# Package 'pwr2ppl' 

September 6, 2022
Type Package
Title Power Analyses for Common Designs (Power to the People)
Version 0.5.0
Author Chris Aberson
Maintainer Chris Aberson [chris.aberson@gmail.com](mailto:chris.aberson@gmail.com)
Description Statistical power analysis for designs including t-tests, correlations,multiple regression, ANOVA, mediation, and logistic regression. Functions accompanyAberson (2019) [doi:10.4324/9781315171500](doi:10.4324/9781315171500).
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.1.2
Imports car ( $>=3.0-0$ ), MASS ( $>=7.3-51$ ), dplyr ( $>=0.8 .0$ ), tidyr ( $>=$
$0.8 .0)$, ez ( $>=0.4 .3$ ), nlme ( $>=3.1-139$ ), phia ( $>=0.2-0$ ), afex
( $>=0.22-1$ ), MBESS ( $>=4.5 .0$ ), lavaan ( $>=0.6-2$ ), stats ( $>=$3.5.0), semTools ( $>=0.5$ ), quantreg ( $>=5.50$ ), broom ( $>=$0.7 .00 ), lmtest ( $>=0.9-30$ ), lmPerm, pls
NeedsCompilation no
Repository CRAN
Date/Publication 2022-09-06 11:40:05 UTC
$R$ topics documented:
anc ..... 3
anovalf 3 ..... 4
anova1f_3c ..... 5
anova1f_4 ..... 7
anova1f_4c ..... 8
anova $2 \times 2$ ..... 9
anova2x2_se ..... 11
Assumptions ..... 12
Assumptions_resample ..... 14
Chi2x2 ..... 16
Chi2X3 ..... 17
ChiES ..... 17
ChiGOF ..... 18
corr ..... 19
depb ..... 20
depcorr0 ..... 21
depcorr1 ..... 22
d_prec ..... 23
indb ..... 23
indcorr ..... 25
indR2 ..... 25
indt ..... 27
lmm1F ..... 28
lmm1Ftrends ..... 29
lmm1w1b ..... 30
lmm2F ..... 33
lmm2Fse ..... 36
LRcat ..... 39
LRcont ..... 39
MANOVA1f ..... 40
md_prec ..... 42
med ..... 43
medjs ..... 45
medjs_paths ..... 47
medserial ..... 48
medserial_paths ..... 49
modmed 14 ..... 50
modmed7 ..... 51
MRC ..... 52
MRC_all ..... 53
MRC_short2 ..... 55
MRC_shortcuts ..... 57
pairt ..... 58
prop1 ..... 59
propind ..... 60
R2ch ..... 61
R2_prec ..... 62
regint ..... 63
regintR2 ..... 64
r_prec ..... 65
tfromd ..... 65
win1bg1 ..... 66
win1F ..... 68
win1Ftrends ..... 70
win2F ..... 71
win2Fse ..... 74
Index ..... 77

Compute Power for One or Two Factor ANCOVA with a single covariate Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user Factor A can have up to four levels, Factor B, if used, can only be two

## Description

Compute Power for One or Two Factor ANCOVA with a single covariate Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user Factor A can have up to four levels, Factor B, if used, can only be two

## Usage

anc (
m1.1,
m2.1,
m1.2,
m2.2,
m3.1 = NULL,
m3.2 = NULL,
m4.1 = NULL,
m4.2 = NULL,
s1.1 = NULL,
s2.1 = NULL,
s1.2 = NULL,
s2.2 = NULL,
s3.1 = NULL,
s3.2 = NULL,
s4.1 = NULL,
s4.2 = NULL,
$r$,
$s=N U L L$,
alpha $=0.05$,
factors,
levelsA = NULL,
n
)

## Arguments

m1. 1
m2.1 Cell mean for Second level of Factor A, First level of Factor B
Cell mean for First level of Factor A, First level of Factor B
m1.2 Cell mean for First level of Factor A, Second level of Factor B
m2.2 Cell mean for Second level of Factor A, Second level of Factor B
m3.1 Cell mean for Third level of Factor A, First level of Factor B

| $m 3.2$ | Cell mean for Third level of Factor A, Second level of Factor B |
| :--- | :--- |
| $m 4.1$ | Cell mean for Fourth level of Factor A, First level of Factor B |
| m4.2 | Cell mean for Fourth level of Factor A, Second level of Factor B |
| s1.1 | Cell standard deviation for First level of Factor A, First level of Factor B |
| s2.1 | Cell standard deviation for Second level of Factor A, First level of Factor B |
| s1.2 | Cell standard deviation for First level of Factor A, Second level of Factor B |
| s2.2 | Cell standard deviation for Second level of Factor A, Second level of Factor B |
| s3.1 | Cell standard deviation for Third level of Factor A, First level of Factor B |
| s3.2 | Cell standard deviation for Third level of Factor A, Second level of Factor B |
| s4.1 | Cell standard deviation for Fourth level of Factor A, First level of Factor B |
| s4.2 | Cell standard deviation for Fourth level of Factor A, Second level of Factor B |
| $r$ | Correlation between covariate and dependent variable. |
| s | Overall standard deviation. Sets all cell sds equal |
| alpha | Type I error (default is .05) |
| factors | Number of factors (1 or 2) |
| levelsA | levels for factor A (up to four) |
| n | Sample Size per cell |

## Value

Power for One or Two Factor ANCOVA with a single covariate

## Examples

$\operatorname{anc}(m 1.1=.85, m 2.1=2.5, s 1.1=1.7, s 2.1=1$, $\mathrm{m} 1.2=0.85, \mathrm{~m} 2.2=2.5, \mathrm{~s} 1.2=1.7, \mathrm{~s} 2.2=1$, $\mathrm{m} 3.1=0.0, \mathrm{~m} 3.2=2.5, \mathrm{~s} 3.1=1.7$, s3.2=1, $\mathrm{m} 4.1=0.6, \mathrm{~m} 4.2=2.5, \mathrm{~s} 4.1=1.7, \mathrm{~s} 4.2=1, \mathrm{r}=0.4$, $\mathrm{n}=251$, factors $=2$, levelsA $=4$ )

```
anova1f_3
```

Compute power for a One Factor ANOVA with three levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

## Description

Compute power for a One Factor ANOVA with three levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

## Usage

$$
\begin{aligned}
& \text { anova1f_3( } \\
& \text { m1 }=\text { NULL, } \\
& \text { m2 }=N U L L, \\
& \text { m3 }=N U L L, \\
& \text { s1 }=N U L L, \\
& \text { s2 }=N U L L, \\
& \text { s3 }=N U L L, \\
& \text { n1 }=N U L L, \\
& \text { n2 }=N U L L, \\
& \text { n3 }=N U L L, \\
& \text { alpha }=0.05 \\
& \text { ) }
\end{aligned}
$$

## Arguments

| m1 | Mean of first group |
| :--- | :--- |
| m2 | Mean of second group |
| m3 | Mean of third group |
| s1 | Standard deviation of first group |
| s2 | Standard deviation of second group |
| s3 | Standard deviation of third group |
| n1 | Sample size for first group |
| n2 | Sample size for second group |
| n3 | Sample size for third group |
| alpha | Type I error (default is .05) |

## Value

Power for the One Factor ANOVA

## Examples

anova1f_3(m1=80, m2=82, m3=82, s1=10, s2=10, s3=10, n1=60, n2=60, n3=60)
anova1f_3c Compute power for a One Factor ANOVA with three levels and contrasts. Takes means, sds, and sample sizes for each group. Alpha is . 05 by default, alternative values may be entered by user

## Description

Compute power for a One Factor ANOVA with three levels and contrasts. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

## Usage

$$
\begin{aligned}
& \text { anova1f_3c }( \\
& m 1=N U L L, \\
& m 2=N U L L, \\
& m 3=N U L L, \\
& s 1=N U L L, \\
& s 2=N U L L, \\
& s 3=N U L L, \\
& n 1=N U L L, \\
& n 2=N U L L, \\
& n 3=N U L L, \\
& a l p h a=0.05, \\
& c 1=0, \\
& c 2=0, \\
& c 3=0 \\
& )
\end{aligned}
$$

## Arguments

m1
m1
Mean of first group
m2 Mean of second group
m3 Mean of third group
s1 Standard deviation of first group
s2 Standard deviation of second group
s3 Standard deviation of third group
n1 Sample size for first group
n2 Sample size for second group
n3 Sample size for third group
alpha Type I error (default is .05)
c1 Weight for Contrast 1 (default is 0 )
c2 Weight for Contrast 2 (default is 0 )
c3 Weight for Contrast 3 (default is 0 )

## Value

Power for the One Factor ANOVA

## Examples

```
anova1f_3c(m1=80, m2=82, m3=82, s1=10, s2=10, s3=10,
n1=60, n2=60, n3=60, c1=2, c2=-1, c3=-1, alpha=.05)
```

```
anova1f_4
```

Compute power for a One Factor Between Subjects ANOVA with four levels Takes means, sds, and sample sizes for each group

## Description

Compute power for a One Factor Between Subjects ANOVA with four levels Takes means, sds, and sample sizes for each group

## Usage

## Arguments

| $m 1$ | Mean of first group |
| :--- | :--- |
| $m 2$ | Mean of second group |
| $m 3$ | Mean of third group |
| $m 4$ | Mean of fourth group |
| $s 1$ | Standard deviation of first group |
| s2 | Standard deviation of second group |
| s3 | Standard deviation of third group |
| s4 | Standard deviation of forth group |
| n2 | Sample size for first group |
| n3 | Sample size for second group |
| n4 | Sample size for third group |
| alpha | Sample size for fourth group |
|  | Type I error (default is .05) |

## Value

Power for the One Factor Between Subjects ANOVA

## Examples

```
anova1f_4(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10, s3=10,
s4=10, n1=60, n2=60, n3=60, n4=60)
```

anova1f_4c

Compute power for a One Factor ANOVA with four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

## Description

Compute power for a One Factor ANOVA with four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

## Usage

## Arguments

| $m 1$ | Mean of first group |
| :--- | :--- |
| $m 2$ | Mean of second group |
| $m 3$ | Mean of third group |
| $m 4$ | Mean of fourth group |


| s1 | Standard deviation of first group |
| :--- | :--- |
| s2 | Standard deviation of second group |
| s3 | Standard deviation of third group |
| s4 | Standard deviation of forth group |
| n1 | Sample size for first group |
| n2 | Sample size for second group |
| n3 | Sample size for third group |
| n4 | Sample size for fourth group |
| alpha | Type I error (default is .05) |
| c1 | Weight for Contrast 1 (default is 0) |
| c2 | Weight for Contrast 2 (default is 0) |
| c3 | Weight for Contrast 3 (default is 0) |
| c4 | Weight for Contrast 4 (default is 0) |

## Examples

```
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10,
s3=10, s4=10, n1=60, n2=60, n3=60, n4=60,
c1=1, c2=1, c3=-1, c4=-1, alpha=.05)
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10,
s3=10, s4=10, n1=60, n2=60, n3=60, n4=60,
c1=1, c2=-1, c3=-0, c4=0, alpha=.05)
anova1f_4c(m1=80, m2=82, m3=82, m4=86, s1=10, s2=10,
s3=10, s4=10, n1=60, n2=60, n3=60, n4=60,
c1=0, c2=0, c3=1, c4=-1, alpha=.05)
#'@return Power for the One Factor ANOVA
```

```
anova2x2
```

Compute power for a Two by Two Between Subjects ANOVA. Takes means, sds, and sample sizes for each group. Alpha is . 05 by default, alternative values may be entered by user

## Description

Compute power for a Two by Two Between Subjects ANOVA. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

## Usage

anova2x2(
m1.1 = NULL,
m1.2 = NULL,
m2.1 = NULL,
m2.2 = NULL,

```
    s1.1 = NULL,
    s1.2 = NULL,
    s2.1 = NULL,
    s2.2 = NULL,
    n1.1 = NULL,
    n1.2 = NULL,
    n2.1 = NULL,
    n2.2 = NULL,
    alpha = 0.05,
    all = "OFF"
)
```


## Arguments

m1.1 Cell mean for First level of Factor A, First level of Factor B
m1.2 Cell mean for First level of Factor A, Second level of Factor B
m2.1 Cell mean for Second level of Factor A, First level of Factor B
m2.2 Cell mean for Second level of Factor A, Second level of Factor B
s1.1 Cell standard deviation for First level of Factor A, First level of Factor B
s1.2 Cell standard deviation for First level of Factor A, Second level of Factor B
s2.1 Cell standard deviation for Second level of Factor A, First level of Factor B
s2.2 Cell standard deviation for Second level of Factor A, Second level of Factor B
n1.1 Cell sample size for First level of Factor A, First level of Factor B
n1.2 Cell sample size for First level of Factor A, Second level of Factor B
n2.1 Cell sample size for Second level of Factor A, First level of Factor B
n2.2 Cell sample size for Second level of Factor A, Second level of Factor B
alpha Type I error (default is .05)
all Power(ALL) - Power for detecting all predictors in the model at once (default is "OFF")

## Value

Power for the Two Factor ANOVA

## Examples

```
anova2x2(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60,
s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7,
n1.1=100, n1.2=100, n2.1=100, n2.2=100, alpha=.05)
anova2x2(m1.1=0.85, m1.2=0.85, m2.1=0.00, m2.2=0.60,
s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7,
n1.1=100, n1.2=100, n2.1=100, n2.2=100,
alpha=.05, all="ON")
```

```
anova2x2_se
```

Compute power for Simple Effects in a Two by Two Between Subjects ANOVA with two levels for each factor. Takes means, sds, and sample sizes for each group. Alpha is . 05 by default, alternative values may be entered by user

## Description

Compute power for Simple Effects in a Two by Two Between Subjects ANOVA with two levels for each factor. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

## Usage

anova2x2_se(
m1.1 = NULL,
m1. $2=$ NULL,
m2.1 = NULL,
m2.2 = NULL,
s1.1 = NULL,
s1.2 = NULL,
s2.1 = NULL,
s2.2 = NULL,
n1.1 = NULL,
n1.2 = NULL,
n2.1 = NULL,
n2. $2=$ NULL,
alpha $=0.05$
)

## Arguments

m1. 1
m1. 2
m2. 1
m2. 2
s1. 1
s1. 2
s2. 1
s2.2 Cell standard deviation for Second level of Factor A, Second level of Factor B
n1.1 Cell sample size for First level of Factor A, First level of Factor B
n1.2 Cell sample size for First level of Factor A, Second level of Factor B
n2.1 Cell sample size for Second level of Factor A, First level of Factor B
n2.2 Cell sample size for Second level of Factor A, Second level of Factor B

```
alpha Type I error (default is .05) examples anova2x2_se(m1.1=0.85, m1.2=0.85, m2.1=0.00,
    m2.2=0.60, s1.1=1.7, s1.2=1.7, s2.1=1.7, s2.2=1.7, n1.1=250, n1.2=250, n2.1=250,
    n2.2=250, alpha=.05)
```


