory material

that will guide me through the basics? 6
2.3. How do I keep all R packages on my system current? 6
2.4. It seems that there are a lot of packages that must be installed in order to

conduct econometric analysis (tseries, lmtest, np, etc.). Is there a way to
avoid having to individually install each package individually? 6

2.5. Is there a ’gentle guide’ to the np package that contains some easy to follow
examples? 7

2.6. I noticed you have placed a new version of the np package on CRAN. How can
I determine what has been changed, modified, fixed etc? 7

2.7. What is the difference between the np package and the previous stand-alone
programs you wrote, namely, N ©, NPREG ©, and NPDEN ©? 8

2.8. How can I read data stored in various formats such as Stata, SAS, Minitab,
SPSS etc. into the R program? 8

2.9. I want to use so-and-so’s semiparametric/nonparametric method, however, the
np package does not include this particular method. . . 8

2.10. Cross-validation takes forever, and I can’t wait that long. . . 9
2.11. Is there a way to figure out roughly how long cross-validation will take on a

large sample? 13
2.12. Where can I get some examples of R code for the np package in addition to

the examples in the help files? 14
2.13. I need to apply a boundary correction for a univariate density estimate - how

can I do this? 15
2.14. I notice your density estimator supports manual bandwidths, the normal-

reference rule-of-thumb, likelihood cross-validation and least squares
cross-validation, but not plug-in rules. How can I use various plug-in rules
for estimating a univariate density? 15

2.15. I wrote a program using np and it does not work as I expected. . . 16
2.16. Under Mac OS X, when I run a command no progress is displayed. . . 16

Date: August 22, 2022.

1

2 JEFFREY S. RACINE

2.17. When some routines are running under MS Windows, R appears to be ’not
responding.’ It appears that the program is not ’hung’, rather is simply
computing. The previous stand-alone program (N ©) always displayed
useful information. . . 16

2.18. Some results take a while, and my MS Windows computer is sluggish while R

is running. . . 16
2.19. A variable must be cast as, say, a factor in order for np to recognize this as an

unordered factor. How can I determine whether my data is already cast
as a factor? 17

2.20. When I use plot() (npplot()) existing graphics windows are overwritten.
How can I display multiple graphics plots in separate graphics windows
so that I can see results from previous runs and compare that to my new
run? 17

2.21. Sometimes plot() fails to use my variable names. . . 17
2.22. Sometimes plot() appends my variable names with .ordered or .factor. . . 17
2.23. I specify a variable as factor() or ordered() in a data frame, then call this

when I conduct bandwidth selection. However, when I try to plot the
resulting object, it complains with the following message: 17

2.24. My np code produces errors when I attempt to run it. . . 18
2.25. I have (numeric) 0/1 dummy variable regressors in my parametric model. Can

I just pass them to the np functions as I would in a parametric setting? 18
2.26. I have a categorical variable, ignored the advice in items 2.19 and 2.25, and R

terminates with the following error. 18
2.27. Rgui appears to crash. There must be a bug in the program. 19
2.28. Can I skip creating a bandwidth object and enter a bandwidth directly? 19
2.29. When I estimate my gradients and there are two or more covariates and then

extract them with the gradients() function, they are not ’smooth’,
though if I plot a model with the gradients=TRUE option, they are. The
gradients() function must be broken. . . 19

2.30. I use plot() (npplot()) to plot, say, a density and the resulting plot looks
like an inverted density rather than a density. . . 20

2.31. Can npksum() compute analytical derivatives with respect to a continuous
variable? 21

2.32. Can I use the npcmstest() function that implements the consistent test
for correct specification of parametric regression models as described in
Hsiao, Li, & Racine (2007) [6] to test for correct specification of the
semiparametric partially linear model? 22

2.33. I am using npcmstest() on a glm() object (the document says glm() objects
are supported and I am estimating a Logit model) but it returns an error
saying 23

2.34. I want to plot the kernel function itself. How can I do this? 23
2.35. In version 0.20-0 and up I can ’combine’ steps such as bandwidth selection and

estimation. But when I do summary(model) I don’t get the same summary

PACKAGE NP FAQ 3

that I would get from, say, summary(bw) and then summary(model). How
do I get bandwidth object summaries when combining steps? 24

2.36. I estimated a semiparametric index model via model <- npindex(y~x1+x2)

but se(model) returns NULL 24
2.37. How do I interpret gradients from the conditional density estimator? 25
2.38. When I run R in batch mode via R CMD BATCH filename.R unwanted status

messages (e.g., “Multistart 1 of 10”) crowd out desired output. How can I
turn off these unwanted status messages? 25

2.39. I am getting an ’unable to allocate...’ message after repeatedly interrupting
large jobs. 25

2.40. I have a large number of variables, and when using the formula interface I get
an error message stating ’invoked with improper formula’. I have double
checked and everything looks fine. Furthermore, it works fine with the
data frame interface. 26

2.41. How can I estimate additive semiparametric models? 26
2.42. I am using npRmpi and am getting an error message involving dlopen() 27
2.43. I am using the npRmpi package but when I launch one of the demo parallel jobs

I get the error Error: could not find function “mpi.bcast.cmd” 27
2.44. I have estimated a partially linear model and want to extract the gradient/fitted

values of the nonparametric component 28
2.45. The R function ’lag()’ does not work as I expect it to. How can I create the lth

lag of a numeric variable in R to be fed to functions in the np package? 29
2.46. Can I provide sample weights to be used by functions in the np package? 30
2.47. Quantile regression is slow, particularly for very small/large values of tau. Can

this be sped up? 30
2.48. How can I generate resamples from the unknown distribution of a set of data

based on my smooth kernel density estimate? 32
2.49. Some of my variables are measured with an unusually large number of

digits. . . should I rescale? 33
2.50. The local linear gradient estimates appear to be somewhat ’off’ in that they do

not correspond to the first derivative of the estimated regression function. 33
2.51. How can I turn off all console I/O? 34
2.52. Is there a way to exploit the sparse nature of the design matrix when all

predictors are categorical and reduce computation time, particularly for
cross-validation? 34

2.53. I want to bootstrap the standard errors for the coefficients in a varying
coefficient specification. Is there a simple way to accomplish this? 37

References 39
Changes from Version 0.60-13 to 0.60-14 [22-Aug-2022] 40
Changes from Version 0.60-12 to 0.60-13 [15-Aug-2022] 40
Changes from Version 0.60-11 to 0.60-12 [12-Aug-2022] 40
Changes from Version 0.60-10 to 0.60-11 [04-Jun-2021] 40
Changes from Version 0.60-9 to 0.60-10 [5-Feb-2020] 40
Changes from Version 0.60-8 to 0.60-9 [24-Oct-2018] 41

4 JEFFREY S. RACINE

Changes from Version 0.60-7 to 0.60-8 [04-Jun-2018] 41
Changes from Version 0.60-6 to 0.60-7 [01-May-2018] 41
Changes from Version 0.60-5 to 0.60-6 [12-Jan-2018] 41
Changes from Version 0.60-4 to 0.60-5 [04-Jan-2018] 41
Changes from Version 0.60-3 to 0.60-4 [03-Dec-2017] 41
Changes from Version 0.60-2 to 0.60-3 [29-Apr-2017] 42
Changes from Version 0.60-1 to 0.60-2 [27-Jun-2014] 42
Changes from Version 0.60-0 to 0.60-1 [6-Jun-2014] 43
Changes from Version 0.50-1 to 0.60-0 [1-Jun-2014] 43
Changes from Version 0.40-13 to 0.50-1 [13-Mar-2013] 44
Changes from Version 0.40-12 to 0.40-13 [05-Mar-2012] 45
Changes from Version 0.40-11 to 0.40-12 [24-Nov-2011] 45
Changes from Version 0.40-10 to 0.40-11 [24-Oct-2011] 45
Changes from Version 0.40-9 to 0.40-10 [24-Oct-2011] 46
Changes from Version 0.40-8 to 0.40-9 [30-July-2011] 46
Changes from Version 0.40-7 to 0.40-8 [29-July-2011] 46
Changes from Version 0.40-6 to 0.40-7 [8-Jun-2011] 46
Changes from Version 0.40-5 to 0.40-6 [1-Jun-2011] 46
Changes from Version 0.40-4 to 0.40-5 [26-Apr-2011] 46
Changes from Version 0.40-3 to 0.40-4 [21-Jan-2011] 47
Changes from Version 0.40-1 to 0.40-3 [23-Jul-2010] 47
Changes from Version 0.40-0 to 0.40-1 [4-Jun-2010] 47
Changes from Version 0.30-9 to 0.40-0 [25-May-2010] 47
Changes from Version 0.30-8 to 0.30-9 [17-May-2010] 47
Changes from Version 0.30-7 to 0.30-8 [20-Apr-2010] 48
Changes from Version 0.30-6 to 0.30-7 [15-Feb-2010] 48
Changes from Version 0.30-5 to 0.30-6 [3-Feb-2010] 48
Changes from Version 0.30-4 to 0.30-5 [29-Jan-2010] 48
Changes from Version 0.30-3 to 0.30-4 [27-Jan-2010] 49
Changes from Version 0.30-2 to 0.30-3 [28-May-2009] 49
Changes from Version 0.30-1 to 0.30-2 [19-Apr-2009] 49
Changes from Version 0.30-0 to 0.30-1 [29-Jan-2009] 49
Changes from Version 0.20-4 to 0.30-0 [15-Jan-2009] 49
Changes from Version 0.20-3 to 0.20-4 [19-Nov-2008] 50
Changes from Version 0.20-2 to 0.20-3[14-Nov-2008] 50
Changes from Version 0.20-1 to 0.20-2 [02-Nov-2008] 51
Changes from Version 0.20-0 to 0.20-1 [13-Aug-2008] 51
Changes from Version 0.14-3 to 0.20-0 [28-Jul-2008] 51
Changes from Version 0.14-2 to 0.14-3 [02-May-2008] 51
Changes from Version 0.14-1 to 0.14-2 [11-Jan-2008] 52
Changes from Version 0.13-1 to 0.14-1 [18-Dec-2007] 52
Changes from Version 0.12-1 to 0.13-1 [03-May-2007] 53
Version 0.12-1 [19-Nov-2006] 53

PACKAGE NP FAQ 5

1. Overview and Current Version

This set of frequently asked questions is intended to help users who are encountering

unexpected or undesired behavior when trying to use the np package.

Many of the underlying C routines have been extensively tested over the past two decades.

However, the R ’hooks’ needed to call these routines along with processing of the data required

for a seamless user experience may produce unexpected or undesired results in some settings.

If you encounter any issues with the np package, kindly first ensure that you have the most

recent version of np, R, and RStudio (if appropriate) installed. Sometimes issues encountered

using outdated versions of software have been resolved in the current versions, so this is the

first thing one ought to investigate when the unexpected occurs.

Having ensured that the problem persists with the most recently available versions of all

software involved, kindly report any issues you encounter to me, and please include your

code, data, version of the np package, version of R, and operating system (with version

number) used so that I can help track down any such issues (racinej@mcmaster.ca). And, of

course, if you encounter an issue that you think might be of interest to others, kindly email

me the relevant information and I will incorporate it into this FAQ.

This FAQ refers to the most recent version, which as of this writing is 0.60-14.

Kindly update your version should you not be using the most current (from within R,

update.packages() ought to do it, though also see 2.3 below.). See the appendix in this

file for cumulative changes between this and previous versions of the np package.

2. Frequently Asked Questions

2.1. How do I cite the np package? Once you have installed the np package

(install.packages("np")), if you load the np package (library("np")) and type

citation("np") you will be presented with the following information.

