Package 'plinkFile'

April 5, 2020

Title 'PLINK' (and 'GCTA') File Helpers

Version 0.1.0

Description Provide function that reads binary genotype produced by 'PLINK' <https://www.coggenomics.org/plink/1.9/input#bed> into a R matrix, or scan the genotype one variant at a time like apply(), it also provides functions that reads and writes genotype relatedness/kinship matrices created by 'PLINK' <https://www.coggenomics.org/plink/1.9/distance#make_rel> or 'GCTA' <https://cnsgenomics.com/software/gcta/#MakingaGRM>. Currently it does not support writing back into 'PLINK' binary, it is best used for bringing data produced by 'PLINK' and 'GCTA' into R environment.

Depends R (>= 3.1)

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

NeedsCompilation no

Author Xiaoran Tong [aut, cre]

Maintainer Xiaoran Tong <tongxia1@msu.edu>

Repository CRAN

Date/Publication 2020-04-05 15:30:02 UTC

R topics documented:

dbd	 					•	•		•		•			•			•			•	•	•			•					•	•	•	•		2
gid	 					•	•		•		•			•			•			•	•	•			•					•	•	•	•		3
lc	 					•	•		•		•			•			•			•	•	•			•					•	•	•	•		3
readBED						•	•		•		•			•			•			•	•	•			•					•	•	•	•		4
readBIM	 •								•		•			•		•	•				•				•									•	5
readBSM	•								•		•			•		•	•				•				•									•	5
readFAM	•								•		•			•		•	•				•	•			•					•	•	•	•	•	6
readGRM	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
readIBS	 •								•		•			•		•	•				•	•			•					•	•	•	•	•	8
readREL	 						•					•			•		•					•			•	•				•	•	•			8

readVCM	9
saveBSM	10
saveGRM	10
scanBED	12
testReadBED	13
testReadBSM	13
testScanBED	14
	15

Index

dbd

Decompress Byte Data

Description

For each SNP (i.e., a row in the BED), a byte encodes the up to 4 genotype samples (2 bits each).

Usage

dbd(B, N, quiet = TRUE)

Arguments

В	byte data in R "raw" mode
Ν	number of individuals in the byte data.
quiet	do not report (def=TRUE)

Details

The function decodes bytes read from a BED to allele dosage or NA.

Value

a N x P matrix of genotype, where P is the number of variants.

gid

Description

Exam the row name for family and individual id.

Usage

gid(x, sep = ".")

Arguments

х	matrix
sep	separator between FID and IID forming the sample ID

Details

For matrices without rowname, id are automatically generated.

By common practice, the row names or a matrix are in the form of [FID.]IID. Samples without family ID are given one identical to their individual ID.

Value

data.frame of inferred family ID and individual ID.

lc

Line Count

Description

Count the occurance of '\n', much faster than readLine and read.table. Although slower than the unix command "wc -l", it upholds platform independency.

Usage

lc(f)

Arguments

f

the file name, or a connection.

readBED

Description

Read a BED file into a R matrix. This is meant for in-of-memory process of moderate to small sized genotype.

Usage

readBED(pfx, row = NULL, col = NULL, quiet = TRUE)

Arguments

pfx	prefix of PLINK file set, or the fullname of a BED file.
row	the row names: $1 =$ use individual ID, $2 =$ family and individual ID, def = NULL.
col	the column names: $1 =$ use variant ID (i.e., rsID), $2 =$ CHR:POS, $3 =$ CHR:POS_A1_A2
quiet	suppress screen printing? (def=TRUE)

Details

To scan a huge BED one varant at time without reading it into the memoty, see scanBED instead. A BED (*binary biallelic genotype table*) is comprised of three files (usually) sharing identical prefix:

- pfx.fam: table of N typed individuals
- pfx.bim: table of P typed genomic variants (i.e., SNPs);
- pfx.bed: genotype matrix of N rows and P columns stored in condensed binary format.

