Package 'qte'

September 1, 2022

Title Quantile Treatment Effects

Version 1.3.1

Description Provides several methods for computing the Quantile Treatment Effect (QTE) and Quantile Treatment Effect on the Treated (QTT). The main cases covered are (i) Treatment is randomly assigned, (ii) Treatment is as good as randomly assigned after conditioning on some covariates (also called conditional independence or selection on observables) using the methods developed in Firpo (2007) <doi:10.1111/j.1468-0262.2007.00738.x>, (iii) Identification is based on a Difference in Differences assumption (several varieties are available in the package e.g. Athey and Imbens (2006) <doi:10.1111/j.1468-0262.2006.00668.x> Callaway and Li (2019) <doi:10.3982/QE935>, Callaway, Li, and Oka (2018) <doi:10.1016/j.jeconom.2018.06.008>).

Depends R (>= 3.5)

Imports Hmisc, parallel, quantreg, BMisc, formula.tools, ggplot2, texreg, pbapply, data.table

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

VignetteBuilder knitr

Suggests rmarkdown, knitr, msm

NeedsCompilation no

Author Brantly Callaway [aut, cre]

Maintainer Brantly Callaway callaway@uga.edu>

Repository CRAN

Date/Publication 2022-09-01 14:30:02 UTC

R topics documented:

bounds	
ci.qte	
ci.qtet	

CiC	. 7
compute.panel.qtet	. 9
computeDiffSE	. 10
ddid2	. 10
diffQ	. 12
DR	. 13
ggqte	. 13
lalonde	. 14
lalonde.exp	. 15
lalonde.exp.panel	. 15
lalonde.psid	. 15
lalonde.psid.panel	. 15
MDiD	. 16
panel.checks	. 17
panel.qtet	. 18
panelize.data	. 20
plot.BoundsObj	. 21
plot.QTE	. 22
print.summary.BoundsObj	. 23
print.summary.QTE	. 23
QDiD	. 24
QTE	. 26
QTEparams	. 28
qtes2mat	. 29
qteToTexreg	. 30
setupData	. 30
spatt	. 31
summary.BoundsObj	. 32
summary.QTE	. 33
	34

Index

bounds

bounds

Description

bounds estimates bounds for the Quantile Treatment Effect on the Treated (QTET) using the method of Fan and Yu (2012).

Usage

```
bounds(
  formla,
  xformla = NULL,
  t,
  tmin1,
  tname,
```

bounds

```
data,
idname,
probs = seq(0.05, 0.95, 0.05)
)
```

Arguments

formla	The formula $y \sim d$ where y is the outcome and d is the treatment indicator (d should be binary), d should be equal to one in all time periods for individuals that are eventually treated
xformla	A optional one sided formula for additional covariates that will be adjusted for. E.g \sim age + education. Additional covariates can also be passed by name using the x paramater.
t	The 3rd time period in the sample. Treated individuals should be treated in this time period and untreated individuals should not be treated. The code attempts to enforce this condition, but it is good try to handle this outside the panel.qtet method.
tmin1	The 2nd time period in the sample. This should be a pre-treatment period for all individuals in the sample.
tname	The name of the column containing the time periods
data	A data.frame containing all the variables used
idname	The individual (cross-sectional unit) id name
probs	A vector of values between 0 and 1 to compute the QTET at

Value

A BoundsObj object

References

Fan, Yanqin and Zhengfei Yu. "Partial Identification of Distributional and Quantile Treatment Effects in Difference-in-Differences Models." Economics Letters 115.3, pp.511-515, 2012.

Examples

```
## load the data
data(lalonde)
## Run the bounds method with no covariates
b1 <- bounds(re ~ treat, t=1978, tmin1=1975, data=lalonde.psid.panel,
    idname="id", tname="year")
summary(b1)</pre>
```

ci.qte

Description

The ci.qtet method implements estimates the Quantile Treatment Effect (QTE) under a Conditional Independence Assumption (sometimes this is called Selection on Observables) developed in Firpo (2007). This method using propensity score re-weighting and minimizes a check function to compute the QTET. Standard errors (if requested) are computed using the bootstrap.

