
Package ‘oppr’
September 8, 2022

Type Package

Version 1.0.4

Title Optimal Project Prioritization

Description A decision support tool for prioritizing conservation projects.
Prioritizations can be developed by maximizing expected feature richness,
expected phylogenetic diversity, the number of features that meet
persistence targets, or identifying a set of projects that meet persistence
targets for minimal cost. Constraints (e.g. lock in specific actions) and
feature weights can also be specified to further customize prioritizations.
After defining a project prioritization problem, solutions can be obtained
using exact algorithms, heuristic algorithms, or random processes. In
particular, it is recommended to install the 'Gurobi' optimizer (available
from <https://www.gurobi.com>) because it can identify optimal solutions
very quickly. Finally, methods are provided for comparing different
prioritizations and evaluating their benefits. For more information, see
Hanson et al. (2019) <doi:10.1111/2041-210X.13264>.

Imports utils, methods, stats, Matrix, magrittr (>= 1.5), uuid (>=
0.1.2), proto (>= 1.0.0), cli (>= 1.0.1), assertthat (>=
0.2.0), tibble (>= 2.0.0), ape (>= 5.2), tidytree (>= 0.3.3),
ggplot2 (>= 3.0.0), viridisLite (>= 0.3.0), lpSolveAPI (>=
5.5.2.0.17), withr (>= 2.4.1),

Suggests testthat (>= 2.0.0), knitr (>= 1.20), roxygen2 (>= 6.1.0),
rmarkdown (>= 1.10), gurobi (>= 8.0.0), Rsymphony (>= 0.1.28),
ggtree (>= 2.4.2), lpsymphony (>= 1.10.0), shiny (>= 1.2.0),
rhandsontable (>= 0.3.7), tidyr (>= 0.8.2)

Depends R(>= 3.4.0)

LinkingTo Rcpp (>= 0.12.19), RcppArmadillo (>= 0.9.100.5.0),
RcppProgress (>= 0.4.1)

License GPL-3

LazyData true

SystemRequirements C++11

URL https://prioritizr.github.io/oppr/

1

https://www.gurobi.com
https://doi.org/10.1111/2041-210X.13264
https://prioritizr.github.io/oppr/

2

BugReports https://github.com/prioritizr/oppr/issues

VignetteBuilder knitr

RoxygenNote 7.2.1

Encoding UTF-8

Language en-US

Collate 'internal.R' 'pproto.R' 'Parameter-proto.R'
'ArrayParameter-proto.R' 'MiscParameter-proto.R'
'Parameters-proto.R' 'ScalarParameter-proto.R' 'parameters.R'
'waiver.R' 'ProjectModifier-proto.R' 'Constraint-proto.R'
'Collection-proto.R' 'Decision-proto.R' 'Id.R'
'Objective-proto.R' 'OptimizationProblem-proto.R'
'OptimizationProblem-methods.R' 'ProjectProblem-proto.R'
'RcppExports.R' 'Solver-proto.R' 'Target-proto.R'
'Weight-proto.R' 'action_names.R' 'add_absolute_targets.R'
'add_binary_decisions.R' 'add_default_solver.R'
'add_feature_weights.R' 'add_gurobi_solver.R'
'add_heuristic_solver.R' 'add_locked_in_constraints.R'
'add_locked_out_constraints.R' 'add_lpsolveapi_solver.R'
'add_lpsymphony_solver.R' 'tbl_df.R' 'add_manual_targets.R'
'add_manual_locked_constraints.R'
'add_max_phylo_div_objective.R' 'star_phylogeny.R'
'add_max_richness_objective.R'
'add_max_targets_met_objective.R' 'add_min_set_objective.R'
'add_random_solver.R' 'add_relative_targets.R'
'add_rsymphony_solver.R' 'branch_matrix.R' 'compile.R'
'constraints.R' 'data.R' 'decisions.R' 'feature_names.R'
'magrittr-operators.R' 'misc.R' 'new_optimization_problem.R'
'number_of_actions.R' 'number_of_features.R'
'number_of_projects.R' 'objectives.R' 'package.R'
'solution_statistics.R' 'plot.R' 'plot_feature_persistence.R'
'plot_phylo_persistence.R' 'predefined_optimization_problem.R'
'print.R' 'problem.R' 'project_cost_effectiveness.R'
'project_names.R' 'rake_phylogeny.R' 'replacement_costs.R'
'show.R' 'simulate_ppp_data.R' 'simulate_ptm_data.R' 'solve.R'
'solvers.R' 'targets.R' 'weights.R' 'zzz.R'

NeedsCompilation yes

Author Jeffrey O Hanson [aut, cre] (<https://orcid.org/0000-0002-4716-6134>),
Richard Schuster [aut] (<https://orcid.org/0000-0003-3191-7869>),
Matthew Strimas-Mackey [aut] (<https://orcid.org/0000-0001-8929-7776>),
Joseph R Bennett [aut] (<https://orcid.org/0000-0002-3901-9513>)

Maintainer Jeffrey O Hanson <jeffrey.hanson@uqconnect.edu.au>

Repository CRAN

Date/Publication 2022-09-08 11:00:24 UTC

https://github.com/prioritizr/oppr/issues
https://orcid.org/0000-0002-4716-6134
https://orcid.org/0000-0003-3191-7869
https://orcid.org/0000-0001-8929-7776
https://orcid.org/0000-0002-3901-9513

R topics documented: 3

R topics documented:
action_names . 4
add_absolute_targets . 5
add_binary_decisions . 7
add_default_solver . 8
add_feature_weights . 10
add_gurobi_solver . 12
add_heuristic_solver . 14
add_locked_in_constraints . 17
add_locked_out_constraints . 19
add_lpsolveapi_solver . 21
add_lsymphony_solver . 23
add_manual_locked_constraints . 24
add_manual_targets . 26
add_max_phylo_div_objective . 28
add_max_richness_objective . 31
add_max_targets_met_objective . 33
add_min_set_objective . 36
add_random_solver . 38
add_relative_targets . 40
add_rsymphony_solver . 42
ArrayParameter-class . 44
array_parameters . 45
as.Id . 48
as.list.OptimizationProblem . 49
branch_matrix . 49
Collection-class . 50
compile . 51
Constraint-class . 52
constraints . 53
Decision-class . 54
decisions . 54
feature_names . 55
is.Id . 56
matrix_parameters . 57
MiscParameter-class . 58
misc_parameter . 59
new_id . 60
new_optimization_problem . 61
new_waiver . 62
number_of_actions . 62
number_of_features . 63
number_of_projects . 64
Objective-class . 65
objectives . 65
oppr . 68
OptimizationProblem-class . 69

4 action_names

OptimizationProblem-methods . 71
Parameter-class . 74
parameters . 75
Parameters-class . 75
plot.ProjectProblem . 77
plot_feature_persistence . 78
plot_phylo_persistence . 80
pproto . 83
print . 84
problem . 85
ProjectModifier-class . 88
ProjectProblem-class . 90
project_cost_effectiveness . 94
project_names . 95
replacement_costs . 96
ScalarParameter-class . 98
scalar_parameters . 99
show . 101
simulate_ppp_data . 102
simulate_ptm_data . 105
sim_data . 109
solution_statistics . 110
solve . 112
Solver-class . 114
solvers . 115
Target-class . 117
targets . 117
tibble-methods . 118
Weight-class . 120
weights . 120
%>% . 121
%T>% . 122

Index 123

action_names Action names

Description

Extract the names of the actions in an object.

Usage

action_names(x)

S4 method for signature 'ProjectProblem'
action_names(x)

add_absolute_targets 5

Arguments

x ProjectProblem.

Value

character action names.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with default solver
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_default_solver()

print problem
print(p)

print action names
action_names(p)

add_absolute_targets Add absolute targets

Description

Set targets for a project prioritization problem() by specifying exactly what probability of per-
sistence is required for each feature. For instance, setting an absolute target of 10% (i.e. 0.1)
corresponds to a threshold 10% probability of persisting.

Usage

add_absolute_targets(x, targets)

S4 method for signature 'ProjectProblem,numeric'
add_absolute_targets(x, targets)

S4 method for signature 'ProjectProblem,character'
add_absolute_targets(x, targets)

Arguments

x ProjectProblem object.

targets Object that specifies the targets for each feature. See the Details section for more
information.

6 add_absolute_targets

Details

Targets are used to specify the minimum probability of persistence for each feature in solutions. For
minimum set objectives (i.e. add_min_set_objective(), these targets specify the minimum prob-
ability of persistence required for each species in the solution. And for budget constrained objec-
tives that use targets (i.e.add_max_targets_met_objective()), these targets specify the minimum
threshold probability of persistence that needs to be achieved to count the benefits for conserving
these species. Please note that attempting to solve problems with objectives that require targets
without specifying targets will throw an error.

The targets for a problem can be specified in several different ways:

numeric vector of target values for each feature. The order of the target values should correspond
to the order of the features in the data used to create the argument to x. Additionally, for
convenience, this type of argument can be a single value to assign the same target to each
feature.

character specifying the name of column in the feature data (i.e. the argument to features in
the problem() function) that contains the persistence targets.

See Also

targets.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with minimum set objective and targets that require each
feature to have a 30% chance of persisting into the future
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_absolute_targets(0.3) %>%
add_binary_decisions()

print problem
print(p1)

build problem with minimum set objective and specify targets that require
different levels of persistence for each feature
p2 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_absolute_targets(c(0.1, 0.2, 0.3, 0.4, 0.5)) %>%
add_binary_decisions()

print problem
print(p2)

add a column name to the feature data with targets
sim_features$target <- c(0.1, 0.2, 0.3, 0.4, 0.5)

add_binary_decisions 7

build problem with minimum set objective and specify targets using
column name in the feature data
p3 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_absolute_targets("target") %>%
add_binary_decisions()

print problem
print(p3)

Not run:
solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)

print solutions
print(s1)
print(s2)
print(s3)

plot solutions
plot(p1, s1)
plot(p2, s2)
plot(p3, s3)

End(Not run)

add_binary_decisions Add binary decisions

Description

Add a binary decision to a project prioritization problem(). This is the conventional decision of
either prioritizing funding for a management action or not.

Usage

add_binary_decisions(x)

Arguments

x ProjectProblem object.

8 add_default_solver

Details

Project prioritization problems involve making decisions about how funding will be allocated to
management actions. Only a single decision should be added to a ProjectProblem object. If no
decision is added to a problem then this decision type will be used by default. Currently, this is the
only supported decision type.

Value

ProjectProblem object with the decisions added to it.

See Also

decisions.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with maximum richness objective, $200 budget, and
binary decisions
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions()

print problem
print(p)

Not run:
solve problem
s <- solve(p)

print solution
print(s)

plot solution
plot(p, s)

End(Not run)

add_default_solver Add a default solver

Description

Identify the best solver currently installed on the system and specify that it should be used to solve
a project prioritization problem().

add_default_solver 9

Usage

add_default_solver(x, ...)

Arguments

x ProjectProblem object.

... arguments passed to the solver.

Details

Ranked from best to worst, the solvers that can be used are: gurobi, (add_gurobi_solver()),
Rsymphony (add_rsymphony_solver()), lpsymphony (add_lpsymphony_solver()), and lp-
SolveAPI (add_lpsolveapi_solver()). This function does not consider solvers that generate
solutions using heuristic algorithms (i.e. add_heuristic_solver()) or random processes (i.e.
add_random_solver()) because they cannot provide any guarantees on solution quality.

See Also

solvers.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with default solver
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_default_solver()

print problem
print(p)

Not run:
solve problem
s <- solve(p)

print solution
print(s)

plot solution
plot(p, s)

End(Not run)

10 add_feature_weights

add_feature_weights Add feature weights

Description

Set weights for conserving features in a project prioritization problem().

Usage

add_feature_weights(x, weights)

S4 method for signature 'ProjectProblem,numeric'
add_feature_weights(x, weights)

S4 method for signature 'ProjectProblem,character'
add_feature_weights(x, weights)

Arguments

x ProjectProblem object.

weights Object that specifies the weights for each feature. See the Details section for
more information.

Details

Weights are used to specify the relative importance for maintaining the persistence of specific fea-
tures. For budget constrained problems (e.g. add_max_richness_objective()), these weights
could be used to specify which features are more important than other features according to evo-
lutionary or cultural metrics. Specifically, features with a higher weight value are considered more
important. It is generally best to ensure that the feature weights range between 0.0001 and 10,000
to reduce the time required to solve problems using exact algorithm solvers. As a consequence, you
might have to rescale the feature weights if the largest or smallest values occur outside this range
(excluding zeros). If you want to ensure that certain features conserved in the solutions, it is strongly
recommended to lock in the actions for these features instead of setting really high weights for these
features. Please note that a warning will be thrown if you attempt to solve problems with weights
when an objective has been specified that does not use weights. Currently, all objectives—except
for the minimum set objective (i.e. add_min_set_objective())—can use weights.

The weights for a problem can be specified in several different ways:

numeric vector of weight values for each feature.

character specifying the name of column in the feature data (i.e. the argument to features in
the problem() function) that contains the weights.

See Also

weights.

add_feature_weights 11

Examples

load data
data(sim_projects, sim_features, sim_actions)

print feature data
print(sim_features)

build problem with maximum richness objective, $300 budget, and no weights
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions()

print problem
print(p1)

build another problem, and specify feature weights using the values in the
"weight" column of the sim_features table by specifying the column
name "weight"
p2 <- p1 %>%

add_feature_weights("weight")

print problem
print(p2)

build another problem, and specify feature weights using the
values in the "weight column of the sim_features table, but
actually input the values rather than specifying the column name
"weights" column of the sim_features table
p3 <- p1 %>%

add_feature_weights(sim_features$weight)

print problem
print(p3)

Not run:
solve the problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)

print solutions
print(s1)
print(s2)
print(s3)

plot solutions
plot(p1, s1)
plot(p2, s2)
plot(p3, s3)

End(Not run)

12 add_gurobi_solver

add_gurobi_solver Add a Gurobi solver

Description

Specify that the Gurobi software should be used to solve a project prioritization problem(). This
function can also be used to customize the behavior of the solver. In addition to the Gurobi software
suite, it also requires the gurobi package to be installed.

Usage

add_gurobi_solver(
x,
gap = 0,
number_solutions = 1,
solution_pool_method = 2,
time_limit = .Machine$integer.max,
presolve = 2,
threads = 1,
first_feasible = FALSE,
verbose = TRUE

)

Arguments

x ProjectProblem object.

gap numeric gap to optimality. This gap is relative and expresses the acceptable
deviance from the optimal objective. For example, a value of 0.01 will result
in the solver stopping when it has found a solution within 1% of optimality.
Additionally, a value of 0 will result in the solver stopping when it has found an
optimal solution. The default value is 0.1 (i.e. 10% from optimality).

number_solutions

integer number of solutions desired. Defaults to 1. Note that the number of re-
turned solutions can sometimes be less than the argument to number_solutions
depending on the argument to solution_pool_method, for example if 100 so-
lutions are requested but only 10 unique solutions exist, then only 10 solutions
will be returned.

solution_pool_method

numeric search method identifier that determines how multiple solutions should
be generated. Available search modes for generating a portfolio of solutions in-
clude: 0 recording all solutions identified whilst trying to find a solution that is
within the specified optimality gap, 1 finding one solution within the optimality
gap and a number of additional solutions that are of any level of quality (such
that the total number of solutions is equal to number_solutions), and 2 finding
a specified number of solutions that are nearest to optimality. For more informa-
tion, see the Gurobi manual (i.e. https://www.gurobi.com/documentation/

https://www.gurobi.com/documentation/8.0/refman/poolsearchmode.html#parameter:PoolSearchMode

add_gurobi_solver 13

8.0/refman/poolsearchmode.html#parameter:PoolSearchMode). Defaults
to 2.

time_limit numeric time limit in seconds to run the optimizer. The solver will return the
current best solution when this time limit is exceeded.

presolve integer number indicating how intensively the solver should try to simplify the
problem before solving it. The default value of 2 indicates to that the solver
should be very aggressive in trying to simplify the problem.

threads integer number of threads to use for the optimization algorithm. The default
value of 1 will result in only one thread being used.

first_feasible logical should the first feasible solution be be returned? If first_feasible
is set to TRUE, the solver will return the first solution it encounters that meets all
the constraints, regardless of solution quality. Note that the first feasible solution
is not an arbitrary solution, rather it is derived from the relaxed solution, and is
therefore often reasonably close to optimality. Defaults to FALSE.

verbose logical should information be printed while solving optimization problems?

Details

Gurobi is a state-of-the-art commercial optimization software with an R package interface. It is by
far the fastest of the solvers supported by this package, however, it is also the only solver that is not
freely available. That said, licenses are available to academics at no cost. The gurobi package is
distributed with the Gurobi software suite. This solver uses the gurobi package to solve problems.

To install the gurobi package, the Gurobi optimization suite will first need to be installed (see
instructions for Linux, Mac OSX, and Windows operating systems). Although Gurobi is a com-
mercial software, academics can obtain a special license for no cost. After installing the Gurobi
optimization suite, the gurobi package can then be installed (see instructions for Linux, Mac OSX,
and Windows operating systems).

Value

ProjectProblem object with the solver added to it.

See Also

solvers.

Examples

Not run:
load data
data(sim_projects, sim_features, sim_actions)

build problem
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions()

https://www.gurobi.com/documentation/8.0/refman/poolsearchmode.html#parameter:PoolSearchMode
https://www.gurobi.com/documentation/8.0/refman/poolsearchmode.html#parameter:PoolSearchMode
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com/documentation/8.1/quickstart_linux/software_installation_guid.html
https://www.gurobi.com/documentation/8.1/quickstart_mac/software_installation_guid.html
https://www.gurobi.com/documentation/8.1/quickstart_windows/software_installation_guid.html
https://www.gurobi.com
https://www.gurobi.com/downloads/end-user-license-agreement-academic/
https://www.gurobi.com
https://www.gurobi.com/documentation/8.1/quickstart_linux/r_installing_the_r_package.html
https://www.gurobi.com/documentation/8.1/quickstart_mac/r_installing_the_r_package.html
https://www.gurobi.com/documentation/8.1/quickstart_windows/r_installing_the_r_package.html

14 add_heuristic_solver

build another problem, and specify the Gurobi solver
p2 <- p1 %>%

add_gurobi_solver()

print problem
print(p2)

solve problem
s2 <- solve(p2)

print solution
print(s2)

plot solution
plot(p2, s2)

build another problem and obtain multiple solutions
note that this problem doesn't have 100 unique solutions so
the solver won't return 100 solutions
p3 <- p1 %>%

add_gurobi_solver(number_solutions = 100)

print problem
print(p3)

solve problem
s3 <- solve(p3)

print solutions
print(s3)

End(Not run)

add_heuristic_solver Add a heuristic solver

Description

Specify that solutions should be generated using a backwards step-wise heuristic algorithm (inspired
by Cabeza et al. 2004, Korte & Vygen 2000, Probert et al. 2016). Ideally, solutions should be gen-
erated using exact algorithm solvers (e.g. add_rsymphony_solver() or add_gurobi_solver())
because they are guaranteed to identify optimal solutions (Rodrigues & Gaston 2002).

Usage

add_heuristic_solver(
x,
number_solutions = 1,
initial_sweep = TRUE,
verbose = TRUE

)

add_heuristic_solver 15

Arguments

x ProjectProblem object.
number_solutions

integer number of solutions desired. Defaults to 1. Note that the number of re-
turned solutions can sometimes be less than the argument to number_solutions
depending on the argument to solution_pool_method, for example if 100 so-
lutions are requested but only 10 unique solutions exist, then only 10 solutions
will be returned.

initial_sweep logical value indicating if projects and actions which exceed the budget should
be automatically excluded prior to running the backwards heuristic. This step
prevents projects which exceed the budget, and so would never be selected in
the final solution, from biasing the cost-sharing calculations. However, previous
algorithms for project prioritization have not used this step (e.g. Probert et al.
2016). Defaults to TRUE.

verbose logical should information be printed while solving optimization problems?

Details

The heuristic algorithm used to generate solutions is described below. It is heavily inspired by
the cost-sharing backwards heuristic algorithm conventionally used to guide the prioritization of
species recovery projects (Probert et al. 2016).

1. All actions and projects are initially selected for funding.

2. A set of rules are then used to deselect actions and projects based on locked constraints (if
any). Specifically, (i) actions which are which are locked out are deselected, and (ii) projects
which are associated with actions that are locked out are also deselected.

3. If the argument to initial_sweep is TRUE, then a set of rules are then used to deselect actions
and projects based on budgetary constraints (if present). Specifically, (i) actions which exceed
the budget are deselected, (ii) projects which are associated with a set of actions that exceed
the budget are deselected, and (iii) actions which are not associated with any project (excepting
locked in actions) are also deselected.

4. If the objective function is to maximize biodiversity subject to budgetary constraints (e.g.
add_max_richness_objective()) then go to step 5. Otherwise, if the objective is to mini-
mize cost subject to biodiversity constraints (i.e. add_min_set_objective()) then go to step
7.

5. The next step is repeated until (i) the number of desired solutions is obtained, and (ii) the total
cost of the remaining actions that are selected for funding is within the budget. After both of
these conditions are met, the algorithm is terminated.