> citation("np")

To cite np in publications use:

Tristen Hayfield and Jeffrey S. Racine (2008). Nonparametric Econometrics: The

np Package. Journal of Statistical Software 27(5). DOI 10.18637/jss.v027.i05

A BibTeX entry for LaTeX users is

@Article{,

title = {Nonparametric Econometrics: The np Package},

mailto:racinej@mcmaster.ca

6 JEFFREY S. RACINE

author = {Tristen Hayfield and Jeffrey S. Racine},

journal = {Journal of Statistical Software},

year = {2008},

volume = {27},

number = {5},

url = {https://www.jstatsoft.org/index.php/jss/article/view/v027i05},

doi = {10.18637/jss.v027.i05},

pages = {1-32},

}

2.2. I have never used R before. Can you direct me to some introductory material

that will guide me through the basics? There are many excellent introductions to the R

environment with more on the way. First, I would recommend going directly to the R website

(http://www.r-project.org) and looking under Documentation/Manuals (http://cran.

r-project.org/manuals.html) where you will discover a wealth of documentation for R

users of all levels. See also the R task views summary page (http://cran.r-project.org/

web/views) for information grouped under field of interest. A few documents that I mention

to my students which are tailored to econometricians include http://cran.r-project.org/

doc/contrib/Verzani-SimpleR.pdf, Cribari-Neto & Zarkos (1999) [1], Racine & Hyndman

(2002) [11] and Farnsworth (2006) [3], to name but a few.

Those looking for exemplar data sets outside of those contained in the np package are

directed to the Ecdat [2] and AER [7] packages.

I maintain a ’Gallery’ to provide a forum for users to share code and discover examples

and illustrations which can be found at http://socserv.mcmaster.ca/racinej/Gallery/

Home.html.

Often the best resource is right down the hall. Ask a colleague whether they use or know

anyone who uses R, then offer to buy that person a coffee and along the way drop something

like “I keep hearing about the R project. . . I feel like such a Luddite. . . ”

2.3. How do I keep all R packages on my system current? Run the command

update.packages(checkBuilt=TRUE,ask=FALSE), which will not only update all packages

that are no longer current, but will also update all packages built under outdated installed

versions of R, if appropriate.

2.4. It seems that there are a lot of packages that must be installed in order to

conduct econometric analysis (tseries, lmtest, np, etc.). Is there a way to avoid

having to individually install each package individually? Certainly. The Compre-

hensive R Archive Network (CRAN) is a network of ftp and web servers around the world

http://www.r-project.org
http://cran.r-project.org/manuals.html
http://cran.r-project.org/manuals.html
http://cran.r-project.org/web/views
http://cran.r-project.org/web/views
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://socserv.mcmaster.ca/racinej/Gallery/Home.html
http://socserv.mcmaster.ca/racinej/Gallery/Home.html

PACKAGE NP FAQ 7

that store identical, up-to-date, versions of code and documentation for R. The CRAN ’task

view’ for computational econometrics might be of particular interest to econometricians. The

econometric task view provides an excellent summary of both parametric and nonparametric

econometric packages that exist for the R environment and provides one-stop installation for

these packages.

See cran.r-project.org/web/views/Econometrics.html for further information.

To automatically install a task view, the ctv package first needs to be installed and loaded,

i.e.,

install.packages("ctv")

library("ctv")

The econometric task view can then be installed via install.views() and updated via

update.views() (which first assesses which of the packages are already installed and up-to-

date), i.e.,

install.views("Econometrics")

or

update.views("Econometrics")

2.5. Is there a ’gentle guide’ to the np package that contains some easy to

follow examples? Perhaps the most gentle introduction is contained in the np package

itself in the form of a ’vignette’. To view the vignette run R, install the np package

(install.packages("np")), then type vignette("np",package="np") to view or print the

vignette (this vignette is essentially the article that appeared in the Journal of Statistical

Software that describes the np package (Hayfield & Racine [5])).

See also vignette("entropy_np",package="np") for a vignette on the entropy-based

functions and procedures introduced to the np package in versions 0.30-4 through 0.30-8.

In addition, you might be interested in the nonparametric econometrics primer (Racine

[10]) which is available for download from my website as is the code that will generate the

examples contained therein.

For a listing of all routines in the np package type: library(help="np").

2.6. I noticed you have placed a new version of the np package on CRAN. How can

I determine what has been changed, modified, fixed etc? See the CHANGELOG on

the CRAN site (http://cran.r-project.org/web/packages/np/ChangeLog), or go to the

end of this document where the CHANGELOG is provided for your convenience.

http://cran.r-project.org/web/views/Econometrics.html
http://cran.r-project.org/web/packages/np/ChangeLog

8 JEFFREY S. RACINE

2.7. What is the difference between the np package and the previous stand-alone

programs you wrote, namely, N ©, NPREG ©, and NPDEN ©? The np package

is built from the same C library that underlies its predecessors N ©, NPREG ©, and

NPDEN ©. In fact, R calls the compiled C code that underlies its predecessors (one of

the beauties of R is that you can obtain the benefits of compiled code (i.e., speed) yet have

access to the rich superset of R routines and R packages built by others). Therefore, there is

no penalty in run-time when using R versus the stand alone precompiled binary programs

N ©, NPREG ©, and NPDEN © (unless of course the compiler or compiler flags differ

from those used to build its predecessors).

2.8. How can I read data stored in various formats such as Stata,
SAS, Minitab, SPSS etc. into the R program? Install the foreign library via
install.packages("foreign") then do something like

mydat <- read.dta("datafile.dta"),

where datafile.dta is the name of your Stata data file. Note that, as of version 0.8-34, the

foreign package function read.dta supports reading files directly over the Internet making

for more portable code. For instance, one could do something like

mydat <- read.dta(file="http://www.principlesofeconometrics.com/stata/mroz.dta")

as one could always do with, say, read.table().

2.9. I want to use so-and-so’s semiparametric/nonparametric method, however,

the np package does not include this particular method. . . This is why we have

included the function npksum(), which exists so that you can create your own kernel objects

and take advantage of underlying kernel methods implemented in the np package without

having to write, say, C or Fortran code.

With the options available, you could create new nonparametric tests or even new kernel

estimators. For instance, the convolution kernel option would allow you to replicate, say, the

least squares cross-validation function for kernel density estimation found in npudensbw().

The function npksum() uses highly-optimized C code that strives to minimize its memory

footprint, while there is low overhead involved when using repeated calls to this function.

See, by way of illustration, the example in the npksum() help file that conducts leave-

one-out cross-validation for a local constant regression estimator via calls to the R function

nlm(), and compares this to the npregbw() function.

If you wish to have a method incorporated into a future version of the np package, the best

way to achieve this is to successfully code up the method using npksum(), briefly document

it and write up an example, then send it to us. We will then, at our discretion, do our best

PACKAGE NP FAQ 9

to adapt and incorporate this into a future version and of course give credit where credit is

due.

2.10. Cross-validation takes forever, and I can’t wait that long. . . This is the most

common complaint from frustrated users coming to terms with numerically demanding sta-

tistical methods. I am fond of saying ’if you want the wrong answer, I can give it to you

right away’, but this wears thin quickly.

(1) Some background may be in order. Suppose, by way of illustration, that you are

conducting nonparametric regression (local constant or local linear) for a given band-

width vector (nonparametric kernel regression is simply locally weighted least squares

estimation). Let g(x) denote the true conditional mean at some point x, and ĝ(x)

some estimate. To solve this problem requires computing weighted least squares not

once (as would be the case for parametric regression), but n times (the weights are

local to the point at which you construct the regression model, xi, i = 1, . . . , n).

That is, to compute ĝ(xi), i = 1, . . . , n requires an order of magnitude (O(n)) times

more computation than that for parametric regression. So, for a given bandwidth,

we require O(n) more computation than parametric regression. But to determine the

appropriate bandwidth vector, we minimize, say, a cross-validation function numer-

ically, which requires a large number of evaluations of some objective function, say

the delete-one least squares criterion function CV = n−1
�n

i=1(yi − ĝ−i(xi))
2 where

ĝ−i(xi) is the leave-one-out estimator of g(xi). This takes a problem that is already

an order of magnitude more computationally involved than parametric regression and

again increases the computational burden by potentially another order of magnitude.

It is evident that as n increases the computational burden associated with optimal

bandwidth selection will increase exponentially.

In general, cross-validation methods have run times that are proportional to the

square of the number of observations (of computational order n2 hence a doubling of

the sample size will increase run time by a factor of four). The solution I currently

favor is to run the code in a parallel computing environment. The underlying C

code for np is MPI-aware (MPI denotes the ’message passing interface’, a popular

parallel programming library that is an international standard), and a version of

the np package titled ’npRmpi’ exists for running jobs in a parallel environment that

leverages the Rmpi package ([12]).1

1We are extremely grateful to Hao Yu for providing the MPI functionality contained in the Rmpi package.

10 JEFFREY S. RACINE

With respect to the npRmpi package, kindly note that I cannot assist with issues

surrounding installation and setup due to the vast heterogeneity of MPI implemen-

tations and methods for executing such programs. You are instead strongly advised

to seek local advice from your sysadmin or others. The document npRmpi.pdf may

contain some useful information for such issues. You might also want to first get the

Rmpi package installed and running properly as once you are at this stage it ought

to then be trivial to install the npRmpi package. Also note that running programs in

a parallel environment requires minor differences in how np functions are called, and

you would be wise to examine the examples in the demo directory (download and

unpack the source code and look in this directory) and the overview file npRmpi.pdf

in the inst/doc/ directory of the npRmpi package you downloaded and unpacked.

(2) Alternatively, you can use the method outlined in Racine (1993) [9]. The method is

based on the fact that the unknown constant cj (the ’scale factor’) in the formula

cjÃjn
−1/(2p+r) is independent of the sample size, so one can conduct bandwidth se-

lection on random subsets and do this for a large number of subsets then take the

mean/median over these subsets and feed the scale factor into the final routine for

the entire sample. Below you will find simple R code that replicates the method

using numerical search and resampling without replacement rather than the grid

method outlined in [9] (both have equivalent properties but this is perhaps simpler

to implement using the np package).

Regression example

Generate a moderately large data set

set.seed(12345)

n <- 100000

x1 <- runif(n)

x2 <- runif(n)

y <- 1 + x1 + sin(pi*x2) + rnorm(n,sd=.1)

Set the number of resamples and the subsample size

num.res <- 50

n.sub <- 250

Create a storage matrix

bw.mat <- matrix(NA,nrow=num.res,ncol=2)

PACKAGE NP FAQ 11

Get the scale factors for resamples from the full sample of size n.sub

options(np.messages=FALSE)

for(i in 1:num.res) {

cat(paste(" Replication", i, "of", num.res, "...\r"))

bw.mat[i,] <- npregbw(y~x1+x2,regtype="ll",

subset=sample(n,n.sub))$sfactor$x

}

A function to compute the median of the columns of a matrix

colMedians <- function(data) {

colmed <- numeric(ncol(data))

for(i in 1:ncol(data)) {

colmed[i] <- median(data[,i])

}

return(colmed)

}

Take the median scale factors

bw <- colMedians(bw.mat)

The final model for the full dataset

model.res <- npreg(y~x1+x2,bws=bw,regtype="ll",bwscaling=TRUE)

Hat tip to Yoshi Fujiwara <yoshi.fujiwara@gmail.com> for this

nice example

n <- 100000

library(MASS)

rho <- 0.25

Sigma <- matrix(c(1,rho,rho,1),2,2)

mydat <- mvrnorm(n=n, rep(0, 2), Sigma)

x <- mydat[,1]

y <- mydat[,2]

12 JEFFREY S. RACINE

rm(mydat)

num.res <- 100

n.sub <- 100

bw.mat <- matrix(NA,nrow=num.res,ncol=2)

options(np.messages=FALSE)

for(i in 1:num.res) {

bw <- npcdensbw(y ~ x,subset=sample(n,n.sub))

bw.mat[i,] <- c(bw$sfactor$y,bw$sfactor$x)

}

colMedians <- function(data) {

colmed <- numeric(ncol(data))

for(i in 1:ncol(data)) {

colmed[i] <- median(data[,i])

}

return(colmed)

}

bw <- colMedians(bw.mat)

bw <- npcdensbw(y ~ x, bws=bw, bwscaling=TRUE, bandwidth.compute=FALSE)

summary(bw)

plot(bw,xtrim=.01)

(3) Barring this, you can set the search tolerances to be a bit less terse (at the expense of

potential accuracy, i.e., becoming trapped in local minima) by setting, say, tol=0.1

and ftol=0.1 in the respective bandwidth routine (see the docs for examples). Also,

you can set nmulti=1 which overrides the number of times the search procedure

restarts from different random starting values (the default is to restart k times where

k is the number of variables). Be warned, however, that this is definitely not recom-

mended and should be avoided at all costs for all but the most casual examination of a

relationship. One ought to use multistarting for any final results and never override

default search tolerances unless increasing multistarts beyond the default. Results

based upon exhaustive search often differ dramatically from that based on limited

search achieved by overriding default search tolerances.
(4) For those who like to tinker and who work on a *NIX system with the gcc compiler

suite, you can change the default compiler switches used for building R packages
which may generate some modest improvements in run time. The default compiler
switches are

-g -O2

PACKAGE NP FAQ 13

and are set in the R-*.*.*/etc/Makeconf file (where *.*.* refers to your R version
number, e.g. R-2.10.1). You can edit this file and change these defaults to

-O3 -ffast-math -fexpensive-optimizations -fomit-frame-pointer

then reinstall the np package and you may experience some improvements in run

time. Note that the -g flag turns on production of debugging information which can

involve some overhead, so we are disabling this feature. This is not a feature used by

the typical applied researcher but if you envision requiring this it is clearly trivial to

re-enable debugging. I typically experience in the neighborhood of a 0-5% reduction

in run time for data-driven bandwidth selection on a variety of systems depending

on the method being used, though mileage will of course vary.