The three files are commonly referred by their common prefix, e.g.: chrX.bed, chrX.fam, and chrX.bim, are jointly specified by "chrX".

Value

genotype matrix with row individuals and column variants.

See Also

readBED

```
bed <- system.file("extdata", 'm20.bed', package="plinkFile")
pfx <- sub("[.]bed$", "", bed)
bed <- readBED(pfx, quiet=FALSE)</pre>
```

readBIM

Read BIM file

Description

Read BIM file

Usage

readBIM(pfx)

Arguments

pfx prefix of a PLINK file set.

Value

data frame describing genome variants, loaded from the BIM file.

readBSM

Read Binary Symmetric Matrix (BSM)

Description

Read BSM represented by a pair of files suffixed by ".bin" and ".id", usually produced by PLINK and GCTA.

Usage

readBSM(pfx, dgv = 1, fid = NULL, id = NULL, bin = NULL)

Arguments

pfx	prefix of data files pfx.id and pfx.bin
dgv	diagonal value for matrix without a diagonal (def=1.0)
fid	separator between FID and IID (def=NULL, use IID only)
id	use id file instead of the default {pfx}.id
bin	use bin file instead of the default {pfx}.bin

Details

The ".bin" is a binary file storing the matrix entries, which can be

- the N x N symmetric matrix in full
- the lower triangle with diagonal
- the lower triangle w/o diagonal

, saved as either single or double precision.

The ".id" a text file of family ID (FID) and individual ID (IID) in two columns. by default, IID is used as matix row and column names.

PLINK option --make-red bin, --distance bin, and GCTA option --make-grm all creats binary symmetric matrices, widely used in linear mixed model or kernel based models for genetics.

Value

symmetric matrix loaded from file, with sample ID in the row and column names.

Examples

```
pfx <- file.path(system.file("extdata", package="plinkFile"), "m20.rel")
(readBSM(pfx, fid=":"))</pre>
```

readFAM

Read FAM file

Description

Read FAM file

Usage

readFAM(pfx)

Arguments

pfx prefix of a PLINK file set.

Value

data frame describing individuals, loaded from the FAM file.

```
pfx <- file.path(system.file("extdata", package="plinkFile"), "m20")
bed <- readBED(pfx, row=1, col=1, quiet=FALSE)
bed
```

readGRM

Description

GRM is the core formt of GCTA, which is an binary symmetric matrix with an extra variant count matrix (VCM), this function reads the binary symmetric matrix.

Usage

readGRM(pfx, fid = ".")

Arguments

pfx	prefix of GRM file set
fid	separator after family ID (def=NULL, use IID only)

Details

GCTA GRM is represented by a set of three files:

- .grm.bin :GRM matrix in binary
- .grm.id :sample FID and IID in text
- .grm.N.bin :number of valid variants for each GRM entry

and it always uses single precision (4 bytes per entry).

To read the extra the extra VCM (grm.N.bin), use readVCM.

Value

matrix of relatedness with sample ID in row and column names.

```
pfx <- file.path(system.file("extdata", package="plinkFile"), "m20")
(readGRM(pfx))</pre>
```

readIBS

Description

A PLINK IBS (Identity by State) matrix is represented by

- .mibs.bin:IBS matrix in binary
- .mibs.id :FID and IID in text

A binary IBS matrix is the result of PLINK --distance ibs bin

Usage

readIBS(pfx, fid = ".")

Arguments

pfx	prefix of the IBS file set.
fid	seperate after family ID (def=NULL, use IID only)

Value

IBS matrix with row and column names set to sample ID.