6. Each of the remaining projects that are currently selected for funding are evaluated according
to how much the performance of the solution decreases when the project is deselected for
funding, relative to the cost of the project not shared by other remaining projects. This can be
expressed mathematically as:

Bj =
V (J)− V (J − j)

Cj

16 add_heuristic_solver

Where J is the set of remaining projects currently selected for funding (indexed by j), Bj is
the benefit associated with funding project j, V (J) is the objective value associated with the
solution where all remaining projects are funded, V (J − j) is the objective value associated
with the solution where all remaining projects except for project j are funded, and Cj is the
sum cost of all of the actions associated with project j—excluding locked in actions—with
the cost of each action divided by the total number of remaining projects that share the action
(e.g. if two projects both share a $100 action, then this action contributes $50 to the overall
cost of each project).
The project with the smallest benefit (i.e. Bj value) is then deselected for funding. In cases
where multiple projects have the same benefit (Bj) value, the project with the greatest overall
cost (including actions which are shared among multiple remaining projects) is deselected.

7. The next step is repeated until (i) the number of desired solutions is obtained or (ii) no action
can be deselected for funding without the probability of any feature expecting to persist falling
below its target probability of persistence. After one or both of these conditions are met, the
algorithm is terminated.

8. Each of the remaining projects that are currently selected for funding are evaluated according
to how much the performance of the solution decreases when the project is deselected for
funding, relative to the cost of the project not shared by other remaining projects. This can be
expressed mathematically as:

Bj =

(∑F
f Pf (J)− Tf

)
−
(∑F

f Pf (J − j)− Tf

)
Cj

Where F is the set of features (indexed by f), Tf is the target for feature f , P is the set of
remaining projects that are selected for funding (indexed by j), Cj is the cost of all of the
actions associated with project j—excluding locked in actions—and accounting for shared
costs among remaining projects (e.g. if two projects both share a $100 action, then this action
contributes $50 to the overall cost of each project), Bp is the benefit associated with funding
project p, P (J) is probability that each feature is expected to persist when the remaining
projects (J) are funded, and P (J − j) is the probability that each feature is expected to persist
when all the remaining projects except for action j are funded.
The project with the smallest benefit (i.e. Bj value) is then deselected for funding. In cases
where multiple projects have the same Bj value, the project with the greatest overall cost
(including actions which are shared among multiple remaining projects) is deselected.

Value

ProjectProblem object with the solver added to it.

References

Rodrigues AS & Gaston KJ (2002) Optimisation in reserve selection procedures—why not? Bio-
logical Conservation, 107, 123–129.

Cabeza M, Araujo MB, Wilson RJ, Thomas CD, Cowley MJ & Moilanen A (2004) Combining
probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 41, 252–262.

Korte B & Vygen J (2000) Combinatorial Optimization. Theory and Algorithms. Springer-Verlag,
Berlin, Germany.

add_locked_in_constraints 17

Probert W, Maloney RF, Mellish B, and Joseph L (2016) Project Prioritisation Protocol (PPP).
Formerly available at https://github.com/p-robot (copy available at https://github.com/
jeffreyhanson/ppp).

See Also

solvers.

Examples

load ggplot2 package for making plots
library(ggplot2)

load data
data(sim_projects, sim_features, sim_actions)

build problem with heuristic solver and $200
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_heuristic_solver()

print problem
print(p1)

Not run:
solve problem
s1 <- solve(p1)

print solution
print(s1)

plot solution
plot(p1, s1)

End(Not run)

add_locked_in_constraints

Add locked in constraints

Description

Add constraints to a project prioritization problem() to ensure that specific actions are prioritized
for funding in the solution. For example, it may be desirable to lock in actions for conserving
culturally or taxonomically important species.

https://github.com/p-robot
https://github.com/jeffreyhanson/ppp
https://github.com/jeffreyhanson/ppp

18 add_locked_in_constraints

Usage

add_locked_in_constraints(x, locked_in)

S4 method for signature 'ProjectProblem,numeric'
add_locked_in_constraints(x, locked_in)

S4 method for signature 'ProjectProblem,logical'
add_locked_in_constraints(x, locked_in)

S4 method for signature 'ProjectProblem,character'
add_locked_in_constraints(x, locked_in)

Arguments

x ProjectProblem object.

locked_in Object that determines which planning units that should be locked in. See the
Details section for more information.

Details

The locked actions can be specified in several different ways:

integer vector of indices pertaining to which actions should be locked in the solution (i.e. row
numbers of the actions in the argument to actions in problem()).

logical vector containing logical (i.e. TRUE and/or FALSE values) that indicate which actions
should be locked in the solution. These logical values should correspond to each row in the
argument to actions in problem()).

character column name that indicates if actions units should be locked in the solution. This
argument should denote a column in the argument to actions in problem() which contains
logical (i.e. TRUE and/or FALSE values) to indicate which actions should be locked.

Value

ProjectProblem object with the constraints added to it.

See Also

constraints.

Examples

load data
data(sim_projects, sim_features, sim_actions)

print action data
print(sim_actions)

build problem with maximum richness objective and $150 budget
p1 <- problem(sim_projects, sim_actions, sim_features,

add_locked_out_constraints 19

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 150) %>%
add_binary_decisions()

print problem
print(p1)

build another problem, and lock in the 3rd action using numeric inputs
p2 <- p1 %>%

add_locked_in_constraints(c(3))

print problem
print(p2)

build another problem, and lock in the actions using logical inputs from
the sim_actions table
p3 <- p1 %>%

add_locked_in_constraints(sim_actions$locked_in)

print problem
print(p3)

build another problem, and lock in the actions using the column name
"locked_in" in the sim_actions table
the sim_actions table
p4 <- p1 %>%

add_locked_in_constraints("locked_in")

print problem
print(p4)

Not run:
solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
s4 <- solve(p4)

print the actions selected for funding in each of the solutions
print(s1[, sim_actions$name])
print(s2[, sim_actions$name])
print(s3[, sim_actions$name])
print(s4[, sim_actions$name])

End(Not run)

add_locked_out_constraints

Add locked out constraints

20 add_locked_out_constraints

Description

Add constraints to a project prioritization problem() to ensure that specific actions are not prior-
itized for funding in the solution. For example, it may be desirable to lock out specific actions to
examine their importance to the optimal funding scheme.

Usage

add_locked_out_constraints(x, locked_out)

S4 method for signature 'ProjectProblem,numeric'
add_locked_out_constraints(x, locked_out)

S4 method for signature 'ProjectProblem,logical'
add_locked_out_constraints(x, locked_out)

S4 method for signature 'ProjectProblem,character'
add_locked_out_constraints(x, locked_out)

Arguments

x ProjectProblem object.

locked_out Object that determines which planning units that should be locked out. See the
Details section for more information.

Examples

load data
data(sim_projects, sim_features, sim_actions)

update "locked_out" column to lock out action "F2_action"
sim_actions$locked_out <- c(FALSE, TRUE, FALSE, FALSE, FALSE, FALSE)

print action data
print(sim_actions)

build problem with maximum richness objective and $150 budget
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 150) %>%
add_binary_decisions()

print problem
print(p1)

build another problem, and lock out the second action using numeric inputs
p2 <- p1 %>%

add_locked_out_constraints(c(2))

print problem
print(p2)

add_lpsolveapi_solver 21

build another problem, and lock out the actions using logical inputs
(i.e. TRUE/FALSE values) from the sim_actions table
p3 <- p1 %>%

add_locked_out_constraints(sim_actions$locked_out)

print problem
print(p3)

build another problem, and lock out the actions using the column name
"locked_out" in the sim_actions table
the sim_actions table
p4 <- p1 %>%

add_locked_out_constraints("locked_out")

print problem
print(p4)

Not run:
solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)
s4 <- solve(p4)

print the actions selected for funding in each of the solutions
print(s1[, sim_actions$name])
print(s2[, sim_actions$name])
print(s3[, sim_actions$name])
print(s4[, sim_actions$name])

End(Not run)

add_lpsolveapi_solver Add a lp_solve solver with lpSolveAPI

Description

Specify that the lp_solve software should be used to solve a project prioritization problem() using
the lpSolveAPI package. This function can also be used to customize the behavior of the solver. It
requires the lpSolveAPI package.

Usage

add_lpsolveapi_solver(x, gap = 0, presolve = FALSE, verbose = TRUE)

Arguments

x ProjectProblem object.

22 add_lpsolveapi_solver

gap numeric gap to optimality. This gap is relative and expresses the acceptable
deviance from the optimal objective. For example, a value of 0.01 will result
in the solver stopping when it has found a solution within 1% of optimality.
Additionally, a value of 0 will result in the solver stopping when it has found an
optimal solution. The default value is 0.1 (i.e. 10% from optimality).

presolve logical indicating if attempts to should be made to simplify the optimization
problem (TRUE) or not (FALSE). Defaults to TRUE.

verbose logical should information be printed while solving optimization problems?

Details

lp_solve is an open-source integer programming solver. Although this solver is the slowest currently
supported solver, it is also the only exact algorithm solver that can be installed on all operating
systems without any manual installation steps. This solver is provided so that users can try solving
small project prioritization problems, without needing to install additional software. When solve
moderate or large project prioritization problems, consider using add_gurobi_solver().

Value

ProjectProblem object with the solver added to it.

See Also

solvers.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with lpSolveAPI solver
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_lpsolveapi_solver()

print problem
print(p)

solve problem
s <- solve(p)

print solution
print(s)

plot solution
plot(p, s)

http://lpsolve.sourceforge.net/5.5/

add_lsymphony_solver 23

add_lsymphony_solver Add a SYMPHONY solver with lpsymphony

Description

Specify that the SYMPHONY software should be used to solve a project prioritization problem()
using the lpsymphony package. This function can also be used to customize the behavior of the
solver. It requires the lpsymphony package.

Usage

add_lpsymphony_solver(
x,
gap = 0,
time_limit = .Machine$integer.max,
first_feasible = FALSE,
verbose = TRUE

)

Arguments

x ProjectProblem object.

gap numeric gap to optimality. This gap is relative and expresses the acceptable
deviance from the optimal objective. For example, a value of 0.01 will result
in the solver stopping when it has found a solution within 1% of optimality.
Additionally, a value of 0 will result in the solver stopping when it has found an
optimal solution. The default value is 0.1 (i.e. 10% from optimality).

time_limit numeric time limit in seconds to run the optimizer. The solver will return the
current best solution when this time limit is exceeded.

first_feasible logical should the first feasible solution be be returned? If first_feasible
is set to TRUE, the solver will return the first solution it encounters that meets all
the constraints, regardless of solution quality. Note that the first feasible solution
is not an arbitrary solution, rather it is derived from the relaxed solution, and is
therefore often reasonably close to optimality. Defaults to FALSE.

verbose logical should information be printed while solving optimization problems?

Details

SYMPHONY is an open-source integer programming solver that is part of the Computational In-
frastructure for Operations Research (COIN-OR) project, an initiative to promote development of
open-source tools for operations research (a field that includes linear programming). The lpsym-
phony package is distributed through Bioconductor. This functionality is provided because the
lpsymphony package may be easier to install to install on Windows and Mac OSX systems than
the Rsymphony package.

https://github.com/coin-or/SYMPHONY
https://doi.org/doi:10.18129/B9.bioc.lpsymphony

24 add_manual_locked_constraints

Value

ProjectProblem object with the solver added to it.

See Also

solvers.

Examples

Not run:
load data
data(sim_projects, sim_features, sim_actions)

build problem with lpsymphony solver
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_lpsymphony_solver()

print problem
print(p)

solve problem
s <- solve(p)

print solution
print(s)

plot solution
plot(p, s)

End(Not run)

add_manual_locked_constraints

Add manually specified locked constraints

Description

Add constraints to a project prioritization problem() to ensure that solutions fund (or do not fund)
specific actions. This function offers more fine-grained control than the add_locked_in_constraints()
and add_locked_out_constraints() functions.

Usage

add_manual_locked_constraints(x, locked)

S4 method for signature 'ProjectProblem,data.frame'

add_manual_locked_constraints 25

add_manual_locked_constraints(x, locked)

S4 method for signature 'ProjectProblem,tbl_df'
add_manual_locked_constraints(x, locked)

Arguments

x ProjectProblem object.

locked data.frame or tibble::tibble() object. See the Details section for more
information.

Details

The argument to locked must contain the following fields (columns):

"action" character action name.

"status" numeric values indicating if actions should be funded (with a value of 1) or not (with a
value of zero).

Value

ProjectProblem object with the constraints added to it.

See Also

constraints.

Examples

load data
data(sim_projects, sim_features, sim_actions)

create data frame with locked statuses
status <- data.frame(action = sim_actions$name[1:2],

status = c(0, 1))

print locked statuses
print(status)

build problem with minimum set objective and targets that require each
feature to have a 30% chance of persisting into the future
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 500) %>%
add_manual_locked_constraints(status) %>%
add_binary_decisions()

print problem
print(p)

26 add_manual_targets

Not run:
solve problem
s <- solve(p)

print solution
print(s)

End(Not run)

add_manual_targets Add manual targets

Description

Set targets for a project prioritization problem() by manually specifying all the required infor-
mation for each target. This function is useful because it can be used to customize all aspects
of a target. For most cases, targets can be specified using the add_absolute_targets() and
add_relative_targets() functions. However, this function can be used to mix absolute and
relative targets for different features.

Usage

add_manual_targets(x, targets)

S4 method for signature 'ProjectProblem,data.frame'
add_manual_targets(x, targets)

S4 method for signature 'ProjectProblem,tbl_df'
add_manual_targets(x, targets)

Arguments

x ProjectProblem object.

targets data.frame or tibble::tibble() object. See the Details section for more
information.

Details

Targets are used to specify the minimum probability of persistence for each feature in solutions.
For minimum set objectives (i.e. add_min_set_objective(), these targets specify the minimum
probability of persistence required for each species in the solution. And for budget constrained
objectives that use targets (i.e. add_max_targets_met_objective()), these targets specify the
minimum threshold probability of persistence that needs to be achieved to count the benefits for
conserving these species. Please note that attempting to solve problems with objectives that require
targets without specifying targets will throw an error.

The targets argument should contain the following columns:

add_manual_targets 27

"feature" character name of features in argument to x.

"type" character describing the type of target. Acceptable values include "absolute" and
"relative". These values correspond to add_absolute_targets(), and add_relative_targets()
respectively.

"sense" character sense of the target. The only acceptable value currently supported is: ">=".
This field (column) is optional and if it is missing then target senses will default to ">=" values.

"target" numeric target threshold.

Value

ProjectProblem object with the targets added to it.

See Also

targets.

Examples

load data
data(sim_projects, sim_features, sim_actions)

create data frame with targets
targets <- data.frame(feature = sim_features$name,

type = "absolute",
target = 0.1)

print targets
print(targets)

build problem with minimum set objective and targets that require each
feature to have a 30% chance of persisting into the future
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_manual_targets(targets) %>%
add_binary_decisions()

print problem
print(p)

Not run:
solve problem
s <- solve(p)

print solution
print(s)

End(Not run)

28 add_max_phylo_div_objective

add_max_phylo_div_objective

Add maximum phylogenetic diversity objective

Description

Set the objective of a project prioritization problem() to maximize the phylogenetic diversity that
is expected to persist into the future, whilst ensuring that the cost of the solution is within a pre-
specified budget (Bennett et al. 2014, Faith 2008).

Usage

add_max_phylo_div_objective(x, budget, tree)

Arguments

x ProjectProblem object.

budget numeric budget for funding actions.

tree ape::phylo() phylogenetic tree describing the evolutionary relationships be-
tween the features. Note that the argument to tree must contain every feature,
and only the features, present in the argument to x.

Details

A problem objective is used to specify the overall goal of the project prioritization problem. Here,
the maximum phylogenetic diversity objective seeks to find the set of actions that maximizes the
expected amount of evolutionary history that is expected to persist into the future given the evo-
lutionary relationships between the features (e.g. populations, species). Let I represent the set of
conservation actions (indexed by i). Let Ci denote the cost for funding action i, and let m denote
the maximum expenditure (i.e. the budget). Also, let F represent each feature (indexed by f), Wf

represent the weight for each feature f (defaults to zero for each feature unless specified other-
wise), and Ef denote the probability that each feature will go extinct given the funded conservation
projects.

To describe the evolutionary relationships between the features f ∈ F , consider a phylogenetic
tree that contains features f ∈ F with branches of known lengths. This tree can be described using
mathematical notation by letting B represent the branches (indexed by b) with lengths Lb and letting
Tbf indicate which features f ∈ F are associated with which phylogenetic branches b ∈ B using
zeros and ones. Ideally, the set of features F would contain all of the species in the study area—
including non-threatened species—to fully account for the benefits for funding different actions.

To guide the prioritization, the conservation actions are organized into conservation projects. Let J
denote the set of conservation projects (indexed by j), and let Aij denote which actions i ∈ I com-
prise each conservation project j ∈ J using zeros and ones. Next, let Pj represent the probability
of project j being successful if it is funded. Also, let Bfj denote the enhanced probability that each
feature f ∈ F associated with the project j ∈ J will persist if all of the actions that comprise project
j are funded and that project is allocated to feature f . For convenience, let Qfj denote the actual
probability that each f ∈ F associated with the project j ∈ J is expected to persist if the project

add_max_phylo_div_objective 29

is funded. If the argument to adjust_for_baseline in the problem function was set to TRUE, and

this is the default behavior, then Qfj = (Pj × Bfj) +

((
1 − (PjBfj)

)
× (Pn × Bfn)

)
, where

n corresponds to the baseline "do nothing" project. This means that the probability of a feature
persisting if a project is allocated to a feature depends on (i) the probability of the project succeed-
ing, (ii) the probability of the feature persisting if the project does not fail, and (iii) the probability
of the feature persisting even if the project fails. Otherwise, if the argument is set to FALSE, then
Qfj = Pj ×Bfj .

The binary control variables Xi in this problem indicate whether each project i ∈ I is funded or
not. The decision variables in this problem are the Yj , Zfj , Ef , and Rb variables. Specifically,
the binary Yj variables indicate if project j is funded or not based on which actions are funded; the
binary Zfj variables indicate if project j is used to manage feature f or not; the semi-continuous Ef

variables denote the probability that feature f will go extinct; and the semi-continuous Rb variables
denote the probability that phylogenetic branch b will remain in the future.

Now that we have defined all the data and variables, we can formulate the problem. For convenience,
let the symbol used to denote each set also represent its cardinality (e.g. if there are ten features, let
F represent the set of ten features and also the number ten).

Maximize(

B∑
b=0

LbRb)+

F∑
f

(1−Ef)Wf (eqn1a)Subjectto

I∑
i=0

Ci ≤ m(eqn1b)Rb = 1−
F∏

f=0

ifelse(Tbf == 1, Ef , 1)∀b ∈ B(eqn1c)Ef = 1−
J∑

j=0

ZfjQfj∀f ∈ F (eqn1d)Zfj ≤ Yj∀j ∈ J(eqn1e)

J∑
j=0

Zfj×ceil(Qfj) = 1∀f ∈ F (eqn1f)AijYj ≤ Xi∀i ∈ I, j ∈ J(eqn1g)Ef , Rb ≥ 0, Ef , Rb ≤ 1∀b ∈ Bf ∈ F (eqn1h)Xi, Yj , Zfj ∈ [0, 1]∀i ∈ I, j ∈ J, f ∈ F (eqn1i)

The objective (eqn 1a) is to maximize the expected phylogenetic diversity (Faith 2008) plus the
probability each feature will remain multiplied by their weights (noting that the feature weights
default to zero). Constraint (eqn 1b) limits the maximum expenditure (i.e. ensures that the cost of
the funded actions do not exceed the budget). Constraints (eqn 1c) calculate the probability that each
branch (including tips that correspond to a single feature) will go extinct according to the probability
that the features which share a given branch will go extinct. Constraints (eqn 1d) calculate the
probability that each feature will go extinct according to their allocated project. Constraints (eqn 1e)
ensure that feature can only be allocated to projects that have all of their actions funded. Constraints
(eqn 1f) state that each feature can only be allocated to a single project. Constraints (eqn 1g) ensure
that a project cannot be funded unless all of its actions are funded. Constraints (eqns 1h) ensure that
the probability variables (Ef) are bounded between zero and one. Constraints (eqns 1i) ensure that
the action funding (Xi), project funding (Yj), and project allocation (Zfj) variables are binary.

Although this formulation is a mixed integer quadratically constrained programming problem (due
to eqn 1c), it can be approximated using linear terms and then solved using commercial mixed inte-
ger programming solvers. This can be achieved by substituting the product of the feature extinction
probabilities (eqn 1c) with the sum of the log feature extinction probabilities and using piecewise
linear approximations (described in Hillier & Price 2005 pp. 390–392) to approximate the exponent
of this term.

Value

ProjectProblem object with the objective added to it.

References

Bennett JR, Elliott G, Mellish B, Joseph LN, Tulloch AI, Probert WJ, Di Fonzo MMI, Monks JM,
Possingham HP & Maloney R (2014) Balancing phylogenetic diversity and species numbers in

30 add_max_phylo_div_objective

conservation prioritization, using a case study of threatened species in New Zealand. Biological
Conservation, 174: 47–54.

Faith DP (2008) Threatened species and the potential loss of phylogenetic diversity: conservation
scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conservation
Biology, 22: 1461–1470.