(5) Finally, I have recently been working on extending regression splines (as opposed to

smoothing splines2) to admit categorical predictors (see references for papers with

Yang and Ma in the crs package). Because regression splines involve simple (i.e.,

’global’ as opposed to local) least-squares fits, they scale much better with respect

to the sample size so for large sample sizes you may wish to instead consider this

approach (kindly see my webpage for further details). You can run cross-validation

with hundreds of thousands of observations on a decent desktop in far less time than

that required for cross-validated kernel estimates. Be forewarned, however, that the

presence of categorical predictors can lead to increased execution time unless the

option kernel=FALSE is invoked (the default is to use local kernel weighting in the

presence of categorical predictors).

2.11. Is there a way to figure out roughly how long cross-validation will take

on a large sample? Certainly. You can run cross-validation on subsets of your data of

increasing size and time each run, then estimate a double-log model of sample size on run

time (run time can be approximated by a linear log-log model) and then use this to predict

approximate run-time. The following example demonstrates this for a simple model, but

you can modify it trivially for your data. Note that the larger is n.max the more accurate

it will likely be. Note that we presume your data is in no particular order (if it is, you

perhaps ought to shuffle it first). We plot the log-log model fit and prediction along with

that expressed in hours.

Set the upper bound (n.max > 100) for the sub-samples on which you

2Unlike regression splines, a smoothing spline places a knot at each data point and penalizes the fit for lack
of smoothness as defined by the second derivative (typically cubic splines are used). When the penalty is
zero this produces a function that interpolates the data points. When the penalty is infinite, this delivers
the linear OLS fit to the data.

14 JEFFREY S. RACINE

will run cross-validation (perhaps n.max = 1000 (or 2000) ought to

suffice). For your application, n will be your sample size

n <- 2000

n.max <- 1000

x <- runif(n)

y <- 1 + x + rnorm(n)

n.seq <- seq(100,n.max,by=100)

time.seq <- numeric(length(n.seq))

for(i in 1:length(n.seq)) {

time.seq[i] <- system.time(npregbw(y~x,subset=seq(1:n.seq[i])))[3]

}

Now fit a double-log model and generate/plot actual values plus

prediction for n (i.e., approximate run time in hours)

log.time <- log(time.seq)

log.n <- log(n.seq)

model <- lm(log.time~log.n)

n.seq.aug <- c(n.seq,n)

time.fcst <- exp(predict(model,newdata=data.frame(log.n=log(n.seq.aug))))

par(mfrow=c(2,1))

plot(log(n.seq.aug),log(time.fcst),type="b",

xlab="log(Sample Size)",

ylab="log(Run Time)",

main="Approximate Run Time (log seconds)")

plot(n.seq.aug,time.fcst/3600,type="b",

xlab="Sample Size (n)",

ylab="Hours",

main="Approximate Run Time (hours)",

sub=paste("Predicted run time for n =", n, "observations:",

signif(time.fcst[length(time.fcst)]/3600, digits=2),

"hours"))

2.12. Where can I get some examples of R code for the np package in addition

to the examples in the help files? Start R then type demo(package="np") and you will

PACKAGE NP FAQ 15

be presented with a list of demos for constrained estimation, inference, and so forth. To run

one of these demos type, for example, demo(npregiv) (note that you must first install the

rgl package to run this particular demo).

To find the location of a demo type system.file("demo","npregiv.R",package="np")

for example, then you can take the source code for this demo and modify it for your particular

application.

You can also find examples and illustrations at the ’Gallery’ located at http://socserv.

mcmaster.ca/racinej/Gallery/Home.html.

2.13. I need to apply a boundary correction for a univariate density estimate -

how can I do this? As of version 0.60.5, you can use either npuniden.boundary (boundary

kernel functions) or npuniden.reflect (data reflection).

2.14. I notice your density estimator supports manual bandwidths, the normal-

reference rule-of-thumb, likelihood cross-validation and least squares cross-

validation, but not plug-in rules. How can I use various plug-in rules for es-

timating a univariate density? For the univariate case this is straightforward as the

default R installation supports a variety of univariate plug-in bandwidths (see ?bw.nrd for

details). For example, bs.SJ computes the bandwidths outlined in

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based

bandwidth selection method for kernel density estimation.

Journal of the Royal Statistical Society series B, *53*,

683-690.

Incorporating these univariate plug-in bandwidth selectors into the univariate density

estimation routines in np is straightforward as the following code snippet demonstrates. They

will certainly be faster than the likelihood and least-squares cross-validation approaches.

Also, you may not wish the density estimate for all sample realizations, but rather for

a shorter grid. The following example demonstrates both and is closer in spirit to the

density() function in base R.

x <- rnorm(10000)

xeval <- seq(min(x),max(x),length=100)

f <- npudens(tdat=x,edat=xeval,bws=bw.SJ(x))

You might even be tempted to use these in the multivariate case via bws=c(bw.SJ(x1),bw.SJ(x2),...)

though these would be optimal for univariate densities and most certainly not for a multi-

variate density. However, for exploratory purposes these may be of interest to some users.

http://socserv.mcmaster.ca/racinej/Gallery/Home.html
http://socserv.mcmaster.ca/racinej/Gallery/Home.html

16 JEFFREY S. RACINE

2.15. I wrote a program using np and it does not work as I expected. . . There exist

a rather extensive set of examples contained in the docs. You can run these examples by

typing example("npfunctionname") where npfunctionname is, say, w, as in example("w").3

These examples all pass quality control and produce the expected results, so first see whether

your problem fits into an existing example, and if not, carefully follow the examples listed

in a given function for syntax issues etc.

If you are convinced that the problem lies with np (there certainly will be undiscovered

’features’, i.e., bugs), then kindly send me your code and data so that I can replicate and

help resolve the issue.

2.16. Under Mac OS X, when I run a command no progress is displayed. . . This

should no longer occur for np versions 0.30-0 and up. For previous versions, this reflected a

peculiarity of console input/output (I/O) under Mac OS X. Note, however, that if you run

R in a terminal rather than Rgui you will get the full *NIX4 experience.

But also note that there is a platform-independent interface that does not suffer from

this limitation called ’RStudio’ that you might prefer to existing interfaces (http://www.

rstudio.org).

2.17. When some routines are running under MS Windows, R appears to be

’not responding.’ It appears that the program is not ’hung’, rather is simply

computing. The previous stand-alone program (N ©) always displayed useful

information. . . This should no longer occur for np versions 0.30-0 and up. For previous

versions, this reflected a peculiarity of the R Windows GUI, and was not specific to the np

package.

From the R Windows FAQ. . .

“When using Rgui the output to the console seems to be delayed. This is deliberate: the

console output is buffered and re-written in chunks to be faster and less distracting. You

can turn buffering off or on from the ’Misc’ menu or the right-click menu: <Ctrl-W> toggles

the setting.”

2.18. Some results take a while, and my MS Windows computer is sluggish while

R is running. . . You can easily change the priority of your R job on the fly, just as you

might under *NIX. Pull up the task manager (<Ctrl>-<Alt>-), go to the process list,

and find the process Rgui.exe (or R.exe if you are running Rterm), select this process by

left clicking on it, then right clicking will bring up a menu, select Set priority, then change

3For a listing of all routines in the np package type: library(help="np").
4*NIX is often used to describe UNIX and other UNIX-like platforms (i.e., UNIX, BSD, and GNU/Linux
distributions). I harbour strong preferences for *NIX computing platforms.

http://www.rstudio.org
http://www.rstudio.org

PACKAGE NP FAQ 17

priority to low and hit <ok>. For lengthy jobs this will make your life much smoother, and

you can, say, run multiple jobs in low priority with no sluggishness whatsoever for your other

applications (useful for queuing a number of long jobs). Alternatively, you could permanently

change the default priority of R under MS Windows by modifying the properties of your R

desktop icon.

2.19. A variable must be cast as, say, a factor in order for np to recognize this as an

unordered factor. How can I determine whether my data is already cast as a fac-

tor? Use the class() function. For example, define x <- factor(c("male","female")),

then type class(x).

2.20. When I use plot() (npplot()) existing graphics windows are overwritten.

How can I display multiple graphics plots in separate graphics windows so that

I can see results from previous runs and compare that to my new run? Use the

dev.new() command in between each call to plot(). This will leave the existing graphics

window open and start a new one. The command dev.list() will list all graphics windows,

and the command dev.set(integer.foo) will allow you to switch from one to another and

overwrite existing graphics windows should you so choose.

Alternately, you can use RStudio (http://www.rstudio.org) where the plot window is

such that previous plots can be recalled on the fly, resized, saved in various formats etc.

2.21. Sometimes plot() fails to use my variable names. . . This should not occur

unless you are using the data frame method and not naming your variables (e.g., you are

doing something like data.frame(ordered(year))). To correct this, name your variables in the

respective data frame, as in

data <- data.frame(year=ordered(year),gdp)

so that the ordered factor appears as ’year’ and not ’ordered.year’

2.22. Sometimes plot() appends my variable names with .ordered or .factor. . .

See also 2.21 above.

2.23. I specify a variable as factor() or ordered() in a data frame, then call

this when I conduct bandwidth selection. However, when I try to plot the

resulting object, it complains with the following message: Error in eval(expr,

envir, enclos) : object “variable” not found...

This arises because plot() (npplot()) tries to retrieve the variable from the environment

but you have changed the definition when you called the bandwidth selection routine (e.g.,

npregbw(y~x,data=dataframe)).

http://www.rstudio.org

18 JEFFREY S. RACINE

To correct this, simply call plot() with the argument data=dataframe where dataframe

is the name of your data frame.

2.24. My np code produces errors when I attempt to run it. . . First, it is good

practice to name all arguments (see the docs for examples) as in npregbw(formula=y~x)

(i.e., explicitly call formula for functions that use named formulas). This will help the code

return a potentially helpful error message.

Next, follow the examples listed at the end of each function help page closely (i.e., ?npreg

then scroll down to Examples:). See also 2.15 above.

2.25. I have (numeric) 0/1 dummy variable regressors in my parametric model.

Can I just pass them to the np functions as I would in a parametric setting? In

general, definitely not – you need to correctly classify each variable as type factor and treat

it as one variable only. By way of example, suppose in your data you have created dummy

variables for year, for example, dummy06 which equals 1 for 2006, 0 otherwise, dummy07

which equals 1 for 2007, 0 otherwise etc. We create these by habit for parametric models.

But, the underlying variable is simply year, which equals 2006, 2007, and so forth.

In np (and R in general), you get to economize by just telling the function that the variable

’year’ is ordered, as in ordered(year), where year is a vector containing elements 2006, 2007

etc. Of course, seasoned R users would appreciate that this is in fact the simple way to do

it with a parametric model as well.

You would never, therefore, just pass dummy variables to an np function as you would for

linear parametric models. The only exception is where you have only one 0/1 dummy for

one variable, say ’sex’, and in this case you still would have to enter this as factor(sex)

so that the np function recognizes this as a factor (otherwise it would treat it as continuous

and use a kernel function that is inappropriate for a factor).

2.26. I have a categorical variable, ignored the advice in items 2.19 and 2.25, and

R terminates with the following error.