Examples

```
pfx <- file.path(system.file("extdata", package="plinkFile"), "m20")
(readIBS(pfx))</pre>
```

readREL

Read PLINK Binary REL matrix

Description

A PLINK REL (Relatedness) matrix is represented by

- .rel.bin:REL matrix in binary
- .rel.id :FID and IID in text

A binary REL matrix is the result of PLINK --make-rel bin

Usage

readREL(pfx, fid = ".")

readVCM

Arguments

pfx	prefix of the REL file set
fid	separate after family ID. (def=NULL, use IID only)

Value

relatedness matrix with row and column names set to sample ID.

Examples

```
pfx <- file.path(system.file("extdata", package="plinkFile"), "m20")
(readREL(pfx))</pre>
```

readVCM

Read Variant Count Matrix (VCM) accompanying a GCTA GRM

Description

GRM (Genetic Relatedness Matrix) is the core formt of GCTA, which is a PLINK binary symmetric matrix with an extra variant count matrix (VCM), this function reads the VCM.

Usage

readVCM(pfx, fid = NULL)

Arguments

pfx	prefix of GRM file set
fid	seperate after family ID (def=NULL, use IID only)

Value

matrix of variant count with sample ID in row and column names.

```
pfx <- file.path(system.file("extdata", package="plinkFile"), "m20")
(readVCM(pfx))</pre>
```

saveBSM

Description

Save symmetric matrix to a binary core file (.bin), and a text file of IDs (.id), recognizable by PLINK.

Usage

saveBSM(pfx, x, ltr = TRUE, diag = TRUE, unit = 4L, fid = ".")

Arguments

pfx	prefix of output files
х	symmetric matrix to save
ltr	store the lower triangle only? (def=TRUE)
diag	save diagnal? (def=TRUE) ignored if ltr is FALSE.
unit	numerical unit, (def=4, single precision)
fid	separator between FID and IID (def=".").

Examples

```
pfx <- file.path(system.file("extdata", package="plinkFile"), "m20.rel")
rel <- readBSM(pfx) # relatedness kernel matrix
re2 <- rel^2 # 2nd order polynomial kernel
tmp <- tempdir()
dir.create(tmp, FALSE)
out <- file.path(tmp, 'm20.re2')
saveBSM(out, re2) # save the polynomial kernel
dir(tmp) # show new files, then clean up
unlink(tmp, recursive=TRUE)</pre>
```

Save symmetic matrix to GCTA GRM format.

Description

GRM (Genetic Relatedness Matrix) is the core formt of GCTA, this function saves a R symmetric matrix to a file set recgnizable by GCTA.

Usage

saveGRM(pfx, grm, vcm = NULL, fid = ".")

saveGRM

Arguments

pfx	prefix of data files
grm	genome relatedness matrix to save
vcm	variant counts matrix to save (def=1).
fid	separator after family ID. (def=".")

Details

Three files will be saved:

- .grm.bin :genetic relatedness matrix in binary
- · .grm.id :FID and IID for N individuals in text
- .grm.N.bin :variant count matrix (VCM) in binary

FID and IID will be generated if the grm to be saved has no row names.

When save the vcm, if a single number is given, this number is used as the variant count for all entries in the GRM.