Hillier FS & Price CC (2005) International series in operations research & management science.
Springer.

See Also

objectives.

Examples

load data
data(sim_projects, sim_features, sim_actions, sim_tree)

plot tree
plot(sim_tree)

build problem with maximum phylogenetic diversity objective and $200 budget
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_phylo_div_objective(budget = 200, tree = sim_tree) %>%
add_binary_decisions()

Not run:
solve problem
s1 <- solve(p1)

print solution
print(s1)

plot solution
plot(p1, s1)

build another problem that includes feature weights
p2 <- p1 %>%

add_feature_weights("weight")

solve problem with feature weights
s2 <- solve(p2)

print solution based on feature weights
print(s2)

plot solution based on feature weights
plot(p2, s2)

End(Not run)

add_max_richness_objective 31

add_max_richness_objective

Add maximum richness objective

Description

Set the objective of a project prioritization problem() to maximize the total number of features
that are expected to persist, whilst ensuring that the cost of the solution is within a pre-specified
budget (Joseph, Maloney & Possingham 2009). This objective is conceptually similar to maximiz-
ing species richness in a study area. Furthermore, weights can also be used to specify the relative
importance of conserving specific features (see add_feature_weights()).

Usage

add_max_richness_objective(x, budget)

Arguments

x ProjectProblem object.

budget numeric budget for funding actions.

Details

A problem objective is used to specify the overall goal of the project prioritization problem. Here,
the maximum richness objective seeks to find the set of actions that maximizes the total number
of features (e.g. populations, species, ecosystems) that is expected to persist within a pre-specified
budget. Let I represent the set of conservation actions (indexed by i). Let Ci denote the cost for
funding action i, and let m denote the maximum expenditure (i.e. the budget). Also, let F represent
each feature (indexed by f), Wf represent the weight for each feature f (defaults to one for each
feature unless specified otherwise), and Ef denote the probability that each feature will go extinct
given the funded conservation projects.

To guide the prioritization, the conservation actions are organized into conservation projects. Let
J denote the set of conservation projects (indexed by j), and let Aij denote which actions i ∈
I comprise each conservation project j ∈ J using zeros and ones. Next, let Pj represent the
probability of project j being successful if it is funded. Also, let Bfj denote the probability that
each feature f ∈ F associated with the project j ∈ J will persist if all of the actions that comprise
project j are funded and that project is allocated to feature f . For convenience, let Qfj denote the
actual probability that each f ∈ F associated with the project j ∈ J is expected to persist if the
project is funded. If the argument to adjust_for_baseline in the problem function was set to

TRUE, and this is the default behavior, then Qfj = (Pj ×Bfj)+

((
1− (PjBfj)

)
× (Pn×Bfn)

)
,

where n corresponds to the baseline "do nothing" project. This means that the probability of a
feature persisting if a project is allocated to a feature depends on (i) the probability of the project
succeeding, (ii) the probability of the feature persisting if the project does not fail, and (iii) the
probability of the feature persisting even if the project fails. Otherwise, if the argument is set to
FALSE, then Qfj = Pj ×Bfj .

32 add_max_richness_objective

The binary control variables Xi in this problem indicate whether each project i ∈ I is funded or not.
The decision variables in this problem are the Yj , Zfj , and Ef variables. Specifically, the binary
Yj variables indicate if project j is funded or not based on which actions are funded; the binary
Zfj variables indicate if project j is used to manage feature f or not; and the semi-continuous Ef

variables denote the probability that feature f will go extinct.

Now that we have defined all the data and variables, we can formulate the problem. For convenience,
let the symbol used to denote each set also represent its cardinality (e.g. if there are ten features, let
F represent the set of ten features and also the number ten).

Maximize

F∑
f=0

(1−Ef)Wf (eqn1a)Subjectto

I∑
i=0

Ci ≤ m(eqn1b)Ef = 1−
J∑

j=0

ZfjQfj∀f ∈ F (eqn1c)Zfj ≤ Yj∀j ∈ J(eqn1d)

J∑
j=0

Zfj×ceil(Qfj) = 1∀f ∈ F (eqn1e)AijYj ≤ Xi∀i ∈ I, j ∈ J(eqn1f)Ef ≥ 0, Ef ≤ 1∀b ∈ B(eqn1g)Xi, Yj , Zfj ∈ [0, 1]∀i ∈ I, j ∈ J, f ∈ F (eqn1h)

The objective (eqn 1a) is to maximize the weighted persistence of all the species. Constraint (eqn
1b) limits the maximum expenditure (i.e. ensures that the cost of the funded actions do not exceed
the budget). Constraints (eqn 1c) calculate the probability that each feature will go extinct according
to their allocated project. Constraints (eqn 1d) ensure that feature can only be allocated to projects
that have all of their actions funded. Constraints (eqn 1e) state that each feature can only be allocated
to a single project. Constraints (eqn 1f) ensure that a project cannot be funded unless all of its actions
are funded. Constraints (eqns 1g) ensure that the probability variables (Ef) are bounded between
zero and one. Constraints (eqns 1h) ensure that the action funding (Xi), project funding (Yj), and
project allocation (Zfj) variables are binary.

Value

ProjectProblem object with the objective added to it.

References

Joseph LN, Maloney RF & Possingham HP (2009) Optimal allocation of resources among threat-
ened species: A project prioritization protocol. Conservation Biology, 23, 328–338.

See Also

objectives.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with maximum richness objective and $300 budget
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions()

Not run:
solve problem
s1 <- solve(p1)

add_max_targets_met_objective 33

print solution
print(s1)

plot solution
plot(p1, s1)

End(Not run)

build another problem that includes feature weights
p2 <- p1 %>%

add_feature_weights("weight")

Not run:
solve problem with feature weights
s2 <- solve(p2)

print solution based on feature weights
print(s2)

plot solution based on feature weights
plot(p2, s2)

End(Not run)

add_max_targets_met_objective

Add maximum targets met objective

Description

Set the objective of a project prioritization problem() to maximize the total number of persistence
targets met for the features, whilst ensuring that the cost of the solution is within a pre-specified
budget (Chades et al. 2015). In some project prioritization exercises, decision makers may have a
target level of persistence for each feature (e.g. a 90% persistence target corresponding to a 90%
chance for the features persisting into the future). In such exercises, the decision makers do not
perceive any benefit when a target is not met (e.g. if a feature has a persistence target of 90% and
a solution only secures a 70% chance of persistence then no benefit is accrued for that feature) or
when a target is surpassed (e.g. if a feature has a persistence target of 50%, then a solution which
secures a 95% chance of persistence will accrue the same benefit as a solution which secures a 50%
chance of persistence). Furthermore, weights can also be used to specify the relative importance of
meeting targets for specific features (see add_feature_weights()).

Usage

add_max_targets_met_objective(x, budget)

34 add_max_targets_met_objective

Arguments

x ProjectProblem object.

budget numeric budget for funding actions.

Details

A problem objective is used to specify the overall goal of the project prioritization problem. Here,
the maximum targets met objective seeks to find the set of actions that maximizes the total number
of features (e.g. populations, species, ecosystems) that have met their persistence targets within a
pre-specified budget. Let I represent the set of conservation actions (indexed by i). Let Ci denote
the cost for funding action i, and let m denote the maximum expenditure (i.e. the budget). Also,
let F represent each feature (indexed by f), Wf represent the weight for each feature f (defaults to
one for each feature unless specified otherwise), Tf represent the persistence target for each feature
f , and Ef denote the probability that each feature will go extinct given the funded conservation
projects.

To guide the prioritization, the conservation actions are organized into conservation projects. Let J
denote the set of conservation projects (indexed by j), and let Aij denote which actions i ∈ I com-
prise each conservation project j ∈ J using zeros and ones. Next, let Pj represent the probability
of project j being successful if it is funded. Also, let Bfj denote the enhanced probability that each
feature f ∈ F associated with the project j ∈ J will persist if all of the actions that comprise project
j are funded and that project is allocated to feature f . For convenience, let Qfj denote the actual
probability that each f ∈ F associated with the project j ∈ J is expected to persist if the project
is funded. If the argument to adjust_for_baseline in the problem function was set to TRUE, and

this is the default behavior, then Qfj = (Pj × Bfj) +

((
1 − (PjBfj)

)
× (Pn × Bfn)

)
, where

n corresponds to the baseline "do nothing" project. This means that the probability of a feature
persisting if a project is allocated to a feature depends on (i) the probability of the project succeed-
ing, (ii) the probability of the feature persisting if the project does not fail, and (iii) the probability
of the feature persisting even if the project fails. Otherwise, if the argument is set to FALSE, then
Qfj = Pj ×Bfj .

The binary control variables Xi in this problem indicate whether each project i ∈ I is funded or
not. The decision variables in this problem are the Yj , Zfj , Ef , and Gf variables. Specifically,
the binary Yj variables indicate if project j is funded or not based on which actions are funded; the
binary Zfj variables indicate if project j is used to manage feature f or not; the semi-continuous
Ef variables denote the probability that feature f will go extinct; and the Gf variables indicate if
the persistence target for feature f is met.

Now that we have defined all the data and variables, we can formulate the problem. For convenience,
let the symbol used to denote each set also represent its cardinality (e.g. if there are ten features, let
F represent the set of ten features and also the number ten).

Maximize

F∑
f=0

GfWf (eqn1a)Subjectto

I∑
i=0

Ci ≤ m(eqn1b)Gf (1−Ef) ≥ Tf∀f ∈ F (eqn1c)Ef = 1−
J∑

j=0

ZfjQfj∀f ∈ F (eqn1d)Zfj ≤ Yj∀j ∈ J(eqn1e)

J∑
j=0

Zfj×ceil(Qfj) = 1∀f ∈ F (eqn1f)AijYj ≤ Xi∀i ∈ I, j ∈ J(eqn1g)Ef ≥ 0, Ef ≤ 1∀b ∈ B(eqn1h)Gf , Xi, Yj , Zfj ∈ [0, 1]∀i ∈ I, j ∈ J, f ∈ F (eqn1i)

The objective (eqn 1a) is to maximize the weighted total number of the features that have their
persistence targets met. Constraints (eqn 1b) calculate which persistence targets have been met.
Constraint (eqn 1c) limits the maximum expenditure (i.e. ensures that the cost of the funded actions

add_max_targets_met_objective 35

do not exceed the budget). Constraints (eqn 1d) calculate the probability that each feature will go
extinct according to their allocated project. Constraints (eqn 1e) ensure that feature can only be
allocated to projects that have all of their actions funded. Constraints (eqn 1f) state that each feature
can only be allocated to a single project. Constraints (eqn 1g) ensure that a project cannot be funded
unless all of its actions are funded. Constraints (eqns 1h) ensure that the probability variables (Ef)
are bounded between zero and one. Constraints (eqns 1i) ensure that the target met (Gf), action
funding (Xi), project funding (Yj), and project allocation (Zfj) variables are binary.

Value

ProjectProblem object with the objective added to it.

References

Chades I, Nicol S, van Leeuwen S, Walters B, Firn J, Reeson A, Martin TG & Carwardine J (2015)
Benefits of integrating complementarity into priority threat management. Conservation Biology,
29, 525–536.

See Also

objectives.

Examples

load the ggplot2 R package to customize plot
library(ggplot2)

load data
data(sim_projects, sim_features, sim_actions)

manually adjust feature weights
sim_features$weight <- c(8, 2, 6, 3, 1)

build problem with maximum targets met objective, a $200 budget,
targets that require each feature to have a 20% chance of persisting into
the future, and zero cost actions locked in
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_targets_met_objective(budget = 200) %>%
add_absolute_targets(0.2) %>%
add_locked_in_constraints(which(sim_actions$cost < 1e-5)) %>%
add_binary_decisions()

Not run:
solve problem
s1 <- solve(p1)

print solution
print(s1)

plot solution, and add a dashed line to indicate the feature targets
we can see the three features meet the targets under the baseline

36 add_min_set_objective

scenario, and the project for F5 was prioritized for funding
so that its probability of persistence meets the target
plot(p1, s1) +
geom_hline(yintercept = 0.2, linetype = "dashed")

End(Not run)

build another problem that includes feature weights
p2 <- p1 %>%

add_feature_weights("weight")

Not run:
solve problem
s2 <- solve(p2)

print solution
print(s2)

plot solution, and add a dashed line to indicate the feature targets
we can see that adding weights to the problem has changed the solution
specifically, the projects for the feature F3 is now funded
to enhance its probability of persistence
plot(p2, s2) +
geom_hline(yintercept = 0.2, linetype = "dashed")

End(Not run)

add_min_set_objective Add minimum set objective

Description

Set the objective of a project prioritization problem() to minimize the cost of the solution whilst
ensuring that all targets are met. This objective is conceptually similar to that used in Marxan (Ball,
Possingham & Watts 2009).

Usage

add_min_set_objective(x)

Arguments

x ProjectProblem object.

Details

A problem objective is used to specify the overall goal of the project prioritization problem. Here,
the minimum set objective seeks to find the set of actions that minimizes the overall cost of the
prioritization, while ensuring that the funded projects meet a set of persistence targets for the con-
servation features (e.g. populations, species, ecosystems). Let I represent the set of conservation

add_min_set_objective 37

actions (indexed by i). Let Ci denote the cost for funding action i. Also, let F represent each feature
(indexed by f), Tf represent the persistence target for feature f , and Ef denote the probability that
each feature will go extinct given the funded conservation projects.

To guide the prioritization, the conservation actions are organized into conservation projects. Let J
denote the set of conservation projects (indexed by j), and let Aij denote which actions i ∈ I com-
prise each conservation project j ∈ J using zeros and ones. Next, let Pj represent the probability
of project j being successful if it is funded. Also, let Bfj denote the enhanced probability that each
feature f ∈ F associated with the project j ∈ J will persist if all of the actions that comprise project
j are funded and that project is allocated to feature f . For convenience, let Qfj denote the actual
probability that each f ∈ F associated with the project j ∈ J is expected to persist if the project
is funded. If the argument to adjust_for_baseline in the problem function was set to TRUE, and

this is the default behavior, then Qfj = (Pj × Bfj) +

((
1 − (PjBfj)

)
× (Pn × Bfn)

)
, where

n corresponds to the baseline "do nothing" project. This means that the probability of a feature
persisting if a project is allocated to a feature depends on (i) the probability of the project succeed-
ing, (ii) the probability of the feature persisting if the project does not fail, and (iii) the probability
of the feature persisting even if the project fails. Otherwise, if the argument is set to FALSE, then
Qfj = Pj ×Bfj .

The binary control variables Xi in this problem indicate whether each project i ∈ I is funded or not.
The decision variables in this problem are the Yj , Zfj , and Ef variables. Specifically, the binary
Yj variables indicate if project j is funded or not based on which actions are funded; the binary
Zfj variables indicate if project j is used to manage feature f or not; and the semi-continuous Ef

variables denote the probability that feature f will go extinct.

Now that we have defined all the data and variables, we can formulate the problem. For convenience,
let the symbol used to denote each set also represent its cardinality (e.g. if there are ten features, let
F represent the set of ten features and also the number ten).

Minimize

I∑
i=0

CiXi(eqn1a)Subjectto(1−Ef) ≥ Tf∀f ∈ F (eqn1b)Ef = 1−
J∑

j=0

ZfjQfj∀f ∈ F (eqn1c)Zfj ≤ Yj∀j ∈ J(eqn1d)

J∑
j=0

Zfj×ceil(Qfj) = 1∀f ∈ F (eqn1e)AijYj ≤ Xi∀i ∈ I, j ∈ J(eqn1f)Ef ≥ 0, Ef ≤ 1∀b ∈ B(eqn1g)Xi, Yj , Zfj ∈ [0, 1]∀i ∈ I, j ∈ J, f ∈ F (eqn1h)

The objective (eqn 1a) is to minimize the cost of the funded actions. Constraints (eqn 1b) ensure
that the persistence targets are met. Constraints (eqn 1c) calculate the probability that each feature
will go extinct according to their allocated project. Constraints (eqn 1d) ensure that feature can only
be allocated to projects that have all of their actions funded. Constraints (eqn 1e) state that each
feature can only be allocated to a single project. Constraints (eqn 1f) ensure that a project cannot
be funded unless all of its actions are funded. Constraints (eqns 1g) ensure that the probability
variables (Ef) are bounded between zero and one. Constraints (eqns 1h) ensure that the action
funding (Xi), project funding (Yj), and project allocation (Zfj) variables are binary.

Value

ProjectProblem object with the objective added to it.

References

Ball IR, Possingham HP & Watts M (2009) Marxan and relatives: software for spatial conservation
prioritisation. Spatial conservation prioritisation: Quantitative methods and computational tools,
185-195.

38 add_random_solver

See Also

objectives, targets.

Examples

load the ggplot2 R package to customize plot
library(ggplot2)

load data
data(sim_projects, sim_features, sim_actions)

build problem with minimum set objective and targets that require each
feature to have a 30% chance of persisting into the future
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_absolute_targets(0.3) %>%
add_binary_decisions()

Not run:
solve problem
s <- solve(p)

print solution
print(s)

plot solution, and add a dashed line to indicate the feature targets
plot(p, s) +
geom_hline(yintercept = 0.3, linetype = "dashed")

End(Not run)

add_random_solver Add a random solver

Description

Specify that solutions should be generated using random processes. Although prioritizations should
be developed using optimization routines, a portfolio of randomly generated solutions can be useful
for evaluating the effectiveness of solutions.

Usage

add_random_solver(x, number_solutions = 1, verbose = TRUE)

Arguments

x ProjectProblem object.

add_random_solver 39

number_solutions

integer number of solutions desired. Defaults to 1. Note that the number of re-
turned solutions can sometimes be less than the argument to number_solutions
depending on the argument to solution_pool_method, for example if 100 so-
lutions are requested but only 10 unique solutions exist, then only 10 solutions
will be returned.

verbose logical should information be printed while solving optimization problems?

Details

The algorithm used to randomly generate solutions depends on the the objective specified for the
project prioritization problem().

For objectives which maximize benefit subject to budgetary constraints (e.g. add_max_richness_objective()):

1. All locked in and zero-cost actions are initially selected for funding (excepting actions which
are locked out).

2. A project—and all of its associated actions—is randomly selected for funding (excepting
projects associated with locked out actions, and projects which would cause the budget to
be exceeded when added to the existing set of selected actions).

3. The previous step is repeated until no more projects can be selected for funding without the
total cost of the prioritized actions exceeding the budget.

For objectives which minimize cost subject to biodiversity constraints (i.e. add_min_set_objective():

1. All locked in and zero-cost actions are initially selected for funding (excepting actions which
are locked out).

2. A project—and all of its associated actions—is randomly selected for funding (excepting
projects associated with locked out actions, and projects which would cause the budget to
be exceeded when added to the existing set of selected actions).

3. The previous step is repeated until all of the persistence targets are met.

Value

ProjectProblem object with the solver added to it.

See Also

solvers.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with random solver, and generate 100 random solutions
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%

40 add_relative_targets

add_random_solver(number_solutions = 100)

print problem
print(p1)

solve problem
s1 <- solve(p1)

print solutions
print(s1)

plot first random solution
plot(p1, s1)

plot histogram of the objective values for the random solutions
hist(s1$obj, xlab = "Expected richness", xlim = c(0, 2.5),

main = "Histogram of random solutions")

since the objective values don't tell us much about the quality of the
solutions, we can find the optimal solution and calculate how different
each of the random solutions is from optimality

Not run:
find the optimal objective value using an exact algorithms solver
s2 <- p1 %>%

add_default_solver() %>%
solve()

create new column in s1 with percent difference from optimality
s1$optimality_diff <- ((s2$obj - s1$obj) / s1$obj) * 100

plot histogram showing the quality of the random solutions
higher numbers indicate worse solutions
hist(s1$optimality_diff, xlab = "Difference from optimality (%)",

main = "Histogram of random solutions", xlim = c(0, 50))

End(Not run)

add_relative_targets Add relative targets

Description

Set targets for a project prioritization problem() as a proportion (between 0 and 1) of the maximum
probability of persistence associated with the best project for feature. For instance, if the best
project for a feature has an 80% probability of persisting, setting a 50% (i.e. 0.5) relative target
will correspond to a 40% threshold probability of persisting.

add_relative_targets 41

Usage

add_relative_targets(x, targets)

S4 method for signature 'ProjectProblem,numeric'
add_relative_targets(x, targets)

S4 method for signature 'ProjectProblem,character'
add_relative_targets(x, targets)

Arguments

x ProjectProblem object.

targets Object that specifies the targets for each feature. See the Details section for more
information.

Details

Targets are used to specify the minimum probability of persistence for each feature in solutions. For
minimum set objectives (i.e. add_min_set_objective(), these targets specify the minimum prob-
ability of persistence required for each species in the solution. And for budget constrained objec-
tives that use targets (i.e.add_max_targets_met_objective()), these targets specify the minimum
threshold probability of persistence that needs to be achieved to count the benefits for conserving
these species. Please note that attempting to solve problems with objectives that require targets
without specifying targets will throw an error.

The targets for a problem can be specified in several different ways:

numeric vector of target values for each feature. The order of the target values should correspond
to the order of the features in the data used to create the argument to x. Additionally, for
convenience, this type of argument can be a single value to assign the same target to each
feature.

character specifying the name of column in the feature data (i.e. the argument to features in
the problem() function) that contains the persistence targets.