## Value

Power for Simple Effects Tests in a Two By Two ANOVA

Assumptions $\quad$| Compute power for Multiple Regression with Violated assumptions |
| :--- |
| (Beta) |

## Description

Compute power for Multiple Regression with Violated assumptions (Beta)

## Usage

$$
\begin{aligned}
& \text { Assumptions( } \\
& \text { ry1 = NULL, } \\
& \text { ry2 = NULL, } \\
& \text { ry3 = NULL, } \\
& \text { ry4 = NULL, } \\
& \text { ry5 = NULL, } \\
& r 12=\text { NULL, } \\
& \text { r13 = NULL, } \\
& r 14=\text { NULL, } \\
& \text { r15 = NULL, } \\
& \text { r23 = NULL, } \\
& \text { r24 = NULL, } \\
& \text { r25 = NULL, } \\
& \text { r34 = NULL, } \\
& \text { r35 = NULL, } \\
& \text { r45 = NULL, } \\
& \text { sy = NULL, } \\
& \text { s1 = NULL, } \\
& \text { s2 = NULL, } \\
& \text { s3 = NULL, } \\
& \text { s4 = NULL, } \\
& \text { s5 = NULL, } \\
& \text { ky }=\text { NULL, } \\
& \text { k1 = NULL, } \\
& \text { k2 = NULL, } \\
& \text { k3 = NULL, } \\
& \text { k4 = NULL, } \\
& \text { k5 = NULL, } \\
& \mathrm{n}=\mathrm{NULL} \text {, }
\end{aligned}
$$

```
    alpha = 0.05,
    test = NULL,
    nruns = 500
)
```


## Arguments

| ry1 | Correlation between DV (y) and first predictor (1) |
| :---: | :---: |
| ry2 | Correlation between DV (y) and second predictor (2) |
| ry3 | Correlation between DV (y) and third predictor (3) |
| ry4 | Correlation between DV (y) and fourth predictor (4) |
| ry5 | Correlation between DV (y) and fifth predictor (5) |
| r12 | Correlation between first (1) and second predictor (2) |
| r13 | Correlation between first (1) and third predictor (3) |
| r14 | Correlation between first (1) and fourth predictor (4) |
| r15 | Correlation between first (1) and fifth predictor (5) |
| r23 | Correlation between second (2) and third predictor (3) |
| r24 | Correlation between second (2) and fourth predictor (4) |
| r25 | Correlation between second (2) and fifth predictor (5) |
| r34 | Correlation between third (3) and fourth predictor (4) |
| r35 | Correlation between third (3) and fifth predictor (5) |
| r45 | Correlation between fourth (4) and fifth predictor (5) |
| sy | Skew of outcome variable |
| s1 | Skew of first predictor |
| s2 | Skew of second predictor |
| s3 | Skew of third predictor |
| s4 | Skew of fourth predictor |
| s5 | Skew of fifth predictor |
| ky | Kurtosis of outcome variable |
| k1 | Kurtosis of first predictor |
| k2 | Kurtosis of second predictor |
| k3 | Kurtosis of third predictor |
| k4 | Kurtosis of fourth predictor |
| k5 | Kurtosis of fifth predictor |
| n | Sample size |
| alpha | Type I error (default is .05) |
| test | type of test (none, sqrt, log, inv, robust, boot, quantile, hc0, hc1, hc2, hc3) |
| nruns | number of runs, default is 500 |

## Value

Power for Resampled Multiple Regression with Non Normal Variables

## Examples

Assumptions (ry1=.0, ry2=.3, r12=.3, sy=1, s1=2, s2=2, ky=1, k1=1, k2=1, n=100, nruns=20, test="sqrt")

Assumptions_resample Compute power for Multiple Regression with Violated assumptions using Resamples

## Description

Compute power for Multiple Regression with Violated assumptions using Resamples

## Usage

Assumptions_resample(
ry1 = NULL,
ry2 = NULL,
ry3 = NULL,
ry4 = NULL,
ry5 = NULL,

$$
\mathrm{r} 12=\text { NULL, }
$$

$$
\mathrm{r} 13=\mathrm{NULL},
$$

$$
\mathrm{r} 14=\mathrm{NULL}
$$

$$
\mathrm{r} 15=\mathrm{NULL}
$$

$$
\mathrm{r} 23=\mathrm{NULL}
$$

r24 = NULL,
r25 = NULL,
r34 = NULL,
r35 = NULL,
r45 = NULL,
sy = NULL,
s1 = NULL,
s2 = NULL,
s3 = NULL,

$$
\mathrm{s} 4=\mathrm{NULL},
$$

s5 = NULL,
ky = NULL,
k1 = NULL,
k2 = NULL,
k3 = NULL,
k4 = NULL,
k5 = NULL,

$$
\mathrm{n}=\mathrm{NULL}
$$

```
    alpha = 0.05,
    test = "boot",
    reps = 200,
    boots = 500
)
```


## Arguments

| ry1 | Correlation between DV (y) and first predictor (1) |
| :---: | :---: |
| ry2 | Correlation between DV (y) and second predictor (2) |
| ry3 | Correlation between DV (y) and third predictor (3) |
| ry4 | Correlation between DV (y) and fourth predictor (4) |
| ry5 | Correlation between DV (y) and fifth predictor (5) |
| r12 | Correlation between first (1) and second predictor (2) |
| r13 | Correlation between first (1) and third predictor (3) |
| r14 | Correlation between first (1) and fourth predictor (4) |
| r15 | Correlation between first (1) and fifth predictor (5) |
| r23 | Correlation between second (2) and third predictor (3) |
| r24 | Correlation between second (2) and fourth predictor (4) |
| r25 | Correlation between second (2) and fifth predictor (5) |
| r34 | Correlation between third (3) and fourth predictor (4) |
| r35 | Correlation between third (3) and fifth predictor (5) |
| r45 | Correlation between fourth (4) and fifth predictor (5) |
| sy | Skew of outcome variable |
| s1 | Skew of first predictor |
| s2 | Skew of second predictor |
| s3 | Skew of third predictor |
| s4 | Skew of fourth predictor |
| s5 | Skew of fifth predictor |
| ky | Kurtosis of outcome variable |
| k1 | Kurtosis of first predictor |
| k2 | Kurtosis of second predictor |
| k3 | Kurtosis of third predictor |
| k4 | Kurtosis of fourth predictor |
| k5 | Kurtosis of fifth predictor |
| n | Sample size |
| alpha | Type I error (default is .05) |
| test | type of test ("boot","jack","perm") |
| reps | number of replications, default is 200 - use larger for final analyses |
| boots | number of bootstrap samples. Default is 500. Use larger for final. |

## Value

Power for Multiple Regression with Non Normal Variables via resample

## Examples

```
Assumptions_resample(ry1=.0,ry2=.3,r12=.3,sy=1,s1=2, s2=2,ky=1,k1=1,k2=1,n=100)
```

Chi2x2

Compute power for an Chi Square $2 x 2$ Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

## Description

Compute power for an Chi Square $2 \times 2$ Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

## Usage

Chi2x2(r1c1, r1c2, r2c1, r2c2, n, alpha $=0.05$ )

## Arguments

| r1c1 | Proportion of overall scores in Row 1, Column 1 |
| :--- | :--- |
| r1c2 | Proportion of overall scores in Row 1, Column 2 |
| r2c1 | Proportion of overall scores in Row 2, Column 1 |
| r2c2 | Proportion of overall scores in Row 2, Column 2 |
| $n$ | Total sample size |
| alpha | Type I error (default is .05) |

## Value

Power for 2x2 Chi Square

## Examples

Chi $2 \times 2(r 1 \mathrm{c} 1=.28, r 1 \mathrm{c} 2=.22, r 2 \mathrm{c} 1=.38, r 2 \mathrm{c} 2=.12, \mathrm{n}=100)$

Compute power for an Chi Square $2 x 3$ Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

## Description

Compute power for an Chi Square $2 \times 3$ Takes proportions for each group. Alpha is .05 by default, alternative values may be entered by user

## Usage

Chi2X3(r1c1, r1c2, r1c3, r2c1, r2c2, r2c3, n, alpha = 0.05)

## Arguments

| r1c1 | Proportion of overall scores in Row 1, Column 1 |
| :--- | :--- |
| r1c2 | Proportion of overall scores in Row 1, Column 2 |
| r1c3 | Proportion of overall scores in Row 1, Column 3 |
| r2c1 | Proportion of overall scores in Row 2, Column 1 |
| r2c2 | Proportion of overall scores in Row 2, Column 2 |
| r2c3 | Proportion of overall scores in Row 2, Column 3 |
| n | Total sample size |
| alpha | Type I error (default is .05) |

## Value

Power for 2 x 3 Chi Square

## Examples

Chi2X3(r1c1=.25,r1c2=.25,r1c3=.10, r2c1=.10,r2c2=.25,r2c3=.05,n=200)

## ChiES

Compute power for Chi Square Based on Effect Size Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

## Description

Compute power for Chi Square Based on Effect Size Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

## Usage

ChiES(phi, df, nlow, nhigh, by = 1, alpha = 0.05)

## Arguments

| phi | phi coefficient (effect size for $2 \times 2$ ) |
| :--- | :--- |
| df | degrees of freedom |
| nlow | starting sample size |
| nhigh | ending sample size |
| by | Incremental increase in sample (e.g. nlow $=10$, nhigh $=24$, by $=2$, produces <br> estimates of 10,12, and 14$)$ <br> alpha |
|  | Type I error (default is .05$)$ |

## Value

Power for Chi Square Based on Effect Size

## Examples

ChiES(phi=.3, df=1,nlow=10, nhigh=200,by=10, alpha = .01)

| ChiGOF | Compute power for an Chi Square Goodness of Fit Takes proportions |
| :--- | :--- |
| for up to six group. Alpha is . 05 by default, alternative values may be |  |
| entered by user |  |

## Description

Compute power for an Chi Square Goodness of Fit Takes proportions for up to six group. Alpha is .05 by default, alternative values may be entered by user

## Usage

ChiGOF (
groups,
po1,
po2,
po3 $=$ NULL,
po4 = NULL,
po5 = NULL,
po6 $=$ NULL,
n,
alpha $=0.05$
)

## Arguments

| groups | Number of groups |
| :--- | :--- |
| po1 | Proportion observed Group 1 |
| po2 | Proportion observed Group 2 |
| po3 | Proportion observed Group 3 |
| po4 | Proportion observed Group 4 |
| po5 | Proportion observed Group 5 |
| po6 | Proportion observed Group 6 |
| n | Total sample size |
| alpha | Type I error (default is .05) |

## Value

Power for Chi Square Goodness of Fit

## Examples

ChiGOF (po1=.25, po2=.20, po3=.20, po4=.35, groups=4, n=100)

Compute power for Pearson's Correlation Takes correlation and range of values

## Description

Compute power for Pearson's Correlation Takes correlation and range of values

## Usage

$\operatorname{corr}(r$, nlow, nhigh, alpha $=0.05$, tails $=2$, by $=1$ )

## Arguments

| $r$ | Correlation |
| :--- | :--- |
| nlow | Starting sample size |
| nhigh | Ending sample size |
| alpha | Type I error (default is .05) |
| tails | one or two-tailed tests (default is 2) |
| by | Incremental increase in sample size from low to high |

## Value

Power for Pearson's Correlation

## Examples

```
corr(r=.30, nlow=60, nhigh=100,by=2)
```

```
depb
```

Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

## Description

Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

## Usage

depb(ry1, ry2, ry3 = NULL, r12, r13 = NULL, r23 = NULL, $n=$ NULL, alpha $=0.05$ )

## Arguments

| ry1 | Correlation between DV $(\mathrm{y})$ and first predictor (1) |
| :--- | :--- |
| ry2 | Correlation between DV $(\mathrm{y})$ and second predictor (2) |
| ry3 | Correlation between DV $(\mathrm{y})$ and third predictor (3) |
| r12 | Correlation between first (1) and second predictor (2) |
| r13 | Correlation between first (1) and third predictor (3) |
| r23 | Correlation between second (2) and third predictor (3) |
| n | Total Sample size |
| alpha | Type I error (default is .05) |

## Value

Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors

## Examples

```
depb(ry1=.40, ry2=.40, ry3=-.40, r12=-.15, r13=-.60, r23=.25,n=110, alpha=.05)
```

```
    depcorr0
```

Compute Power for Comparing Two Dependent Correlations, No Variables in Common Takes correlations and range of values. First variable in each pair is termed predictor, second is $D V$

## Description

Compute Power for Comparing Two Dependent Correlations, No Variables in Common Takes correlations and range of values. First variable in each pair is termed predictor, second is DV

## Usage

depcorr0(
r12,
rxy,
r1x,
r1y,
r2x,
r2y,
nlow,
nhigh,
alpha $=0.05$,
tails = 2,
by $=1$
)

## Arguments

| r12 | Correlation between the predictor and DV (first set of measures) |
| :--- | :--- |
| rxy | Correlation between the predictor and DV (second set of measures) |
| r1y | Correlation between the predictor (first measure) and the predictor variable (first <br> measure) <br> Correlation between the predictor (first measure) and the dependent variable <br> (second measure) |
| r2x | Correlation between the DV (first measure) and the predictor variable (first mea- <br> sure) |
| r2y | Correlation between the DV (first measure) and the dependent variable (second <br> measure) |
| nhigh | Starting sample size |
| alpha | Ending sample size <br> tails |
| Type I error (default is .05) |  |
| by | one or two-tailed tests (default is 2) |
|  | Incremental increase in sample size from low to high |

Value
Power for Comparing Two Dependent Correlations, No Variables in Common

## Examples

```
depcorr0(r12=.4,rxy=.7,r1x=.3,r1y=.1,r2x=.45,r2y=.35,nlow=20,nhigh=200,by=10, tails=2)
```

```
depcorr1 Compute Power for Comparing Two Dependent Correlations, One
``` Variable in Common Takes correlations and range of values

\section*{Description}

Compute Power for Comparing Two Dependent Correlations, One Variable in Common Takes correlations and range of values

\section*{Usage}
depcorr1 (r1y, r2y, r12, nlow, nhigh, alpha \(=0.05\), tails \(=2\), by \(=1\) )

\section*{Arguments}
\begin{tabular}{ll} 
r1y & Correlation between the first predictor and the dependent variable \\
r2y & Correlation between the second predictor and the dependent variable \\
r12 & Correlation between the first predictor and the second predictor \\
nlow & Starting sample size \\
nhigh & Ending sample size \\
alpha & Type I error (default is .05) \\
tails & one or two-tailed tests (default is 2) \\
by & Incremental increase in sample size from low to high
\end{tabular}

\section*{Value}

Power for Comparing Dependent Correlations, One Variable in Common

\section*{Examples}
```

depcorr1(r1y=.3,r2y=.04,r12 = .2, nlow=100,nhigh=300,by=10, tails=2)