saveGRM is useful in exporting customized kinship matrices (such as a Gaussian or a Laplacian kernel) to a GRM acceptable by GCTA, which are not supported by GCTA's own GRM builder.

```
pfx <- file.path(system.file("extdata", package="plinkFile"), "m20")</pre>
gmx <- readBED(pfx) # read genotype matrix from PLINK BED.</pre>
                    # standardize
gmx <- scale(gmx)</pre>
tmp <- tempdir()</pre>
                      # for example outputs
dir.create(tmp, FALSE)
# kinship matrix as Gaussian kernel, built from the first 10 variants
gmx.gau <- gmx[, +(1:10)]
                                            # the first 10 variants
not.na.gau <- tcrossprod(!is.na(gmx.gau)) # variant count matrix</pre>
kin.gau <- exp(as.matrix(-dist(gmx.gau, "euc")) / not.na.gau)
                                            # the Gaussian kernel
print(kin.gau)
out.gau <- file.path(tmp, "m20.gau")</pre>
saveGRM(out.gau, kin.gau, not.na.gau)
                                            # gau.grm.* should appear
# kinship matrix as Laplacian kernel, built without the first 10 variants
gmx.lap <- gmx[, -(1:10)]</pre>
                                            # drop the first 10 variants
not.na.lap <- tcrossprod(!is.na(gmx.lap)) # variant count matrix</pre>
kin.lap <- exp(as.matrix(-dist(gmx.lap, "man")) / not.na.lap)</pre>
out.lap <- file.path(tmp, "m20.lap")</pre>
print(kin.lap)
                                            # the Laplacian kernel
saveGRM(out.lap, kin.lap, not.na.lap)
                                            # lap.grm.* should appear
# merge kinship in R language for a radius based function kernel matrix
not.na.rbf <- not.na.gau + not.na.lap</pre>
kin.rbf <- (kin.gau * not.na.gau + kin.lap * not.na.lap) / not.na.rbf
print(kin.rbf)
out.rbf <- file.path(tmp, "m20.rbf")</pre>
```

scanBED

```
saveGRM(out.rbf, kin.rbf, not.na.rbf)  # rbf.grm.* should appear
# show saved matrices, then clean up
dir(tmp, "(gau|lap|rbf)")
unlink(tmp, recursive=TRUE)
```

scanBED

Scan genotypes in PLINK BED(s)

Description

Go through a BED file set and visit one variant at a time. This is meant for out-of-memory screening of huge genotype, such as a GWAS study.

Usage

scanBED(pfx, FUN, ..., simplify = TRUE)

Arguments

pfx	prefix of PLINK BED.
FUN	the function to process each variant.
•••	additional argument to pass to FUN.
simplify	TRUE to simplify the result as an array.

Details

To read an entire BED into a R matrix, see readBED instead.

A BED (binary biallelic genotype table) is comprised of three files (usually) sharing identical prefix:

- pfx.fam: table of N typed individuals
- pfx.bim: table of P typed genomic variants (i.e., SNPs);
- pfx.bed: genotype matrix of N rows and P columns stored in condensed binary format.

The three files are commonly referred by their common prefix, e.g.:

chrX.bed, chrX.fam, and chrX.bim, are jointly specified by "chrX".

Value

an array with each row corresponding to a variant if simplify is set to TRUE; otherwise, a list with each element corresponding to a variant is returned.

A context valable ".i" is assigned to the environment of FUN, therefore, one can access the index of variant current being processed from within the body of FUN.

12

testReadBED

See Also

readBED

Examples

```
pfx <- file.path(system.file("extdata", package="plinkFile"), "000")
ret <- scanBED(pfx, function(g)
{
    af <- mean(g, na.rm=TRUE) / 2
    maf <- min(af, 1 - af)
        c(idx=.i, mu=mean(g, na.rm=TRUE), maf=maf, nas=sum(is.na(g)))
})
print(ret[1:5, ])</pre>
```

testReadBED

Test BED Reader

Description

Read m20 (bed, bim, and fam) under "extdata" and compare with the content in text file "i10.txt" converted from m20 by PLINK.

Usage

testReadBED()

testReadBSM

Test Genetic Relatedness Matrix Reader

Description

Compare the read from genetic relatedness matrix created from the same genome segment but stored in different shapes and types.

Usage

testReadBSM()

testScanBED

Description

Go through file set "000" under "extdata", summerize every SNP.

Usage

testScanBED()

Index

dbd, 2 gid, 3 lc, <mark>3</mark> readBED, 4, 12 readBIM, 5 readBSM, 5 readFAM, <mark>6</mark> readGRM, 7 readIBS, 8 readREL, 8 readVCM, 7, 9 saveBSM, 10saveGRM, 10 scanBED, *4*, 12 testReadBED, 13 testReadBSM, 13 testScanBED, 14