See Also

targets.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with minimum set objective and targets that require each
feature to have a level of persistence that is greater than or equal to
70% of the best project for conserving it
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_relative_targets(0.7) %>%

42 add_rsymphony_solver

add_binary_decisions()

print problem
print(p1)

build problem with minimum set objective and specify targets that require
different levels of persistence for each feature
p2 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_relative_targets(c(0.2, 0.3, 0.4, 0.5, 0.6)) %>%
add_binary_decisions()

print problem
print(p2)

add a column name to the feature data with targets
sim_features$target <- c(0.2, 0.3, 0.4, 0.5, 0.6)

build problem with minimum set objective and specify targets using
column name in the feature data
p3 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_relative_targets("target") %>%
add_binary_decisions()

Not run:
print problem
print(p3)

solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)

print solutions
print(s1)
print(s2)
print(s3)

plot solutions
plot(p1, s1)
plot(p2, s2)
plot(p3, s3)

End(Not run)

add_rsymphony_solver Add a SYMPHONY solver with Rsymphony

add_rsymphony_solver 43

Description

Specify that the SYMPHONY software should be used to solve a project prioritization problem()
using the Rsymphony package. This function can also be used to customize the behavior of the
solver. It requires the Rsymphony package.

Usage

add_rsymphony_solver(
x,
gap = 0,
time_limit = .Machine$integer.max,
first_feasible = FALSE,
verbose = TRUE

)

Arguments

x ProjectProblem object.

gap numeric gap to optimality. This gap is relative and expresses the acceptable
deviance from the optimal objective. For example, a value of 0.01 will result
in the solver stopping when it has found a solution within 1% of optimality.
Additionally, a value of 0 will result in the solver stopping when it has found an
optimal solution. The default value is 0.1 (i.e. 10% from optimality).

time_limit numeric time limit in seconds to run the optimizer. The solver will return the
current best solution when this time limit is exceeded.

first_feasible logical should the first feasible solution be be returned? If first_feasible
is set to TRUE, the solver will return the first solution it encounters that meets all
the constraints, regardless of solution quality. Note that the first feasible solution
is not an arbitrary solution, rather it is derived from the relaxed solution, and is
therefore often reasonably close to optimality. Defaults to FALSE.

verbose logical should information be printed while solving optimization problems?

Details

SYMPHONY is an open-source integer programming solver that is part of the Computational In-
frastructure for Operations Research (COIN-OR) project, an initiative to promote development of
open-source tools for operations research (a field that includes linear programming). The Rsym-
phony package provides an interface to COIN-OR and is available on CRAN. This solver uses the
Rsymphony package to solve problems.

Value

ProjectProblem object with the solver added to it.

See Also

solvers.

https://github.com/coin-or/SYMPHONY

44 ArrayParameter-class

Examples

Not run:
load data
data(sim_projects, sim_features, sim_actions)

build problem with Rsymphony solver
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_rsymphony_solver()

print problem
print(p)

solve problem
s <- solve(p)

print solution
print(s)

plot solution
plot(p, s)

End(Not run)

ArrayParameter-class Array parameter prototype

Description

This prototype is used to represent a parameter has multiple values. Each value is has a label to
differentiate values. Only experts should interact directly with this prototype.

Fields

$id character identifier for parameter.

$name character name of parameter.

$value numeric vector of values.

$label character vector of names for each value.

$default numeric vector of default values.

$length integer number of values.

$class character class of values.

$lower_limit numeric vector specifying the minimum permitted values.

$upper_limit numeric vector specifying the maximum permitted values.

$widget function used to construct a shiny::shiny() interface for modifying values.

array_parameters 45

Usage

x$print()

x$show()

x$repr()

x$validate(tbl)

x$get()

x$set(tbl)

x$reset()

x$render(...)

Arguments

tbl data.frame() containing new parameter values with row names indicating the labels and a
column called "values" containing the new parameter values.

... arguments passed to function in widget field.

Details

print print the object.

show show the object.

repr character representation of object.

validate check if a proposed new set of parameters are valid.

get return a base::data.frame() containing the parameter values.

set update the parameter values using a base::data.frame().

reset update the parameter values to be the default values.

render create a shiny::shiny() widget to modify parameter values.

See Also

ScalarParameter, Parameter.

array_parameters Array parameters

Description

Create parameters that consist of multiple numbers. If an attempt is made to create a parameter with
conflicting settings then an error will be thrown.

46 array_parameters

Usage

proportion_parameter_array(name, value, label)

binary_parameter_array(name, value, label)

integer_parameter_array(
name,
value,
label,
lower_limit = rep(as.integer(-.Machine$integer.max), length(value)),
upper_limit = rep(as.integer(.Machine$integer.max), length(value))

)

numeric_parameter_array(
name,
value,
label,
lower_limit = rep(.Machine$double.xmin, length(value)),
upper_limit = rep(.Machine$double.xmax, length(value))

)

Arguments

name character name of parameter.

value vector of values.

label character vector of labels for each value.

lower_limit vector of values denoting the minimum acceptable value for each element in
value. Defaults to the smallest possible number on the system.

upper_limit vector of values denoting the maximum acceptable value for each element in
value. Defaults to the largest possible number on the system.

Details

Below is a list of parameter generating functions and a brief description of each.

proportion_parameter_array a parameter that consists of multiple numeric values that are be-
tween zero and one.

binary_parameter_array a parameter that consists of multiple integer values that are either zero
or one.

integer_parameter_array a parameter that consists of multiple integer values.

numeric_parameter_array a parameter that consists of multiple numeric values.

Value

ArrayParameter object.

array_parameters 47

Examples

proportion parameter array
p1 <- proportion_parameter_array('prop_array', c(0.1, 0.2, 0.3),

letters[1:3])
print(p1) # print it
p1$get() # get value
p1$id # get id
invalid <- data.frame(value = 1:3, row.names=letters[1:3]) # invalid values
p1$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0.4, 0.5, 0.6), row.names=letters[1:3]) # valid
p1$validate(valid) # check valid input is valid
p1$set(valid) # change value to valid input
print(p1)

binary parameter array
p2 <- binary_parameter_array('bin_array', c(0L, 1L, 0L), letters[1:3])
print(p2) # print it
p2$get() # get value
p2$id # get id
invalid <- data.frame(value = 1:3, row.names=letters[1:3]) # invalid values
p2$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0L, 0L, 0L), row.names=letters[1:3]) # valid
p2$validate(valid) # check valid input is valid
p2$set(valid) # change value to valid input
print(p2)

integer parameter array
p3 <- integer_parameter_array('int_array', c(1:3), letters[1:3])
print(p3) # print it
p3$get() # get value
p3$id # get id
invalid <- data.frame(value = rnorm(3), row.names=letters[1:3]) # invalid
p3$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = 5:7, row.names=letters[1:3]) # valid
p3$validate(valid) # check valid input is valid
p3$set(valid) # change value to valid input
print(p3)

numeric parameter array
p4 <- numeric_parameter_array('dbl_array', c(0.1, 4, -5), letters[1:3])
print(p4) # print it
p4$get() # get value
p4$id # get id
invalid <- data.frame(value = c(NA, 1, 2), row.names=letters[1:3]) # invalid
p4$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(1, 2, 3), row.names=letters[1:3]) # valid
p4$validate(valid) # check valid input is valid
p4$set(valid) # change value to valid input
print(p4)

numeric parameter array with lower bounds
p5 <- numeric_parameter_array('b_dbl_array', c(0.1, 4, -5), letters[1:3],

48 as.Id

lower_limit=c(0, 1, 2))
print(p5) # print it
p5$get() # get value
p5$id# get id
invalid <- data.frame(value = c(-1, 5, 5), row.names=letters[1:3]) # invalid
p5$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0, 1, 2), row.names=letters[1:3]) # valid
p5$validate(valid) # check valid input is valid
p5$set(valid) # change value to valid input
print(p5)

as.Id Coerce object to another object

Description

Coerce an object.

Usage

as.Id(x, ...)

S3 method for class 'character'
as.Id(x, ...)

S3 method for class 'Parameters'
as.list(x, ...)

Arguments

x Object.

... unused arguments.

Value

An Object.

as.list.OptimizationProblem 49

as.list.OptimizationProblem

Convert OptimizationProblem to list

Description

Convert OptimizationProblem to list

Usage

S3 method for class 'OptimizationProblem'
as.list(x, ...)

Arguments

x OptimizationProblem object.

... not used.

Value

list() object.

branch_matrix Branch matrix

Description

Phylogenetic trees depict the evolutionary relationships between different species. Each branch in
a phylogenetic tree represents a period of evolutionary history. Species that are connected to the
same branch share the same period of evolutionary history represented by the branch. This function
creates a matrix that shows which species are connected with which branches. In other words, it
creates a matrix that shows which periods of evolutionary history each species has experienced.

Usage

branch_matrix(x, ...)

Default S3 method:
branch_matrix(x, ...)

S3 method for class 'phylo'
branch_matrix(x, assert_validity = TRUE, ...)

50 Collection-class

Arguments

x ape::phylo() tree object.

... not used.
assert_validity

logical value (i.e. TRUE or FALSE indicating if the argument to x should be
checked for validity. Defaults to TRUE.

Value

Matrix::dgCMatrix sparse matrix object. Each row corresponds to a different species. Each column
corresponds to a different branch. Species that inherit from a given branch are indicated with a one.

Examples

load Matrix package to plot matrices
library(Matrix)

load data
data(sim_tree)

generate species by branch matrix
m <- branch_matrix(sim_tree)

plot data
par(mfrow = c(1,2))
plot(sim_tree, main = "phylogeny")
image(m, main = "branch matrix")

Collection-class Collection prototype

Description

This prototype represents a collection of ProjectModifier objects.

Fields

$... ProjectModifier objects stored in the collection.

Usage

x$print()

x$show()

x$repr()

x$ids()

x$length()

compile 51

x$add

x$remove(id)

x$get_parameter(id)

x$set_parameter(id, value)

x$render_parameter(id)

x$render_all_parameters()

Arguments

id id object.

value any object.

Details

print print the object.

show show the object.

repr character representation of object.

ids character ids for objects inside collection.

length integer number of objects inside collection.

add add ProjectModifier object.

remove remove an item from the collection.

get_parameter retrieve the value of a parameter in the object using an id object.

set_parameter change the value of a parameter in the object to a new object.

render_parameter generate a shiny widget to modify the the value of a parameter (specified by
argument id).

render_all_parameters generate a shiny::div() containing all the parameters" widgets.

See Also

Constraint.

compile Compile a problem

Description

Compile a project prioritization problem() into a general purpose format for optimization.

Usage

compile(x, ...)

S3 method for class 'ProjectProblem'
compile(x, ...)

52 Constraint-class

Arguments

x ProjectProblem object.

... not used.

Details

This function might be useful for those interested in understanding how their project prioritization
problem() is expressed as a mathematical problem. However, if the problem just needs to be
solved, then the solve() function should be used instead.

Value

OptimizationProblem object.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with maximum richness objective, $200 budget, and
binary decisions
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions()

print problem
print(p)

compile problem
o <- compile(p)

print compiled problem
print(o)

Constraint-class Constraint prototype

Description

This prototype is used to represent the constraints used when making a prioritization. This proto-
type represents a recipe, to actually add constraints to a planning problem, see the help page
on constraints. Only experts should use this class directly. This prototype inherits from the
ProjectModifier.

See Also

ProjectModifier.

constraints 53

constraints Project prioritization problem constraints

Description

A constraint can be added to a project prioritization problem() to ensure that solutions exhibit a
specific characteristic.

Details

The following constraints can be added to a project prioritization problem():

add_locked_in_constraints() Add constraints to ensure that certain actions are prioritized for
funding.

add_locked_out_constraints() Add constraints to ensure that certain actions are not prioritized
for funding.

See Also

decisions, objectives, problem(), solvers, targets, weights.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with maximum richness objective and $150 budget
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 150) %>%
add_binary_decisions()

print problem
print(p1)

build another problem, and lock in the third action
p2 <- p1 %>%

add_locked_in_constraints(c(3))

print problem
print(p2)

build another problem, and lock out the second action
p3 <- p1 %>%

add_locked_out_constraints(c(2))

print problem
print(p3)

54 decisions

Not run:
solve problems
s1 <- solve(p1)
s2 <- solve(p2)
s3 <- solve(p3)

print the actions selected for funding in each of the solutions
print(s1[, sim_actions$name])
print(s2[, sim_actions$name])
print(s3[, sim_actions$name])

End(Not run)

Decision-class Decision prototype

Description

This prototype used to represent the type of decision that is made when prioritizing planning units.
This prototype represents a recipe to make a decision, to actually specify the type of decision
in a planning problem, see the help page on decisions. Only experts should use this class
directly. This class inherits from the ProjectModifier.

See Also

ProjectModifier.

decisions Specify the type of decisions

Description

Project prioritization problems involve making decisions about how funding will be allocated to
management actions.

Details

Please note that only one type of decision is currently supported:

add_binary_decisions() This is the conventional type of decision where management actions
are either prioritized for funding or not.

See Also

constraints, objectives, problem(), solvers, targets, weights.

feature_names 55

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with maximum richness objective, $200 budget, and
binary decisions
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions()

print problem
print(p)

Not run:
solve problem
s <- solve(p)

print solution
print(s)

plot solution
plot(p, s)

End(Not run)

feature_names Feature names

Description

Extract the names of the features in an object.

Usage

feature_names(x)

S4 method for signature 'ProjectProblem'
feature_names(x)

Arguments

x ProjectProblem.

Value

character feature names.

56 is.Id

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with default solver
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_default_solver()

print problem
print(p)

print feature names
feature_names(p)

is.Id Is it?

Description

Test if an object inherits from a class.

Usage

is.Id(x)

is.Waiver(x)

Arguments

x Object.

Value

logical indicating if it inherits from the class.

matrix_parameters 57

matrix_parameters Matrix parameters

Description

Create a parameter that represents a matrix object.

Usage

numeric_matrix_parameter(
name,
value,
lower_limit = .Machine$double.xmin,
upper_limit = .Machine$double.xmax,
symmetric = FALSE

)

binary_matrix_parameter(name, value, symmetric = FALSE)

Arguments

name character name of parameter.

value matrix object.

lower_limit numeric values denoting the minimum acceptable value in the matrix. Defaults
to the smallest possible number on the system.

upper_limit numeric values denoting the maximum acceptable value in the matrix. Defaults
to the smallest possible number on the system.

symmetric logical must the must be matrix be symmetric? Defaults to FALSE.

Value

MiscParameter object.

Examples

create matrix
m <- matrix(runif(9), ncol = 3)
colnames(m) <- letters[1:3]
rownames(m) <- letters[1:3]

create a numeric matrix parameter
p1 <- numeric_matrix_parameter("m", m)
print(p1) # print it
p1$get() # get value
p1$id # get id
p1$validate(m[, -1]) # check if parameter can be updated
p1$set(m + 1) # set parameter to new values

58 MiscParameter-class

p1$print() # print it again

create a binary matrix parameter
m <- matrix(round(runif(9)), ncol = 3)
colnames(m) <- letters[1:3]
rownames(m) <- letters[1:3]

create a binary matrix parameter
p2 <- binary_matrix_parameter("m", m)
print(p2) # print it
p2$get() # get value
p2$id # get id
p2$validate(m[, -1]) # check if parameter can be updated
p2$set(m + 1) # set parameter to new values
p2$print() # print it again

MiscParameter-class Miscellaneous parameter prototype

Description

This prototype is used to represent a parameter that can be any object. Only experts should interact
directly with this prototype.

Fields

$id character identifier for parameter.

$name character name of parameter.

$value tibble::tibble() object.

$validator list object containing a function that is used to validate changes to the parameter.

$widget list object containing a function used to construct a shiny interface for modifying val-
ues.

Usage

x$print()

x$show()

x$validate(x)

x$get()

x$set(x)

x$reset()

x$render(...)

misc_parameter 59

Arguments

x object used to set a new parameter value.

... arguments passed to $widget.

Details

print print the object.

show show the object.

validate check if a proposed new parameter is valid.

get extract the parameter value.

set update the parameter value.

reset update the parameter value to be the default value.

render create a shiny::shiny() widget to modify parameter values.

See Also

Parameter.

misc_parameter Miscellaneous parameter

Description

Create a parameter that consists of a miscellaneous object.

Usage

misc_parameter(name, value, validator, widget)

Arguments

name character name of parameter.

value object.

validator function to validate changes to the parameter. This function must have a single
argument and return either TRUE or FALSE depending on if the argument is valid
candidate for the parameter.

widget function to render a shiny widget. This function should must have a single
argument that accepts a valid object and return a shiny.tag or shiny.tag.list
object.

Value

MiscParameter object.

60 new_id

Examples

load data
data(iris, mtcars)

create table parameter can that can be updated to any other object
p1 <- misc_parameter("tbl", iris,

function(x) TRUE,
function(id, x) structure(id, .Class = "shiny.tag"))

print(p1) # print it
p1$get() # get value
p1$id # get id
p1$validate(mtcars) # check if parameter can be updated
p1$set(mtcars) # set parameter to mtcars
p1$print() # print it again

create table parameter with validation function that requires
all values in the first column to be less then 200 and that the
parameter have the same column names as the iris data set
p2 <- misc_parameter("tbl2", iris,

function(x) all(names(x) %in% names(iris)) &&
all(x[[1]] < 200),

function(id, x) structure(id, .Class = "shiny.tag"))
print(p2) # print it
p2$get() # get value
p2$id # get id
p2$validate(mtcars) # check if parameter can be updated
iris2 <- iris; iris2[1,1] <- 300 # create updated iris data set
p2$validate(iris2) # check if parameter can be updated
iris3 <- iris; iris2[1,1] <- 100 # create updated iris data set
p2$set(iris3) # set parameter to iris3
p2$print() # print it again

new_id Identifier

Description

Generate a new unique identifier.

Usage

new_id()

Details

Identifiers are made using the uuid::UUIDgenerate().

new_optimization_problem 61

Value

Id object.

See Also

uuid::UUIDgenerate().

Examples

create new id
i <- new_id()

print id
print(i)

convert to character
as.character(i)

check if it is an Id object
is.Id(i)

new_optimization_problem

Optimization problem

Description

Generate a new empty OptimizationProblem object.

Usage

new_optimization_problem()

Value

OptimizationProblem object.

See Also

OptimizationProblem-methods()

Examples

create empty OptimizationProblem object
x <- new_optimization_problem()

print new object
print(x)

62 number_of_actions

new_waiver Waiver

Description

Create a waiver object.

Usage

new_waiver()

Details

This object is used to represent that the user has not manually specified a setting, and so defaults
should be used. By explicitly using a new_waiver(), this means that NULL objects can be a valid
setting. The use of a "waiver" object was inspired by the ggplot2 package.

Value

object of class Waiver.

Examples

create new waiver object
w <- new_waiver()

print object
print(w)

is it a waiver object?
is.Waiver(w)

number_of_actions Number of actions

Description

Extract the number of actions in an object.

Usage

number_of_actions(x)

S4 method for signature 'ProjectProblem'
number_of_actions(x)

S4 method for signature 'OptimizationProblem'
number_of_actions(x)

number_of_features 63

Arguments

x ProjectProblem or OptimizationProblem object.

Value

integer number of actions.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with default solver
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_default_solver()

print problem
print(p)

print number of actions
number_of_actions(p)

number_of_features Number of features

Description

Extract the number of features in an object.

Usage

number_of_features(x)

S4 method for signature 'ProjectProblem'
number_of_features(x)

S4 method for signature 'OptimizationProblem'
number_of_features(x)

Arguments

x ProjectProblem or OptimizationProblem object.

Value

integer number of features.

64 number_of_projects

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with default solver
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_default_solver()

print problem
print(p)

print number of features
number_of_features(p)

number_of_projects Number of projects

Description

Extract the number of projects in an object.

Usage

number_of_projects(x)

S4 method for signature 'ProjectProblem'
number_of_projects(x)

S4 method for signature 'OptimizationProblem'
number_of_projects(x)

Arguments

x ProjectProblem or OptimizationProblem object.

Value

integer number of projects.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with default solver
p <- problem(sim_projects, sim_actions, sim_features,

Objective-class 65

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_default_solver()

print problem
print(p)

print number of projects
number_of_projects(p)

Objective-class Objective prototype

Description

This prototype is used to represent an objective that can be added to a ProjectProblem object. This
prototype represents a recipe to make an objective, to actually add an objective to a planning
problem: see objectives. Only experts should use this class directly.

objectives Problem objective

Description

An objective is used to specify the overall goal of a project prioritization problem(). All project
prioritization problems involve minimizing or maximizing some kind of objective. For instance, the
decision maker may require a funding scheme that maximizes the total number of species that are
expected to persist into the future whilst ensuring that the total cost of the funded actions does not
exceed a budget. Alternatively, the planner may require a solution that ensures that each species
meets a target level of persistence whilst minimizing the cost of the funded actions. A project
prioritization problem() must have a specified objective before it can be solved, and attempting to
solve a problem which does not have a specified objective will throw an error.

Details

The following objectives can be added to a conservation planning problem():

add_max_richness_objective() Maximize the total number of features that are expected to per-
sist, whilst ensuring that the cost of the solution is within a pre-specified budget (Joseph,
Maloney & Possingham 2009).

add_max_targets_met_objective() Maximize the total number of persistence targets met for
the features, whilst ensuring that the cost of the solution is within a pre-specified budget
(Chades et al. 2015).