```

\section*{Description}

Compute Precision Analyses for Standardized Mean Differences

\section*{Usage}
d_prec (d, nlow, nhigh, propn1 = 0.5, ci \(=0.95\), tails \(=2\), by \(=1\) )

\section*{Arguments}
d
nlow starting total sample size
nhigh ending total sample size
propn1 Proportion in First Group
ci Type of Confidence Interval (e.g., .95)
tails number of tails for test (default is 2)
by Incremental increase in sample (e.g. nlow \(=10\), nhigh \(=24\), by \(=2\), produces estimates of 10,12 , and 14)

\section*{Value}

Precision Analyses for Standardized Mean Differences

\section*{Examples}
d_prec (d=.4, nlow=100, nhigh=2000, propn1=.5, ci=.95, by=100)
indb
Power for Comparing Independent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

\section*{Description}

Power for Comparing Independent Coefficients in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

\section*{Usage}
```

indb(
ry1_1,
ry2_1,
ry3_1 = NULL,
r12_1,
r13_1 = NULL,
r23_1 = NULL,
n1,
ry1_2,
ry2_2,
ry3_2 = NULL,
r12_2,
r13_2 = NULL,
r23_2 = NULL,
n2,
alpha = 0.05
)

```

\section*{Arguments}
\begin{tabular}{ll} 
ry1_1 & Correlation between DV (y) and first predictor (1), first test \\
ry2_1 & Correlation between DV (y) and second predictor (2), first test \\
ry3_1 & Correlation between DV (y) and third predictor (3), first test \\
r12_1 & Correlation between first (1) and second predictor (2), first test \\
r13_1 & Correlation between first (1) and third predictor (3), first test \\
r23_1 & Correlation between second (2) and third predictor (3), first test \\
n1 & Sample size first test \\
ry1_2 & Correlation between DV (y) and first predictor (1), second test \\
ry2_2 & Correlation between DV (y) and second predictor (2), second test \\
ry3_2 & Correlation between DV (y) and third predictor (3), second test \\
r12_2 & Correlation between first (1) and second predictor (2), second test \\
r13_2 & Correlation between first (1) and third predictor (3), second test \\
r23_2 & Correlation between second (2) and third predictor (3), second test \\
n2 & Sample size second test \\
alpha & Type I error (default is .05)
\end{tabular}

\section*{Value}

Power for Comparing Independent Coefficients in Multiple Regression

\section*{Examples}
```

indb(ry1_1=.40, ry2_1=.40, ry3_1 =-.40, r12_1=-.15,r13_1=-.60, r23_1=.25,
ry1_2=.40, ry2_2=.10, ry3_2 =-.40, r12_2=-.15,r13_2=-.60, r23_2=.25,
n1=50,n2=50, alpha=.05)

```
indcorr
Compute Power for Comparing Two Independent Correlations Takes correlations and range of values

\section*{Description}

Compute Power for Comparing Two Independent Correlations Takes correlations and range of values

\section*{Usage}
indcorr(r1, r2, nlow, nhigh, propn1 = 0.5, alpha = 0.05, tails = 2, by = 1)

\section*{Arguments}
\(r 1 \quad\) Correlation for Group 1
\(r 2 \quad\) Correlation for Group 2
nlow Starting sample size
nhigh Ending sample size
propn1 Proportion of sample in first group (default is .50 for equally size groups)
alpha Type I error (default is .05)
tails one or two-tailed tests (default is 2)
by Incremental increase in sample size from low to high

\section*{Value}

Power for Comparing Two Independent Correlations

\section*{Examples}
indcorr(r1=.3,r2=.1,nlow=200,nhigh=800,by=50, tails=1)
indR2 Power for Comparing Independent R2 in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

\section*{Description}

Power for Comparing Independent R2 in Multiple Regression with Two or Three Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

\section*{Usage}
```

    indR2(
        ry1_1,
        ry2_1,
        ry3_1 = NULL,
        r12_1,
        r13_1 = NULL,
        r23_1 = NULL,
        n1,
        ry1_2,
        ry2_2,
        ry3_2 = NULL,
        r12_2,
        r13_2 = NULL,
        r23_2 = NULL,
        n2,
        alpha = 0.05,
        tails = 2
    )
    ```

\section*{Arguments}
\begin{tabular}{ll} 
ry1_1 & Correlation between DV (y) and first predictor (1), first test \\
ry2_1 & Correlation between DV (y) and second predictor (2), first test \\
ry3_1 & Correlation between DV (y) and third predictor (3), first test \\
r12_1 & Correlation between first (1) and second predictor (2), first test \\
r13_1 & Correlation between first (1) and third predictor (3), first test \\
r23_1 & Correlation between second (2) and third predictor (3), first test \\
n1 & Sample size first test \\
ry1_2 & Correlation between DV (y) and first predictor (1), second test \\
ry2_2 & Correlation between DV (y) and second predictor (2), second test \\
ry3_2 & Correlation between DV (y) and third predictor (3), second test \\
r12_2 & Correlation between first (1) and second predictor (2), second test \\
r13_2 & Correlation between first (1) and third predictor (3), second test \\
r23_2 & Correlation between second (2) and third predictor (3), second test \\
n2 & Sample size second test \\
alpha & Type I error (default is .05) \\
tails & number of tails for test (default is 2)
\end{tabular}

\section*{Value}

Power for Comparing R2 Coefficients in Multiple Regression

\section*{Examples}
```

indR2 (ry1_1=.40, ry2_1=.40, ry3_1 =-. 40, r12_1=-. 15, r13_1=-.60, r23_1=.25,
ry1_2=.40, ry2_2=.10, ry3_2 =-. 40, r12_2=-. 15, r13_2=-.60, r23_2=.25,
$\mathrm{n} 1=115, \mathrm{n} 2=115$, alpha=.05)

```
indt

Compute power for an Independent Samples t-test Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for an Independent Samples t-test Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
indt ( m1 = NULL, m2 = NULL, s1 = NULL, s2 = NULL, n1 = NULL, n2 \(=\) NULL, alpha \(=0.05\)
)

\section*{Arguments}
m1 Mean of first group
m2 Mean of second group
s1 Standard deviation of first group
s2 Standard deviation of second group
n1 Sample size for first group
n2 Sample size for second group
alpha Type I error (default is .05)

\section*{Value}

Power for Independent Samples t -test

\section*{Examples}
```

indt(m1 =22,m2=20,s1=5, s2=5,n1=99,n2=99)
indt(m1=1.3, m2=0, s1=4,s2=1,n1=78,n2=234)

```

Compute power for a One Factor Within Subjects Linear Mixed Model with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a One Factor Within Subjects Linear Mixed Model with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
lmm1F (
m1,
m2,
m3 = NA,
\(\mathrm{m} 4=\mathrm{NA}\),
s1,
s2,
s3 = NULL,
s4 = NULL,
r12,
\(r 13=\) NULL ,
r14 = NULL,
r23 = NULL,
r24 = NULL,
r34 = NULL,
n ,
alpha \(=0.05\)
)

\section*{Arguments}
m1
m2
m3
m4
s1
s2
s3
s4
r12

Mean of first time point
Mean of second time point
Mean of third time point
Mean of fourth time point
Standard deviation of first time point
Standard deviation of second time point
Standard deviation of third time point
Standard deviation of forth time point
correlation Time 1 and Time 2
\begin{tabular}{ll} 
r13 & correlation Time 1 and Time 3 \\
r14 & correlation Time 1 and Time 4 \\
r23 & correlation Time 2 and Time 3 \\
r24 & correlation Time 2 and Time 4 \\
r34 & correlation Time 3 and Time 4 \\
n & Sample size for first group \\
alpha & Type I error (default is .05)
\end{tabular}

\section*{Value}

Power for the One Factor Within Subjects Linear Mixed Model

\section*{Examples}
```

lmm1F(m1=-. 25,m2=.00,m3=.10, m4=.15, s1=.4, s2=.5, s3=.6, s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)
lmm1F(m1 =-. 25,m2=.00,m3=.10,m4=.15,s1=.4, s2=.5, s3=2.5, s4=2.0,
r12=.50, r13=.30, r14=.10, r23=.5, r24=.30, r34=.40, n=100)

```
lmm1Ftrends Compute power for a One Factor Within Subjects LMM Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a One Factor Within Subjects LMM Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
lmm1Ftrends(
m1,
m2,
m3 \(=\mathrm{NA}\),
\(\mathrm{m} 4=\mathrm{NA}\),
s1,
s2,
s3 = NULL,
s4 = NULL,
r12,
r13 = NULL,
r14 = NULL,
r23 = NULL,
r24 = NULL,
```

        r34 = NULL,
        n,
        alpha = 0.05
    )

```

\section*{Arguments}
\begin{tabular}{ll}
\(m 1\) & Mean of first time point \\
m2 & Mean of second time point \\
\(m 3\) & Mean of third time point \\
m4 & Mean of fourth time point \\
\(s 1\) & Standard deviation of first time point \\
\(s 2\) & Standard deviation of second time point \\
s3 & Standard deviation of third time point \\
\(s 4\) & Standard deviation of forth time point \\
\(r 12\) & correlation Time 1 and Time 2 \\
\(r 13\) & correlation Time 1 and Time 3 \\
\(r 14\) & correlation Time 1 and Time 4 \\
\(r 23\) & correlation Time 2 and Time 3 \\
\(r 24\) & correlation Time 2 and Time 4 \\
\(r 34\) & correlation Time 3 and Time 4 \\
\(n\) & Sample size for first group \\
alpha & Type I error (default is .05)
\end{tabular}

\section*{Value}

Power for the One Factor Within Subjects LMM Trends

\section*{Examples}
```

lmm1Ftrends(m1=-. 25,m2=-. 15,m3=-.05,m4=.05, s1=.4, s2=.5, s3=.6, s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)

```
lmm1w1b

Compute power for a One Factor Within Subjects and One Factor Between LMM with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a One Factor Within Subjects and One Factor Between LMM with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
lmm1w1b( m1.1, m2.1, m3.1 = NA, m4.1 = NA, m1.2, m2.2, m3.2 = NA, m4.2 = NA, \(\mathrm{s} 1.1=\mathrm{NA}\), s2.1 = NA, s3.1 = NA, s4.1 = NA, s1.2 = NA, s2.2 = NA, s3.2 = NA, s4.2 = NA, r1.2_1 = NULL, r1.3_1 = NULL, r1.4_1 = NULL, r2.3_1 = NULL, r2.4_1 = NULL, r3.4_1 = NULL, r1.2_2 = NULL, r1.3_2 = NULL, r1.4_2 = NULL, r2.3_2 = NULL, r2.4_2 = NULL, r3.4_2 = NULL, \(r=\) NULL , \(s=N U L L\), n , alpha \(=0.05\)
    )

\section*{Arguments}
\begin{tabular}{ll}
m 1.1 & Mean of first level Within Factor, 1st level Between Factor \\
m 2.1 & Mean of second level Within Factor, 1st level Between Factor \\
m 3.1 & Mean of third level Within Factor, 1st level Between Factor \\
m 4.1 & Mean of fourth level Within Factor, 1st level Between Factor \\
m 1.2 & Mean of first level Within Factor, 2nd level Between Factor \\
m 2.2 & Mean of second level Within Factor, 2nd level Between Factor \\
m 3.2 & Mean of third level Within Factor, 2nd level Between Factor \\
m 4.2 & Mean of fourth level Within Factor, 2nd level Between Factor
\end{tabular}
\begin{tabular}{ll} 
s1.1 & Standard deviation of first level Within Factor, 1st level Between Factor \\
s2.1 & Standard deviation of second level Within Factor, 1st level Between Factor \\
s3.1 & Standard deviation of third level Within Factor, 1st level Between Factor \\
s4.1 & Standard deviation of forth level Within Factor, 1st level Between Factor \\
s1.2 & Standard deviation of first level Within Factor, 2nd level Between Factor \\
s2.2 & Standard deviation of second level Within Factor, 2nd level Between Factor \\
s3.2 & Standard deviation of third level Within Factor, 2nd level Between Factor \\
s4.2 & Standard deviation of forth level Within Factor, 2nd level Between Factor \\
r1.2_1 & correlation Within Factor Level 1 and Within Factor, Level 2, 1st level Between \\
r1.3_1 & correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between \\
r1.4_1 & correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between \\
r2.3_1 & correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between \\
r2.4_1 & correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between \\
r3.4_1 & correlation Within Factor Level 1 and Within Factor, Level 2, 2nd level Between \\
r1.2_2 & correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between \\
r1.3_2 & correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between \\
r1.4_2 & correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between \\
r2.3_2 & correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between \\
r2.4_2 & correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between \\
r3.4_2 & sets same correlations between DVs on all factor levels (seriously, just use this) \\
r & sets same standard deviation for factor levels (see comment above) \\
s & n for each between group level \\
alpha & Typerror (default is .05)
\end{tabular}

\section*{Value}

Power for the One Factor Within Subjects and One Factor Between LMM

\section*{Examples}
```

lmm1w1b(m1.1 = -. 25, m2.1=0, m3.1=0.10, m4.1=.15,
m1.2=-. 25,m2.2=-. 25,m3.2=-.25, m4.2=-.25,
s1.1 = .4, s2.1=.5, s3.1=0.6, s4.1=.7,
s1.2=.4,s2.2=.5, s3.2=.6, s4.2=.7,n = 50,
r1.2_1=.5,r1.3_1=.3,r1.4_1=.15,r2.3_1=.5,r2.4_1=.3,r3.4_1=.5,
r1.2_2=.5,r1.3_2=.3,r1.4_2=.15, r2.3_2=.5,r2.4_2=.3,r3.4_2=.5)
lmm1w1b(m1.1 = -. 25, m2.1=0, m3.1=0.10, m4.1=.15,
m1.2=-. 25,m2.2=-. 25,m3.2=-.25, m4.2=-.25, s=.4, r = .5, n=100)

```
lmm2F
Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is . 05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
```

    r37 = NULL,
    r38 = NULL,
    r45 = NULL,
    r46 = NULL,
    r47 = NULL,
    r48 = NULL,
    r56 = NULL,
    r57 = NULL,
    r58 = NULL,
    r67 = NULL,
    r68 = NULL,
    r78 = NULL,
    r = NULL,
    s = NULL,
    n,
    alpha = 0.05
    )

```

\section*{Arguments}
\begin{tabular}{ll}
m 1.1 & Mean of first level factor 1, 1st level factor two \\
m 2.1 & Mean of second level factor 1, 1st level factor two \\
m 3.1 & Mean of third level factor 1, 1st level factor two \\
m 4.1 & Mean of fourth level factor 1, 1st level factor two \\
m 1.2 & Mean of first level factor 1, 2nd level factor two \\
m 2.2 & Mean of second level factor 1, 2nd level factor two \\
m 3.2 & Mean of third level factor 1, 2nd level factor two \\
m 4.2 & Mean of fourth level factor 1, 2nd level factor two \\
s1.1 & Standard deviation of first level factor 1, 1st level factor two \\
s2.1 & Standard deviation of second level factor 1, 1st level factor two \\
s3.1 & Standard deviation of third level factor 1, 1st level factor two \\
s4.1 & Standard deviation of forth level factor 1, 1st level factor two \\
s1.2 & Standard deviation of first level factor 1, 2nd level factor two \\
s2.2 & Standard deviation of second level factor 1, 2nd level factor two \\
s3.2 & Standard deviation of third level factor 1, 2nd level factor two \\
s4.2 & Standard deviation of forth level factor 1, 2nd level factor two \\
r12 & correlation Factor 1, Level 1 and Factor 1, Level 2 \\
r13 & correlation Factor 1, Level 1 and Factor 1, Level 3 \\
r14 & correlation Factor 1, Level 1 and Factor 1, Level 4 \\
r15 & correlation Factor 1, Level 1 and Factor 2, Level 1 \\
r16 & correlation Factor 1, Level 1 and Factor 2, Level 2 \\
r17 & correlation Factor 1, Level 1 and Factor 2, Level 3
\end{tabular}
```