** Fatal Error in routine kernel_bandwidth() ** variable 0 appears to be constant!

** Program terminated abnormally!

Presuming your variable is not in fact a constant (i.e., is not in fact a ’variable’), this can

only occur in the case where a variable is ’pathological’ in that it has IQR=0 but std>0 (see

the section titled ’Changes from Version 0.30-1 to 0.30-2 [19-Apr-2009]’ for further details).

This should no longer occur for np versions 0.30-2 and up.

PACKAGE NP FAQ 19

2.27. Rgui appears to crash. There must be a bug in the program. Try running

your code using the terminal (i.e., Rterm in Windows or R in a Mac OS X terminal) and see

whether you get the message in item 2.26.

2.28. Can I skip creating a bandwidth object and enter a bandwidth directly?
Certainly, though I would advise doing so for exploratory data analysis only. For example,
attach a dataset via

data(cps71)

attach(cps71)

then enter, say,

plot(age,logwage,main="Manual Bandwidth Example")

lines(age,fitted(npreg(logwage~age,bws=1)),col="blue",lty=1)

lines(age,fitted(npreg(logwage~age,bws=2)),col="red",lty=2)

lines(age,fitted(npreg(logwage~age,bws=3)),col="green",lty=3)

legend(20,15,

c("h=1","h=2","h=3"),

col=c("blue","red","green"),

lty=c(1,2,3))

to plot the local constant estimator with bandwidths of 1, 2, and 3 years. Note that the

age variable is already sorted in this dataset. If your data is not sorted you will need to do

so prior to plotting so that your lines command works properly. Or see 2.29 below for a

multivariate example.

2.29. When I estimate my gradients and there are two or more covariates and

then extract them with the gradients() function, they are not ’smooth’, though

if I plot a model with the gradients=TRUE option, they are. The gradients()

function must be broken. . . The function plot() (npplot()) plots ’partial’ means and

gradients. In other words, it plots x1 versus ĝ(x1, x̄2) for the partial mean, where x̄2 is, say,

the median/modal value of x2. It also plots x1 versus ∂ĝ(x1, x̄2)/∂x1 for the gradient. Note

that we are controlling for the values of the other covariate(s). This is in effect what people

expect when they play with linear parametric models of the form y = ´0 + ´1x1 + ´2x2 + ϵ

since, given the additive nature of the model, ∂y/∂x1 = ´1 (i.e., does not vary with x2).

The example below shows how you could manually generate the partial gradients (and

means) for your data where the sample realizations form the evaluation data for x1 (unlike

npplot() which uses an evenly spaced grid). Note we use the function uocquantile() to

generate a vector that holds x2 constant at is median/modal value (i.e., the 0.5 quantile)

20 JEFFREY S. RACINE

in the evaluation data. The function uocquantile() can compute quantiles for ordered,

unordered, and continuous data (see ?uocquantile for details).

n <- 100

x1 <- runif(n)

x2 <- runif(n)

y <- x1^2+x2^2 + rnorm(n,sd=.1)

data.train <- data.frame(x1,x2,y)

bw <- npregbw(y~x1+x2,

data=data.train,

regtype="ll",

bwmethod="cv.aic")

data.eval <- data.frame(x1 = sort(x1),

x2 = rep(uocquantile(x2,.5),n))

model <- npreg(bws=bw,

data=data.train,

newdata=data.eval,

gradients=TRUE)

plot(data.eval[,1],model$grad[,1],xlab="X1",ylab="Gradient",type="l")

Note that this uses the sorted sample realizations for x1 which is perfectly acceptable. If
you want to mimic plot() exactly you will see that by default plot uses a grid of equally
spaced values of length neval=50 as per below. Both are perfectly acceptable and the point
is they control for the level of the non-axis variables.

data.eval <- data.frame(x1 = seq(min(x1),max(x1),length=50),

x2 = rep(uocquantile(x2,.5),50))

2.30. I use plot() (npplot()) to plot, say, a density and the resulting plot looks

like an inverted density rather than a density. . . This can occur when the data-

driven bandwidth is dramatically undersmoothed. Data-driven (i.e., automatic) bandwidth

selection procedures are not guaranteed always to produce good results due to perhaps the

presence of outliers or the rounding/discretization of continuous data, among others. By

default, npplot() takes the two extremes of the data (minimum, maximum i.e., actual data

points) then creates an equally spaced grid of evaluation data (i.e., not actual data points in

general) and computes the density for these points. Since the bandwidth is extremely small,

the density estimate at these evaluation points is correctly zero, while those for the sample

PACKAGE NP FAQ 21

realizations (in this case only two, the min and max) are non-zero, hence we get two peaks

at the edges of the plot and a flat bowl equal to zero everywhere else.

This can also happen when your data is heavily discretized and you treat it as continuous.

In such cases, treating the data as ordered may result in more sensible estimates.

2.31. Can npksum() compute analytical derivatives with respect to a continuous

variable? As of version 0.20-0 and up, yes it can, using the operator = "derivative"

argument, which is put to its paces in the following code snippet (this supports multiple

arguments including "integral" and "convolution" in addition to "normal", the default).

Z <- seq(-2.23,2.23,length=100)

Zc <- seq(-4.47,4.47,length=100)

par(mfrow=c(2,2))

plot(Z,main="Kernel",ylab="K()",npksum(txdat=0,exdat=Z,bws=1,

ckertype="epanechnikov",ckerorder=2,operator="normal")$ksum,

col="blue",type="l")

plot(Z,main="Kernel Derivative",ylab="K()",npksum(txdat=0,exdat=Z,bws=1,

ckertype="epanechnikov",ckerorder=2,operator="derivative")$ksum,

col="blue",type="l")

plot(Z,main="Kernel Integral",ylab="K()",npksum(txdat=0,exdat=Z,bws=1,

ckertype="epanechnikov",ckerorder=2,operator="integral")$ksum,

col="blue",type="l")

plot(Zc,main="Kernel Convolution",ylab="K()",npksum(txdat=0,exdat=Zc,bws=1,

ckertype="epanechnikov",ckerorder=2,operator="convolution")$ksum,

col="blue",type="l")

An alternative to computing analytical derivatives is to compute them numerically using

finite-differences. One simply computes the kernel sum evaluating the sum with variable j

set at xj −hj/2 and calls this, say, ksumj1, then again set at xj +hj/2 and call this ksumj2,

then compute ∇ = (ksumj2 − ksumj1)/hj. This method has been used for both theoretical

and applied work and produces consistent estimates of the derivatives, as of course do the

analytical derivatives, providing that h → 0 as n → ∞ (which will not be the case in some

settings, i.e., in the presence of irrelevant covariates and so forth). The following example

provides a simple demonstration. See 2.29 above for multivariate partial regression when

using this method.

22 JEFFREY S. RACINE

In this example we consider the local constant estimator computed

using npksum, and then use npksum to compute numerical derivatives

using finite-difference methods, then finally compare them with the

analytical ones.

data(cps71)

attach(cps71)

Grab the cross-validated bandwidth

bw <- npregbw(logwage~age)

h <- bw$bw[1]

Evaluate the local constant regression at x-h/2, x+h/2...

ksum.1 <- npksum(txdat=age, exdat=age-h/2,tydat=logwage,bws=bw)$ksum/

npksum(txdat=age,exdat=age-h/2,bws=bw)$ksum

ksum.2 <- npksum(txdat=age, exdat=age+h/2,tydat=logwage,bws=bw)$ksum/

npksum(txdat=age,exdat=age+h/2,bws=bw)$ksum

Compute the numerical gradient...

grad.numerical <- (ksum.2-ksum.1)/h

Compare with the analytical gradient...

grad.analytical <- gradients(npreg(bws=bw,gradient=TRUE))

Plot the resulting estimates...

plot(age,grad.numerical,type="l",col="blue",lty=1,ylab="gradient")

lines(age,grad.analytical,type="l",col="red",lty=2)

legend(20,-0.05,c("Numerical","Analytic"),col=c("blue","red"),lty=c(1,2))

2.32. Can I use the npcmstest() function that implements the consistent test for

correct specification of parametric regression models as described in Hsiao, Li, &

Racine (2007) [6] to test for correct specification of the semiparametric partially

linear model? As Brennan Thompson points out, yes, you can.

PACKAGE NP FAQ 23

To test a parametric linear specification against a semiparametric partially linear alterna-

tive, i.e.,

H0 : y = X ′´ + Z ′µ + u

H1 : y = X ′´ + g(Z) + u,

you could use npcmstest() as follows:

lmodel <- lm(y~X+Z,y=TRUE,x=TRUE)

uhat <- resid(lmodel)

npcmstest(xdat=Z,ydat=uhat,model=lmodel)

A slightly better way (as discussed in Li & Wang (1998) [8]) would be to use a ’mixed’

residual, i.e., ûi = yi −X ′

i
˜́− Z ′

iµ̂ in the test, where ˜́ is the semiparametric estimator of ´

(based on the semiparametric partially linear model), and µ̂ is the OLS estimator of µ based

on the linear model. This could lead to potential power gains due to the improved efficiency

of ˆ́ under the alternative.

2.33. I am using npcmstest() on a glm() object (the document says glm() objects

are supported and I am estimating a Logit model) but it returns an error saying.

Error in eval(expr, envir, enclos) : y values must be 0 <= y <= 1.

npcmstest() supports conditional mean models with continuous outcomes (glm() objects

are supported so that models that are nonlinear in parameters can be estimated). The test

is based on residual bootstrapping to generate resamples for Y . In particular, a resample for

the residual vector (ϵ̂∗) is added to the models’ fit (i.e., Y ∗ = Ŷ + ϵ̂∗) to generate a resample

under the null. This excludes binary outcome models and the like because you would have

generated a resample for Y that no longer contains zeros and ones, hence the error message.

Note that npcmstest supports regression objects generated by lm and uses features specific

to objects of type lm hence if you attempt to pass objects of a different type the function

cannot be expected to work.

2.34. I want to plot the kernel function itself. How can I do this? Use the npksum()
function and switch the evaluation and training roles as in the following example that plots
the 2nd, 4th, 6th and 8th order Epanechnikov kernels.

Z <- seq(-sqrt(5),sqrt(5),length=100)

par(mfrow=c(2,2))

plot(Z,ylab="kernel",npksum(txdat=0,exdat=Z,bws=1,ckertype="epanechnikov",

ckerorder=2)$ksum,type="l",main="Epanechnikov [order = 2]")

plot(Z,ylab="kernel",npksum(txdat=0,exdat=Z,bws=1,ckertype="epanechnikov",

ckerorder=4)$ksum,type="l",main="Epanechnikov [order = 4]")

24 JEFFREY S. RACINE

plot(Z,ylab="kernel",npksum(txdat=0,exdat=Z,bws=1,ckertype="epanechnikov",

ckerorder=6)$ksum,type="l",main="Epanechnikov [order = 6]")

plot(Z,ylab="kernel",npksum(txdat=0,exdat=Z,bws=1,ckertype="epanechnikov",

ckerorder=8)$ksum,type="l",main="Epanechnikov [order = 8]")

2.35. In version 0.20-0 and up I can ’combine’ steps such as bandwidth selection

and estimation. But when I do summary(model) I don’t get the same summary

that I would get from, say, summary(bw) and then summary(model). How do I get

bandwidth object summaries when combining steps? Don’t worry, the bandwidth

object exists when you do the combined steps and is easily accessed via summary(model$bws)

or extracted via bw <- model$bws where model is the name of your model.

2.36. I estimated a semiparametric index model via model <- npindex(y~x1+x2)

but se(model) returns NULL. .

Perhaps you want vcov(model) instead (i.e., the asymptotic variance-covariance matrix)?