66 objectives

add_max_phylo_div_objective() Maximize the phylogenetic diversity that is expected to persist
into the future, whilst ensuring that the cost of the solution is within a pre-specified budget
(Bennett et al. 2014, Faith 2008).

add_min_set_objective() Minimize the cost of the solution whilst ensuring that all targets are
met. This objective is conceptually similar to that used in Marxan (Ball, Possingham & Watts
2009).

References

Ball IR, Possingham HP & Watts M (2009) Marxan and relatives: software for spatial conservation
prioritisation. Spatial conservation prioritisation: Quantitative methods and computational tools,
185-195.

Bennett JR, Elliott G, Mellish B, Joseph LN, Tulloch AI, Probert WJ, Di Fonzo MMI, Monks JM,
Possingham HP & Maloney R (2014) Balancing phylogenetic diversity and species numbers in
conservation prioritization, using a case study of threatened species in New Zealand. Biological
Conservation, 174: 47–54.

Chades I, Nicol S, van Leeuwen S, Walters B, Firn J, Reeson A, Martin TG & Carwardine J (2015)
Benefits of integrating complementarity into priority threat management. Conservation Biology,
29, 525–536.

Faith DP (2008) Threatened species and the potential loss of phylogenetic diversity: conservation
scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conservation
Biology, 22: 1461–1470.

Joseph LN, Maloney RF & Possingham HP (2009) Optimal allocation of resources among threat-
ened species: A project prioritization protocol. Conservation Biology, 23, 328–338.

See Also

constraints, decisions, problem(), solvers, targets, weights.

Examples

load data
data(sim_projects, sim_features, sim_actions, sim_tree)

build problem with maximum richness objective and $200 budget
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions()

Not run:
solve problem
s1 <- solve(p1)

print solution
print(s1)

plot solution
plot(p1, s1)

objectives 67

End(Not run)

build problem with maximum phylogenetic diversity objective and $200 budget
p2 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_phylo_div_objective(budget = 200, tree = sim_tree) %>%
add_binary_decisions()

Not run:
solve problem
s2 <- solve(p2)

print solution
print(s2)

plot solution
plot(p2, s2)

End(Not run)
build problem with maximum targets met objective, $200 budget, and
40% persistence targets
p3 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_targets_met_objective(budget = 200) %>%
add_absolute_targets(0.4) %>%
add_binary_decisions()

Not run:
solve problem
s3 <- solve(p3)

print solution
print(s3)

plot solution
plot(p3, s3)

End(Not run)

build problem with minimum set objective, $200 budget, and 40%
persistence targets
p4 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_absolute_targets(0.4) %>%
add_binary_decisions()

Not run:
solve problem
s4 <- solve(p4)

print solution

68 oppr

print(s4)

plot solution
plot(p4, s4)

End(Not run)

oppr oppr: Optimal Project Prioritization

Description

The oppr R package a decision support tool for prioritizing conservation projects. Prioritizations
can be developed by maximizing expected feature richness, expected phylogenetic diversity, the
number of features that meet persistence targets, or identifying a set of projects that meet persistence
targets for minimal cost. Constraints (e.g. lock in specific actions) and feature weights can also be
specified to further customize prioritizations. After defining a project prioritization problem, solu-
tions can be obtained using exact algorithms, heuristic algorithms, or random processes. In particu-
lar, it is recommended to install the ’Gurobi’ optimizer (available from https://www.gurobi.com)
because it can identify optimal solutions very quickly. Finally, methods are provided for comparing
different prioritizations and evaluating their benefits.

Installation

To make the most of this package, the ggtree and gurobi R packages will need to be installed. Since
the ggtree package is exclusively available at Bioconductor—and is not available on The Compre-
hensive R Archive Network—please execute the following command to install it: source("https://bioconductor.org/biocLite.R");biocLite("ggtree").
If the installation process fails, please consult the package’s online documentation. To install the
gurobi package, the Gurobi optimization suite will first need to be installed (see instructions for
Linux, Mac OSX, and Windows operating systems). Although Gurobi is a commercial software,
academics can obtain a special license for no cost. After installing the Gurobi optimization suite, the
gurobi package can then be installed (see instructions for Linux, Mac OSX, and Windows operating
systems).

See Also

Please refer to the package vignette for more information and worked examples. This can be ac-
cessed using the code vignette("oppr").

Examples

load data
data(sim_projects, sim_features, sim_actions)

print project data
print(sim_projects)

print action data

https://www.gurobi.com
https://bioconductor.org/packages/release/bioc/html/ggtree.html
https://www.gurobi.com/documentation/8.1/refman/r_api_overview.html
https://bioconductor.org/packages/release/bioc/html/ggtree.html
https://bioconductor.org
https://cran.r-project.org/
https://cran.r-project.org/
https://bioconductor.org/packages/release/bioc/html/ggtree.html
https://www.gurobi.com
https://www.gurobi.com/documentation/8.1/quickstart_linux/software_installation_guid.html
https://www.gurobi.com/documentation/8.1/quickstart_mac/software_installation_guid.html
https://www.gurobi.com/documentation/8.1/quickstart_windows/software_installation_guid.html
https://www.gurobi.com
https://www.gurobi.com/downloads/end-user-license-agreement-academic/
https://www.gurobi.com
https://www.gurobi.com/documentation/8.1/quickstart_linux/r_installing_the_r_package.html
https://www.gurobi.com/documentation/8.1/quickstart_mac/r_installing_the_r_package.html
https://www.gurobi.com/documentation/8.1/quickstart_windows/r_installing_the_r_package.html

OptimizationProblem-class 69

print(sim_features)

print feature data
print(sim_actions)

build problem
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 400) %>%
add_feature_weights("weight") %>%
add_binary_decisions()

print problem
print(p)

Not run:
solve problem
s <- solve(p)

print output
print(s)

print which actions are funded in the solution
s[, sim_actions$name, drop = FALSE]

print the expected probability of persistence for each feature
if the solution were implemented
s[, sim_features$name, drop = FALSE]

visualize solution
plot(p, s)

End(Not run)

OptimizationProblem-class

Optimization problem class

Description

The OptimizationProblem class is used to represent an optimization problem. Data are stored
in memory and accessed using an external pointer. Only experts should interact with this class
directly.

Fields

$ptr externalptr object.

$data list object.

70 OptimizationProblem-class

Usage

x$print()

x$show()

x$repr()

x$ncol()

x$nrow()

x$ncell()

x$modelsense()

x$vtype()

x$obj()

x$pwlobj()

x$A()

x$rhs()

x$sense()

x$lb()

x$ub()

x$number_of_projects()

x$number_of_actions()

x$number_of_features()

x$number_of_branches()

x$row_ids()

x$col_ids()

x$get_data()

Arguments

ptr externalptr object.

Details

print print the object.

show show the object.

repr character representation of object.

ncol integer number of columns (variables) in model matrix.

nrow integer number of rows (constraints) in model matrix.

ncell integer number of cells in model matrix.

modelsense character model sense.

vtype character vector of variable types.

obj numeric vector containing the linear components of the objective function.

OptimizationProblem-methods 71

pwlobj list object containing the piece-wise linear components of the objective function.

A Matrix::dgCMatrix model matrix

rhs numeric vector of right-hand-side constraints.

sense character vector of constraint senses.

lb numeric vector of lower bounds for each decision variable.

ub numeric vector of upper bounds for each decision variable.

number_of_projects integer number of projects in the problem.

number_of_actions integer number of actions in the problem.

number_of_features integer number of features in the problem.

number_of_branches integer number of phylogenetic branches in the problem.

col_ids character names describing each decision variable (column) in the model matrix.

row_ids character names describing each constraint (row) in in the model matrix.

get_data list containing additional data.

OptimizationProblem-methods

Optimization problem methods

Description

These functions are used to access data from an OptimizationProblem object.

Usage

nrow(x)

S4 method for signature 'OptimizationProblem'
nrow(x)

ncol(x)

S4 method for signature 'OptimizationProblem'
ncol(x)

ncell(x)

S4 method for signature 'OptimizationProblem'
ncell(x)

modelsense(x)

S4 method for signature 'OptimizationProblem'
modelsense(x)

72 OptimizationProblem-methods

vtype(x)

S4 method for signature 'OptimizationProblem'
vtype(x)

obj(x)

S4 method for signature 'OptimizationProblem'
obj(x)

pwlobj(x)

S4 method for signature 'OptimizationProblem'
pwlobj(x)

A(x)

S4 method for signature 'OptimizationProblem'
A(x)

rhs(x)

S4 method for signature 'OptimizationProblem'
rhs(x)

sense(x)

S4 method for signature 'OptimizationProblem'
sense(x)

lb(x)

S4 method for signature 'OptimizationProblem'
lb(x)

ub(x)

S4 method for signature 'OptimizationProblem'
ub(x)

col_ids(x)

S4 method for signature 'OptimizationProblem'
col_ids(x)

row_ids(x)

OptimizationProblem-methods 73

S4 method for signature 'OptimizationProblem'
row_ids(x)

number_of_branches(x)

S4 method for signature 'OptimizationProblem'
number_of_branches(x)

get_data(x)

S4 method for signature 'OptimizationProblem'
get_data(x)

Arguments

x OptimizationProblem object.

Details

The functions return the following data:

nrow integer number of rows (constraints).

ncol integer number of columns (decision variables).

ncell integer number of cells.

modelsense character describing if the problem is to be maximized ("max") or minimized ("min").

vtype character describing the type of each decision variable: binary ("B"), semi-continuous
("S"), or continuous ("C")

obj numeric vector defining the linear components of the objective function.

pwlobj list object defining the piece-wise linear components of the objective function.

A Matrix::dgCMatrix matrix object defining the problem matrix.

rhs numeric vector with right-hand-side linear constraints

sense character vector with the senses of the linear constraints ("<=", ">=", "=").

lb numeric lower bound for each decision variable. Missing data values (NA) indicate no lower
bound for a given variable.

ub numeric upper bounds for each decision variable. Missing data values (NA) indicate no upper
bound for a given variable.

number_of_projects integer number of projects in the problem.

number_of_actions integer number of actions in the problem.

number_of_features integer number of features in the problem.

number_of_branches integer number of phylogenetic branches in the problem.

Value

list, Matrix::dgCMatrix, numeric vector, numeric vector, or scalar integer depending on the
method used.

74 Parameter-class

Parameter-class Parameter class

Description

This class is used to represent a parameter that has multiple values. Each value has a different label
to differentiate values. Only experts should interact directly with this class.

Fields

$id Id() identifier for parameter.

$name character name of parameter.

$value numeric vector of values.

$default numeric vector of default values.

$class character name of the class that the values inherit from (e.g. "integer".

$lower_limit numeric vector specifying the minimum permitted value for each element in $value.

$upper_limit numeric vector specifying the maximum permitted value for each element in $value.

$widget function used to construct a shiny::shiny() interface for modifying values.

Usage

x$print()

x$show()

x$reset()

Details

print print the object.

show show the object.

reset change the parameter values to be the default values.

See Also

ScalarParameter.

parameters 75

parameters Parameters

Description

Create a new collection of Parameter objects.

Usage

parameters(...)

Arguments

... Parameter objects.

Value

Parameters object.

See Also

array_parameters(), scalar_parameters().

Examples

create two Parameter objects
p1 <- binary_parameter("parameter one", 1)
print(p1)

p2 <- numeric_parameter("parameter two", 5)
print(p2)

store Parameter objects in a Parameters object
p <- parameters(p1, p2)
print(p)

Parameters-class Parameters class

Description

This class represents a collection of Parameter objects. It provides methods for accessing, updating,
and rendering the parameters stored inside it.

Fields

$parameters list object containing Parameter objects.

76 Parameters-class

Usage

x$print()

x$show()

x$repr()

x$names()

x$ids()

x$length()

x$get(id)

x$set(id, value)

x$add(p)

x$render(id)

x$render_all()

Arguments

id Id() object.

p Parameter object.

value any object.

Details

print print the object.

show show the object.

repr character representation of object.

names return character names of parameters.

ids return character parameter unique identifiers.

length return integer number of parameters in object.

get retrieve the value of a parameter in the object using an Id object.

set change the value of a parameter in the object to a new object.

render generate a shiny widget to modify the the value of a parameter (specified by argument Id).

render_all generate a shiny::div() containing all the parameters" widgets.

plot.ProjectProblem 77

plot.ProjectProblem Plot a solution to a project prioritization problem

Description

Create a plot to visualize how well a solution to a project prioritization problem() will maintain
biodiversity.

Usage

S3 method for class 'ProjectProblem'
plot(x, solution, n = 1, symbol_hjust = 0.007, return_data = FALSE, ...)

Arguments

x project prioritization problem().

solution base::data.frame() or tibble::tibble() table containing the solutions. Here,
rows correspond to different solutions and columns correspond to different ac-
tions. Each column in the argument to solution should be named according
to a different action in x. Cell values indicate if an action is funded in a given
solution or not, and should be either zero or one. Arguments to solution can
contain additional columns, and they will be ignored.

n integer solution number to visualize. Since each row in the argument to solutions
corresponds to a different solution, this argument should correspond to a row in
the argument to solutions. Defaults to 1.

symbol_hjust numeric horizontal adjustment parameter to manually align the asterisks and
dashes in the plot. Defaults to 0.007. Increasing this parameter will shift the
symbols further right. Please note that this parameter may require some tweak-
ing to produce visually appealing publication quality plots.

return_data logical should the underlying data used to create the plot be returned instead
of the plot? Defaults to FALSE.

... not used.

Details

The type of plot that this function creates depends on the problem objective. If the problem objective
contains phylogenetic data, then this function plots a phylogenetic tree where each branch is colored
according to its probability of persistence. Otherwise, if the problem does not contain phylogenetic
data, then this function creates a bar plot where each bar corresponds to a different feature. The
height of the bars indicate each feature’s probability of persistence, and the width of the bars indicate
each feature’s weight.

Features that directly benefit from at least a single completely funded project with a non-zero cost
are depicted with an asterisk symbol. Additionally, features that indirectly benefit from funded
projects—because they are associated with partially funded projects that have non-zero costs and
share actions with at least one funded project—are depicted with an open circle symbol.

78 plot_feature_persistence

Value

A ggplot() object.

See Also

This function is essentially a wrapper for plot_feature_persistence() and plot_phylo_persistence(),
so refer to the documentation for these functions for more information.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem without phylogenetic data
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 400) %>%
add_feature_weights("weight") %>%
add_binary_decisions()

Not run:
solve problem without phylogenetic data
s1 <- solve(p1)

visualize solution without phylogenetic data
plot(p1, s1)

End(Not run)

build problem with phylogenetic data
p2 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_phylo_div_objective(budget = 400, sim_tree) %>%
add_binary_decisions()

Not run:
solve problem with phylogenetic data
s2 <- solve(p2)

visualize solution with phylogenetic data
plot(p2, s2)

End(Not run)

plot_feature_persistence

Plot a bar plot to visualize a project prioritization

plot_feature_persistence 79

Description

Create a bar plot to visualize how likely features are to persist into the future under a solution to a
project prioritization problem().

Usage

plot_feature_persistence(
x,
solution,
n = 1,
symbol_hjust = 0.007,
return_data = FALSE

)

Arguments

x project prioritization problem().

solution base::data.frame() or tibble::tibble() table containing the solutions. Here,
rows correspond to different solutions and columns correspond to different ac-
tions. Each column in the argument to solution should be named according
to a different action in x. Cell values indicate if an action is funded in a given
solution or not, and should be either zero or one. Arguments to solution can
contain additional columns, and they will be ignored.

n integer solution number to visualize. Since each row in the argument to solutions
corresponds to a different solution, this argument should correspond to a row in
the argument to solutions. Defaults to 1.

symbol_hjust numeric horizontal adjustment parameter to manually align the asterisks and
dashes in the plot. Defaults to 0.007. Increasing this parameter will shift the
symbols further right. Please note that this parameter may require some tweak-
ing to produce visually appealing publication quality plots.

return_data logical should the underlying data used to create the plot be returned instead
of the plot? Defaults to FALSE.

Details

In this plot, each bar corresponds to a different feature. The length of each bar indicates the proba-
bility that a given feature will persist into the future, and the color of each bar indicates the weight
for a given feature. Features that directly benefit from at least a single completely funded project
with a non-zero cost are depicted with an asterisk symbol. Additionally, features that indirectly
benefit from funded projects—because they are associated with partially funded projects that have
non-zero costs and share actions with at least one completely funded project—are depicted with an
open circle symbol.

Value

A ggplot() object, or a tibble::tbl_df() object if return_data is TRUE.

80 plot_phylo_persistence

Examples

set seed for reproducibility
set.seed(500)

load the ggplot2 R package to customize plots
library(ggplot2)

load data
data(sim_projects, sim_features, sim_actions)

build problem
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 400) %>%
add_feature_weights("weight") %>%
add_binary_decisions() %>%
add_heuristic_solver(n = 10)

Not run:
solve problem
s <- solve(p)

plot the first solution
plot(p, s)

plot the second solution
plot(p, s, n = 2)

since this function returns a ggplot2 plot object, we can customize the
appearance of the plot using standard ggplot2 commands!
for example, we can add a title
plot(p, s) + ggtitle("solution")

we can also obtain the raw plotting data using return_data=TRUE
plot_data <- plot(p, s, return_data = TRUE)
print(plot_data)

End(Not run)

plot_phylo_persistence

Plot a phylogram to visualize a project prioritization

Description

Create a plot showing a phylogenetic tree (i.e. a "phylogram") to visualize the probability that phy-
logenetic branches are expected to persist into the future under a solution to a project prioritization
problem().

plot_phylo_persistence 81

Usage

plot_phylo_persistence(
x,
solution,
n = 1,
symbol_hjust = 0.007,
return_data = FALSE

)

Arguments

x project prioritization problem().
solution base::data.frame() or tibble::tibble() table containing the solutions. Here,

rows correspond to different solutions and columns correspond to different ac-
tions. Each column in the argument to solution should be named according
to a different action in x. Cell values indicate if an action is funded in a given
solution or not, and should be either zero or one. Arguments to solution can
contain additional columns, and they will be ignored.

n integer solution number to visualize. Since each row in the argument to solutions
corresponds to a different solution, this argument should correspond to a row in
the argument to solutions. Defaults to 1.

symbol_hjust numeric horizontal adjustment parameter to manually align the asterisks and
dashes in the plot. Defaults to 0.007. Increasing this parameter will shift the
symbols further right. Please note that this parameter may require some tweak-
ing to produce visually appealing publication quality plots.

return_data logical should the underlying data used to create the plot be returned instead
of the plot? Defaults to FALSE.

Details

This function requires the ggtree (Yu et al. 2017). Since this package is distributed exclusively
through Bioconductor, and is not available on the Comprehensive R Archive Network, please exe-
cute the following commands to install it:

if (!require(remotes)) install.packages("remotes")
remotes::install_bioc("ggtree")

If the installation process fails, please consult the package’s online documentation.

In this plot, each phylogenetic branch is colored according to probability that it is expected to persist
into the future (see Faith 2008). Features that directly benefit from at least a single completely
funded project with a non-zero cost are depicted with an asterisk symbol. Additionally, features that
indirectly benefit from funded projects—because they are associated with partially funded projects
that have non-zero costs and share actions with at least one completely funded project—are depicted
with an open circle symbol.

Value

A ggtree::ggtree() object, or a tidytree::treedata() object if return_data is TRUE.

https://bioconductor.org
https://cran.r-project.org/
https://bioconductor.org/packages/release/bioc/html/ggtree.html

82 plot_phylo_persistence

References

Faith DP (2008) Threatened species and the potential loss of phylogenetic diversity: conservation
scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conservation
Biology, 22: 1461–1470.

Yu G, Smith DK, Zhu H, Guan Y, & Lam TTY (2017) ggtree: an R package for visualization and
annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology
and Evolution, 8: 28–36.

Examples

set seed for reproducibility
set.seed(500)

load the ggplot2 R package to customize plots
library(ggplot2)

data(sim_projects, sim_features, sim_actions)

build problem
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_phylo_div_objective(budget = 400, sim_tree) %>%
add_binary_decisions() %>%
add_heuristic_solver(number_solutions = 10)

Not run:
solve problem
s <- solve(p)

plot the first solution
plot(p, s)

plot the second solution
plot(p, s, n = 2)

since this function returns a ggplot2 plot object, we can customize the
appearance of the plot using standard ggplot2 commands!
for example, we can add a title
plot(p, s) + ggtitle("solution")

we could also also set the minimum and maximum values in the color ramp to
correspond to those in the data, rather than being capped at 0 and 1
plot(p, s) +
scale_color_gradientn(name = "Probability of\npersistence",

colors = viridisLite::inferno(150, begin = 0,
end = 0.9,
direction = -1)) +

ggtitle("solution")

we could also change the color ramp
plot(p, s) +

pproto 83

scale_color_gradient(name = "Probability of\npersistence",
low = "red", high = "black") +

ggtitle("solution")

we could even hide the legend if desired
plot(p, s) +
scale_color_gradient(name = "Probability of\npersistence",

low = "red", high = "black") +
theme(legend.position = "hide") +
ggtitle("solution")

we can also obtain the raw plotting data using return_data=TRUE
plot_data <- plot(p, s, return_data = TRUE)
print(plot_data)

End(Not run)

pproto Create a new pproto object

Description

Construct a new object with pproto. This object system is inspired from the ggproto system used
in the ggplot2 package.