r18 correlation Factor 1, Level }1\mathrm{ and Factor 2, Level }
r23 correlation Factor 1, Level }2\mathrm{ and Factor 1, Level }
r24 correlation Factor 1, Level }2\mathrm{ and Factor 1, Level }
r25 correlation Factor 1, Level 2 and Factor 2, Level }
r26 correlation Factor 1, Level }2\mathrm{ and Factor 2, Level }
r27 correlation Factor 1, Level }2\mathrm{ and Factor 2, Level }
r28 correlation Factor 1, Level }2\mathrm{ and Factor 2, Level }
r34 correlation Factor 1, Level }3\mathrm{ and Factor 1, Level }
r35 correlation Factor 1, Level }3\mathrm{ and Factor 2, Level }
r36 correlation Factor 1, Level }3\mathrm{ and Factor 2, Level }
r37 correlation Factor 1, Level }3\mathrm{ and Factor 2, Level }
r38 correlation Factor 1, Level }3\mathrm{ and Factor 2, Level }
r45 correlation Factor 1, Level 4 and Factor 2, Level }
r46 correlation Factor 1, Level }4\mathrm{ and Factor 2, Level }
r47 correlation Factor 1, Level }4\mathrm{ and Factor 2, Level }
r48 correlation Factor 1, Level 4 and Factor 2, Level }
r56 correlation Factor 2, Level }1\mathrm{ and Factor 2, Level }
r57 correlation Factor 2, Level }1\mathrm{ and Factor 2, Level }
r58 correlation Factor 2, Level }1\mathrm{ and Factor 2, Level }
r67 correlation Factor 2, Level }2\mathrm{ and Factor 2, Level }
r68 correlation Factor 2, Level }2\mathrm{ and Factor 2, Level }
r78 correlation Factor 2, Level }3\mathrm{ and Factor 2, Level }
r
sets same correlations between DVs on all factor levels (seriously, just use this)
s
n
alpha

```

\section*{Value}

Power for the Two Factor Within Subjects LMM

\section*{Examples}
\[
\operatorname{lmm2F}(\mathrm{m} 1.1=-.25, \mathrm{~m} 2.1=0, \mathrm{~m} 1.2=-.25, \mathrm{~m} 2.2=.10, \mathrm{~s} 1.1=.4, \mathrm{~s} 2.1=.5, \mathrm{~s} 1.2=.4, \mathrm{~s} 2.2=.5, r=.5, \mathrm{n}=200)
\]
\begin{tabular}{ll}
1 mm 2 Fse & \begin{tabular}{l} 
Compute power for a Two Factor Within Subjects Using Linear Mixed \\
Models with up to two by four levels. Takes means, sds, and sample \\
sizes for each group. Alpha is . 05 by default, alternative values may \\
be entered by user
\end{tabular}
\end{tabular}

\section*{Description}

Compute power for a Two Factor Within Subjects Using Linear Mixed Models with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
\begin{tabular}{rl} 
lmm2Fse \\
\(m 1.1\), \\
\(m 2.1\), \\
\(m 3.1\) & \(=N A\), \\
\(m 4.1\) & \(=N A\), \\
\(m 1.2\), \\
\(m 2.2\), \\
\(m 3.2\) & \(=N A\), \\
\(m 4.2\) & \(=N A\), \\
\(s 1.1\) & \(=N A\), \\
\(s 2.1\) & \(=N A\), \\
\(s 3.1\) & \(=N A\), \\
\(s 4.1\) & \(=N A\), \\
\(s 1.2\) & \(=N A\), \\
\(s 2.2\) & \(=N A\), \\
\(s 3.2\) & \(=N A\), \\
\(s 4.2\) & \(=N A\), \\
\(r 12\) & \(=N U L\), \\
\(r 13\) & \(=N U L L\), \\
\(r 14\) & \(=N U L L\), \\
\(r 15\) & \(=N U L L\), \\
\(r 16\) & \(=N U L L\), \\
\(r 17\) & \(=N U L L\), \\
\(r 18\) & \(=N U L L\), \\
\(r 23\) & \(=N U L L\), \\
\(r 24\) & \(=N U L L\), \\
\(r 25\) & \(=N U L L\), \\
\(r 26\) & \(=N U L L\), \\
\(r 27\) & \(=N U L L\), \\
\(r 28\) & \(=N U L L\), \\
\(r 34\) & \(=N U L L\), \\
\(r 35\) & \(=N U L L\), \\
\(r 36\) & \(=N U L L\), \\
\end{tabular}
```

    r37 = NULL,
    r38 = NULL,
    r45 = NULL,
    r46 = NULL,
    r47 = NULL,
    r48 = NULL,
    r56 = NULL,
    r57 = NULL,
    r58 = NULL,
    r67 = NULL,
    r68 = NULL,
    r78 = NULL,
    r = NULL,
    s = NULL,
    n,
    alpha = 0.05
    )

```

\section*{Arguments}
\begin{tabular}{ll}
m 1.1 & Mean of first level factor 1, 1st level factor two \\
m 2.1 & Mean of second level factor 1, 1st level factor two \\
m 3.1 & Mean of third level factor 1, 1st level factor two \\
m 4.1 & Mean of fourth level factor 1, 1st level factor two \\
m 1.2 & Mean of first level factor 1, 2nd level factor two \\
m 2.2 & Mean of second level factor 1, 2nd level factor two \\
m 3.2 & Mean of third level factor 1, 2nd level factor two \\
m 4.2 & Mean of fourth level factor 1, 2nd level factor two \\
s1.1 & Standard deviation of first level factor 1, 1st level factor two \\
s2.1 & Standard deviation of second level factor 1, 1st level factor two \\
s3.1 & Standard deviation of third level factor 1, 1st level factor two \\
s4.1 & Standard deviation of forth level factor 1, 1st level factor two \\
s1.2 & Standard deviation of first level factor 1, 2nd level factor two \\
s2.2 & Standard deviation of second level factor 1, 2nd level factor two \\
s3.2 & Standard deviation of third level factor 1, 2nd level factor two \\
s4.2 & Standard deviation of forth level factor 1, 2nd level factor two \\
r12 & correlation Factor 1, Level 1 and Factor 1, Level 2 \\
r13 & correlation Factor 1, Level 1 and Factor 1, Level 3 \\
r14 & correlation Factor 1, Level 1 and Factor 1, Level 4 \\
r15 & correlation Factor 1, Level 1 and Factor 2, Level 1 \\
r16 & correlation Factor 1, Level 1 and Factor 2, Level 2 \\
r17 & correlation Factor 1, Level 1 and Factor 2, Level 3
\end{tabular}
\begin{tabular}{|c|c|}
\hline r18 & correlation Factor 1, Level 1 and Factor 2, Level 4 \\
\hline r23 & correlation Factor 1, Level 2 and Factor 1, Level 3 \\
\hline r24 & correlation Factor 1, Level 2 and Factor 1, Level 4 \\
\hline r25 & correlation Factor 1, Level 2 and Factor 2, Level 1 \\
\hline r26 & correlation Factor 1, Level 2 and Factor 2, Level 2 \\
\hline r27 & correlation Factor 1, Level 2 and Factor 2, Level 3 \\
\hline r28 & correlation Factor 1, Level 2 and Factor 2, Level 4 \\
\hline r34 & correlation Factor 1, Level 3 and Factor 1, Level 4 \\
\hline r35 & correlation Factor 1, Level 3 and Factor 2, Level 1 \\
\hline r36 & correlation Factor 1, Level 3 and Factor 2, Level 2 \\
\hline r37 & correlation Factor 1, Level 3 and Factor 2, Level 3 \\
\hline r38 & correlation Factor 1, Level 3 and Factor 2, Level 4 \\
\hline r45 & correlation Factor 1, Level 4 and Factor 2, Level 1 \\
\hline r46 & correlation Factor 1, Level 4 and Factor 2, Level 2 \\
\hline r47 & correlation Factor 1, Level 4 and Factor 2, Level 3 \\
\hline r48 & correlation Factor 1, Level 4 and Factor 2, Level 4 \\
\hline r56 & correlation Factor 2, Level 1 and Factor 2, Level 2 \\
\hline r57 & correlation Factor 2, Level 1 and Factor 2, Level 3 \\
\hline r58 & correlation Factor 2, Level 1 and Factor 2, Level 4 \\
\hline r67 & correlation Factor 2, Level 2 and Factor 2, Level 3 \\
\hline r68 & correlation Factor 2, Level 2 and Factor 2, Level 4 \\
\hline r78 & correlation Factor 2, Level 3 and Factor 2, Level 4 \\
\hline \(r\) & sets same correlations between DVs on all factor levels (seriously, just use this) \\
\hline s & sets same standard deviation for factor levels (see comment above) \\
\hline n & Sample size for first group \\
\hline alpha & Type I error (default is .05) \\
\hline
\end{tabular}

\section*{Value}

Power for Simple Effects in Two Factor Within Subjects LMM

\section*{Examples}
lmm2Fse(m1.1=-.25,m2.1=0,m3.1=.10,m4.1=.15,m1.2=-.25,m2.2=.10,m3.2=. \(30, m 4.2=.35\),
\(s 1.1=.4, s 2.1=.5, s 3.1=2.5, s 4.1=2.0, s 1.2=.4, s 2.2=.5, s 3.2=2.5, s 4.2=2.0, r=.5, n=220)\)

LRcat Compute Power for Logistic Regression with a Single Categorical Predictor

\section*{Description}

Compute Power for Logistic Regression with a Single Categorical Predictor

\section*{Usage}

LRcat (p0 = NULL, p1 = NULL, prop = 0.5, alpha = 0.05, power, R2 = 0)

\section*{Arguments}
p0 Probability of a Desirable Outcome in the Control Condition
p1 Probability of a Desirable Outcome in the Treatment Condition
prop Proportion in the Treatment Condition
alpha Type I error (default is .05)
power Desired Power
R2 How Well Predictor of Interest is Explained by Other Predictors (default is 0)

\section*{Value}

Power for Logistic Regression with a Single Categorical Predictor

\section*{Examples}
\(\operatorname{LRcat}(\mathrm{p} 0=.137, \mathrm{p} 1=.611\), prop \(=.689\), power=.95)

\section*{Description}

Compute Power for Logistic Regression with Continuous Predictors

\section*{Usage}

LRcont ( \(O R=N A, r=N A, E R=N U L L, ~ a l p h a=0.05\), power \(=\) NULL, \(R 2=0)\)

\section*{Arguments}
\begin{tabular}{ll} 
OR & Odds Ratio for Predictor of Interest \\
\(r\) & Correlation for Predictor of Interest \\
ER & Event Ratio Probability of a Desirable Outcome Overall \\
alpha & Type I error (default is .05) \\
power & Desired Power \\
R2 & How Well Predictor of Interest is Explained by Other Predictors (default is 0 )
\end{tabular}

\section*{Value}

Power for Logistic Regression with Continuous Predictors

\section*{Examples}
\(\operatorname{LRcont}(\mathrm{OR}=4.05, \mathrm{ER}=.463\), power=.95)

MANOVA1f Compute power for a One Factor MANOVA with up to two levels and up to four measures. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a One Factor MANOVA with up to two levels and up to four measures. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
\[
\begin{aligned}
& \text { MANOVA1f( } \\
& \mathrm{m} 1.1, \\
& \mathrm{~m} 2.1, \\
& \mathrm{~m} 3.1=\mathrm{NA}, \\
& \mathrm{~m} 4.1=\mathrm{NA}, \\
& \mathrm{~m} 1.2, \\
& \mathrm{~m} 2.2, \\
& \mathrm{~m} 3.2=\mathrm{NA}, \\
& \mathrm{~m} 4.2=\mathrm{NA}, \\
& \mathrm{~s} 1.1=\mathrm{NA}, \\
& \mathrm{~s} 2.1=\mathrm{NA}, \\
& \mathrm{~s} 3.1=\mathrm{NA}, \\
& \mathrm{~s} 4.1=\mathrm{NA}, \\
& \mathrm{~s} 1.2=\mathrm{NA}, \\
& \mathrm{~s} 2.2=\mathrm{NA},
\end{aligned}
\]
```

    s3.2 = NA,
    s4.2 = NA,
    r1.2_1 = NULL,
    r1.3_1 = NULL,
    r1.4_1 = NULL,
    r2.3_1 = NULL,
    r2.4_1 = NULL,
    r3.4_1 = NULL,
    r1.2_2 = NULL,
    r1.3_2 = NULL,
    r1.4_2 = NULL,
    r2.3_2 = NULL,
    r2.4_2 = NULL,
    r3.4_2 = NULL,
    r = NULL,
    s = NULL,
    n,
    alpha = 0.05
    )

```

\section*{Arguments}
m1.1 Mean of first DV, 1st level Between Factor
m2.1 Mean of second DV, 1st level Between Factor
m3.1 Mean of third DV, 1st level Between Factor
m4.1 Mean of fourth DV, 1st level Between Factor
m1.2 Mean of first DV, 2nd level Between Factor
m2.2 Mean of second DV, 2nd level Between Factor
m3.2 Mean of third DV, 2nd level Between Factor
m4.2 Mean of fourth DV, 2nd level Between Factor
s1.1 Standard deviation of first DV, 1st level Between Factor
s2.1 Standard deviation of second DV, 1st level Between Factor
s3.1 Standard deviation of third DV, 1st level Between Factor
s4.1 Standard deviation of forth DV, 1st level Between Factor
s1.2 Standard deviation of first DV, 2nd level Between Factor
s2.2 Standard deviation of second DV, 2nd level Between Factor
s3.2 Standard deviation of third DV, 2nd level Between Factor
s4.2 Standard deviation of forth DV, 2nd level Between Factor
r1.2_1 correlation DV 1 and DV 2, 1st level Between
r1.3_1 correlation DV 1 and DV 3, 1st level Between
r1.4_1 correlation DV 1 and DV 4, 1st level Between
r2.3_1 correlation DV 1 and DV 3, 1st level Between
r2.4_1 correlation DV 1 and DV 4, 1st level Between
\begin{tabular}{ll} 
r3.4_1 & correlation DV 1 and DV 4, 1st level Between \\
r1.2_2 & correlation DV 1 and DV 2, 2nd level Between \\
r1.3_2 & correlation DV 1 and DV 3, 2nd level Between \\
r1.4_2 & correlation DV 1 and DV 4, 2nd level Between \\
r2.3_2 & correlation DV 1 and DV 3, 2nd level Between \\
r2.4_2 & correlation DV 1 and DV 4, 2nd level Between \\
r3.4_2 & correlation DV 1 and DV 4, 2nd level Between \\
r & sets same correlations between DVs on all factor levels (seriously, just use this) \\
s & sets same standard deviation for factor levels (see comment above) \\
n & Sample size for first group \\
alpha & Type I error (default is .05)
\end{tabular}

\section*{Value}

Power for the One Factor Within Subjects and One Factor Between ANOVA

\section*{Examples}
```