Usage

```
ci.qte(
  formla,
 xformla = NULL,
 x = NULL,
 data,
 w = NULL,
 probs = seq(0.05, 0.95, 0.05),
  se = TRUE,
  iters = 100,
  alp = 0.05,
 method = "logit",
  retEachIter = FALSE,
  printIter = FALSE,
 pl = FALSE,
  cores = 2
)
```

formla	The formula $y \sim d$ where y is the outcome and d is the treatment indicator (d should be binary), d should be equal to one in all time periods for individuals that are eventually treated
xformla	A optional one sided formula for additional covariates that will be adjusted for. E.g \sim age + education. Additional covariates can also be passed by name using the x paramater.
x	Vector of covariates. Default is no covariates
data	A data.frame containing all the variables used
W	an additional vector of sampling weights
probs	A vector of values between 0 and 1 to compute the QTET at
se	Boolean whether or not to compute standard errors
iters	The number of iterations to compute bootstrap standard errors. This is only used if se=TRUE
alp	The significance level used for constructing bootstrap confidence intervals

ci.qtet

method	Method to compute propensity score. Default is logit; other option is probit.
retEachIter	Boolean whether or not to return list of results from each iteration of the boot- strap procedure (default is FALSE). This is potentially useful for debugging but can cause errors due to running out of memory.
printIter	For debugging only; should leave at default FALSE unless you want to see a lot of output
pl	boolean for whether or not to compute bootstrap error in parallel. Note that computing standard errors in parallel is a new feature and may not work at all on Windows.
cores	the number of cores to use if bootstrap standard errors are computed in parallel

Value

QTE object

References

Firpo, Sergio. "Efficient Semiparametric Estimation of Quantile Treatment Effects." Econometrica 75.1, pp. 259-276, 2015.

Examples

Load the data
data(lalonde)

```
##Estimate the QTET of participating in the job training program;
##This is the no covariate case. Note: Because individuals that participate
## in the job training program are likely to be much different than
## individuals that do not (e.g. less experience and less education), this
## method is likely to perform poorly at estimating the true QTET
q1 <- ci.qte(re78 ~ treat, x=NULL, data=lalonde.psid, se=FALSE,
probs=seq(0.05,0.95,0.05))
summary(q1)
##This estimation controls for all the available background characteristics.
q2 <- ci.qte(re78 ~ treat,
xformla=~age + I(age^2) + education + black + hispanic + married + nodegree,
data=lalonde.psid, se=FALSE, probs=seq(0.05, 0.95, 0.05))
summary(q2)
```

ci.qtet

ci.qtet

Description

The ci.qtet method implements estimates the Quantile Treatment Effect on the Treated (QTET) under a Conditional Independence Assumption (sometimes this is called Selection on Observables) developed in Firpo (2007). This method using propensity score re-weighting and minimizes a check function to compute the QTET. Standard errors (if requested) are computed using the bootstrap.

Usage

```
ci.qtet(
 formla,
 xformla = NULL,
 w = NULL,
 data,
 probs = seq(0.05, 0.95, 0.05),
 se = TRUE,
 iters = 100,
 alp = 0.05,
 method = "logit",
 retEachIter = FALSE,
 indsample = TRUE,
 printIter = FALSE,
 pl = FALSE,
 cores = 2
)
```

Arguments

formla	The formula $y \sim d$ where y is the outcome and d is the treatment indicator (d should be binary), d should be equal to one in all time periods for individuals that are eventually treated
xformla	A optional one sided formula for additional covariates that will be adjusted for. E.g \sim age + education. Additional covariates can also be passed by name using the x paramater.
W	an additional vector of sampling weights
data	A data.frame containing all the variables used
probs	A vector of values between 0 and 1 to compute the QTET at
se	Boolean whether or not to compute standard errors
iters	The number of iterations to compute bootstrap standard errors. This is only used if se=TRUE
alp	The significance level used for constructing bootstrap confidence intervals
method	Method to compute propensity score. Default is logit; other option is probit.
retEachIter	Boolean whether or not to return list of results from each iteration of the boot- strap procedure (default is FALSE). This is potentially useful for debugging but can cause errors due to running out of memory.
indsample	Binary variable for whether to treat the samples as independent or dependent. This affects bootstrap standard errors. In the job training example, the samples are independent because they are two samples collected independently and then merged. If the data is from the same source, usually should set this option to be FALSE.
printIter	For debugging only; should leave at default FALSE unless you want to see a lot of output
pl	Whether or not to compute standard errors in parallel
cores	Number of cores to use if computing in parallel