Usage

pproto(`_class` = NULL, `_inherit` = NULL, ...)

Arguments

_class Class name to assign to the object. This is stored as the class attribute of the
object. This is optional: if NULL (the default), no class name will be added to the
object.

_inherit pproto object to inherit from. If NULL, don"t inherit from any object.

... A list of members to add to the new pproto object.

Examples

Adder <- pproto("Adder",
x = 0,
add = function(self, n) {
self$x <- self$x + n
self$x

}
)

Adder$add(10)
Adder$add(10)

84 print

Abacus <- pproto("Abacus", Adder,
subtract = function(self, n) {
self$x <- self$x - n
self$x

}
)
Abacus$add(10)
Abacus$subtract(10)

print Print

Description

Display information about an object.

Usage

S3 method for class 'ProjectProblem'
print(x, ...)

S3 method for class 'ProjectModifier'
print(x, ...)

S3 method for class 'Id'
print(x, ...)

S4 method for signature 'Id'
print(x)

S3 method for class 'OptimizationProblem'
print(x, ...)

S3 method for class 'ScalarParameter'
print(x, ...)

S3 method for class 'ArrayParameter'
print(x, ...)

S3 method for class 'Solver'
print(x, ...)

Arguments

x Any object.

... not used.

problem 85

Value

None.

See Also

base::print().

Examples

a <- 1:4
print(a)

problem Project prioritization problem

Description

Create a project prioritization problem. This function is used to specify the underlying data used
in a prioritization problem: the projects, the management actions, and the features that need to be
conserved (e.g. species, ecosystems). After constructing this ProjectProblem-class object, it can
be customized using objectives, targets, weights, constraints, decisions and solvers. After building
the problem, the solve() function can be used to identify solutions.

Usage

problem(
projects,
actions,
features,
project_name_column,
project_success_column,
action_name_column,
action_cost_column,
feature_name_column,
adjust_for_baseline = TRUE

)

Arguments

projects base::data.frame() or tibble::tibble() table containing project data. Here,
each row should correspond to a different project and columns should contain
data that correspond to each project. This object should contain data that denote
(i) the name of each project (specified in the argument to project_name_column),
(ii) the probability that each project will succeed if all of its actions are funded
(specified in the argument to project_success_column), (iii) the enhanced
probability that each feature will persist if it is funded (using a column for each
feature), and (iv) and which actions are associated with which projects (using

86 problem

a column for each action). This object must have a baseline project, with a
zero cost value, that represents the probability that each feature will persist if no
other conservation project is funded. Since each feature is assigned the greatest
probability of persistence given the funded projects in a solution, the combined
benefits of multiple projects can be encoded by creating additional projects that
represent "combined projects". For instance, a habitat restoration project might
cost $100 and mean that a feature has a 40% chance of persisting, and a pest
eradication project might cost $50 and mean that a feature has a 60% chance of
persisting. Due to non-linear effects, funding both of these projects might mean
that a species has a 90% chance of persistence. This can be accounted for by
creating a third project, representing the funding of both projects, which costs
$150 and provides a 90% chance of persistence.

actions base::data.frame() or tibble::tibble() table containing the action data.
Here, each row should correspond to a different action and columns should con-
tain data that correspond to each action. At a minimum, this object should con-
tain data that denote (i) the name of each action (specified in the argument to
action_name_column), (ii) the cost of each action (specified in the argument
to action_cost_column). Optionally, it may also contain data that indicate ac-
tions should be (iii) locked in or (iv) locked out (see add_locked_in_constraints()
and add_locked_out_constraints()). It should also contain a zero-cost base-
line action that is associated with the baseline project.

features base::data.frame() or tibble::tibble() table containing the feature data.
Here, each row should correspond to a different feature and columns should
contain data that correspond to each feature. At a minimum, this object should
contain data that denote (i) the name of each feature (specified in the argument
to feature_name_column). Optionally, it may also contain (ii) the weight for
each feature or (iii) persistence targets for each feature.

project_name_column

character name of column that contains the name for each conservation project.
This argument corresponds to the projects table. Note that the project names
must not contain any duplicates or missing values.

project_success_column

character name of column that indicates the probability that each project will
succeed. This argument corresponds to the argument to projects table. This
column must have numeric values which range between zero and one. No miss-
ing values are permitted.

action_name_column

character name of column that contains the name for each management action.
This argument corresponds to the actions table. Note that the project names
must not contain any duplicates or missing values.

action_cost_column

character name of column that indicates the cost for funding each action. This
argument corresponds to the argument to actions table. This column must have
numeric values which are equal to or greater than zero. No missing values are
permitted.

feature_name_column

character name of the column that contains the name for each feature. This

problem 87

argument corresponds to the feature table. Note that the feature names must
not contain any duplicates or missing values.

adjust_for_baseline

logical should the probability of features persisting when projects are funded
be adjusted to account for the probability of features persisting under the base-
line "do nothing" scenario in the event that the funded projects fail to succeed?
This should always be TRUE, except when funding a project means that the base-
line "do nothing" scenario does not apply if a funded project fails. Defaults to
TRUE.

Details

A project prioritization problem has actions, projects, and features. Features are the biological
entities that need to be conserved (e.g. species, populations, ecosystems). Actions are real-world
management actions that can be implemented to enhance biodiversity (e.g. habitat restoration, mon-
itoring, pest eradication). Each action should have a known cost, and this usually means that each
action should have a defined spatial extent and time period (though this is not necessary). Conserva-
tion projects are groups of management actions (they can also comprise a singular action too), and
each project is associated with a probability of success if all of its associated actions are funded. To
determine which projects should be funded, each project is associated with an probability of persis-
tence for the features that they benefit. These values should indicate the probability that each feature
will persist if only that project funded and not the additional benefit relative to the baseline project.
Missing (NA) values should be used to indicate which projects do not enhance the probability of
certain features.

The goal of a project prioritization exercise is then to identify which management actions—and
as a consequence which conservation projects—should be funded. Broadly speaking, the goal of
an optimization problem is to minimize (or maximize) an objective function given a set of control
variables and decision variables that are subject to a series of constraints. In the context of project
prioritization problems, the objective is usually some measure of utility (e.g. the net probability
of each feature persisting into the future), the control variables determine which actions should be
funded or not, the decision variables contain additional information needed to ensure correct calcu-
lations, and the constraints impose limits such as the total budget available for funding management
actions. For more information on the mathematical formulations used in this package, please refer
to the manual entries for the available objectives (listed in objectives).

Value

A new ProjectProblem object.

See Also

constraints, decisions, objectives, solvers, targets, weights, solution_statistics(), plot.ProjectProblem().

Examples

load data
data(sim_projects, sim_features, sim_actions)

print project data

88 ProjectModifier-class

print(sim_projects)

print action data
print(sim_features)

print feature data
print(sim_actions)

build problem
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 400) %>%
add_feature_weights("weight") %>%
add_binary_decisions()

print problem
print(p)

Not run:
solve problem
s <- solve(p)

print output
print(s)

print which actions are funded in the solution
s[, sim_actions$name, drop = FALSE]

print the expected probability of persistence for each feature
if the solution were implemented
s[, sim_features$name, drop = FALSE]

visualize solution
plot(p, s)

End(Not run)

ProjectModifier-class Conservation problem modifier prototype

Description

This super-prototype is used to represent prototypes that in turn are used to modify a ProjectProblem
object. Specifically, the Constraint, Decision, Objective, and Target prototypes inherit from this
class. Only experts should interact with this class directly because changes to these class will
have profound and far reaching effects.

Fields

$name character name of object.

ProjectModifier-class 89

$parameters list object used to customize the modifier.

$data list object with data.

$compressed_formulation logical can this constraint be applied to the compressed version of
the conservation planning problem?. Defaults to TRUE.

Usage

x$print()

x$show()

x$repr()

x$get_data(name)

x$set_data(name, value)

x$calculate(cp)

x$output()

x$apply(op,cp)

x$get_parameter(id)

x$get_all_parameters()

x$set_parameter(id, value)

x$render_parameter(id)

x$render_all_parameter()

Arguments

name character name for object

value any object

id id or name of parameter

cp ProjectProblem object

op OptimizationProblem object

Details

print print the object.

show show the object.

repr return character representation of the object.

get_data return an object stored in the data field with the corresponding name. If the object is not
present in the data field, a waiver object is returned.

set_data store an object stored in the data field with the corresponding name. If an object with
that name already exists then the object is overwritten.

calculate function used to perform preliminary calculations and store the data so that they can be
reused later without performing the same calculations multiple times. Data can be stored in
the data slot of the input ProjectModifier or ProjectProblem objects.

90 ProjectProblem-class

output function used to generate an output from the object. This method is only used for Target
objects.

apply function used to apply the modifier to an OptimizationProblem object. This is used by
Constraint, Decision, and Objective objects.

get_parameter retrieve the value of a parameter.

get_all_parameters generate list containing all the parameters.

set_parameter change the value of a parameter to new value.

render_parameter generate a shiny widget to modify the the value of a parameter (specified by
argument id).

render_all_parameters generate a shiny::div() containing all the parameters" widgets.

ProjectProblem-class Project problem class

Description

Project problem class

Description

This class is used to represent project prioritization problems. A project prioritization problem
has actions, projects, and features. Features are the biological entities that need to be conserved
(e.g. species, populations, ecosystems). Actions are real-world management actions that can be
implemented for conservation purposes (e.g. habitat restoration, monitoring, pest eradication). Each
action should have a known cost, and this usually means that each action should have a defined
spatial extent and time period (though this is not necessary). Conservation projects are groups of
management actions (they can also comprise a singular action too), and each project is associated
with a probability of success if all of its associated actions are funded. To determine which projects
should be funded, each project is associated with an probability of persistence for the features that
they benefit. These values should indicate the probability that each feature will persist if only that
project funded and not the additional benefit relative to the baseline project. Missing (NA) values
should be used to indicate which projects do not enhance the probability of certain features.

Given these data, a project prioritization problem involves making a decision about which actions
should be funded or not—and in turn, which projects should be funded or not—to maximize or
minimize a specific objective whilst meeting specific constraints. The objective for a project pri-
oritization problem will always pertain to the probability that features are expected to persist. For
example, an objective for a project prioritization problem could be to maximize the maximize the
total amount of species that are expected to persist, or minimize the total cost of the funded ac-
tions subject to constraints which ensure that each feature meets a target level of persistence. The
constraints in a project prioritization problem can be used to specify additional requirements (e.g.
certain actions must be funded). Finally, a project prioritization problem—unlike an optimization
problem—also requires a method to solve the problem. This class represents a planning problem,
to actually build and then solve a planning problem, use the problem() function. Only experts
should use this class directly.

ProjectProblem-class 91

Fields

$data list object containing data.

$objective Objective object used to represent how the targets relate to the solution.

$decisions Decision object used to represent the type of decision made on planning units.

$targets Target object used to represent representation targets for features.

$weights Weight object used to represent feature weights.

$constraints Collection object used to represent additional constraints that the problem is subject
to.

$solver Solver object used to solve the problem.

Usage

x$print()

x$show()

x$repr()

x$get_data(name)

x$set_data(name, value)

number_of_actions()

number_of_projects()

number_of_features()

action_names()

project_names()

feature_names()

feature_weights()

feature_phylogeny()

action_costs()

project_costs()

project_success_probabilities()

pf_matrix()

epf_matrix()

pa_matrix()

x$add_objective(obj)

x$add_decisions(dec)

x$add_constraint(con)

x$add_solver(sol)

x$add_targets(targ)

x$add_weights(wt)

x$get_constraint_parameter(id)

92 ProjectProblem-class

x$set_constraint_parameter(id, value)

x$render_constraint_parameter(id)

x$render_all_constraint_parameters()

x$get_objective_parameter(id)

x$set_objective_parameter(id, value)

x$render_objective_parameter(id)

x$render_all_objective_parameters()

x$get_solver_parameter(id)

x$set_solver_parameter(id, value)

x$render_solver_parameter(id)

x$render_all_solver_parameters()

Arguments

name character name for object.

value an object.

obj Objective object.

wt Weight object.

dec Decision object.

con Constraint object.

sol Solver object.

targ Target object.

wt Weight object.

id Id object that refers to a specific parameter.

value object that the parameter value should become.

Details

print print the object.

show show the object.

repr return character representation of the object.

get_data return an object stored in the data field with the corresponding name. If the object is not
present in the data field, a waiver object is returned.

set_data store an object stored in the data field with the corresponding name. If an object with
that name already exists then the object is overwritten.

number_of_actions integer number of actions.

number_of_projects integer number of projects.

number_of_features integer number of features.

action_names character names of actions in the problem.

project_names character names of projects in the problem.

ProjectProblem-class 93

feature_names character names of features in the problem.

feature_weights character feature weights.

feature_phylogeny ape::phylo() phylogenetic tree object.

action_costs numeric costs for each action.

project_costs numeric costs for each project.

project_success_probabilities numeric probability that each project will succeed.

pf_matrix Matrix::dgCMatrix object denoting the enhanced probability that features will persist if
different projects are funded.

epf_matrix Matrix::dgCMatrix object denoting the enhanced probability that features is expected
to persist if different projects are funded. This is calculated as the pf_matrix multiplied by
the project success probabilities.

pa_matrix Matrix::dgCMatrix object indicating which actions are associated with which projects.

feature_targets tibble::tibble() with feature targets.

add_objective return a new ProjectProblem with the objective added to it.

add_decisions return a new ProjectProblem object with the decision added to it.

add_solver return a new ProjectProblem object with the solver added to it.

add_constraint return a new ProjectProblem object with the constraint added to it.

add_targets return a copy with the targets added to the problem.

get_constraint_parameter get the value of a parameter (specified by argument id) used in one of
the constraints in the object.

set_constraint_parameter set the value of a parameter (specified by argument id) used in one of
the constraints in the object to value.

render_constraint_parameter generate a shiny widget to modify the value of a parameter (spec-
ified by argument id).

render_all_constraint_parameters generate a shiny div containing all the parameters’ widgets.

get_objective_parameter get the value of a parameter (specified by argument id) used in the
object’s objective.

set_objective_parameter set the value of a parameter (specified by argument id) used in the ob-
ject’s objective to value.

render_objective_parameter generate a shiny widget to modify the value of a parameter (speci-
fied by argument id).

render_all_objective_parameters generate a shiny div containing all the parameters’ widgets.

get_weight_parameter get the value of a parameter (specified by argument id) used in the object’s
weights.

set_weight_parameter set the value of a parameter (specified by argument id) used in the object’s
weights to value.

render_weight_parameter generate a shiny widget to modify the value of a parameter (specified
by argument id).

render_all_weight_parameters generate a shiny div containing all the parameters’ widgets.

get_solver_parameter get the value of a parameter (specified by argument id) used in the object’s
solver.

94 project_cost_effectiveness

set_solver_parameter set the value of a parameter (specified by argument id) used in the object’s
solver to value.

render_solver_parameter generate a shiny widget to modify the value of a parameter (specified
by argument id).

render_all_solver_parameters generate a shiny div containing all the parameters’ widgets.

project_cost_effectiveness

Project cost effectiveness

Description

Calculate the individual cost-effectiveness of each conservation project in a project prioritization
problem() (Joseph, Maloney & Possingham 2009).

Usage

project_cost_effectiveness(x)

Arguments

x project prioritization problem().

Details

Note that project cost-effectiveness cannot be calculated for problems with minimum set objec-
tives because the objective function for these problems is to minimize cost and not maximize some
measure of biodiversity persistence.

Value

A tibble::tibble() table containing the following columns:

"project" character name of each project

"cost" numeric cost of each project.

"benefit" numeric benefit for each project. For a given project, this is calculated as the differ-
ence between (i) the objective value for a solution containing all of the management actions
associated with the project and all zero cost actions, and (ii) the objective value for a solution
containing the baseline project.

"ce" numeric cost-effectiveness of each project. For a given project, this is calculated as the
difference between the the benefit for the project and the benefit for the baseline project,
divided by the cost of the project. Note that the baseline project will have a NaN value because
it has a zero cost.

"rank" numeric rank for each project according to is cost-effectiveness value. The project with a
rank of one is the most cost-effective project. Ties are accommodated using averages.

project_names 95

References

Joseph LN, Maloney RF & Possingham HP (2009) Optimal allocation of resources among threat-
ened species: A project prioritization protocol. Conservation Biology, 23, 328–338.

See Also

solution_statistics(), replacement_costs().

Examples

load data
data(sim_projects, sim_features, sim_actions)

print project data
print(sim_projects)

print action data
print(sim_features)

print feature data
print(sim_actions)

build problem
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 400) %>%
add_feature_weights("weight") %>%
add_binary_decisions()

print problem
print(p)

calculate cost-effectiveness of each project
pce <- project_cost_effectiveness(p)

print project costs, benefits, and cost-effectiveness values
print(pce)

plot histogram of cost-effectiveness values
hist(pce$ce, xlab = "Cost effectiveness", main = "")

project_names Project names

Description

Extract the names of the projects in an object.

96 replacement_costs

Usage

project_names(x)

S4 method for signature 'ProjectProblem'
project_names(x)

Arguments

x ProjectProblem.

Value

character project names.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with default solver
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions() %>%
add_default_solver()

print problem
print(p)

print project names
project_names(p)

replacement_costs Replacement cost

Description

Calculate the replacement cost for priority actions in a project prioritization problem() (Moilanen
et al. 2009). Actions associated with larger replacement cost values are more irreplaceable, and
may need to be implemented sooner than actions with lower replacement cost values.

Usage

replacement_costs(x, solution, n = 1)

replacement_costs 97

Arguments

x project prioritization problem().

solution base::data.frame() or tibble::tibble() table containing the solutions. Here,
rows correspond to different solutions and columns correspond to different ac-
tions. Each column in the argument to solution should be named according
to a different action in x. Cell values indicate if an action is funded in a given
solution or not, and should be either zero or one. Arguments to solution can
contain additional columns, and they will be ignored.

n integer solution number to calculate replacement cost values. Since each row
in the argument to solutions corresponds to a different solution, this argument
should correspond to a row in the argument to solutions. Defaults to 1.

Details

Replacement cost values are calculated for each priority action specified in the solution. Missing
(NA) values are assigned to actions which are not selected for funding in the specified solution.
For a given action, its replacement cost is calculated by (i) calculating the objective value for the
optimal solution to the argument to x, (ii) calculating the objective value for the optimal solution
to the argument to x with the given action locked out, (iii) calculating the difference between the
two objective values, (iv) the problem has an objective which aims to minimize the objective value
(only add_min_set_objective(), then the resulting value is multiplied by minus one so that larger
values always indicate actions with greater irreplaceability. Please note this function can take a long
time to complete for large problems since it involves re-solving the problem for every action selected
for funding.

Value

A tibble::tibble() table containing the following columns:

"action" character name of each action.

"cost" numeric cost of each solution when each action is locked out.

"obj" numeric objective value of each solution when each action is locked out. This is calculated
using the objective function defined for the argument to x.

"rep_cost" numeric replacement cost for each action. Greater values indicate greater irreplace-
ability. Missing (NA) values are assigned to actions which are not selected for funding in the
specified solution, infinite (Inf) values are assigned to to actions which are required to meet
feasibility constraints, and negative values mean that superior solutions than the specified so-
lution exist.

References

Moilanen A, Arponen A, Stokland JN & Cabeza M (2009) Assessing replacement cost of conser-
vation areas: how does habitat loss influence priorities? Biological Conservation, 142, 575–585.

See Also

solution_statistics(), project_cost_effectiveness().

98 ScalarParameter-class

Examples

Not run:
load data
data(sim_projects, sim_features, sim_actions)

build problem with maximum richness objective and $400 budget
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 400) %>%
add_feature_weights("weight") %>%
add_binary_decisions()

solve problem
s <- solve(p)

print solution
print(s)

calculate replacement cost values
r <- replacement_costs(p, s)

print output
print(r)

plot histogram of replacement costs,
with this objective, greater values indicate greater irreplaceability
hist(r$rep_cost, xlab = "Replacement cost", main = "")

End(Not run)

ScalarParameter-class Scalar parameter prototype

Description

This prototype is used to represent a parameter has a single value. Only experts should interact
directly with this prototype.

Fields

$id character identifier for parameter.
$name character name of parameter.
$value numeric scalar value.
$default numeric scalar default value.
$class character name of the class that $value should inherit from (e.g. integer).
$lower_limit numeric scalar value that is the minimum value that $value is permitted to be.
$upper_limit numeric scalar value that is the maximum value that $value is permitted to be.
$widget function used to construct a shiny::shiny() interface for modifying values.

scalar_parameters 99

Usage

x$print()

x$show()

x$validate(x)

x$get()

x$set(x)

x$reset()

x$render(...)

Arguments

x object used to set a new parameter value.

... arguments passed to $widget.

Details

print print the object.

show show the object.

validate check if a proposed new set of parameters are valid.

get extract the parameter value.

set update the parameter value.

reset update the parameter value to be the default value.

render create a shiny::shiny() widget to modify parameter values.