MANOVA1f(n=40,m1.1=0,m2.1=1,m3.1=2.4,m4.1=-0.7,
m1.2=-0.25,m2.2=-2,m3.2=2,m4.2=-1,
s1.1=.4, s2.1=5, s3.1=1.6, s4.1=1.2,
s1.2=.4,s2.2=5,s3.2=1.6,s4.2=1.2,
r1.2_1=.1,r1.3_1=.1,r1.4_1=.1,
r2.3_1=.35,r2.4_1=.45,r3.4_1=.40,
r1.2_2=.1,r1.3_2=.1,r1.4_2=.1,
r2.3_2=.35,r2.4_2=.45,r3.4_2=.40,alpha=.05)
MANOVA1f(n=40,m1.1=0,m2.1=1,m3.1=2.4,m4.1=-0.7,
m1.2=-0.25,m2.2=-2,m3.2=2,m4.2=-1,
s=.4,r=.5,alpha=.05)

```
    md_prec Compute Precision Analyses for Mean Differences

\section*{Description}

Compute Precision Analyses for Mean Differences

\section*{Usage}
md_prec(m1, m2, s1, s2, nlow, nhigh, propn1 = 0.5, ci = 0.95, by = 1)

\section*{Arguments}
\begin{tabular}{ll}
m 1 & Mean of first group \\
m 2 & Mean of second group \\
s 1 & Standard deviation of first group \\
s 2 & Standard deviation of second group \\
nlow & starting sample size \\
nhigh & ending sample size \\
propn1 & Proportion in First Group \\
ci & Type of Confidence Interval (e.g., .95) \\
by & \begin{tabular}{l} 
Incremental increase in sample \((\) e.g. nlow \(=10\), nhigh \(=24\), by \(=2\), produces \\
estimates of 10,12, and 14)
\end{tabular}
\end{tabular}

\section*{Value}

Precision Analyses for Mean Differences

\section*{Examples}
```

md_prec(m1=2,m2 =0, s1=5, s2=5,nlow=100, nhigh =1600, propn1=.5, ci=.95, by=100)
md_prec(m1=0,m2 =0, s1=5, s2=5,nlow=100, nhigh =40000, propn1=.5, ci=.95, by=1000)

```
med
Compute Power for Mediated (Indirect) Effects Requires correlations between all variables as sample size. This approach calculates power for the Sobel test. The medjs function calculates power based on joint significance (recommended)

\section*{Description}

Compute Power for Mediated (Indirect) Effects Requires correlations between all variables as sample size. This approach calculates power for the Sobel test. The medjs function calculates power based on joint significance (recommended)

\section*{Usage}
med (
rxm1,
\(r \times m 2=0\),
\(r x m 3=0\),
\(r x m 4=0\),
rxy,
rym1,
rym2 \(=0\),
rym3 \(=0\),
```

    rym4 = 0,
    rm1m2 = 0,
    rm1m3 = 0,
    rm1m4 = 0,
    rm2m3 = 0,
    rm2m4 = 0,
    rm3m4 = 0,
    alpha = 0.05,
    mvars,
    n
    )

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline rxm1 & Correlation between predictor (x) and first mediator (m1) \\
\hline rxm2 & Correlation between predictor (x) and second mediator (m2) \\
\hline rxm3 & Correlation between predictor (x) and third mediator (m3) \\
\hline rxm4 & Correlation between predictor (x) and fourth mediator (m4) \\
\hline rxy & Correlation between DV (y) and predictor (x) \\
\hline rym1 & Correlation between DV (y) and first mediator (m1) \\
\hline rym2 & Correlation between DV (y) and second mediator (m2) \\
\hline rym3 & Correlation DV (y) and third mediator (m3) \\
\hline rym4 & Correlation DV (y) and fourth mediator (m4) \\
\hline rm1m2 & Correlation first mediator (m1) and second mediator (m2) \\
\hline rm1m3 & Correlation first mediator (m1) and third mediator (m3) \\
\hline rm1m4 & Correlation first mediator (m1) and fourth mediator (m4) \\
\hline rm2m3 & Correlation second mediator (m2) and third mediator (m3) \\
\hline rm2m4 & Correlation second mediator (m2) and fourth mediator (m4) \\
\hline rm3m4 & Correlation third mediator (m3) and fourth mediator (m4) \\
\hline alpha & Type I error (default is .05) \\
\hline mvars & Number of Mediators \\
\hline n & Sample size \\
\hline
\end{tabular}

\section*{Value}

Power for Mediated (Indirect) Effects

\section*{Examples}
```

med(rxm1=.25, rxy=-.35, rym1=-.5,mvars=1, n=150)
med(rxm1=.3, rxm2=.3, rxm3=.25, rxy=-.35, rym1=-.5,rym2=-.5, rym3 = -.5,
rm1m2=.7, rm1m3=.4,rm2m3=.4, mvars=3, n=150)

```
\[
\begin{array}{ll}
\text { medjs } & \text { Compute Power for Mediated (Indirect) Effects Using Joint Signifi- } \\
\text { cance Requires correlations between all variables as sample size. This } \\
\text { is the recommended approach for determining power }
\end{array}
\]

\section*{Description}

Compute Power for Mediated (Indirect) Effects Using Joint Significance Requires correlations between all variables as sample size. This is the recommended approach for determining power

\section*{Usage}
medjs(
rx1x2 = NULL, rx1m1, rx1m2 = NULL, rx1m3 = NULL, rx1m4 = NULL,
        rx1y,
        \(r \times 2 \mathrm{~m} 1=\mathrm{NULL}\),
        rx2m2 = NULL,
        \(r \times 2 \mathrm{~m} 3=\) NULL,
        \(r \times 2 m 4=\) NULL,
        rx2y,
        rym1,
        rym2 = NULL,
        rym3 = NULL,
        rym4 = NULL,
        rm1m2 = NULL,
        rm1m3 = NULL,
        rm1m4 = NULL,
        rm2m3 = NULL,
        rm2m4 = NULL,
        rm3m4 = NULL,
        n ,
        alpha \(=0.05\),
        mvars,
        rep \(=1000\),
        pred \(=1\)
    )

\section*{Arguments}
\begin{tabular}{ll}
\(r \times 1 \times 2\) & Correlation between first predictor (x1) and second predictor (x2) \\
\(r \times 1 \mathrm{~m} 1\) & Correlation between first predictor (x1) and first mediator (m1) \\
\(r \times 1 \mathrm{~m} 2\) & Correlation between first predictor (x1) and second mediator (m2)
\end{tabular}
\begin{tabular}{|c|c|}
\hline rx1m3 & Correlation between first predictor (x1) and third mediator (m3) \\
\hline rx1m4 & Correlation between first predictor (x1) and fourth mediator (m4) \\
\hline rx1y & Correlation between DV (y) and first predictor (x1) \\
\hline rx2m1 & Correlation between second predictor (x2) and first mediator (m1) \\
\hline rx2m2 & Correlation between second predictor (x2) and second mediator (m2) \\
\hline rx2m3 & Correlation between second predictor (x2) and third mediator (m3) \\
\hline rx2m4 & Correlation between second predictor (x2) and fourth mediator (m4) \\
\hline rx2y & Correlation between DV (y) and second predictor (x2) \\
\hline rym1 & Correlation between DV (y) and first mediator (m1) \\
\hline rym2 & Correlation between DV (y) and second mediator (m2) \\
\hline rym3 & Correlation DV (y) and third mediator (m3) \\
\hline rym4 & Correlation DV (y) and fourth mediator (m4) \\
\hline rm1m2 & Correlation first mediator (m1) and second mediator (m2) \\
\hline rm1m3 & Correlation first mediator (m1) and third mediator (m3) \\
\hline rm1m4 & Correlation first mediator (m1) and fourth mediator (m4) \\
\hline rm2m3 & Correlation second mediator (m2) and third mediator (m3) \\
\hline rm2m4 & Correlation second mediator (m2) and fourth mediator (m4) \\
\hline rm3m4 & Correlation third mediator (m3) and fourth mediator (m4) \\
\hline n & Sample size \\
\hline alpha & Type I error (default is .05) \\
\hline mvars & Number of Mediators \\
\hline rep & number of repetitions (1000 is default) \\
\hline pred & number of predictors (default is one) \\
\hline
\end{tabular}

\section*{Value}

Power for Mediated (Indirect) Effects

\section*{Examples}
```

medjs(rx1m1=.3, rx1m2=.3, rx1m3=.25, rx1y=-.35, rym1=-.5,rym2=-.5, rym3 = -. 5,
rm1m2=.7, rm1m3=.4,rm2m3=.4, mvars=3, n=150)

```
medjs_paths
\begin{tabular}{ll} 
medjs_paths & Compute Power for Mediated (Indirect) Effects Using Joint Signifi- \\
cance Requires paths for all effects (and if 2 mediators, correlation) \\
Standard deviations/variances set to 1.0 so paths are technically stan- \\
dardized
\end{tabular}

\section*{Description}

Compute Power for Mediated (Indirect) Effects Using Joint Significance Requires paths for all effects (and if 2 mediators, correlation) Standard deviations/variances set to 1.0 so paths are technically standardized

\section*{Usage}
medjs_paths(
a1,
a2 = NULL,
b1,
b2 = NULL, rm1m2 = NULL, cprime,
n ,
alpha \(=0.05\), mvars,
rep \(=1000\)
)

\section*{Arguments}
a1
a2 path between predictor and first mediator
b1 Path between first mediator and dependent variable
b2 Path between first mediator and dependent variable
rm1m2 Correlation first mediator (m1) and second mediator (m2)
cprime Path between predictor and dependent variable
n
alpha
mvars Number of Mediators
rep number of repetitions (1000 is default)

\section*{Value}

Power for Mediated (Indirect) Effects using Paths Coefficients

\section*{Examples}
```

medjs_paths(a1=.25, b1=-.5,cprime=.2,mvars=1, n=150)
medjs_paths(a1=.25, a2=.1, b1=-.5,b2=-.2,cprime=.2,mvars=1, n=150)

```
medserial

Compute Power for Serial Mediation Effects Requires correlations between all variables as sample size. This approach calculates power for the serial mediation using joint significance (recommended)

\section*{Description}

Compute Power for Serial Mediation Effects Requires correlations between all variables as sample size. This approach calculates power for the serial mediation using joint significance (recommended)

\section*{Usage}
medserial(rxm1, rxm2, rxy, rm1m2, rym1, rym2, n , alpha \(=0.05\), rep \(=1000\) )

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline rxm1 & Correlation between predictor (x) and first mediator (m1) \\
\hline rxm2 & Correlation between predictor (x) and second mediator (m2) \\
\hline rxy & Correlation between DV (y) and predictor (x) \\
\hline rm1m2 & Correlation first mediator (m1) and second mediator (m2) \\
\hline rym1 & Correlation between DV (y) and first mediator (m1) \\
\hline rym2 & Correlation between DV (y) and second mediator (m2) \\
\hline n & sample size \\
\hline alpha & Type I error (default is .05) \\
\hline rep & number of repetitions (1000 is default) \\
\hline
\end{tabular}

\section*{Value}

Power for Serial Mediated (Indirect) Effects

\section*{Examples}
```

medserial(rxm1=.3, rxm2=.3, rxy=-.35,
rym1=-.5,rym2=-.5, rm1m2=.7,n=150)

```
\begin{tabular}{ll} 
medserial_paths & Compute Power for Serial Mediation Effects Requires correlations be- \\
tween all variables as sample size. This approach calculates power \\
for the serial mediation using joint significance (recommended) and \\
path coefficients
\end{tabular}

\section*{Description}

Compute Power for Serial Mediation Effects Requires correlations between all variables as sample size. This approach calculates power for the serial mediation using joint significance (recommended) and path coefficients

\section*{Usage}
medserial_paths(a1, a2, b1, b2, d, cprime, n, alpha = 0.05, reps = 1000)

\section*{Arguments}
\begin{tabular}{ll} 
a1 & path between predictor and first mediator \\
a2 & path between predictor and first mediator \\
b1 & Path between first mediator and dependent variable \\
b2 & Path between first mediator and dependent variable \\
d & Path first mediator (m1) and second mediator (m2) \\
cprime & Path between predictor and dependent variable \\
n & Sample size \\
alpha & Type I error (default is .05\()\) \\
reps & number of repetitions (1000 is default)
\end{tabular}

\section*{Value}

Power for Serial Mediated (Indirect) Effects

\section*{Examples}
```

medserial_paths(a1=.3, a2=.3, b1=.35,
b2=.3,d=.2, cprime=.1,n=150)

```

Compute Power for Conditional Process Model 14 Joint Significance Requires correlations between all variables as sample size. This is the recommended approach for determining power