This is supported as of version 0.40-1 provided that you set gradients=TRUE as the following

snippet demonstrates:

set.seed(42)

n <- 250

x1 <- runif(n, min=-1, max=1)

x2 <- runif(n, min=-1, max=1)

y <- ifelse(x1 + x2 + rnorm(n) > 0, 1, 0)

Note that the first element of the vector beta is normalized to one

for identification purposes hence the first row and column of the

covariance matrix will contain zeros.

model <- npindex(y~x1+x2, method="kleinspady", gradients=TRUE)

vcov(model)

Z <- coef(model)[-1]/sqrt(diag(vcov(model)))[-1]

Z

Note that, alternatively, you can get robust bootstrapped standard errors for the estimated

model and gradients by adding the argument errors=TRUE to your call to npindex so that

se(model) returns the vector of standard errors for the estimated conditional mean where

model is the name of your model. Note that model$merr will contain the standard errors

returned by se(model) while model$gerr will return the matrix of standard errors for

the gradients provided you have set gradients=TRUE (furthermore, model$mean.grad and

model$mean.gerr will give the average derivative and its bootstrapped standard errors). See

PACKAGE NP FAQ 25

the documentation of npindex for further details. The following code snippet demonstrates

how one could do this for a simulated dataset.

n <- 100

x1 <- runif(n, min=-1, max=1)

x2 <- runif(n, min=-1, max=1)

y <- x1 - x2 + rnorm(n)

bw <- npindexbw(formula=y~x1+x2)

model <- npindex(bws=bw,errors=TRUE,gradients=TRUE)

se.mean <- model$merr

se.grad <- model$gerr

2.37. How do I interpret gradients from the conditional density estimator? If you

plot a conditional density f(y|x) when x is a scalar, with gradients, by default you will get

the following:

(1) A plot of ∂f(y = median|x)/∂x (admittedly not the most useful plot). (If y is discrete

the only difference is that you get a plot of ∂f(y = (unconditional) mode|x)/∂x).

(2) A plot of ∂f(y|x = median)/∂x.

If x is multivariate (for example, 2D) you get:

(1) A plot of ∂f(y = median|x1, x2 = median)/∂x1

(2) A plot of ∂f(y = median|x1, x2 = median)/∂x2

(3) A plot of ∂f(y = median|x1 = median, x2)/∂x1

(4) A plot of ∂f(y = median|x1 = median, x2)/∂x2

(5) A plot of ∂f(y|x1 = median, x2 = median)/∂x1

(6) A plot of ∂f(y|x1 = median, x2 = median)/∂x2

2.38. When I run R in batch mode via R CMD BATCH filename.R unwanted sta-

tus messages (e.g., “Multistart 1 of 10”) crowd out desired output. How can I

turn off these unwanted status messages? After loading the np library add the line

options(np.messages=FALSE) and all such messages will be disabled.

2.39. I am getting an ’unable to allocate...’ message after repeatedly interrupting

large jobs. Repeated interruption of large jobs can reduce available memory under R. This

occurs because memory is allocated dynamically, and memory that has been allocated is not

freed when you interrupt the job (the routine will clean up after itself only if it is allowed to

complete all computations - when you interrupt you never reach the point in the code where

26 JEFFREY S. RACINE

the memory is freed). If this becomes an issue simply restart R (i.e., exit then run a fresh R

session).

2.40. I have a large number of variables, and when using the formula interface

I get an error message stating ’invoked with improper formula’. I have double

checked and everything looks fine. Furthermore, it works fine with the data

frame interface. The issue is that converting formulas into character strings in R appears

to be limited to 500 characters. We are not aware of a simple workaround so we simply

advise that you use the data frame interface when this occurs.

2.41. How can I estimate additive semiparametric models? Generalized additive

semiparametric models (see Hastie and Tibshirani (1990) [4]) are implemented in the gam

package (though they do not support categorical variables). The gam package function

gam() (the mgcv package also contains a similar function by the same name) uses iter-

atively reweighted least squares and either smoothing splines (s(·)) or local polynomial

regression fitting (’loess’, lo(·), with default manual ’span’ of 0.75, the parameter which

controls the degree of smoothing). The following code snippet demonstrates the capabilities

of the gam() function via the wage1 dataset included in the np packages using three numeric

regressors.

library(gam)

data(wage1)

attach(wage1)

model.gam <- gam(lwage~s(educ)+s(exper)+s(tenure))

par(mfrow=c(2,2))

plot(model.gam,se=T)

detach(wage1)

The mgcv package also has an implementation of generalized additive models via the

identical function name, gam(). The biggest difference is that this uses generalized cross

validation to select the ’span’ (rather than manually) hence the degree of smoothing becomes

part of the method (as is the case for all functions in the np package). The following code

snippet demonstrates the mgcv implementation of the gam() function.

library(mgcv)

data(wage1)

attach(wage1)

model.gam <- gam(lwage~s(educ)+s(exper)+s(tenure))

par(mfrow=c(2,2))

PACKAGE NP FAQ 27

plot(model.gam,se=T)

detach(wage1)

2.42. I am using npRmpi and am getting an error message involving dlopen(). One

of the most common problems experienced by users attempting to install and run MPI-aware

programs is to first correctly identify the location of libraries and headers for the local MPI

installation so that installation can proceed.

By way of illustration, the following environment variables need to be set for the MacPorts

version of OpenMPI (www.macports.org) running on Mac OS X 10.8.3 (the environment

commands listed below are for those using the ’bash’ shell):

export LD_LIBRARY_PATH=/opt/local/lib

export RMPI_LIB_PATH=/opt/local/lib

export RMPI_TYPE=OPENMPI

export RMPI_INCLUDE=/opt/local/include/openmpi

launchctl setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH

launchctl setenv RMPI_LIB_PATH $RMPI_LIB_PATH

launchctl setenv RMPI_TYPE $RMPI_TYPE

launchctl setenv RMPI_INCLUDE $RMPI_INCLUDE

Once set, R (and optionally RStudio) ought to function as expected. However, problems

encountered during this phase are best resolved by someone with familiarity of the local

installation.

2.43. I am using the npRmpi package but when I launch one of the demo parallel

jobs I get the error Error: could not find function “mpi.bcast.cmd”. When your

demo program stops at the following point in your file

> mpi.bcast.cmd(np.mpi.initialize(),

+ caller.execute=TRUE)

Error: could not find function "mpi.bcast.cmd"

this likely means that either you have failed to place the .Rprofile file in the current or root

directory as directed, or the .Rprofile initialization code is not being loaded as expected.

(1) Make sure a copy of the initialization file Rprofile exists in your working or root

directory and is named .Rprofile

(2) Make sure you did not run R with either the –no-init-file or –vanilla option (this

combines a number of options including –no-init-file which will disable reading

of .Rprofile)

28 JEFFREY S. RACINE

2.44. I have estimated a partially linear model and want to extract the gradi-

ent/fitted values of the nonparametric component. People use partially linear models

because they focus on the parametric component and treat the nonparametric component

as a nuisance. In fact, the partially linear model is estimated by carefully getting rid of the

nonparametric component g(Z) prior to estimation, and then estimating a set of conditional

moments nonparametrically.

However, suppose after getting rid of this nonparametric nuisance component we then

wished to construct a consistent estimator of g(Z), the nonparametric component for a

partially linear model y = X´ + g(Z) + u. We might proceed as follows.

library(np)

set.seed(42)

n <- 250

x1 <- rnorm(n)

x2 <- rbinom(n, 1, .5)

z1 <- rbinom(n, 1, .5)

z2 <- rnorm(n)

y <- 1 + x1 + x2 + z1 + sin(z2) + rnorm(n)

First, construct the partially linear model using local linear

regression.

model <- npplreg(y~x1+factor(x2)|factor(z1)+z2,regtype="ll")

Next, subtract the fitted parametric component from y so that we

have y-xbetahat. Since we can have factors we need to create the

'model matrix' but make sure we don't keep the intercept generated

by model.matrix hence the [,-1]. This gives us the numeric matrix X

which we multiply by the coefficient vector to obtain xbetahat which

we can subtract from y.

y.sub <- y-model.matrix(~x1+factor(x2))[,-1]%*%coef(model)

PACKAGE NP FAQ 29

Finally, regress this on the nonparametric components Z using npreg.

model.sub <- npreg(y.sub~factor(z1)+z2,regtype="ll",gradients=TRUE)

Now we can obtain derivatives etc. However, note that this is the

model containing the transformed y with respect to the nonparametric

components. We can use gradients(model.sub) etc. or plot them and

so forth.

plot(model.sub,gradients=TRUE)

2.45. The R function ’lag()’ does not work as I expect it to. How can I create

the lth lag of a numeric variable in R to be fed to functions in the np package?

As of version 0.60-2, time series objects are supported. However, if you prefer you can use

the function ts.intersect, which can exploit R’s lag function but return a suitable data

frame, as per the following illustration:

data(lynx)

loglynx <- log(lynx)

lynxdata <- ts.intersect(loglynx,

loglynxlag1=lag(loglynx,-1),

dframe=TRUE)

model <- npregbw(loglynx~loglynxlag1,

data=lynxdata)

plot(model)

Note that in order for the above to work, the common argument fed to ts.intersect must

be a ts object, so first cast it as such if it is not already (log(lynx) is a ts object since

lynx was itself a ts object).

Or, you can use the embed function to accomplish this task. Here is a simple function that

might work more along the lines that you expect. By default we ’pad’ the vector with NAs

but you can switch this to FALSE if you prefer. The function will return a vector of the same

length as the original vector with NA’s padded for the missing values.

lag.numeric <- function(x,l=1,pad.NA=TRUE) {

if(!is.numeric(x)) stop("x must be numeric")

if(l < 1) stop("l (lag) must be a positive integer")

30 JEFFREY S. RACINE

if(pad.NA) x <- c(rep(NA,l),x)

return(embed(x,l+1)[,l+1])

}

x <- 1:10

x.lag.1 <- lag.numeric(x,1)

2.46. Can I provide sample weights to be used by functions in the np package?

Unfortunately, at this stage the answer is ’no’, at least not directly with many of the functions

as they stand. However, the function npksum underlies many of the functions in the np

package and it supports passing of weights, so you may be able to use this function and do

a bit of coding to fulfill your needs. Kindly see ?npksum for illustrations.

Alternatively, if reweighting of sample data is sufficient for your needs then you can feed

the weighted sample realizations directly to existing functions.

2.47. Quantile regression is slow, particularly for very small/large values of tau.

Can this be sped up? Yes, indeed this can be the case for extreme values of tau (and not

so extreme values as well). The reason for this is because numerical methods are used to

invert the CDF. This must be done for each predictor observation requiring the solution to

n (or neval) optimization problems. An alternative is to compute the ’pseudo-inverse’ via a

’lookup method’. In essence, one computes the conditional CDF for a range of y values, and

then computes the pseudo-inverse which is defined as

qτ (x) = inf{y : F (y|x) g Ä}

= sup{y : F (y|x) f Ä}

The following code demonstrates this approach for the example used in the help file for

npqreg (see ?npqreg).

data("Italy")

attach(Italy)

bw <- npcdensbw(gdp~year)

Set a grid of values for which the conditional CDF will be computed

with a range that extends well beyond the range of the data

n.eval <- 1000

gdp.er <- extendrange(gdp,f=2)

PACKAGE NP FAQ 31

gdp.q <- quantile(gdp,seq(0,1,length=n.eval))

gdp.eval <- sort(c(seq(gdp.er[1],gdp.er[2],length=n.eval),gdp.q))

n.q <- length(gdp.eval)

We only need to compute the conditional quantiles for each unique

value of year

year.unique <- unique(year)

Consider a range of values for tau

tau.seq <- c(0.01,0.05,0.25,0.5,0.75,0.95,0.99)

gdp.tau <- matrix(NA,length(year.unique),length(tau.seq))

for(j in 1:length(tau.seq)) {

cat("\r",j,"of",length(tau.seq))

tau <- tau.seq[j]

for(i in 1:length(year.unique)) {

F <- fitted(npcdist(bws=c(bwybw,bwxbw),

txdat = year,

tydat = gdp,

exdat = rep(year.unique[i],n.q),

eydat = gdp.eval))

For each realization of the predictor, compute the

the pseudo-inverse

gdp.tau[i,j] <- ifelse(tau>=0.5, max(gdp.eval[F<=tau]),

min(gdp.eval[F>=tau]))

}

}

Plot the results

plot(year,gdp,ylim=c(min(gdp.tau,gdp),max(gdp.tau,gdp)))

for(j in 1:length(tau.seq)) {

lines(year.unique,gdp.tau[,j],col=j+1,lty=j,lwd=2)

32 JEFFREY S. RACINE

}

legend(min(year),max(gdp.tau,gdp),

paste("tau=",tau.seq),

col=1:length(tau.seq)+1,

lty=1:length(tau.seq),

lwd=2)

2.48. How can I generate resamples from the unknown distribution of a set of data

based on my smooth kernel density estimate? This can be accomplished by picking a

sample realization, uniformly at random, then drawing from the kernel distribution centered

on that training point with scale equal to the bandwidth. Below is a demonstration for the

’Old Faithful’ data where we draw a random sample of size n = 1, 000 where a Gaussian

kernel was used for the density estimator.

data(faithful)

n <- nrow(faithful)

x1 <- faithful$eruptions

x2 <- faithful$waiting

First compute the bandwidth vector

bw <- npudensbw(~x1+x2,ckertype="gaussian")

Next generate draws from the kernel density (Gaussian)

n.boot <- 1000

i.boot <- sample(1:n,n.boot,replace=TRUE)

x1.boot <- rnorm(n.boot,x1[i.boot],bw$bw[1])

x2.boot <- rnorm(n.boot,x2[i.boot],bw$bw[2])

Plot the density for the bootstrap sample using the original

bandwidths

plot(npudens(~x1.boot+x2.boot,bws=bw$bw),view="fixed",xtrim=-.2,neval=100)

PACKAGE NP FAQ 33

2.49. Some of my variables are measured with an unusually large number of

digits. . . should I rescale? In general there should be no need to rescale data for one’s

statistical analysis. However, occasionally one can encounter issues with numerical accuracy

(e.g. numerical ’overflow’) regardless of the method used. It is therefore prudent to be

aware of this issue. For instance, if your dependent variable represents housing prices in

a particular currency and entries are recorded as e.g. 145,000,000,000,000,000,000 foounits,

then it might be prudent to deflate this variable by 1020 (i.e. 1.45) so that e.g. sums of

squares are numerically stable (say when using least squares cross-validation). Of course you

can run your analysis with and without the adjustment and see whether it matters or not.