See Also

Parameter, ArrayParameter.

scalar_parameters Scalar parameters

Description

These functions are used to create parameters that consist of a single number. Parameters have a
name, a value, a defined range of acceptable values, a default value, a class, and a shiny::shiny()
widget for modifying them. If values are supplied to a parameter that are unacceptable then an error
is thrown.

100 scalar_parameters

Usage

proportion_parameter(name, value)

binary_parameter(name, value)

integer_parameter(
name,
value,
lower_limit = as.integer(-.Machine$integer.max),
upper_limit = as.integer(.Machine$integer.max)

)

numeric_parameter(
name,
value,
lower_limit = .Machine$double.xmin,
upper_limit = .Machine$double.xmax

)

Arguments

name character name of parameter.

value integer or double value depending on the parameter.

lower_limit integer or double value representing the smallest acceptable value for value.
Defaults to the smallest possible number on the system.

upper_limit integer or double value representing the largest acceptable value for value.
Defaults to the largest possible number on the system.

Details

Below is a list of parameter generating functions and a brief description of each.

proportion_parameter A parameter that is a double and bounded between zero and one.

integer_parameter A parameter that is a integer.

numeric_parameter A parameter that is a double.

binary_parameter A parameter that is restricted to integer values of zero or one.

Value

ScalarParameter object.

Examples

proportion parameter
p1 <- proportion_parameter('prop', 0.5) # create new object
print(p1) # print it
p1$get() # get value
p1$id # get id

show 101

p1$validate(5) # check if 5 is a validate input
p1$validate(0.1) # check if 0.1 is a validate input
p1$set(0.1) # change value to 0.1
print(p1)

binary parameter
p2 <- binary_parameter('bin', 0) # create new object
print(p2) # print it
p2$get() # get value
p2$id # get id
p2$validate(5) # check if 5 is a validate input
p2$validate(1L) # check if 1L is a validate input
p2$set(1L) # change value to 1L
print(p1) # print it again

integer parameter
p3 <- integer_parameter('int', 5L) # create new object
print(p3) # print it
p3$get() # get value
p3$id # get id
p3$validate(5.6) # check if 5.6 is a validate input
p3$validate(2L) # check if 2L is a validate input
p3$set(2L) # change value to 2L
print(p3) # print it again

numeric parameter
p4 <- numeric_parameter('dbl', -7.6) # create new object
print(p4) # print it
p4$get() # get value
p4$id # get id
p4$validate(NA) # check if NA is a validate input
p4$validate(8.9) # check if 8.9 is a validate input
p4$set(8.9) # change value to 8.9
print(p4) # print it again

numeric parameter with lower bounds
p5 <- numeric_parameter('bdbl', 6, lower_limit=0) # create new object
print(p5) # print it
p5$get() # get value
p5$id # get id
p5$validate(-10) # check if -10 is a validate input
p5$validate(90) # check if 90 is a validate input
p5$set(90) # change value to 8.9
print(p5) # print it again

show Show

Description

Display information about an object.

102 simulate_ppp_data

Usage

S4 method for signature 'ProjectModifier'
show(x)

S4 method for signature 'ProjectProblem'
show(x)

S4 method for signature 'Id'
show(x)

S4 method for signature 'OptimizationProblem'
show(x)

S4 method for signature 'Parameter'
show(x)

S4 method for signature 'Solver'
show(x)

Arguments

x Any object.

Value

None.

See Also

methods::show().

simulate_ppp_data Simulate data for the ’Project Prioritization Protocol’

Description

Simulate data for developing project prioritizations. Here, data are simulated such that each feature
has its own conservation project, similar to species-based prioritizations (e.g. Bennett et al. 2014).

Usage

simulate_ppp_data(
number_features,
cost_mean = 100,
cost_sd = 5,
success_min_probability = 0.7,
success_max_probability = 0.99,

simulate_ppp_data 103

funded_min_persistence_probability = 0.5,
funded_max_persistence_probability = 0.9,
baseline_min_persistence_probability = 0.01,
baseline_max_persistence_probability = 0.4,
locked_in_proportion = 0,
locked_out_proportion = 0

)

Arguments

number_features

numeric number of features.

cost_mean numeric average cost for the actions. Defaults to 100.

cost_sd numeric standard deviation in action costs. Defaults to 5.
success_min_probability

numeric minimum probability of the projects succeeding if they are funded.
Defaults to 0.7.

success_max_probability

numeric maximum probability of the projects succeeding if they are funded.
Defaults to 0.99.

funded_min_persistence_probability

numeric minimum probability of the features persisting if projects are funded
and successful. Defaults to 0.5.

funded_max_persistence_probability

numeric maximum probability of the features persisting if projects are funded
and successful. Defaults to 0.9.

baseline_min_persistence_probability

numeric minimum probability of the features persisting if only the baseline
project is funded. Defaults to 0.01.

baseline_max_persistence_probability

numeric maximum probability of the features persisting if only the baseline
project is funded. Defaults to 0.4.

locked_in_proportion

numeric of actions that are locked into the solution. Defaults to 0.
locked_out_proportion

numeric of actions that are locked into the solution. Defaults to 0.

Details

The simulated data set will contain one conservation project for each features, and also a "baseline"
(do nothing) project to reflect features’ persistence when their conservation project is not funded.
Each conservation project is associated with a single action, and no conservation projects share any
actions. Specifically, the data are simulated as follows:

1. A conservation project is created for each feature, and each project is associated with its own
single action.

2. Cost data for each action are simulated using a normal distribution and the cost_mean and
cost_sd arguments.

104 simulate_ppp_data

3. A set proportion of the actions are randomly set to be locked in and out of the solutions using
the locked_in_proportion and locked_out_proportion arguments.

4. The probability of each project succeeding if its action is funded is simulated by drawing prob-
abilities from a uniform distribution with the upper and lower bounds set as the success_min_probability
and success_max_probability arguments.

5. The probability of each feature persisting if its project is funded and is successful is simulated
by drawing probabilities from a uniform distribution with the upper and lower bounds set as
the funded_min_persistence_probability and funded_max_persistence_probability
arguments.

6. An additional project is created which represents the "baseline" (do nothing) scenario. The
probability of each feature persisting when managed under this project is simulated by draw-
ing probabilities from a uniform distribution with the upper and lower bounds set as the
baseline_min_persistence_probability and baseline_max_persistence_probability
arguments.

7. A phylogenetic tree is simulated for the features using ape::rcoal().

8. Feature data are created from the phylogenetic tree. The weights are calculated as the amount
of evolutionary history that has elapsed between each feature and its last common ancestor.

Value

A list object containing the elements:

"projects" A tibble::tibble() containing the data for the conservation projects. It contains
the following columns:

"name" character name for each project.
"success" numeric probability of each project succeeding if it is funded.
"F1" ... "FN" numeric columns for each feature, ranging from "F1" to "FN" where N is the

number of features, indicating the enhanced probability that each feature will persist if it
funded. Missing values (NA) indicate that a feature does not benefit from a project being
funded.

"F1_action" ... "FN_action" logical columns for each action, ranging from "F1_action"
to "FN_action" where N is the number of actions (equal to the number of features in this
simulated data), indicating if an action is associated with a project (TRUE) or not (FALSE).

"baseline_action" logical column indicating if a project is associated with the baseline
action (TRUE) or not (FALSE). This action is only associated with the baseline project.

"actions" A tibble::tibble() containing the data for the conservation actions. It contains the
following columns:

"name" character name for each action.
"cost" numeric cost for each action.
"locked_in" logical indicating if certain actions should be locked into the solution.
"locked_out" logical indicating if certain actions should be locked out of the solution.

"features" A tibble::tibble() containing the data for the conservation features (e.g. species).
It contains the following columns:

"name" character name for each feature.

simulate_ptm_data 105

"weight" numeric weight for each feature. For each feature, this is calculated as the amount
of time that elapsed between the present and the features’ last common ancestor. In other
words, the weights are calculated as the unique amount of evolutionary history that each
feature has experienced.

"tree" ape::phylo() phylogenetic tree for the features.

References

Bennett JR, Elliott G, Mellish B, Joseph LN, Tulloch AI, Probert WJ, ... & Maloney R (2014)
Balancing phylogenetic diversity and species numbers in conservation prioritization, using a case
study of threatened species in New Zealand. Biological Conservation, 174: 47–54.

See Also

simulate_ptm_data().

Examples

create a simulated data set
s <- simulate_ppp_data(number_features = 5,

cost_mean = 100,
cost_sd = 5,
success_min_probability = 0.7,
success_max_probability = 0.99,
funded_min_persistence_probability = 0.5,
funded_max_persistence_probability = 0.9,
baseline_min_persistence_probability = 0.01,
baseline_max_persistence_probability = 0.4,
locked_in_proportion = 0.01,
locked_out_proportion = 0.01)

print data set
print(s)

simulate_ptm_data Simulate data for ’Priority threat management’

Description

Simulate data for developing project prioritizations for a priority threat management exercise (Car-
wardine et al. 2019). Here, data are simulated for a pre-specified number of features, actions, and
projects. Features can benefit from multiple projects, and different projects can share actions.

106 simulate_ptm_data

Usage

simulate_ptm_data(
number_projects,
number_actions,
number_features,
cost_mean = 100,
cost_sd = 5,
success_min_probability = 0.7,
success_max_probability = 0.99,
funded_min_persistence_probability = 0.5,
funded_max_persistence_probability = 0.9,
baseline_min_persistence_probability = 0.01,
baseline_max_persistence_probability = 0.4,
locked_in_proportion = 0,
locked_out_proportion = 0

)

Arguments

number_projects

numeric number of projects. Note that this does not include the baseline project.
number_actions numeric number of actions. Note that this does not include the baseline action.
number_features

numeric number of features.
cost_mean numeric average cost for the actions. Defaults to 100.
cost_sd numeric standard deviation in action costs. Defaults to 5.
success_min_probability

numeric minimum probability of the projects succeeding if they are funded.
Defaults to 0.7.

success_max_probability

numeric maximum probability of the projects succeeding if they are funded.
Defaults to 0.99.

funded_min_persistence_probability

numeric minimum probability of the features persisting if projects are funded
and successful. Defaults to 0.5.

funded_max_persistence_probability

numeric maximum probability of the features persisting if projects are funded
and successful. Defaults to 0.9.

baseline_min_persistence_probability

numeric minimum probability of the features persisting if only the baseline
project is funded. Defaults to 0.01.

baseline_max_persistence_probability

numeric maximum probability of the features persisting if only the baseline
project is funded. Defaults to 0.4.

locked_in_proportion

numeric of actions that are locked into the solution. Defaults to 0.
locked_out_proportion

numeric of actions that are locked into the solution. Defaults to 0.

simulate_ptm_data 107

Details

The simulated data set will contain one conservation project for each features, and also a "baseline"
(do nothing) project to reflect features’ persistence when their conservation project is not funded.
Each conservation project is associated with a single action, and no conservation projects share any
actions. Specifically, the data are simulated as follows:

1. A specified number of conservation projects, features, and management actions are created.

2. Cost data for each action are simulated using a normal distribution and the cost_mean and
cost_sd arguments.

3. A set proportion of the actions are randomly set to be locked in and out of the solutions using
the locked_in_proportion and locked_out_proportion arguments.

4. The probability of each project succeeding if its action is funded is simulated by drawing prob-
abilities from a uniform distribution with the upper and lower bounds set as the success_min_probability
and success_max_probability arguments.

5. The probability of each feature persisting if various projects are funded and is successful
is simulated by drawing probabilities from a uniform distribution with the upper and lower
bounds set as the funded_min_persistence_probability and funded_max_persistence_probability
arguments. To prevent

6. An additional project is created which represents the "baseline" (do nothing) scenario. The
probability of each feature persisting when managed under this project is simulated by draw-
ing probabilities from a uniform distribution with the upper and lower bounds set as the
baseline_min_persistence_probability and baseline_max_persistence_probability
arguments.

7. A phylogenetic tree is simulated for the features using ape::rcoal().

8. Feature data are created from the phylogenetic tree. The weights are calculated as the amount
of evolutionary history that has elapsed between each feature and its last common ancestor.

Value

A list object containing the elements:

"projects" A tibble::tibble() containing the data for the conservation projects. It contains
the following columns:

"name" character name for each project.
"success" numeric probability of each project succeeding if it is funded.
"F1" ... "FN" numeric columns for each feature, ranging from "F1" to "FN" where N is the

number of features, indicating the enhanced probability that each feature will persist if it
funded. Missing values (NA) indicate that a feature does not benefit from a project being
funded.

"F1_action" ... "FN_action" logical columns for each action, ranging from "F1_action"
to "FN_action" where N is the number of actions (equal to the number of features in this
simulated data), indicating if an action is associated with a project (TRUE) or not (FALSE).

"baseline_action" logical column indicating if a project is associated with the baseline
action (TRUE) or not (FALSE). This action is only associated with the baseline project.

"actions" A tibble::tibble() containing the data for the conservation actions. It contains the
following columns:

108 simulate_ptm_data

"name" character name for each action.

"cost" numeric cost for each action.

"locked_in" logical indicating if certain actions should be locked into the solution.

"locked_out" logical indicating if certain actions should be locked out of the solution.

"features" A tibble::tibble() containing the data for the conservation features (e.g. species).
It contains the following columns:

"name" character name for each feature.

"weight" numeric weight for each feature. For each feature, this is calculated as the amount
of time that elapsed between the present and the features’ last common ancestor. In other
words, the weights are calculated as the unique amount of evolutionary history that each
feature has experienced.

"tree" ape::phylo() phylogenetic tree for the features.

References

Carwardine J, Martin TG, Firn J, Ponce-Reyes P, Nicol S, Reeson A, Grantham HS, Stratford D,
Kehoe L, Chades I (2019) Priority Threat Management for biodiversity conservation: A handbook.
Journal of Applied Ecology, 56: 481–490.

See Also

simulate_ppp_data().

Examples

create a simulated data set
s <- simulate_ptm_data(number_projects = 6,

number_actions = 8,
number_features = 5,
cost_mean = 100,
cost_sd = 5,
success_min_probability = 0.7,
success_max_probability = 0.99,
funded_min_persistence_probability = 0.5,
funded_max_persistence_probability = 0.9,
baseline_min_persistence_probability = 0.01,
baseline_max_persistence_probability = 0.4,
locked_in_proportion = 0.01,
locked_out_proportion = 0.01)

print data set
print(s)

sim_data 109

sim_data Simulated data

Description

Simulated data for prioritizing conservation projects.

Usage

data(sim_actions)

data(sim_projects)

data(sim_features)

data(sim_tree)

Format

sim_projects tibble::tibble() object.

sim_actions tibble::tibble() object.

sim_features tibble::tibble() object.

sim_tree ape::phylo() object.

Details

The data set contains the following objects:

sim_projects A tibble::tibble() object containing data for six simulated conservation projects.
Each row corresponds to a different project and each column contains information about the
projects. This table contains the following columns:

"name" character name for each project.
"success" numeric probability of each project succeeding if it is funded.
"F1" ... "F5" numeric columns for each feature (i.e. "F1", "F2", "F3", "F4", "F5", indicat-

ing the enhanced probability that each feature will survive if it funded. Missing values
(NA) indicate that a feature does not benefit from a project being funded.

"F1_action" ... "F5_action" logical columns for each action, ranging from "F1_action"
to "F5_action" indicating if an action is associated with a project (TRUE) or not (FALSE).

"baseline_action" logical column indicating if a project is associated with the baseline
action (TRUE) or not (FALSE). This action is only associated with the baseline project.

sim_actions A tibble::tibble() object containing data for six simulated actions. Each row
corresponds to a different action and each column contains information about the actions.
This table contains the following columns:

"name" character name for each action.
"cost" numeric cost for each action.

110 solution_statistics

"locked_in" logical indicating if certain actions should be locked into the solution.
"locked_out" logical indicating if certain actions should be locked out of the solution.

sim_features A tibble::tibble() object containing data for five simulated features. Each row
corresponds to a different feature and each column contains information about the features.
This table contains the following columns:

"name" character name for each feature.
"weight" numeric weight for each feature.

tree ape::phylo() phylogenetic tree for the features.

Examples

load data
data(sim_projects, sim_actions, sim_features, sim_tree)

print project data
print(sim_projects)
print action data
print(sim_actions)

print feature data
print(sim_features)
plot phylogenetic tree
plot(sim_tree)

solution_statistics Solution statistics

Description

Calculate statistics describing a solution to a project prioritization problem().

Usage

solution_statistics(x, solution)

Arguments

x project prioritization problem().

solution base::data.frame() or tibble::tibble() table containing the solutions. Here,
rows correspond to different solutions and columns correspond to different ac-
tions. Each column in the argument to solution should be named according
to a different action in x. Cell values indicate if an action is funded in a given
solution or not, and should be either zero or one. Arguments to solution can
contain additional columns, and they will be ignored.

solution_statistics 111

Value

A tibble::tibble() table containing the following columns:

"cost" numeric cost of each solution.

"obj" numeric objective value for each solution. This is calculated using the objective function
defined for the argument to x.

x$project_names() numeric column for each project indicating if it was completely funded (with
a value of 1) or not (with a value of 0).

x$feature_names() numeric column for each feature indicating the probability that it will persist
into the future given each solution.

See Also

objectives, replacement_costs(), project_cost_effectiveness().

Examples

load data
data(sim_projects, sim_features, sim_actions)

print project data
print(sim_projects)

print action data
print(sim_features)

print feature data
print(sim_actions)

build problem
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 400) %>%
add_feature_weights("weight") %>%
add_binary_decisions()

print problem
print(p)

create a table with some solutions
solutions <- data.frame(F1_action = c(0, 1, 1),

F2_action = c(0, 1, 0),
F3_action = c(0, 1, 1),
F4_action = c(0, 1, 0),
F5_action = c(0, 1, 1),
baseline_action = c(1, 1, 1))

print the solutions
the first solution only has the baseline action funded
the second solution has every action funded

112 solve

the third solution has only some actions funded
print(solutions)

calculate statistics
solution_statistics(p, solutions)

solve Solve

Description

Solve a conservation planning problem().

Usage

S4 method for signature 'OptimizationProblem,Solver'
solve(a, b, ...)

S4 method for signature 'ProjectProblem,missing'
solve(a, b, ...)

Arguments

a ProjectProblem or an OptimizationProblem object.
b Solver object. Not used if a is an ProjectProblem object.
... arguments passed to compile().

Value

The type of object returned from this function depends on the argument to a. If the argument to a is
an OptimizationProblem object, then the solution is returned as a list containing the prioritization
and additional information (e.g. run time, solver status). On the other hand, if the argument to a
is an ProjectProblem object, then a tibble::tibble() table object will be returned. In this table,
each row row corresponds to a different solution and each column describes a different property or
result associated with each solution:

"solution" integer solution identifier.
"status" character describing each solution. For example, is the solution optimal, suboptimal,

or was it returned because the solver ran out of time?
"obj" numeric objective value for each solution. This is calculated using the objective function

defined for the argument to x.
"cost" numeric total cost associated with each solution.
x$action_names() numeric column for each action indicating if they were funded in each solu-

tion or not.
x$project_names() numeric column for each project indicating if it was completely funded (with

a value of 1) or not (with a value of 0).
x$feature_names() numeric column for each feature indicating the probability that it will persist

into the future given each solution.

solve 113

See Also

problem(), solution_statistics(), solvers.

Examples

load data
data(sim_projects, sim_features, sim_actions)

print project data
print(sim_projects)

print action data
print(sim_features)

print feature data
print(sim_actions)

build problem
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 400) %>%
add_feature_weights("weight") %>%
add_binary_decisions()

print problem
print(p)

Not run:
solve problem
s <- solve(p)

print output
print(s)

print the solver status
print(s$obj)

print the objective value
print(s$obj)

print the solution cost
print(s$cost)

print which actions are funded in the solution
s[, sim_actions$name, drop = FALSE]

print the expected probability of persistence for each feature
if the solution were implemented
s[, sim_features$name, drop = FALSE]

End(Not run)

114 Solver-class

Solver-class Solver prototype

Description

This prototype is used to generate objects that represent methods for solving optimization problems.
This class represents a recipe to create solver and and is only recommended for use by expert
users. To customize the method used to solve optimization problems, please see the help page
on solvers.

Fields

$name character name of solver.

$parameters Parameters object with parameters used to customize the the solver.

$solve function used to solve a OptimizationProblem object.

Usage

x$print()

x$show()

x$repr()

x$solve(op)

Arguments

x Solver object.

op OptimizationProblem object.

Details

print print the object.

show show the object.

repr character representation of object.

solve solve an OptimizationProblem using this object.

solvers 115

solvers Problem solvers

Description

Specify the software and configuration used to solve a project prioritization problem(). By default,
the best available exact algorithm solver will be used.