\section*{Description}

Compute Power for Conditional Process Model 14 Joint Significance Requires correlations between all variables as sample size. This is the recommended approach for determining power
```

Usage
modmed14(
rxw,
rxm,
rxxw = 0,
rxy,
rwm = 0,
rxww = 0,
rwy,
rxwm = 0,
rxwy,
rmy,
n,
alpha = 0.05,
rep = 5000
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline rxw & Correlation between predictor (x) and moderator (w) \\
\hline rxm & Correlation between predictor (x) and mediator (m) \\
\hline rxxw & Correlation between predictor (x) and xweraction term (xw) - defaults to 0 \\
\hline rxy & Correlation between DV (y) and predictor (x) \\
\hline rwm & Correlation between moderator (w) and mediator (m) \\
\hline rxww & Correlation between moderator (w) and xweraction (xw) - defaults to 0 \\
\hline rwy & Correlation between DV (y) and moderator (w) \\
\hline rxwm & Correlation between mediator (m) and xweraction (xw) - Key value \\
\hline rxwy & Correlation between DV (y) and xweraction (xw) - defaults to 0 \\
\hline rmy & Correlation between DV (y) and mediator (m) \\
\hline n & Sample size \\
\hline alpha & Type I error (default is .05) \\
\hline rep & Number of samples drawn (defaults to 5000) \\
\hline
\end{tabular}

\section*{Value}

Power for Model 14 Conditional Processes

\section*{Examples}
modmed14(rxw=.2, rxm=.2, rxy=.31, rwy=.35, rxwy=.2, \(r m y=.32, n=200, r e p=1000\), alpha=.05)
```

modmed7

```

Compute Power for Model 7 Conditional Processes Using Joint Significance Requires correlations between all variables as sample size Several values default to zero if no value provided This is the recommended approach for determining power

\section*{Description}

Compute Power for Model 7 Conditional Processes Using Joint Significance Requires correlations between all variables as sample size Several values default to zero if no value provided This is the recommended approach for determining power

\section*{Usage}
modmed7 (
rxm,
rxw,
\(r \times x w=0\),
rxy,
rwm,
rwxw \(=0\),
\(r w y=0\),
rmxw,
rmy,
rxwy \(=0\),
alpha \(=0.05\), rep = 1000, \(\mathrm{n}=\mathrm{NULL}\)
)

\section*{Arguments}
\begin{tabular}{ll}
\(r \times m\) & Correlation between predictor \((x)\) and mediator \((\mathrm{m})\) \\
\(r \times w\) & Correlation between predictor \((x)\) and moderator \((\mathrm{w})\) \\
\(r \times x w\) & Correlation between predictor \((\mathrm{x})\) and interaction term \((\mathrm{xw})\) - defaults to 0 \\
\(r \times y\) & Correlation between DV \((\mathrm{y})\) and predictor \((\mathrm{x})\) \\
\(r w m\) & Correlation between moderator \((\mathrm{w})\) and mediator \((\mathrm{m})\)
\end{tabular}
\begin{tabular}{ll} 
rwxw & Correlation between moderator (w) and interaction (xw) - defaults to 0 \\
rwy & Correlation between DV (y) and moderator (w) \\
rmxw & Correlation between mediator (m) and interaction (xw) - Key value \\
rmy & Correlation between DV (y) and mediator (m) \\
rxwy & Correlation between DV (y) and interaction (xw) - defaults to 0 \\
alpha & Type I error (default is .05) \\
rep & Number of samples drawn (defaults to 5000) \\
n & Sample size
\end{tabular}

\section*{Value}

Power for Model 7 Conditional Processes

\section*{Examples}
modmed7 (rxm=.4, rxw=.2, \(r x y=.3, r w m=.2, r m x w=.1, r m y=.3, n=200)\)
MRC
Compute power for Multiple Regression with up to Five Predictors
Example code below for three predictors. Expand as needed for four
or five

\section*{Description}

Compute power for Multiple Regression with up to Five Predictors Example code below for three predictors. Expand as needed for four or five

\section*{Usage}

MRC( ry1 = NULL, ry2 = NULL, ry3 = NULL, ry4 = NULL, ry5 = NULL, r12 = NULL, r13 = NULL, \(r 14=\) NULL, r15 = NULL, r23 = NULL, r24 = NULL, r25 = NULL, r34 = NULL, r35 = NULL,
        r45 = NULL,
        \(\mathrm{n}=\mathrm{NULL}\),
        alpha \(=0.05\)
    )

\section*{Arguments}
\begin{tabular}{ll} 
ry1 & Correlation between DV (y) and first predictor (1) \\
ry2 & Correlation between DV (y) and second predictor (2) \\
ry3 & Correlation between DV (y) and third predictor (3) \\
ry4 & Correlation between DV (y) and fourth predictor (4) \\
ry5 & Correlation between DV (y) and fifth predictor (5) \\
r12 & Correlation between first (1) and second predictor (2) \\
r13 & Correlation between first (1) and third predictor (3) \\
r14 & Correlation between first (1) and fourth predictor (4) \\
r15 & Correlation between first (1) and fifth predictor (5) \\
r23 & Correlation between second (2) and third predictor (3) \\
r24 & Correlation between second (2) and fourth predictor (4) \\
r25 & Correlation between second (2) and fifth predictor (5) \\
r34 & Correlation between third (3) and fourth predictor (4) \\
r35 & Correlation between third (3) and fifth predictor (5) \\
r45 & Correlation between fourth (4) and fifth predictor (5) \\
n & Sample size \\
alpha & Type I error (default is .05)
\end{tabular}

\section*{Value}

Power for Multiple Regression with Two to Five Predictors

\section*{Examples}
```

$\operatorname{MRC}(r y 1=.40, r y 2=.40, r 12=-.15, n=30)$
$\operatorname{MRC}(r y 1=.40, r y 2=.40, r y 3=-.40, r 12=-.15, r 13=-.60, r 23=.25, n=24)$

```

\section*{Description}

Compute power for Multiple Regression with Up to Five Predictors Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)

\section*{Usage}
```

MRC_all(
ry1 = NULL,
ry2 = NULL,
ry3 = NULL,
ry4 = NULL,
ry5 = NULL,
r12 = NULL,
r13 = NULL,
r14 = NULL,
r15 = NULL,
r23 = NULL,
r24 = NULL,
r25 = NULL,
r34 = NULL,
r35 = NULL,
r45 = NULL,
n = NULL,
alpha = 0.05,
rep = 10000
)

```

\section*{Arguments}
\begin{tabular}{ll} 
ry1 & Correlation between DV \((y)\) and first predictor (1) \\
ry2 & Correlation between DV \((y)\) and second predictor (2) \\
ry3 & Correlation between DV \((y)\) and third predictor (3) \\
ry4 & Correlation between DV \((y)\) and fourth predictor (4) \\
ry5 & Correlation between DV (y) and fifth predictor (5) \\
r12 & Correlation between first (1) and second predictor (2) \\
r13 & Correlation between first (1) and third predictor (3) \\
r14 & Correlation between first (1) and fourth predictor (4) \\
r15 & Correlation between first (1) and fifth predictor (5) \\
r23 & Correlation between second (2) and third predictor (3) \\
r24 & Correlation between second (2) and fourth predictor (4) \\
r25 & Correlation between second (2) and fifth predictor (5) \\
r34 & Correlation between third (3) and fourth predictor (4) \\
r35 & Correlation between third (3) and fifth predictor (5) \\
r45 & Correlation between fourth (4) and fifth predictor (5) \\
n & Sample size \\
alpha & Type I error (default is .05) \\
rep & number of replications (default is 10000)
\end{tabular}

\section*{Value}

Power for Multiple Regression (ALL)

\section*{Examples}
```

MRC_all(ry1=.50,ry2=.50,ry3=.50, r12=.2, r13=.3,r23=.4, n=82, rep=10000)

```

MRC_short2 Compute Multiple Regression shortcuts with three predictors for Ind Coefficients Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

\section*{Description}

Compute Multiple Regression shortcuts with three predictors for Ind Coefficients Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

\section*{Usage}
```

MRC_short2(
ry1_1,
ry2_1,
ry3_1 = NULL,
r12_1,
r13_1 = NULL,
r23_1 = NULL,
n1,
ry1_2,
ry2_2,
ry3_2 = NULL,
r12_2,
r13_2 = NULL,
r23_2 = NULL,
n2,
alpha = 0.05,
my_1 = 0,
m1_1 = 0,
m2_1 = 0,
m3_1 = 0,
s1_1 = 1,
s2_1 = 1,
s3_1 = 1,
sy_1 = 1,
my_2 = 0,
m1_2 = 0,
m2_2 = 0,
m3_2 = 0,

```
```

    s1_2 = 1,
    s2_2 = 1,
    s3_2 = 1,
    sy_2 = 1
    )

```

\section*{Arguments}
ry1_1
ry2_1
ry3_1
r12_1
r13_1

n1
ry1_2
ry2_2
ry3_2
r12_2
r13_2
r23_2
n2
alpha
my_1
m1_1
m2_1
m3_1
s1_1
s2_1
s3_1
sy_1
my_2
m1_2
m2_2
m3_2
s1_2
s2_2
s3_2
sy_2

Correlation between DV (y) and first predictor (1), first group
Correlation between DV (y) and second predictor (2), first group
Correlation between DV (y) and third predictor (3), first group
Correlation between first (1) and second predictor (2), first group
Correlation between first (1) and third predictor (3), first group
Correlation between second (2) and third predictor (3), first group
Sample size, first group
Correlation between DV (y) and first predictor (1), second group
Correlation between DV (y) and second predictor (2), second group
Correlation between DV (y) and third predictor (3), second group
Correlation between first (1) and second predictor (2), second group
Correlation between first (1) and third predictor (3), second group
Correlation between second (2) and third predictor (3), second group
Sample size, second group
Type I error (default is .05)
Mean of DV (default is 0 ), first group
Mean of first predictor (default is 0 ), first group
Mean of second predictor (default is 0 ), first group
Mean of third predictor (default is 0 ), first group
Standard deviation of first predictor (default is 1), first group
Standard deviation of second predictor (default is 1 ), first group
Standard deviation of third predictor (default is 1), first group
Standard deviation of DV (default is 1), first group
Mean of DV (default is 0 ), second group
Mean of first predictor (default is 0 ), second group
Mean of second predictor (default is 0 ), second group
Mean of third predictor (default is 0 ), second group
Standard deviation of first predictor (default is 1), second group
Standard deviation of second predictor (default is 1 ), second group
Standard deviation of third predictor (default is 1), second group
Standard deviation of DV (default is 1 ), second group

\section*{Value}

Multiple Regression shortcuts with three predictors for Ind Coefficients

\section*{Examples}
```

MRC_short2(ry1_1=.40, ry2_1=.40, ry3_1 =-.40, r12_1=-.15,r13_1=-.60, r23_1=.25,
ry1_2=.40, ry2_2=.10, ry3_2 =-.40, r12_2=-.15,r13_2=-.60, r23_2=.25,
n1=50,n2=50,alpha=.05,my_1=1,m1_1=1,m2_1=1,m3_1=1,
sy_1=7, s1_1=1,s2_1=1, s3_1=2,
my_2=1,m1_2=1,m2_2=1,m3_2=1, sy_2=7, s1_2=1,s2_2=1,s3_2=2)

```
```

MRC_shortcuts

```

Compute Multiple Regression shortcuts with three predictors (will expand to handle two to five) Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

\section*{Description}

Compute Multiple Regression shortcuts with three predictors (will expand to handle two to five) Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)

\section*{Usage}

MRC_shortcuts(
ry1 = NULL,
ry2 = NULL,
ry3 = NULL,
r12 = NULL,
r13 = NULL,
r23 = NULL, \(\mathrm{n}=100\), alpha \(=0.05\), my \(=0\), \(\mathrm{m} 1=0\), \(\mathrm{m} 2=0\), m3 \(=0\), s1 = 1, s2 = 1, s3 = 1, sy \(=1\) )

\section*{Arguments}
ry1 Correlation between DV (y) and first predictor (1)
ry2 Correlation between DV (y) and second predictor (2)
\begin{tabular}{ll} 
ry3 & Correlation between DV (y) and third predictor (3) \\
r12 & Correlation between first (1) and second predictor (2) \\
r13 & Correlation between first (1) and third predictor (3) \\
r23 & Correlation between second (2) and third predictor (3) \\
n & Sample size \\
alpha & Type I error (default is .05) \\
my & Mean of DV (default is 0) \\
m 1 & Mean of first predictor (default is 0) \\
m 2 & Mean of second predictor (default is 0) \\
m 3 & Mean of third predictor (default is 0) \\
s 1 & Standard deviation of first predictor (default is 1) \\
s2 & Standard deviation of second predictor (default is 1) \\
s3 & Standard deviation of third predictor (default is 1) \\
sy & Standard deviation of DV (default is 1)
\end{tabular}

\section*{Value}

Multiple Regression shortcuts with three predictors

\section*{Examples}
```

MRC_shortcuts(ry1=.40,ry2=.40,ry3=-.40, r12=-.15, r13=-.60,r23=.25,
n=110, my=1,m1=1,m2=1,m3=1,sy=7,s1=1,s2=1,s3=2)

```
pairt Compute power for a Paired t-test Takes means, sd, and sample sizes. Alpha is 05 by default, alternative values may be entered by user. correlation (r) defaults to . 50 .

\section*{Description}

Compute power for a Paired t-test Takes means, sd, and sample sizes. Alpha is .05 by default, alternative values may be entered by user. correlation (r) defaults to . 50 .

\section*{Usage}
pairt(m1 = NULL, m2 = NULL, s = NULL, \(n=\) NULL, \(r=\) NULL, alpha = 0.05)

\section*{Arguments}
m1 Mean for Pre Test
m2 Mean for Post Test
s Standard deviation
n Sample size
\(r \quad\) Correlation pre-post measures (default is .50)
alpha Type I error (default is .05)

\section*{Value}

Power for the Paired t -test

\section*{Examples}
```

pairt(m1=25,m2=20, s = 5, n = 25, r = . 5)

```
prop1 Compute power for a single sample proportion test Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a single sample proportion test Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
prop1 (p1, p0, nlow, nhigh, alpha = 0.05, tails = 2, by = 1)

\section*{Arguments}
\begin{tabular}{ll} 
p1 & expected proportion (a.k.a. alternative proportion) \\
p0 & null proportion \\
nlow & starting sample size \\
nhigh & ending sample size \\
alpha & Type I error (default is .05) \\
tails & number of tails for test (default is 2\()\) \\
by & \begin{tabular}{l} 
Incremental increase in sample (e.g. nlow \(=10\), nhigh \(=24\), by \(=2\), produces \\
estimates of 10,12, and 14\()\)
\end{tabular}
\end{tabular}

\section*{Value}

Power for Tests of Single Proportion

\section*{Examples}
\(\operatorname{prop} 1(\mathrm{p} 1=.60, \mathrm{p} 0=.42, \mathrm{nlow}=20\), nhigh=100, tails=1, by=10)

Compute power for Tests of Two Independent Proportions Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user This test uses what is sometimes called the chi-square test for comparing proportions

\section*{Description}

Compute power for Tests of Two Independent Proportions Takes phi, degrees of freedom, and a range of sample sizes. Alpha is .05 by default, alternative values may be entered by user This test uses what is sometimes called the chi-square test for comparing proportions

\section*{Usage}
propind(p1, p2, nlow, nhigh, nratio \(=0.5\), alpha \(=0.05\), tails \(=2\), by \(=1\) )

\section*{Arguments}
\begin{tabular}{ll} 
p1 & expected proportion Group 1 \\
p2 & expected proportion Group 2 \\
nlow & starting sample size \\
nhigh & \begin{tabular}{l} 
ending sample size \\
nratio \\
ratio of sample size of first group to second (default is .5 for equally sized \\
groups)
\end{tabular} \\
alpha & \begin{tabular}{l} 
Type I error (default is .05) \\
tails
\end{tabular} \\
number of tails for test (default is 2\()\)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Incremental increase in sample (e.g. nlow \(=10\), nhigh \(=24\), by \(=2\), produces \\
estimates of 10,12, and 14\()\)
\end{tabular}

\section*{Value}

Power for Tests of Two Independent Proportions

\section*{Examples}
```