But it is sometimes surprising that such things can in fact make a difference. See ?scale

for a function whose default method centers and/or scales the columns of a numeric matrix.

2.50. The local linear gradient estimates appear to be somewhat ’off’ in that they

do not correspond to the first derivative of the estimated regression function.

It is perhaps not a widely known fact that the local linear partial derivatives obtained

from the coefficients of the Taylor approximation, b̂(x), are not the analytical derivative of

the estimated regression ĝ(x) with respect to x. The local linear estimator is obtained by

minimizing the following weighted least squares function (consider the one-predictor case to

fix ideas)
�

i

(Yi − a− b(x−Xi))
2K

�

x−Xi

h

�

and the estimated regression function ĝ(x) is given by

ĝ(x) = â

while the gradient is given by
ˆ́(x) = b̂.

But the analytical gradient (i.e. the partial derivative of ĝ(x) = â with respect to x) is not

b̂ unless the bandwidth is very large (i.e. h = ∞) in which case K((x−Xi)/h) = K(0) and

one gets the standard linear least squares estimates for ĝ(x) and ˆ́(x) (if you compute the

partial algebraically you will see they are not the same).

So, the derivative estimates arising directly from the local linear estimator will differ from

the analytical derivatives, even though they are asymptotically equivalent under standard

conditions required for consistency. Thus, if economic constraints are imposed on the direct

derivatives, this may produce an estimated surface which is not consistent with the con-

straints. This can be avoided by imposing the constraints on the analytical derivatives of

the local polynomial estimator being used.

34 JEFFREY S. RACINE

2.51. How can I turn off all console I/O?. To disable all console I/O, set

options(np.messages=FALSE) and wrap the function call in suppressWarnings() to dis-

able any warnings printed to the console. For instance

library(np)

options(np.messages=FALSE)

set.seed(42)

n <- 100

x <- sort(rnorm(n))

z <- factor(rbinom(n,1,.5))

y <- x^3 + rnorm(n)

model.np <- suppressWarnings(npreg(y~x+z))

ought to produce no console I/O whatsoever in the call to npreg.

2.52. Is there a way to exploit the sparse nature of the design matrix when all

predictors are categorical and reduce computation time, particularly for cross-

validation? Certainly. This would occur if, for instance, you had 4 predictors each of which

was binary 0/1, so there are only 24 = 16 possible unique rows in the design matrix. The

following conducts kernel regression with exclusively binary predictors by way of illustration.

This routine exploits a sparse design matrix when computing the

kernel estimator of a conditional mean presuming unordered

categorical predictors. Numerical optimization is undertaken, and

this function can be much faster than that ignoring the sparse

structure for large n and small k (the function npreg() currently

does not attempt to exploit this structure).

rm(list=ls())

Set the number of observations and number of binary predictors

n <- 1000

k <- 4

Create data/DGP

z <- matrix(rbinom(n*k,1,.5),n,k)

PACKAGE NP FAQ 35

y <- rowSums(z) + rnorm(n)

Fire up uniquecombs() on a matrix of discrete support predictors.

We call the crs() variant of uniquecombs (the function is taken

from mgcv(), but mgcv() has serious load time overhead, and I don't

want to rely on other packages unnecessarily).

z.unique <- crs:::uniquecombs(as.matrix(z))

num.z <- ncol(z.unique)

ind <- attr(z.unique,"index")

ind.vals <- unique(ind)

c <- nrow(z.unique)

if(c == n) stop("design is not sparse (no repeated rows)")

Kernel function (li-racine unordered kernel)

kernel <- function(X,x,lambda) ifelse(X==x,1,lambda)

Least-squares cross-validation objective function

cv.ls.uniquecombs <- function(lambda,y,z,z.unique,ind,ind.vals,num.z,c) {

g <- numeric()

for(i in 1:c) {

zz <- ind == ind.vals[i]

L <- apply(sapply(1:num.z, function(j){kernel(z[,j],

z.unique[ind.vals[i],j],

lambda[j])}),1,prod)

g[zz] <- (sum(y*L)-(y*L)[zz])/np:::NZD(sum(L)-L[zz])

}

return(mean((y-g)^2))

}

Start timing for comparison with npreg()

ptm <- proc.time()

36 JEFFREY S. RACINE

Numerical optimization via optim() - could be faster if we also

used fn.gradient (not done here)

optim.out <- optim(runif(num.z),

fn=cv.ls.uniquecombs,

method="L-BFGS-B",

lower=rep(0,num.z),

upper=rep(1,num.z),

y=y,

z=z,

z.unique=z.unique,

ind=ind,

ind.vals=ind.vals,

num.z=num.z,

c=c)

Extract least-squares cross-validation optimal bandwidths

lambda.opt <- optim.out$par

Compute the estimator using the optimal bandwidths

g <- numeric()

for(i in 1:c) {

zz <- ind == ind.vals[i]

L <- apply(sapply(1:num.z, function(j){kernel(z[,j],

z.unique[ind.vals[i],j],

lambda.opt[j])}),1,prod)

g[zz] <- sum(y*L)/np:::NZD(sum(L))

}

Save execution time for optimization and estimation

t.uniquecombs <- proc.time() - ptm

PACKAGE NP FAQ 37

Compare timing and results with npreg() (comment out the following

for general use)

library(np)

g.Formula <- "y ~"

for (p in 1:k) {

g.Formula <- paste(g.Formula," + factor(z[,",p,"])")

}

g.Formula <- formula(g.Formula)

t.npreg <- system.time(g.npreg <- npreg(g.Formula,

ukertype="liracine",

nmulti=1))

Compare fitted values for first 10 observations

cbind(g[1:10],fitted(g.npreg)[1:10])

Compare bandwidths

cbind(lambda.opt,g.npregbwsbw)

Compare objective function values

cbind(optim.out$value,g.npreg$bws$fval)

Compare computation time in seconds

cbind(t.uniquecombs[1],t.npreg[1])

2.53. I want to bootstrap the standard errors for the coefficients in a varying

coefficient specification. Is there a simple way to accomplish this? The code below

presents one way to accomplish this. For this example the model is

Yi = ³(Zi) +Xi´(Zi) + ϵi,

38 JEFFREY S. RACINE

where Xi is experience and Zi is tenure. The estimated slope vector ´(Zi) is therefore a

function of tenure. We bootstrap its standard error and then plot the resulting estimate and

95% asymptotic confidence bounds.

library(np)

data(wage1)

Fit the model

model <- with(wage1,npscoef(tydat=lwage,

txdat=exper,

tzdat=tenure,

betas=TRUE))

beta2 <- coef(model)[,2]

Bootstrap the standard error for the slope coefficient (there

will be two coefficient vectors, the intercept and slope

for exper, which vary with tenure)

B <- 100

coef.mat <- matrix(NA,nrow(wage1),B)

for(b in 1:B) {

Bootstrap the training data, evaluate on the original

sample realizations, hold the bandwidth constant at

that for the original model/training data

wage1.boot <- wage1[sample(1:nrow(wage1),replace=TRUE),]

model.boot <- with(wage1.boot,npscoef(tydat=lwage,

txdat=exper,

tzdat=tenure,

exdat=wage1$exper,

ezdat=wage1$tenure,

betas=TRUE,

bws=model$bw))

coef.mat[,b] <- coef(model.boot)[,2]

}

se.beta2 <- apply(coef.mat,1,sd)

ci.l <- beta2-1.96*se.beta2

ci.u <- beta2+1.96*se.beta2

PACKAGE NP FAQ 39

ylim <- range(c(beta2,ci.l,ci.u))

with(wage1,plot(tenure,beta2,ylim=ylim))

with(wage1,points(tenure,ci.l,col=2))

with(wage1,points(tenure,ci.u,col=2))

legend("topleft",c("beta2","ci.l","ci.u"),col=c(1,2,2),pch=c(1,1,1),bty="n")

References

[1] Francisco Cribari-Neto and Spyros G Zarkos. R: Yet another econometric programming en-

vironment. Journal of Applied Econometrics, 14(3):319–29, May-June 1999. Available at

http://ideas.repec.org/a/jae/japmet/v14y1999i3p319-29.html.

[2] Yves Croissant. Ecdat: Data sets for econometrics, 2011. R package version 0.1-6.1.

[3] Grant V. Farnsworth. Econometrics in R. Technical report, October 2008. Available at http://cran.r-

project.org/doc/contrib/Farnsworth-EconometricsInR.pdf.

[4] T. Hastie and R. Tibshirani. Generalized additive models. Chapman and Hall, London, 1990.

[5] Tristen Hayfield and Jeffrey S. Racine. Nonparametric econometrics: The np package. Journal of Sta-

tistical Software, 27(5), 2008.

[6] C. Hsiao, Q. Li, and J. Racine. A consistent model specification test with mixed categorical and con-

tinuous data. Journal of Econometrics, 140:802–826, 2007.

[7] Christian Kleiber and Achim Zeileis. Applied Econometrics with R. Springer-Verlag, New York, 2008.

ISBN 978-0-387-77316-2.

[8] Q. Li and S. Wang. A simple consistent bootstrap test for a parametric regression functional form.

Journal of Econometrics, 87:145–165, 1998.

[9] J. S. Racine. An efficient cross–validation algorithm for window width selection for nonparametric kernel

regression. Communications in Statistics, 22(4):1107–1114, October 1993.

[10] J. S. Racine. Nonparametric econometrics: A primer. Foundations and Trends in Econometrics, 3(1):1–

88, 2008.

[11] J. S. Racine and R. Hyndman. Using R to teach econometrics. Journal of Applied Econometrics,

17(2):175–189, 2002.

[12] Hao Yu. Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface), 2001. R package version 0.5-8.

40 JEFFREY S. RACINE

Changes from Version 0.60-13 to 0.60-14 [22-Aug-2022]

• Added logspline and ks to DESCRIPTION to address NOTE on some system builds

stating Undeclared packages logspline, ks in Rd xrefs

• Zhenghua Nie kindly addressed the clang-UBSAN issue in jksum.c causing runtime

error: applying non-zero offset 8 to null pointer

Changes from Version 0.60-12 to 0.60-13 [15-Aug-2022]

• Minor changes to np.Rnw vignette viz Sweave options and class (redundancies com-

mented out)

• Fixed issues relating to new NOTE “Found if() conditions comparing class() to string

[..] Use inherits() (or maybe is()) instead.” Addressed by using isa()

Changes from Version 0.60-11 to 0.60-12 [12-Aug-2022]

• JSS issues corrected in vignette/*.bib and inst/CITATION (use of DOI, etc., thanks

to Achim Zeileis)

• Issues with utf8x in entropy_np.Rnw and np.Rnw corrected (utf8x changed to utf8,

etc.)