Details

The following solvers can be used to find solutions for a project prioritization problem():

add_default_solver() This solver uses the best software currently installed on the system.

add_gurobi_solver() Gurobi is a state-of-the-art commercial optimization software with an R
package interface. It is by far the fastest solver that can be used by this package, however, it is
also the only solver that is not freely available. That said, licenses are available to academics
at no cost. The gurobi package is distributed with the Gurobi software suite. This solver uses
the gurobi package to solve problems.

add_rsymphony_solver() SYMPHONY is an open-source integer programming solver that is part
of the Computational Infrastructure for Operations Research (COIN-OR) project, an initiative
to promote development of open-source tools for operations research (a field that includes
linear programming). The Rsymphony package provides an interface to COIN-OR and is
available on CRAN. This solver uses the Rsymphony package to solve problems.

add_lpsymphony_solver() The lpsymphony package provides a different interface to the COIN-
OR software suite. Unlike the Rsymhpony package, the lpsymphony package is distributed
through Bioconductor. The lpsymphony package may be easier to install on Windows or Max
OSX systems than the Rsymphony package.

add_lpsolveapi_solver() lp_solve is an open-source integer programming solver. The lpSolveAPI
package provides an interface to this solver and is available on CRAN. Although this solver
is the slowest currently supported solver, it is also the only exact algorithm solver that can be
installed on all operating systems without any manual installation steps.

add_heuristic_solver() Generate solutions using a backwards heuristic algorithm. Although
these types of algorithms have conventionally been used to solve project prioritization prob-
lems, they are extremely unlikely to identify optimal solutions and provide no guarantees
concerning solution quality.

add_random_solver() Generate solutions by randomly funding actions. This can be useful when
evaluating the performance of a funding scheme—though it is strongly recommended to eval-
uate the performance of a funding scheme by comparing it to an optimal solution identified
using exact algorithms (e.g. add_gurobi_solver(), add_rsymphony_solver()).

See Also

constraints, decisions, objectives, problem(), targets.

https://www.gurobi.com
https://github.com/coin-or/SYMPHONY
https://doi.org/doi:10.18129/B9.bioc.lpsymphony
http://lpsolve.sourceforge.net/5.5/

116 solvers

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_binary_decisions()

build another problem, with the default solver
p2 <- p1 %>%

add_default_solver()

build another problem, with the gurobi solver
Not run:
p3 <- p1 %>%

add_gurobi_solver()

End(Not run)

build another problem, with the Rsympony solver
Not run:
p4 <- p1 %>%

add_rsymphony_solver()

End(Not run)

build another problem, with the lpsymphony solver
Not run:
p5 <- p1 %>%

add_lpsymphony_solver()

End(Not run)

build another problem, with the lpSolveAPI solver
p6 <- p1 %>%

add_lpsolveapi_solver()

build another problem, with the heuristic solver
p7 <- p1 %>%

add_heuristic_solver()

build another problem, with the random solver
p8 <- p1 %>%

add_random_solver()

Not run:
generate solutions using each of the solvers
s <- rbind(solve(p2), solve(p3), solve(p4), solve(p5), solve(p6), solve(p7),

solve(p8))
s$solver <- c("default", "gurobi", "Rsymphony", "lpsymphony", "lpSolveAPI",

Target-class 117

"heuristic", "random")

print solutions
print(as.data.frame(s))

End(Not run)

Target-class Target prototype

Description

This prototype is used to represent the targets used when making a prioritization. This prototype
inherits from the ProjectModifier. This class represents a recipe, to actually add targets to a
planning problem, see the help page on targets. Only experts should use this class directly.

See Also

ProjectModifier.

targets Targets

Description

Targets are used to specify the minimum probability of persistence required for each feature. Please
note that only some objectives require targets, and attempting to solve a problem that requires
targets will throw an error if targets are not supplied, and attempting to solve a problem that does
not require targets will throw a warning if targets are supplied.

Details

The following functions can be used to specify targets for a project prioritization problem():

add_relative_targets() Set targets as a proportion (between 0 and 1) of the maximum proba-
bility of persistence associated with the best project for each feature. For instance, if the best
project for a feature has an 80% probability of persisting, setting a 50% (i.e. 0.5) relative
target will correspond to a 40% threshold probability of persisting.

add_absolute_targets() Set targets by specifying exactly what probability of persistence is re-
quired for each feature. For instance, setting an absolute target of 10% (i.e. 0.1) corresponds
to a threshold 10% probability of persisting.

add_manual_targets() Set targets by manually specifying all the required information for each
target.

118 tibble-methods

See Also

constraints, decisions, objectives, problem(), solvers.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with minimum set objective and targets that require each
feature to have a 30% chance of persisting into the future
p1 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_absolute_targets(0.3) %>%
add_binary_decisions()

print problem
print(p1)

build problem with minimum set objective and targets that require each
feature to have a level of persistence that is greater than or equal to
30% of the best project for conserving it
p2 <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_min_set_objective() %>%
add_relative_targets(0.3) %>%
add_binary_decisions()

print problem
print(p2)

Not run:
solve problems
s1 <- solve(p1)
s2 <- solve(p2)

print solutions
print(s1)
print(s2)

plot solutions
plot(p1, s1)
plot(p2, s2)

End(Not run)

tibble-methods Manipulate tibbles

tibble-methods 119

Description

Assorted functions for manipulating tibble::tibble() objects.

Usage

S4 method for signature 'tbl_df'
nrow(x)

S4 method for signature 'tbl_df'
ncol(x)

S4 method for signature 'tbl_df'
as.list(x)

Arguments

x tibble::tibble() object.

Details

The following methods are provided from manipulating tibble::tibble() objects.

nrow extract integer number of rows.

ncol extract integer number of columns.

as.list convert to a list.

print print the object.

Examples

load tibble package
require(tibble)

make tibble
a <- tibble(value = seq_len(5))

number of rows
nrow(a)

number of columns
ncol(a)

convert to list
as.list(a)

120 weights

Weight-class Weight prototype

Description

This prototype is used to represent the weights used when making a prioritization. This prototype
inherits from the ProjectModifier. This class represents a recipe, to actually add targets to a
planning problem, see the help page on weights. Only experts should use this class directly.

See Also

ProjectModifier.

weights Weights

Description

Weights are used to specify the relative importance for specific features persisting into the future.
Please note that only some objectives require weights, and attempting to solve a problem that does
not require weights will throw a warning and the weights will be ignored.

Details

Currently, only one function can be used to specify weights:

add_feature_weights() Set feature weights for a project prioritization problem().

See Also

constraints, decisions, objectives, problem(), solvers, targets.

Examples

load data
data(sim_projects, sim_features, sim_actions)

build problem with maximum richness objective, $300 budget, and
feature weights
p <- problem(sim_projects, sim_actions, sim_features,

"name", "success", "name", "cost", "name") %>%
add_max_richness_objective(budget = 200) %>%
add_feature_weights("weight") %>%
add_binary_decisions()

Not run:
solve problem

%>% 121

s <- solve(p)

print solution
print(s)

plot solution
plot(p, s)

End(Not run)

%>% Pipe operator

Description

This package uses the pipe operator (%>%) to express nested code as a series of imperative proce-
dures.

Arguments

lhs, rhs An object and a function.

See Also

magrittr::%>%(), tee().

Examples

set seed for reproducibility
set.seed(500)

generate 100 random numbers and calculate the mean
mean(runif(100))

reset the seed
set.seed(500)

repeat the previous procedure but use the pipe operator instead of nesting
function calls inside each other.
runif(100) %>% mean()

122 %T>%

%T>% Tee operator

Description

This package uses the "tee" operator (%T>%) to modify objects.

Arguments

lhs, rhs An object and a function.

See Also

magrittr::%T>%(), pipe().

Examples

the tee operator returns the left-hand side of the result and can be
useful when dealing with mutable objects. In this example we want
to use the function "f" to modify the object "e" and capture the
result

create an empty environment
e <- new.env()

create a function to modify an environment and return NULL
f <- function(x) {x$a <- 5; return(NULL)}

if we use the pipe operator we won't capture the result since "f"()
returns a NULL
e2 <- e %>% f()
print(e2)

but if we use the tee operator then the result contains a copy of "e"
e3 <- e %T>% f()
print(e3)

Index

∗ datasets
sim_data, 109

%>%, 121
%T>%, 122

A (OptimizationProblem-methods), 71
A,OptimizationProblem-method

(OptimizationProblem-methods),
71

action_names, 4
action_names,ProjectProblem-method

(action_names), 4
add_absolute_targets, 5
add_absolute_targets(), 26, 27, 117
add_absolute_targets,ProjectProblem,character-method

(add_absolute_targets), 5
add_absolute_targets,ProjectProblem,numeric-method

(add_absolute_targets), 5
add_binary_decisions, 7
add_binary_decisions(), 54
add_default_solver, 8
add_default_solver(), 115
add_feature_weights, 10
add_feature_weights(), 31, 33, 120
add_feature_weights,ProjectProblem,character-method

(add_feature_weights), 10
add_feature_weights,ProjectProblem,numeric-method

(add_feature_weights), 10
add_gurobi_solver, 12
add_gurobi_solver(), 9, 14, 22, 115
add_heuristic_solver, 14
add_heuristic_solver(), 9, 115
add_locked_in_constraints, 17
add_locked_in_constraints(), 24, 53, 86
add_locked_in_constraints,ProjectProblem,character-method

(add_locked_in_constraints), 17
add_locked_in_constraints,ProjectProblem,logical-method

(add_locked_in_constraints), 17
add_locked_in_constraints,ProjectProblem,numeric-method

(add_locked_in_constraints), 17

add_locked_out_constraints, 19
add_locked_out_constraints(), 24, 53, 86
add_locked_out_constraints,ProjectProblem,character-method

(add_locked_out_constraints),
19

add_locked_out_constraints,ProjectProblem,logical-method
(add_locked_out_constraints),
19

add_locked_out_constraints,ProjectProblem,numeric-method
(add_locked_out_constraints),
19

add_lpsolveapi_solver, 21
add_lpsolveapi_solver(), 9, 115
add_lpsymphony_solver

(add_lsymphony_solver), 23
add_lpsymphony_solver(), 9, 115
add_lsymphony_solver, 23
add_manual_locked_constraints, 24
add_manual_locked_constraints,ProjectProblem,data.frame-method

(add_manual_locked_constraints),
24

add_manual_locked_constraints,ProjectProblem,tbl_df-method
(add_manual_locked_constraints),
24

add_manual_targets, 26
add_manual_targets(), 117
add_manual_targets,ProjectProblem,data.frame-method

(add_manual_targets), 26
add_manual_targets,ProjectProblem,tbl_df-method

(add_manual_targets), 26
add_manual_targets-method

(add_manual_targets), 26
add_max_phylo_div_objective, 28
add_max_phylo_div_objective(), 66
add_max_richness_objective, 31
add_max_richness_objective(), 10, 15, 39,

65
add_max_targets_met_objective, 33
add_max_targets_met_objective(), 6, 26,

123

124 INDEX

41, 65
add_min_set_objective, 36
add_min_set_objective(), 6, 10, 15, 26, 39,

41, 66, 97
add_random_solver, 38
add_random_solver(), 9, 115
add_relative_targets, 40
add_relative_targets(), 26, 27, 117
add_relative_targets,ProjectProblem,character-method

(add_relative_targets), 40
add_relative_targets,ProjectProblem,numeric-method

(add_relative_targets), 40
add_rsymphony_solver, 42
add_rsymphony_solver(), 9, 14, 115
ape::phylo(), 28, 50, 93, 105, 108–110
ape::rcoal(), 104, 107
array_parameters, 45
array_parameters(), 75
ArrayParameter, 46, 99
ArrayParameter (ArrayParameter-class),

44
ArrayParameter-class, 44
as (as.Id), 48
as.Id, 48
as.list,tbl_df-method (tibble-methods),

118
as.list.OptimizationProblem, 49

base::data.frame(), 45, 77, 79, 81, 85, 86,
97, 110

base::print(), 85
binary_matrix_parameter

(matrix_parameters), 57
binary_parameter (scalar_parameters), 99
binary_parameter_array

(array_parameters), 45
branch_matrix, 49

col_ids (OptimizationProblem-methods),
71

col_ids,OptimizationProblem-method
(OptimizationProblem-methods),
71

Collection, 91
Collection (Collection-class), 50
Collection-class, 50
compile, 51
compile(), 112
Constraint, 51, 88, 90, 92

Constraint (Constraint-class), 52
Constraint-class, 52
constraints, 18, 25, 52, 53, 54, 66, 85, 87,

91, 115, 118, 120

data.frame(), 45
Decision, 88, 90–92
Decision (Decision-class), 54
Decision-class, 54
decisions, 8, 53, 54, 54, 66, 85, 87, 115, 118,

120

feature_names, 55
feature_names,ProjectProblem-method

(feature_names), 55

get_data (OptimizationProblem-methods),
71

get_data,OptimizationProblem-method
(OptimizationProblem-methods),
71

ggplot(), 78, 79
GurobiSolver-class (Solver-class), 114

HeuristicSolver-class (Solver-class),
114

Id (new_id), 60
Id(), 74, 76
integer_parameter (scalar_parameters),

99
integer_parameter_array

(array_parameters), 45
is (is.Id), 56
is.Id, 56

lb (OptimizationProblem-methods), 71
lb,OptimizationProblem-method

(OptimizationProblem-methods),
71

list(), 49
LpsolveapiSolver-class (Solver-class),

114
LpsymphonySolver-class (Solver-class),

114

magrittr::%>%(), 121
magrittr::%T>%(), 122
Matrix::dgCMatrix, 50, 71, 73, 93
matrix_parameters, 57

INDEX 125

methods::show(), 102
misc_parameter, 59
MiscParameter, 57, 59
MiscParameter (MiscParameter-class), 58
MiscParameter-class, 58
modelsense

(OptimizationProblem-methods),
71

modelsense,OptimizationProblem-method
(OptimizationProblem-methods),
71

ncell (OptimizationProblem-methods), 71
ncell,OptimizationProblem-method

(OptimizationProblem-methods),
71

ncol (OptimizationProblem-methods), 71
ncol,OptimizationProblem-method

(OptimizationProblem-methods),
71

ncol,tbl_df-method (tibble-methods), 118
new_id, 60
new_optimization_problem, 61
new_waiver, 62
nrow (OptimizationProblem-methods), 71
nrow,OptimizationProblem-method

(OptimizationProblem-methods),
71

nrow,tbl_df-method (tibble-methods), 118
number_of_actions, 62
number_of_actions,OptimizationProblem-method

(number_of_actions), 62
number_of_actions,ProjectProblem-method

(number_of_actions), 62
number_of_branches

(OptimizationProblem-methods),
71

number_of_branches,OptimizationProblem-method
(OptimizationProblem-methods),
71

number_of_features, 63
number_of_features,OptimizationProblem-method

(number_of_features), 63
number_of_features,ProjectProblem-method

(number_of_features), 63
number_of_projects, 64
number_of_projects,OptimizationProblem-method

(number_of_projects), 64

number_of_projects,ProjectProblem-method
(number_of_projects), 64

numeric_matrix_parameter
(matrix_parameters), 57

numeric_parameter (scalar_parameters),
99

numeric_parameter_array
(array_parameters), 45

obj (OptimizationProblem-methods), 71
obj,OptimizationProblem-method

(OptimizationProblem-methods),
71

Objective, 88, 90–92
Objective (Objective-class), 65
Objective-class, 65
objectives, 30, 32, 35, 38, 53, 54, 65, 65, 85,

87, 111, 115, 118, 120
oppr, 68
OptimizationProblem, 49, 52, 61, 63, 64, 71,

73, 89, 90, 112, 114
OptimizationProblem

(OptimizationProblem-class), 69
OptimizationProblem-class, 69
OptimizationProblem-methods, 71

Parameter, 45, 59, 75, 76, 99
Parameter (Parameter-class), 74
Parameter-class, 74
Parameters, 75
Parameters (Parameters-class), 75
parameters, 75
Parameters-class, 75
pipe (%>%), 121
pipe(), 122
plot.ProjectProblem, 77
plot.ProjectProblem(), 87
plot_feature_persistence, 78
plot_feature_persistence(), 78
plot_phylo_persistence, 80
plot_phylo_persistence(), 78
pproto, 83
print, 84
print,Id-method (print), 84
print,tbl_df-method (print), 84
print.ArrayParameter (print), 84
print.Id (print), 84
print.OptimizationProblem (print), 84
print.ProjectModifier (print), 84

126 INDEX

print.ProjectProblem (print), 84
print.ScalarParameter (print), 84
print.Solver (print), 84
problem, 85
problem(), 5–8, 10, 12, 17, 18, 20, 21, 23, 24,

26, 28, 31, 33, 36, 39–41, 43, 51–54,
65, 66, 77, 79–81, 90, 94, 96, 97,
110, 112, 113, 115, 117, 118, 120

project_cost_effectiveness, 94
project_cost_effectiveness(), 97, 111
project_names, 95
project_names,ProjectProblem-method

(project_names), 95
ProjectModifier, 50–52, 54, 117, 120
ProjectModifier

(ProjectModifier-class), 88
ProjectModifier-class, 88
ProjectProblem, 5, 7–10, 12, 13, 15, 16, 18,

20–29, 31, 32, 34–39, 41, 43, 52, 55,
63–65, 87–89, 93, 96, 112

ProjectProblem (ProjectProblem-class),
90

ProjectProblem-class, 90
proportion_parameter

(scalar_parameters), 99
proportion_parameter_array

(array_parameters), 45
pwlobj (OptimizationProblem-methods), 71
pwlobj,OptimizationProblem-method

(OptimizationProblem-methods),
71

RandomSolver-class (Solver-class), 114
replacement_costs, 96
replacement_costs(), 95, 111
rhs (OptimizationProblem-methods), 71
rhs,OptimizationProblem-method

(OptimizationProblem-methods),
71

row_ids (OptimizationProblem-methods),
71

row_ids,OptimizationProblem-method
(OptimizationProblem-methods),
71

RsymphonySolver-class (Solver-class),
114

scalar_parameters, 99
scalar_parameters(), 75

ScalarParameter, 45, 74, 100
ScalarParameter

(ScalarParameter-class), 98
ScalarParameter-class, 98
sense (OptimizationProblem-methods), 71
sense,OptimizationProblem-method

(OptimizationProblem-methods),
71

shiny::div(), 51, 76, 90
shiny::shiny(), 44, 45, 59, 74, 98, 99
show, 101
show,Id-method (show), 101
show,OptimizationProblem-method (show),

101
show,Parameter-method (show), 101
show,ProjectModifier-method (show), 101
show,ProjectProblem-method (show), 101
show,Solver-method (show), 101
sim_actions (sim_data), 109
sim_data, 109
sim_features (sim_data), 109
sim_projects (sim_data), 109
sim_tree (sim_data), 109
simulate_ppp_data, 102
simulate_ppp_data(), 108
simulate_ptm_data, 105
simulate_ptm_data(), 105
solution_statistics, 110
solution_statistics(), 87, 95, 97, 113
solve, 112
solve(), 52, 85
solve,OptimizationProblem,Solver-method

(solve), 112
solve,ProjectProblem,missing-method

(solve), 112
Solver, 91, 92, 112, 114
Solver (Solver-class), 114
Solver-class, 114
solvers, 9, 13, 17, 22, 24, 39, 43, 53, 54, 66,

85, 87, 113, 114, 115, 118, 120

Target, 88, 90–92
Target (Target-class), 117
Target-class, 117
targets, 6, 27, 38, 41, 53, 54, 66, 85, 87, 115,

117, 117, 120
tee (%T>%), 122
tee(), 121
tibble-methods, 118

INDEX 127

tibble::tbl_df(), 79
tibble::tibble(), 25, 26, 58, 77, 79, 81, 85,

86, 93, 94, 97, 104, 107–112, 119
tidytree::treedata(), 81

ub (OptimizationProblem-methods), 71
ub,OptimizationProblem-method

(OptimizationProblem-methods),
71

uuid::UUIDgenerate(), 60, 61

vtype (OptimizationProblem-methods), 71
vtype,OptimizationProblem-method

(OptimizationProblem-methods),
71

Weight, 91, 92
Weight (Weight-class), 120
Weight-class, 120
weights, 10, 53, 54, 66, 85, 87, 120, 120

	action_names
	add_absolute_targets
	add_binary_decisions
	add_default_solver
	add_feature_weights
	add_gurobi_solver
	add_heuristic_solver
	add_locked_in_constraints
	add_locked_out_constraints
	add_lpsolveapi_solver
	add_lsymphony_solver
	add_manual_locked_constraints
	add_manual_targets
	add_max_phylo_div_objective
	add_max_richness_objective
	add_max_targets_met_objective
	add_min_set_objective
	add_random_solver
	add_relative_targets
	add_rsymphony_solver
	ArrayParameter-class
	array_parameters
	as.Id
	as.list.OptimizationProblem
	branch_matrix
	Collection-class
	compile
	Constraint-class
	constraints
	Decision-class
	decisions
	feature_names
	is.Id
	matrix_parameters
	MiscParameter-class
	misc_parameter
	new_id
	new_optimization_problem
	new_waiver
	number_of_actions
	number_of_features
	number_of_projects
	Objective-class
	objectives
	oppr
	OptimizationProblem-class
	OptimizationProblem-methods
	Parameter-class
	parameters
	Parameters-class
	plot.ProjectProblem
	plot_feature_persistence
	plot_phylo_persistence
	pproto
	print
	problem
	ProjectModifier-class
	ProjectProblem-class
	project_cost_effectiveness
	project_names
	replacement_costs
	ScalarParameter-class
	scalar_parameters
	show
	simulate_ppp_data
	simulate_ptm_data
	sim_data
	solution_statistics
	solve
	Solver-class
	solvers
	Target-class
	targets
	tibble-methods
	Weight-class
	weights
	%>%
	%T>%
	Index