propind(p1=.62, p2=.55,nlow=200,nhigh=2500, by=100,nratio=.2)

```

Compute power for \(R 2\) change in Multiple Regression (up to three predictors) Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All) Example code below for three predictors. Expand as needed for four or five

\section*{Description}

Compute power for R2 change in Multiple Regression (up to three predictors) Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All) Example code below for three predictors. Expand as needed for four or five

\section*{Usage}

R2ch(
ry1 = NULL,
ry2 = NULL,
ry3 = NULL,
r12 = NULL,
r13 = NULL,
r23 = NULL,
\(\mathrm{n}=\mathrm{NULL}\),
alpha \(=0.05\),
my \(=0\),
\(\mathrm{m} 1=0\),
\(\mathrm{m} 2=0\),
m3 \(=0\),
s1 = 1,
s2 = 1,
s3 = 1,
sy \(=1\)
)

\section*{Arguments}
\begin{tabular}{ll} 
ry1 & Correlation between DV \((\mathrm{y})\) and first predictor (1) \\
ry2 & Correlation between DV \((\mathrm{y})\) and second predictor (2) \\
ry3 & Correlation between DV (y) and third predictor (3) \\
r12 & Correlation between first (1) and second predictor (2) \\
r13 & Correlation between first (1) and third predictor (3) \\
r23 & Correlation between second (2) and third predictor (3) \\
n & Sample size \\
alpha & Type I error (default is .05) \\
my & Mean of DV (default is 0 )
\end{tabular}
\begin{tabular}{ll}
\(m 1\) & Mean of first predictor (default is 0) \\
\(m 2\) & Mean of second predictor (default is 0) \\
m3 & Mean of third predictor (default is 0) \\
s1 & Standard deviation of first predictor (default is 1 ) \\
s2 & Standard deviation of second predictor (default is 1) \\
s3 & Standard deviation of third predictor (default is 1) \\
sy & Standard deviation of DV (default is 1)
\end{tabular}

\section*{Value}

Power for R2 change in Multiple Regression (up to three predictors)

\section*{Examples}

R2ch \((r y 1=.40, r y 2=.40, r y 3=-.40, r 12=-.15, r 13=-.60, r 23=.25, n=24)\)
\[
\begin{array}{ll}
\text { R2_prec } & \text { Compute Precision Analyses for R-Squared This approach simply } \\
\text { loops a function from MBESS }
\end{array}
\]

\section*{Description}

Compute Precision Analyses for R-Squared This approach simply loops a function from MBESS

\section*{Usage}

R2_prec(R2, nlow, nhigh, pred, ci \(=0.95\), by \(=1\) )

\section*{Arguments}

R2
R-squared
nlow starting sample size
nhigh ending sample size
pred Number of Predictors
ci Type of Confidence Interval (e.g., .95)
by Incremental increase in sample (e.g. nlow \(=10\), nhigh \(=24\), by \(=2\), produces estimates of 10,12 , and 14)

\section*{Value}

Precision Analyses for R-Squared

\section*{Examples}

R2_prec (R2=.467, nlow=24, nhigh=100, pred=3, by=4)

\section*{regint \\ Compute Power for Regression Interaction (Correlation/Coefficient Approach)}

\section*{Description}

\section*{Compute Power for Regression Interaction (Correlation/Coefficient Approach)}

\section*{Usage}
regint( Group1, Group2, \(\mathrm{sx} 1=1\), \(\mathrm{sx} 2=1\), sy1 = 1, sy2 = 1, nlow, nhigh, alpha \(=0.05\), Prop_n1 = 0.5, by = 2, Estimates = 1
)

\section*{Arguments}
\begin{tabular}{ll} 
Group1 & Estimates (r or b) for Group 1 \\
Group2 & Estimates (r or b) for Group 2 \\
\(\mathrm{sx1}\) & Standard deviation of predictor, group 1 (defaults to 1) \\
\(\mathrm{sx2}\) & Standard deviation of predictor, group 2 (defaults to 1) \\
sy1 & Standard deviation of outcome, group 1 (defaults to 1) \\
sy2 & Standard deviation of outcome, group 2 (defaults to 1) \\
nlow & starting sample size \\
nhigh & ending sample size \\
alpha & Type I error (default is .05) \\
Prop_n1 & \begin{tabular}{l} 
Proportion of Sample in First Group (defaults to equal sample sizes) \\
incremental increase in sample (e.g. nlow \(=10\), nhigh \(=24\), by \(=2\), produces \\
by
\end{tabular} \\
estimates of 10, 12, and 14) \\
Estimates & 1 for Correlations (default), 2 for coefficients
\end{tabular}

\section*{Value}

Power for Regression Interaction (Correlation/Coefficient Approach)

\section*{Examples}
```

regint(Group1=-.26,Group2=.25, alpha=.05,Prop_n1=0.5,nlow=110, nhigh=140,by=2,Estimates=1)

```
regintR2

Compute Power for Regression Interaction (R2 Change Approach)

\section*{Description}

Compute Power for Regression Interaction (R2 Change Approach)

\section*{Usage}
regintR2(R2Mod, R2Ch, mod_pred, ch_pred, nlow, nhigh, by = 1, alpha = 0.05)

\section*{Arguments}
\begin{tabular}{ll} 
R2Mod & Full Model R2 \\
R2Ch & Change in R2 Added by Interaction \\
mod_pred & Full Model Number of Predictors \\
ch_pred & Change Model Number of Predictors \\
nlow & starting sample size \\
nhigh & ending sample size \\
by & \begin{tabular}{l} 
incremental increase in sample (e.g. nlow \(=10\), nhigh \(=24\), by \(=2\), produces \\
estimates of 10,12, and 14) \\
alpha
\end{tabular} \\
& Type I error (default is .05)
\end{tabular}

\section*{Value}

Power for Regression Interaction (R2 Change Approach)

\section*{Examples}
```

regintR2(R2Mod=.092,R2Ch=.032,mod_pred=3, ch_pred=1,nlow=100,nhigh=400,by=20)

```
r_prec \(\quad\)\begin{tabular}{l} 
Compute Precision Analyses for Correlations This approach simply \\
loops a function from MBESS
\end{tabular}

\section*{Description}

Compute Precision Analyses for Correlations This approach simply loops a function from MBESS

\section*{Usage}
r_prec(r, nlow, nhigh, ci = 0.95, by = 1)

\section*{Arguments}
\(r \quad\) Correlation
nlow starting sample size
nhigh ending sample size
ci Type of Confidence Interval (e.g., .95)
by Incremental increase in sample (e.g. nlow \(=10\), nhigh \(=24\), by \(=2\), produces estimates of 10,12 , and 14)

\section*{Value}

Precision Analyses for Correlations

\section*{Examples}
r_prec(r=.3, nlow=80, nhigh=400, by=20, ci=.95)
tfromd \begin{tabular}{l} 
Compute power for a t test using \(d\) statistic Takes \(d\), sample size range, \\
type of test, and tails.
\end{tabular}

\section*{Description}

Compute power for a t test using d statistic Takes d, sample size range, type of test, and tails.

\section*{Usage}
tfromd(d, nlow, nhigh, alpha \(=0.05\), test \(=" I "\), tails \(=2\), by \(=2\) )

\section*{Arguments}
\begin{tabular}{ll} 
d & standardize mean difference (Cohen's d) \\
nlow & Starting total sample size \\
nhigh & Ending total sample size \\
alpha & Type I error (default is .05) \\
test & "I" for independent, "P" for paired \\
tails & one or two-tailed tests (default is 2) \\
by & Incremental increase in sample size from low to high
\end{tabular}

\section*{Value}

Power for the t -test from d statistic

\section*{Examples}
tfromd(d=.2,nlow=10, nhigh=200,by=10, test="P") tfromd( \(d=.2\), nlow=10, nhigh=200, by=10, test="I")
```

win1bg1

```

Compute power for a One Factor Within Subjects and One Factor Between ANOVA with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a One Factor Within Subjects and One Factor Between ANOVA with up to two by four levels (within). Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
win1bg1(
m1.1,
m2.1,
m3.1 = NA,
m4.1 = NA,
m1.2,
m2.2,
m3.2 = NA,
m4.2 = NA,
s1.1 = NA,
s2.1 = NA,
s3.1 = NA,
s4.1 = NA,
```

    s1.2 = NA,
    s2.2 = NA,
    s3.2 = NA,
    s4.2 = NA,
    r1.2_1 = NULL,
    r1.3_1 = NULL,
    r1.4_1 = NULL,
    r2.3_1 = NULL,
    r2.4_1 = NULL,
    r3.4_1 = NULL,
    r1.2_2 = NULL,
    r1.3_2 = NULL,
    r1.4_2 = NULL,
    r2.3_2 = NULL,
    r2.4_2 = NULL,
    r3.4_2 = NULL,
    r = NULL,
    s = NULL,
    n,
    alpha = 0.05
    )

```

\section*{Arguments}
m1. 1
m2. 1
m3. 1
m4.1 Mean of fourth level Within Factor, 1st level Between Factor
m1.2 Mean of first level Within Factor, 2nd level Between Factor
m2.2 Mean of second level Within Factor, 2nd level Between Factor
m3.2 Mean of third level Within Factor, 2nd level Between Factor
m4.2 Mean of fourth level Within Factor, 2nd level Between Factor
s1.1 Standard deviation of first level Within Factor, 1st level Between Factor
s2.1 Standard deviation of second level Within Factor, 1st level Between Factor
s3.1 Standard deviation of third level Within Factor, 1st level Between Factor
s4.1 Standard deviation of forth level Within Factor, 1st level Between Factor
s1.2 Standard deviation of first level Within Factor, 2nd level Between Factor
s2.2 Standard deviation of second level Within Factor, 2nd level Between Factor
s3.2 Standard deviation of third level Within Factor, 2nd level Between Factor
s4.2 Standard deviation of forth level Within Factor, 2nd level Between Factor
r1.2_1 correlation Within Factor Level 1 and Within Factor, Level 2, 1st level Between
r1.3_1 correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between
r1.4_1 correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between
\begin{tabular}{ll} 
r2.3_1 & correlation Within Factor Level 1 and Within Factor, Level 3, 1st level Between \\
\(r 2.4 \_1\) & correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between \\
\(r 3.4 \_1\) & correlation Within Factor Level 1 and Within Factor, Level 4, 1st level Between \\
\(r 1.2_{-} 2\) & correlation Within Factor Level 1 and Within Factor, Level 2, 2nd level Between \\
\(r 1.3 \_2\) & correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between \\
\(r 1.4 \_2\) & correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between \\
\(r 2.3_{-} 2\) & correlation Within Factor Level 1 and Within Factor, Level 3, 2nd level Between \\
\(r 2.4 \_2\) & correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between \\
\(r 3.4 \_2\) & correlation Within Factor Level 1 and Within Factor, Level 4, 2nd level Between \\
\(r\) & sets same correlations between DVs on all factor levels (seriously, just use this) \\
\(s\) & sets same standard deviation for factor levels (see comment above) \\
n & for each between group level \\
alpha & Type I error (default is .05)
\end{tabular}

\section*{Value}

Power for the One Factor Within Subjects and One Factor Between ANOVA

\section*{Examples}
```

win1bg1(m1.1 = -.25, m2.1=0, m3.1=0.10, m4.1=.15,
m1.2=-. 25,m2.2=-. 25,m3.2=-.25, m4.2=-.25,
s1.1 = .4, s2.1=.5, s3.1=0.6, s4.1=.7,
s1.2=.4,s2.2=.5,s3.2=.6, s4.2=.7,n = 50,
r1.2_1=.5,r1.3_1=.3,r1.4_1=.15,r2.3_1=.5,r2.4_1=.3,r3.4_1=.5,
r1.2_2=.5,r1.3_2=.3,r1.4_2=.15, r2.3_2=.5,r2.4_2=.3,r3.4_2=.5)
win1bg1(m1.1 = -. 25, m2.1=0, m3.1=0.10, m4.1=.15,
m1.2=-. 25,m2.2=-.25,m3.2=-.25, m4.2=-.25, s=.4, r = .5, n = 100)

```
win1F Compute power for a One Factor Within Subjects ANOVA with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a One Factor Within Subjects ANOVA with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user
win1F

\section*{Usage}
win1F(
m1,
m2,
m3 = NA,
\(\mathrm{m} 4=\mathrm{NA}\),
s1,
s2,
s3 = NULL,
s4 = NULL, r12,
r13 = NULL,
r14 = NULL,
r23 = NULL,
r24 = NULL,
r34 = NULL,
n,
alpha \(=0.05\)
)

\section*{Arguments}
\begin{tabular}{ll}
\(m 1\) & Mean of first time point \\
\(m 2\) & Mean of second time point \\
\(m 3\) & Mean of third time point \\
\(m 4\) & Mean of fourth time point \\
\(s 1\) & Standard deviation of first time point \\
\(s 2\) & Standard deviation of second time point \\
\(s 3\) & Standard deviation of third time point \\
\(s 4\) & Standard deviation of forth time point \\
\(r 12\) & correlation Time 1 and Time 2 \\
\(r 13\) & correlation Time 1 and Time 3 \\
\(r 14\) & correlation Time 1 and Time 4 \\
\(r 23\) & correlation Time 2 and Time 3 \\
\(r 24\) & correlation Time 2 and Time 4 \\
\(r 34\) & correlation Time 3 and Time 4 \\
\(n\) & Total sample size \\
alpha & Type I error (default is .05)
\end{tabular}

\section*{Value}

Power for the One Factor Within Subjects ANOVA

\section*{Examples}
win1F (m1=-. \(25, \mathrm{~m} 2=.00, \mathrm{~m} 3=.10, \mathrm{~m} 4=.15, \mathrm{~s} 1=.4, \mathrm{~s} 2=.5, \mathrm{~s} 3=.6, \mathrm{~s} 4=.7\),
\(r 12=.50, r 13=.30, r 14=.15, r 23=.5, r 24=.30, r 34=.50, n=25\) )
\(\operatorname{win} 1 F(m 1=-.25, m 2=.00, m 3=.10, m 4=.15, s 1=.4, s 2=.5, s 3=2.5, s 4=2.0\),
\(r 12=.50, r 13=.30, r 14=.10, r 23=.5, r 24=.30, r 34=.40, n=100)\)
```

win1Ftrends

```

Compute power for a One Factor Within Subjects Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a One Factor Within Subjects Trends with up to four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
win1Ftrends( m1, m2, m3 \(=\mathrm{NA}\), \(\mathrm{m} 4=\mathrm{NA}\), s1, s2, s3 = NULL, s4 = NULL, r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, r34 = NULL,
n,
alpha \(=0.05\)
)

\section*{Arguments}
m1
Mean of first time point
m2 Mean of second time point
m3 Mean of third time point
m4 Mean of fourth time point
s1 Standard deviation of first time point
s2 Standard deviation of second time point
\begin{tabular}{ll} 
s3 & Standard deviation of third time point \\
s4 & Standard deviation of forth time point \\
r12 & correlation Time 1 and Time 2 \\
r13 & correlation Time 1 and Time 3 \\
r14 & correlation Time 1 and Time 4 \\
r23 & correlation Time 2 and Time 3 \\
r24 & correlation Time 2 and Time 4 \\
r34 & correlation Time 3 and Time 4 \\
n & Sample size for first group \\
alpha & Type I error (default is .05)
\end{tabular}

\section*{Value}

Power for the One Factor Within Subjects Trends

\section*{Examples}
```