Changes from Version 0.60-10 to 0.60-11 [04-Jun-2021]

• npuniden.boundary() uses empirical support for a and b (previously was [0,1],

now [min(X),max(X)])

• Corrected potential issue with malloc failing on null vector in C function

sort_unique() detected by development version of gcc11 (thanks to Professor Brian

Ripley for pointing this out and for his assistance)

• Corrected outdated URLs

Changes from Version 0.60-9 to 0.60-10 [5-Feb-2020]

• Corrected issue Documented arguments not in usage in documentation object

se: ...

• Removal of directed quotes in some Rd documents, replacement with \sQuote{}

• Fixed issue causing rebuilding of vignettes to crash (uocquantile() was the culprit)

PACKAGE NP FAQ 41

Changes from Version 0.60-8 to 0.60-9 [24-Oct-2018]

• Added support for character expansion to npplot() (which is invoked by calling

plot() on an np object) - will take defaults from the environment par() or can be

set directly, e.g., plot(foo,cex.main=0.8)

Changes from Version 0.60-7 to 0.60-8 [04-Jun-2018]

• Used patch suggested by Scott Thompson for issue https://github.com/JeffreyRacine/R-

Package-np/issues/8 regarding npcdens()/npcdist() and formulas

Changes from Version 0.60-6 to 0.60-7 [01-May-2018]

• Fix for switch() and zero length character strings that affected summary output for

certain tests

• Added function for shape constrained bounded univariate PDF and CDF estimation

(npuniden.sc())

• Added option for renormalizing improper bounded density estimates than can

arise from the use of asymmetric negative edge kernel functions (proper=TRUE,

npuniden.boundary())

• Fixed issues with CDF estimation in the presence of large bandwidths for bounded

density estimates (npuniden.boundary())

Changes from Version 0.60-5 to 0.60-6 [12-Jan-2018]

• Added more edge kernel functions for npuniden.boundary(), some glitches addressed

• Added asymptotic standard errors and integrated density (CDF) to npuniden.boundary()

and npuniden.reflect() plus additional examples

• Added least squares cross-validation to npuniden.boundary() (default for boundary

kernel functions)

Changes from Version 0.60-4 to 0.60-5 [04-Jan-2018]

• Added two basic functions for univariate bounded kernel density estimation,

npuniden.boundary and npuniden.reflect

• More plotting routines accept more passable parameters

Changes from Version 0.60-3 to 0.60-4 [03-Dec-2017]

• Default plot.errors.style changed to "band"

42 JEFFREY S. RACINE

• Using wrapLines(strwrap(...)) for summary output for model specification test

to automatically wrap long formula lines

• plot() calls npplot() and npplot() behaves better when most passable parameters

are fed (col =, lty =, xlab =, etc.) but there may still be room for improvement

• Added option plot.par.mfrow=TRUE/FALSE to npplot() so that the automated set-

ting of par(mfrow=c(,)) in plot is disabled and the user can do this manually if

desired

• Option plot.par.mfrow=TRUE/FALSE can be overridden by setting options(plot.par.mfrow=TRUE/FALSE)

Changes from Version 0.60-2 to 0.60-3 [29-Apr-2017]

• Fixed the ’cannot find function is()’ glitch that just surfaced with R 3.4.0

• Fixed glitch in npconmode() when randomizing if all probabilities are equal

• Migrated some code from crs (which I wrote) to avoid crs:::

• Fixed outstanding glitch in npscoef() with tydat

• Option leave.one.out not properly implemented in npscoef(), corrected

• Using pmin/pmax in NZD (parallel min/max more efficient with vectors)

• Improved screen i/o when smooth.residuals=TRUE/FALSE

• Corrected glitch in npregiv() where multivariate z would halt with error

• npregiv() with method="Landweber-Fridman" no longer passes back lists

• Fixed glitch in Kmat.lp with p=0 and derivatives

• Tikhonov regularization in npregiv() now supports evaluation data

• Updated npregiv() (was sorely lacking, did not support eval etc.)

• Use of .onLoad suggested (by Bernd Bischl)

• Added vignette("entropy_np",package="np") to startup message

• In np.distribution.bw.R default for do.full.integral changed to FALSE

• Fixed the CDF objective function when averaging over the training data

• Fixed crash error with npcdistbw() and adaptive bandwidths

Changes from Version 0.60-1 to 0.60-2 [27-Jun-2014]

• added timeseries support for all relevant objects (i.e. for a ts() vector data object

x, npreg(x~lag(x,-1)+lag(x,-2)) is now supported)

• added total time to summary for bandwidth objects

• npqreg() no longer accepts gradients=TRUE when gradients are in fact not sup-

ported

PACKAGE NP FAQ 43

• npqreg() fails with an informative message when passed a conditional density band-

width object

Changes from Version 0.60-0 to 0.60-1 [6-Jun-2014]

• Fixed glitch in adaptive_nn/generalized_nn bandwidths that affected all routines

that rely on non-fixed bandwidths

• Tweaks to search for adaptive_nn/generalized_nn initial search values

• Fixed glitch in local linear estimation with adaptive_nn bandwidths

Changes from Version 0.50-1 to 0.60-0 [1-Jun-2014]

• Ordered kernel types now default to liracine/liracine (normalized) for condi-

tional/unconditional objects, respectively (the previous default, i.e. the Wang van

Ryzin kernel, is poorly behaved when smoothing out of ordered predictors is appro-

priate)

• Added analytical ordered CDF kernels, resulting in significant speedups for cross

validation with ordered variables

• Added analytical ordered convolution kernels, resulting in significant speedups for

least-squares cross validation with ordered variables

• The entire C backend has been rewritten and improved in almost every regard

• The Rmpi backend has been updated to Rmpi version 0.6-5

• Glitch in adaptive convolution kernels corrected

• Added truncated gaussian kernel (see ntpgauss() for modifying the truncation ra-

dius)

• Support for trees complete (use options(np.tree=TRUE)) which when used in con-

junction with bounded kernels (i.e. "epanechnikov"/"truncated gaussian") can

reduce the computational burden for certain problems

• Optimizers that make use of Powell’s direction set method now accept additional

arguments that can be used to potentially improve default settings

• Default search settings for optimizers that make use of Powell’s direction set method

should better scale to the range of variables

• Added mean absolute deviation/1.4826 to mix of robust scale elements

• Corrected error in order of conditional density/distribution manual bandwidths

pointed out by Decet Romain

• Figure in vignette not displaying properly, needed png=TRUE reported by Christophe

Bontemps

44 JEFFREY S. RACINE

• Using chol2inv/chol rather than solve throughout R routines that rely on inversion

• Fixed glitch in npindexbw() to stop maxit from blowing up every time convergence

fails

• Fixed issue with summary reporting incorrect value of objective function in certain

bandwidth objects

• When nmulti > 1, the full multi-starting search history is now returned in a vector

named fval.history

• Added na.action for consistency with other R functions such as lm()

• New function npquantile() that returns smooth univariate quantiles

• npksum() explicitly only uses raw bandwidths now (and will emit an error if passed

numeric scale factors, bandwidth objects are still OK)

• Fixed regression in npindex() with bootstrapped standard errors

• Code makes use of one call to npksum() in npindex() and npscoef() where possible

rather than two separate calls

• Updated npsigtest() for addition of power and added joint test to the mix

• Changed ceiling() to max(1,round()) in b.star() per Dimitris Politis’s sugges-

tion

• Reworked the interface for npcopula() to avoid two bandwidths and density=TRUE

but exploiting passing of either npudistbw() (copula) or npudensbw (copula density)

Changes from Version 0.40-13 to 0.50-1 [13-Mar-2013]

• The functions npudist() and npudistbw() are now uncoupled from npudens() and

npudensbw() (previously they relied on unconditional PDF bandwidths due to the

lack of a multivariate mixed-data method for selecting bandwidths for CDFs - now

with Li & Racine (2013) we have a robust method hence the split)

• The use of cdf=TRUE is deprecated for npudens() and npudensbw() objects due to

the uncoupling described above

• Fixed glitch in gradient standard errors in npindex() where identical standard

errors were output in model$gerr

• Fixed glitch in covariance matrix in npindex() ("ichimura") where covariance ma-

trix was not symmetric

• Fixed glitch in npksum where use of bwtype="adaptive_nn" and operator="integral"

produced the survivor function rather than the cumulative distribution function

• Cleaned up internals for npcmstest()

• Using .onUnload rather than .Last.lib in zzz.R

PACKAGE NP FAQ 45

• Fixed glitch in npreg() summary where ’Residual standard error’ was reporting

residual variance

• npksum() functionality extended

– npksum() can now return the matrix of kernel weights (which can be useful for

constrained estimation, by way of illustration, or constructing novel kernel-based

procedures without the need to write extensive code)

– npksum() can now accept different operators on a product kernel, for example,

npksum(txdat=data.frame(x1,x2),operator=c("derivative","normal"),bws=c(1,1))

will use the derivative kernel for x1 (i.e. the derivative of the gaussian kernel)

and the default kernel for x2 (i.e. a standard kernel such as the gaussian) thereby

allowing the user to program a number of estimators such as conditional CDFs

etc. that were previously not available via npksum()

• Fixed glitch with variable scope where certain objects could not be found in the

environment

• Added function npcopula() for d-dimensional copula estimation via inversion

• Modified stopping rules in npregiv() and npregivderiv()

• Added reference to R2 measure (Doksum and Samarov (1995))

• Startup message points to the faq, faq is now a vignette

Changes from Version 0.40-12 to 0.40-13 [05-Mar-2012]

• Added new function npregivderiv() that implements the IV derivative method of

Florens and Racine (2012)

• Added more passable parameters to npregiv() (multistarting, parameters passed to

optim() for cross-validation)

• Changes to code to improve compliance with R ’Writing portable packages’ guidelines

and correct partial argument matches

Changes from Version 0.40-11 to 0.40-12 [24-Nov-2011]

• Added option (user request) to hold the bandwidth fixed but optimize the parameters

in the single index model

Changes from Version 0.40-10 to 0.40-11 [24-Oct-2011]

• Corrected code regression in single index errors introduced inadvertently in 0.40-10

46 JEFFREY S. RACINE

Changes from Version 0.40-9 to 0.40-10 [24-Oct-2011]

• Modified Silverman’s adaptive measure of spread to reflect changes in sd() (sd on

matrix deprecated)

Changes from Version 0.40-8 to 0.40-9 [30-July-2011]

• Renamed COPYING file to COPYRIGHTS

Changes from Version 0.40-7 to 0.40-8 [29-July-2011]

• Fixed issue where calling npplot resets system seed

• Updated examples in docs so that plot is recommended throughout (and not npplot

that is invoked by plot)

• Fixed regression in npindex when gradients=TRUE and errors=TRUE

• Function npindex/npindexbw now accepts additional arguments and implements this

properly (i.e. proper implementation by Tristen of Version 0.30-8/0.30-9 change for

npindex)

• Function npplreg now supports factors in the parametric part just like lm() does

Changes from Version 0.40-6 to 0.40-7 [8-Jun-2011]

• Function npregiv now supports exogenous X and multivariate Z and W .

• demo(npregiv) provides a useful illustration.

Changes from Version 0.40-5 to 0.40-6 [1-Jun-2011]

• Added a new function npregiv that conducts nonparametric instrumental regression

a la Darolles, Fan, Florens and Renault (2011, Econometrica) and Horowitz (2011,

Econometrica). Note that this function currently returns the fitted φ(z) (i.e. lacks

much functionality relative to other np functions) and is in ’beta status’ until further

notice.

• Added a new dataset Engel95 that allows one to estimate Engel curves using the

new nonparametric instrumental regression function npregiv.