win1Ftrends(m1=-. 25,m2=-. 15,m3=-.05,m4=.05, s1=.4, s2=.5, s3=.6, s4=.7,
r12=.50, r13=.30, r14=.15, r23=.5, r24=.30, r34=.50, n=25)

```
```

win2F

```

Compute power for a Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Description}

Compute power for a Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
win2F (
m1.1,
m2.1,
m3.1 = NA,
m4.1 = NA,
m1.2,
m2.2,
m3.2 = NA,
m4.2 = NA,
s1.1 = NA,
s2.1 = NA,
s3.1 = NA,
```

    s4.1 = NA,
    s1.2 = NA,
    s2.2 = NA,
    s3.2 = NA,
    s4.2 = NA,
    r12 = NULL,
    r13 = NULL,
    r14 = NULL,
    r15 = NULL,
    r16 = NULL,
    r17 = NULL,
    r18 = NULL,
    r23 = NULL,
    r24 = NULL,
    r25 = NULL,
    r26 = NULL,
    r27 = NULL,
    r28 = NULL,
    r34 = NULL,
    r35 = NULL,
    r36 = NULL,
    r37 = NULL,
    r38 = NULL,
    r45 = NULL,
    r46 = NULL,
    r47 = NULL,
    r48 = NULL,
    r56 = NULL,
    r57 = NULL,
    r58 = NULL,
    r67 = NULL,
    r68 = NULL,
    r78 = NULL,
    r = NULL,
    s = NULL,
    n,
    alpha = 0.05
    )

```

\section*{Arguments}
m1. 1
m2. 1
m3.1
m4. 1
m1.2
m2. 2

Mean of first level factor 1, 1st level factor two
Mean of second level factor 1, 1st level factor two
Mean of third level factor 1, 1st level factor two
Mean of fourth level factor 1 , 1st level factor two
Mean of first level factor 1, 2nd level factor two
Mean of second level factor 1 , 2nd level factor two
\begin{tabular}{|c|c|}
\hline m3.2 & Mean of third level factor 1, 2nd level factor two \\
\hline m4.2 & Mean of fourth level factor 1, 2nd level factor two \\
\hline s1.1 & Standard deviation of first level factor 1, 1st level factor two \\
\hline s2.1 & Standard deviation of second level factor 1, 1st level factor two \\
\hline s3.1 & Standard deviation of third level factor 1, 1st level factor two \\
\hline s4. 1 & Standard deviation of forth level factor 1, 1st level factor two \\
\hline s1.2 & Standard deviation of first level factor 1, 2nd level factor two \\
\hline s2.2 & Standard deviation of second level factor 1, 2nd level factor two \\
\hline s3.2 & Standard deviation of third level factor 1, 2nd level factor two \\
\hline s4.2 & Standard deviation of forth level factor 1, 2nd level factor two \\
\hline r12 & correlation Factor 1, Level 1 and Factor 1, Level 2 \\
\hline r13 & correlation Factor 1, Level 1 and Factor 1, Level 3 \\
\hline r14 & correlation Factor 1, Level 1 and Factor 1, Level 4 \\
\hline r15 & correlation Factor 1, Level 1 and Factor 2, Level 1 \\
\hline r16 & correlation Factor 1, Level 1 and Factor 2, Level 2 \\
\hline r17 & correlation Factor 1, Level 1 and Factor 2, Level 3 \\
\hline r18 & correlation Factor 1, Level 1 and Factor 2, Level 4 \\
\hline r23 & correlation Factor 1, Level 2 and Factor 1, Level 3 \\
\hline r24 & correlation Factor 1, Level 2 and Factor 1, Level 4 \\
\hline r25 & correlation Factor 1, Level 2 and Factor 2, Level 1 \\
\hline r26 & correlation Factor 1, Level 2 and Factor 2, Level 2 \\
\hline r27 & correlation Factor 1, Level 2 and Factor 2, Level 3 \\
\hline r28 & correlation Factor 1, Level 2 and Factor 2, Level 4 \\
\hline r34 & correlation Factor 1, Level 3 and Factor 1, Level 4 \\
\hline r35 & correlation Factor 1, Level 3 and Factor 2, Level 1 \\
\hline r36 & correlation Factor 1, Level 3 and Factor 2, Level 2 \\
\hline r37 & correlation Factor 1, Level 3 and Factor 2, Level 3 \\
\hline r38 & correlation Factor 1, Level 3 and Factor 2, Level 4 \\
\hline r45 & correlation Factor 1, Level 4 and Factor 2, Level 1 \\
\hline r46 & correlation Factor 1, Level 4 and Factor 2, Level 2 \\
\hline r47 & correlation Factor 1, Level 4 and Factor 2, Level 3 \\
\hline r48 & correlation Factor 1, Level 4 and Factor 2, Level 4 \\
\hline r56 & correlation Factor 2, Level 1 and Factor 2, Level 2 \\
\hline r57 & correlation Factor 2, Level 1 and Factor 2, Level 3 \\
\hline r58 & correlation Factor 2, Level 1 and Factor 2, Level 4 \\
\hline r67 & correlation Factor 2, Level 2 and Factor 2, Level 3 \\
\hline r68 & correlation Factor 2, Level 2 and Factor 2, Level 4 \\
\hline r78 & correlation Factor 2, Level 3 and Factor 2, Level 4 \\
\hline \(r\) & sets same correlations between DVs on all factor levels (seriously, just use this) \\
\hline s & sets same standard deviation for factor levels (see comment above) \\
\hline n & Sample size for first group \\
\hline alpha & Type I error (default is .05) \\
\hline
\end{tabular}

\section*{Value}

Power for the Two Factor Within Subjects ANOVA

\section*{Examples}
\[
\begin{aligned}
& \text { win2F }(m 1.1=-.25, m 2.1=0, m 3.1=.10, m 4.1=.15, \mathrm{~m} 1.2=-.25, \mathrm{~m} 2.2=.10, \mathrm{~m} 3.2=.30, \mathrm{~m} 4.2=.35 \text {, } \\
& \mathrm{s} 1.1=.4, \mathrm{~s} 2.1=.5, \mathrm{~s} 3.1=2.5, \mathrm{~s} 4.1=2.0, \mathrm{~s} 1.2=.4, \mathrm{~s} 2.2=.5, \mathrm{~s} 3.2=2.5, \mathrm{~s} 4.2=2.0, r=.5, \mathrm{n}=80) \\
& \text { win2F }(\mathrm{m} 1.1=-.25, \mathrm{~m} 2.1=0, \mathrm{~m} 1.2=-.25, \mathrm{~m} 2.2=.10, \mathrm{~s} 1.1=.4, \mathrm{~s} 2.1=.5, \mathrm{~s} 1.2=.4, \mathrm{~s} 2.2=.5, \\
& \mathrm{r} 12=.5, \mathrm{r} 13=.4, r 14=.55, r 23=.4, r 24=.5, r 34=.45, \mathrm{n}=200)
\end{aligned}
\]
\begin{tabular}{ll} 
win2Fse & Compute power for Simple Effects in Two Factor Within Subjects \\
ANOVA with up to two by four levels. Takes means, sds, and sam- \\
ple sizes for each group. Alpha is . 05 by default, alternative values \\
may be entered by user
\end{tabular}

\section*{Description}

Compute power for Simple Effects in Two Factor Within Subjects ANOVA with up to two by four levels. Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alternative values may be entered by user

\section*{Usage}
\[
\begin{aligned}
& \text { win2Fse( } \\
& \text { m1.1, } \\
& \text { m2.1, } \\
& \text { m3.1 = NA, } \\
& \text { m4.1 = NA, } \\
& \text { m1.2, } \\
& \text { m2.2, } \\
& \text { m3.2 = NA, } \\
& \text { m4.2 = NA, } \\
& \text { s1.1 = NA, } \\
& \text { s2.1 = NA, } \\
& \text { s3.1 = NA, } \\
& \text { s4.1 = NA, } \\
& \text { s1.2 = NA, } \\
& \text { s2.2 = NA, } \\
& \text { s3.2 = NA, } \\
& \text { s4.2 = NA, } \\
& \text { r12 = NULL, } \\
& \text { r13 = NULL, } \\
& \text { r14 = NULL, } \\
& \text { r15 = NULL, } \\
& \text { r16 = NULL, } \\
& \text { r17 = NULL, }
\end{aligned}
\]
```

    r18 = NULL,
    r23 = NULL,
    r24 = NULL,
    r25 = NULL,
    r26 = NULL,
    r27 = NULL,
    r28 = NULL,
    r34 = NULL,
    r35 = NULL,
    r36 = NULL,
    r37 = NULL,
    r38 = NULL,
    r45 = NULL,
    r46 = NULL,
    r47 = NULL,
    r48 = NULL,
    r56 = NULL,
    r57 = NULL,
    r58 = NULL,
    r67 = NULL,
    r68 = NULL,
    r78 = NULL,
    r = NULL,
    s = NULL,
    n,
    alpha = 0.05
    )

```

\section*{Arguments}
\begin{tabular}{ll}
m 1.1 & Mean of first level factor 1, 1st level factor two \\
m 2.1 & Mean of second level factor 1, 1st level factor two \\
m 3.1 & Mean of third level factor 1, 1st level factor two \\
m 4.1 & Mean of fourth level factor 1, 1st level factor two \\
m 1.2 & Mean of first level factor 1, 2nd level factor two \\
m 2.2 & Mean of second level factor 1, 2nd level factor two \\
m 3.2 & Mean of third level factor 1, 2nd level factor two \\
m 4.2 & Mean of fourth level factor 1, 2nd level factor two \\
s 1.1 & Standard deviation of first level factor 1, 1st level factor two \\
s 2.1 & Standard deviation of second level factor 1, 1st level factor two \\
s 3.1 & Standard deviation of third level factor 1, 1st level factor two \\
s 4.1 & Standard deviation of forth level factor 1, 1st level factor two \\
s 1.2 & Standard deviation of first level factor 1, 2nd level factor two \\
s 2.2 & Standard deviation of second level factor 1, 2nd level factor two \\
s 3.2 & Standard deviation of third level factor 1, 2nd level factor two
\end{tabular}
\begin{tabular}{ll} 
s4.2 & Standard deviation of forth level factor 1, 2nd level factor two \\
r12 & correlation Factor 1, Level 1 and Factor 1, Level 2 \\
r13 & correlation Factor 1, Level 1 and Factor 1, Level 3 \\
r14 & correlation Factor 1, Level 1 and Factor 1, Level 4 \\
r15 & correlation Factor 1, Level 1 and Factor 2, Level 1 \\
r16 & correlation Factor 1, Level 1 and Factor 2, Level 2 \\
r17 & correlation Factor 1, Level 1 and Factor 2, Level 3 \\
r18 & correlation Factor 1, Level 1 and Factor 2, Level 4 \\
r23 & correlation Factor 1, Level 2 and Factor 1, Level 3 \\
r24 & correlation Factor 1, Level 2 and Factor 1, Level 4 \\
r25 & correlation Factor 1, Level 2 and Factor 2, Level 1 \\
r26 & correlation Factor 1, Level 2 and Factor 2, Level 2 \\
r27 & correlation Factor 1, Level 2 and Factor 2, Level 3 \\
r28 & correlation Factor 1, Level 2 and Factor 2, Level 4 \\
r34 & correlation Factor 1, Level 3 and Factor 1, Level 4 \\
r35 & correlation Factor 1, Level 3 and Factor 2, Level 1 \\
r36 & correlation Factor 1, Level 3 and Factor 2, Level 2 \\
r37 & correlation Factor 1, Level 3 and Factor 2, Level 3 \\
r38 & correlation Factor 1, Level 3 and Factor 2, Level 4 \\
r45 & correlation Factor 1, Level 4 and Factor 2, Level 1 \\
r46 & correlation Factor 1, Level 4 and Factor 2, Level 2 \\
r47 & correlation Factor 1, Level 4 and Factor 2, Level 3 \\
r48 & correlation Factor 1, Level 4 and Factor 2, Level 4 \\
r56 & correlation Factor 2, Level 1 and Factor 2, Level 2 I error (default is .05) \\
r57 & correlation Factor 2, Level 1 and Factor 2, Level 3 \\
r58 & correlation Factor 2, Level 1 and Factor 2, Level 4 \\
r67 & correlation Factor 2, Level 2 and Factor 2, Level 3 \\
r68 & correlation Factor 2, Level 2 and Factor 2, Level 4 \\
r78 & correlation Factor 2, Level 3 and Factor 2, Level 4 \\
r same correlations between DVs on all factor levels (seriously, just use this) \\
s & sets same standard deviation for factor levels (see comment above) \\
n & Sha
\end{tabular}

\section*{Value}

Power for Simple Effects for Two Factor Within Subjects ANOVA

\section*{Examples}
win2Fse(m1.1=-. \(25, \mathrm{~m} 2.1=0, \mathrm{~m} 3.1=.10, \mathrm{~m} 4.1=.15, \mathrm{~m} 1.2=-.25, \mathrm{~m} 2.2=.10, \mathrm{~m} 3.2=.30, \mathrm{~m} 4.2=.35\),
\(s 1.1=.4, s 2.1=.5, s 3.1=2.5, s 4.1=2.0, s 1.2=.4, s 2.2=.5, s 3.2=2.5, s 4.2=2.0, r=.5, n=220)\)

\section*{Index}
anc, 3
anova1f_3, 4
anova1f_3c, 5
anova1f_4, 7
anova1f_4c, 8
anova2x2, 9
anova2x2_se, 11
Assumptions, 12
Assumptions_resample, 14
Chi2x2, 16
Chi2X3, 17
ChiES, 17
ChiGOF, 18
corr, 19
d_prec, 23
depb, 20
depcorr0, 21
depcorr1, 22
indb, 23
indcorr, 25
indR2, 25
indt, 27
lmm1F, 28
lmm1Ftrends, 29
lmm1w1b, 30
lmm2F, 33
lmm2Fse, 36
LRcat, 39
LRcont, 39
MANOVA1f, 40
md_prec, 42
med, 43
medjs, 45
medjs_paths, 47
medserial, 48
medserial_paths, 49
modmed14, 50
modmed7, 51
MRC, 52
MRC_all, 53
MRC_short2, 55
MRC_shortcuts, 57
pairt, 58
prop1, 59
propind, 60
R2_prec, 62
R2ch, 61
r_prec, 65
regint, 63
regintR2, 64
tfromd, 65
win1bg1, 66
win1F, 68
win1Ftrends, 70
win2F, 71
win2Fse, 74```