Changes from Version 0.40-4 to 0.40-5 [26-Apr-2011]

• Fixed issue with npindexbw where, for certain problems, starting values needed re-

finement otherwise convergence would fail (we now use an improved normalization

for the starting values)

PACKAGE NP FAQ 47

Changes from Version 0.40-3 to 0.40-4 [21-Jan-2011]

• Fixed issue with ckertype and ckerorder not being propagated in np.singleindex.bw.R

• Fixed issue with negative penalties being returned by bwmethod="cv.aic" in

npregbw (ought to have been +infinity)

• Error being thrown by system(..., intern=TRUE) when mpi.quit() is called,

changed to FALSE (change to system() behaviour detailed in R CHANGELOG

2.12.0)

Changes from Version 0.40-1 to 0.40-3 [23-Jul-2010]

• Added random seed (defaults to 42) to npscoefbw to ensure consistent values for

optimization for successive invocations on the same data

• Fixed glitch in multistarting in npscoefbw whereby multistarting was not working

(always returned last computed function value and not the minimum)

• Fixed issue for npRmpi where the C code underlying regression cross-validation (code

in jksum.c) differs between np and npRmpi (both are correct with the latter being

a tad slower)

• Fixed a scope issue whereby a user would write a function that calls an np/npRmpi

command, however, objects passed to the user’s function and called by the np/npRmpi

command (i.e. such as newdata) cannot be found in the environment yet they exist

outside of the function

• Fixed issue with bwscaling=TRUE and bwmethod="cv.aic" in npreg

Changes from Version 0.40-0 to 0.40-1 [4-Jun-2010]

• Added asymptotic standard errors to npindex for the Klein and Spady and Ichimura

parameter estimates which, when gradients=TRUE, can be extracted via vcov(foo)

where foo is a npsingleindex object (the Z-scores can be obtained via Z <-

coef(foo)[-1]/sqrt(diag(vcov(foo)))[-1])

Changes from Version 0.30-9 to 0.40-0 [25-May-2010]

• Modified codebase to enable dynamic spawning for interactive sessions in npRmpi

• Interactive examples supported in npRmpi

Changes from Version 0.30-8 to 0.30-9 [17-May-2010]

• Fixed issue where ukertype and okertype were being ignored by npscoef

48 JEFFREY S. RACINE

• Fixed code regression (dating to version 0.30-4) where random.seed=42 was not ini-

tialized in functions npcmstest, npdeneqtest, npindexbw, npsdeptest, npqcmstest,

npsigtest, npsymtest, npunitest, and npplot

• Fixed issue with saving and restoring random seed in npdeptest

• Changes to codebase to modify method used to prevent division by zero

• New vignette for the npRmpi package (vignette("npRmpi",package="npRmpi"))

Changes from Version 0.30-7 to 0.30-8 [20-Apr-2010]

• Implemented moment version of metric entropy in npsymtest and npunitest with

warnings about their use documented carefully and exceptions trapped and warnings

issuing when detected

• Cleaned up print/summary output formatting of some functions

Changes from Version 0.30-6 to 0.30-7 [15-Feb-2010]

• Added function npunitest for entropy-based testing of equality of univariate densi-

ties as described in Maasoumi and Racine (2002)

• Updated vignette to reflect new functions from 0.30-4 upwards (Table 1: np functions)

Changes from Version 0.30-5 to 0.30-6 [3-Feb-2010]

• Added function npsdeptest for entropy-based testing of nonlinear serial dependence

described in Granger, Maasoumi and Racine (2004)

• Added function npdeptest for entropy-based testing of nonlinear pairwise depen-

dence described in Maasoumi and Racine (2002)

• Added more bootstrap options to npsymtest (now both iid and time-series boot-

strapping are supported)

• Cleaned up summary formatting in the vignette by adding \usepackage[utf8x]{inputenc}

to the Sweave file np.Rnw

• Fixed issue with saving and restoring random seed when there was none in the envi-

ronment

Changes from Version 0.30-4 to 0.30-5 [29-Jan-2010]

• Added function npdeneqtest for integrated squared difference testing of equality of

densities as described in Maasoumi, Li, and Racine (2009), Journal of Econometrics

• Save random seed prior to setting seed in certain functions, then restore seed after

function completes

PACKAGE NP FAQ 49

Changes from Version 0.30-3 to 0.30-4 [27-Jan-2010]

• Added function npsymtest for entropy-based testing of symmetry described in Maa-

soumi and Racine (2009), Econometric Reviews

• Added function b.star that automates block length selection for the stationary and

circular bootstrap

• Cleaned up docs

Changes from Version 0.30-2 to 0.30-3 [28-May-2009]

• Corrected error in Epanechnikov convolution kernels for fixed and generalized band-

width objects

• Changed default example in npscoef

Changes from Version 0.30-1 to 0.30-2 [19-Apr-2009]

• min(std,IQR/1.348) is the adaptive measure of spread. We now test for the patho-

logical case where IQR=0 but std>0 and return std in this instance

Changes from Version 0.30-0 to 0.30-1 [29-Jan-2009]

• predict() now supports bandwidth, density, distribution, conbandwidth, condensity,

and condistribution objects

• Consistently allow predictions for categorical values outside of support of training

data

Note that predictions based upon unconditional density objects defined over cate-

gorical variables that lie outside the support of the training data may no longer be

true probabilities (i.e., as defined over the training data and the extended/augmented

support – their sum may exceed one) and may therefore require renormalization by

the user

• Fixed a numerical issue which could hinder npregbw()’s cross validation with higher-

order kernels

• Default nmulti in npplregbw() is now set correctly

• Fixed a bug with the ridging routine in npscoefbw(), added ridging to npscoef()

• Fixed minor i/o issue with Multistart 1 of... using npscoefbw()

Changes from Version 0.20-4 to 0.30-0 [15-Jan-2009]

• Added basic user-interrupt checking for all underlying C code so that either <Ctrl-C>

(Rterm) or the ’STOP’ icon (Rgui) will interrupt all running processes. This has

50 JEFFREY S. RACINE

a number of desirable side effects in addition to being able to interrupt C-based

processes including i) R no longer showing up as ’not responding’ under the task

manager (Windows) or the activity monitor (Mac OS X) and ii) buffered output now

being correctly displayed when using Rgui under Windows and Mac OS X

Note that repeated interruption of large jobs can reduce available memory under

R - if this becomes an issue (i.e., you get a ’cannot allocate...’ error under R) simply

restart R (i.e., exit then run a fresh R session)

• Added a function npseed() that allows the user to set/reset the random seed for all

underlying C routines

• Fixed a bug that caused npplregbw() to ignore any kernel options for the regression

of y on z

• Refined certain constants used in the normal-reference density bandwidth rule for

increased accuracy

• Moved from using the maximum likelihood estimate of variance throughout to the

degrees of freedom corrected estimate (all variance estimates now change by the factor

(n-1)/n)

Changes from Version 0.20-3 to 0.20-4 [19-Nov-2008]

• Using an adaptive measure of spread throughout. The scale factor reported for a

bandwidth can appear to be small when the sample standard deviation of the asso-

ciated variable is inflated due to the presence of outliers. Furthermore, supplying a

scale factor of, say, 1.06 for density estimation when there are outliers that inflate

the standard deviation may oversmooth rather dramatically in the presence of out-

liers. We now use the measure found in Silverman (1986, equation (3.30)) which

is min(standard deviation, interquartile range/1.349). This robust choice produces

expected results for scale factors in the presence of outliers

Changes from Version 0.20-2 to 0.20-3[14-Nov-2008]

• Fixed a typo which caused predict() and plot() to abort when called on

plregression objects, and which also prevented print() and summary() from print-

ing information about the kernels used when called on plregression objects

• Fixed a typo which caused partially linear regressions to crash when out-of-sample

responses were provided with evaluation data

PACKAGE NP FAQ 51

Changes from Version 0.20-1 to 0.20-2 [02-Nov-2008]

• Allow for evaluation outside of discrete support of factors in npksum() and fixed a

warning in jksum

• Fixed a bug which lead to unpredictable behavior when there were more categorical

values for the training data than realisations

Changes from Version 0.20-0 to 0.20-1 [13-Aug-2008]

• Work-around for scale-factor issues during npregbw() cv when changing the training

data

Changes from Version 0.14-3 to 0.20-0 [28-Jul-2008]

• npksum() now supports an expanded set of kernels (including convolution, derivative

and integral), which can be selected via the operator = argument

• Automatic bandwidth searches are now performed when attempting to evaluate on

data without bandwidths. This allows users to combine bandwidth selection and

estimation in one step

• The npsigtest() interface is brought in line with other functions (S3)

• Significance tests can now be performed on npreg() outputs, so npsigtest(modelname)

is now supported

• Added a vignette and faq. To see the vignette try vignette("np",package="np")

• summary() on npconmode() now properly retrieves names from bandwidth objects

• Fixed the 6th and 8th order epanechnikov kernels

• Fixed some quietness issues

• npplot() now returns data upon request for conditional densities

• npreg() and npcdens() now take the appropriate limits in some pathological cases

• User supplied bandwidths now operate seamlessly with the formula interface

Changes from Version 0.14-2 to 0.14-3 [02-May-2008]

• Fixed a glitch that only arose when using the liracine unordered kernel in the pres-

ence of irrelevant variables. The upper bound for numerical search was constrained

to be (c-1)/c [that for the aitchisonaitken unordered kernel] but ought to have

been 1. The summary output would therefore show a value of lambda hitting the

(smaller) upper bound (c-1)/1 when it may have hit the (larger) upper bound 1

52 JEFFREY S. RACINE

Changes from Version 0.14-1 to 0.14-2 [11-Jan-2008]

• Relaxed checking tolerances slightly to prevent spurious ’invalid bandwidth’ errors

• Empty sections were removed from help files

• example(foobar) now works again. This was disabled in 0.14-1 at the request of

the R maintainers in order to shorten the duration of R CMD check. All examples

remained in the help files but due to the presence of ’dontrun’ they were not run

when example(foobar) is requested. Now a limited subset is run while the full set

of examples remain in the documents

Changes from Version 0.13-1 to 0.14-1 [18-Dec-2007]

• Now use optim() for minimisation in single index and smooth coefficient models

• Fixed bug in klein-spady objective function

• Standard errors are now available in the case of no continuous variables

• Summary should look prettier, print additional information

• Tidied up lingering issues with out-of-sample data and conditional modes

• Fixed error when plotting asymptotic errors with conditional densities

• Fixed a bug in npplot() with partially linear regressions and plot.behavior="data"

or "plot-data"

• Maximum default number of multistarts is 5

• Least-squares cross-validation of conditional densities uses a new, much faster algo-

rithm

• New, faster algorithm for least-squares cross-validation for both local-constant and

local linear regressions

Note that the estimator has changed somewhat: both cross-validation and the

estimator itself use a method of shrinking towards the local constant estimator when

singularity would otherwise lead to the breakdown of the estimator. This arises in

sparse data settings in conjunction with small bandwidths for one or more regressor

• Optimised smooth coefficient code, added ridging

• Fixed bug in uniform CDF kernel

• Fixed bug where npindexbw() would ignore bandwidth.compute = FALSE and com-

pute bandwidths when supplied with a preexisting bw object

• Now can handle estimation out of discrete support

• Summary would misreport the values of discrete scale factors which were computed

with bwscaling = TRUE

PACKAGE NP FAQ 53

Changes from Version 0.12-1 to 0.13-1 [03-May-2007]

• Bandwidths are now checked for validity based on their variable and kernel types

• np now does a better job of preserving names of some ’y’ data

• Names of coefficients returned from coef() now match variable names

• Fixed some corner cases in npksum() involving the dimensionality of outputs

• Fixed deprecation warnings in R 2.5.0 caused by use of $ on atomic objects

• Various and sundry bug fixes in npscoef()

• npscoef() now handles discrete ’z’ data

• Predict now accepts the argument ’se.fit’, like predict.lm

• Fixed bug where incorrect asymptotic standard errors of gradients for regression

objects were being displayed in npplot()

• Fixed bug where errors of gradients of regression objects were not being returned in

matrix form

• vcov() now works with partially linear regression objects

• Fixed detection of evaluation responses when using the formula interface

• Pre-computed bandwidth objects are now provided for some of the more computa-

tionally burdensome examples

• Added Jeffrey Wooldridge’s WAGE1 dataset with qualitative variables (married, fe-

male, nonwhite)

• Predictions outside of discrete support for regressions and conditional densities are

now allowed

• Fixed sign issue with scaling of standard errors in the single index model

• Fixed error when calculating some bandwidths/scale factors for display purposes

• Bug in passing certain arguments to npcdensbw() fixed

• Added predict method for qregression objects

• Proper normalisation for liracine kernel shown in summary

• Fixed output bug (̂ H) in summary method for sigtest objects

• Fixed regression with plotting of bootstrapped errors in perspective plots

• npcdist() no longer incorrectly calls npcdens()

• Fixed spacing between var name and p-value in significance test summaries

Version 0.12-1 [19-Nov-2006]

• Initial release of the np package on CRAN