6

CiC

Value

QTE object

References

Firpo, Sergio. "Efficient Semiparametric Estimation of Quantile Treatment Effects." Econometrica 75.1, pp. 259-276, 2015.

Examples

Load the data
data(lalonde)

```
##Estimate the QTET of participating in the job training program;
##This is the no covariate case. Note: Because individuals that participate
## in the job training program are likely to be much different than
## individuals that do not (e.g. less experience and less education), this
## method is likely to perform poorly at estimating the true QTET
q1 <- ci.qtet(re78 ~ treat, x=NULL, data=lalonde.psid, se=FALSE,
probs=seq(0.05,0.95,0.05))
summary(q1)
##This estimation controls for all the available background characteristics.
q2 <- ci.qtet(re78 ~ treat,
xformla=~age + I(age^2) + education + black + hispanic + married + nodegree,
data=lalonde.psid, se=FALSE, probs=seq(0.05, 0.95, 0.05))
summary(q2)
```

CiC

Change in Changes

Description

CiC computes the Quantile Treatment Effect on the Treated (QTET) using the method of Athey and Imbens (2006). CiC is a Difference in Differences type method. It requires having two periods of data that can be either repeated cross sections or panel data.

The method can accommodate conditioning on covariates though it does so in a restrictive way: It specifies a linear model for outcomes conditional on group-time dummies and covariates. Then, after residualizing (see details in Athey and Imbens (2006)), it computes the Change in Changes model based on these quasi-residuals.

Usage

```
CiC(
formla,
xformla = NULL,
t,
```

```
tmin1,
tname,
data,
panel = FALSE,
se = TRUE,
idname = NULL,
alp = 0.05,
probs = seq(0.05, 0.95, 0.05),
iters = 100,
pl = FALSE,
cores = 2,
retEachIter = FALSE
)
```

Arguments

formla	The formula $y \sim d$ where y is the outcome and d is the treatment indicator (d should be binary), d should be equal to one in all time periods for individuals that are eventually treated	
xformla	A optional one sided formula for additional covariates that will be adjusted for. E.g \sim age + education. Additional covariates can also be passed by name using the x paramater.	
t	The 3rd time period in the sample. Treated individuals should be treated in this time period and untreated individuals should not be treated. The code attempts to enforce this condition, but it is good try to handle this outside the panel.qtet method.	
tmin1	The 2nd time period in the sample. This should be a pre-treatment period for all individuals in the sample.	
tname	The name of the column containing the time periods	
data	A data.frame containing all the variables used	
panel	Binary variable indicating whether or not the dataset is panel. This is used for computing bootstrap standard errors correctly.	
se	Boolean whether or not to compute standard errors	
idname	The individual (cross-sectional unit) id name	
alp	The significance level used for constructing bootstrap confidence intervals	
probs	A vector of values between 0 and 1 to compute the QTET at	
iters	The number of iterations to compute bootstrap standard errors. This is only used if se=TRUE	
pl	Whether or not to compute standard errors in parallel	
cores	Number of cores to use if computing in parallel	
retEachIter	Boolean whether or not to return list of results from each iteration of the boot- strap procedure (default is FALSE). This is potentially useful for debugging but can cause errors due to running out of memory.	

8

compute.panel.qtet

Value

QTE Object

References

Athey, Susan and Guido Imbens. "Identification and Inference in Nonlinear Difference-in-Differences Models." Econometrica 74.2, pp. 431-497, 2006.

Examples

```
## load the data
data(lalonde)
## Run the Change in Changes model conditioning on age, education,
## black, hispanic, married, and nodegree
c1 <- CiC(re ~ treat, t=1978, tmin1=1975, tname="year",
    xformla=~age + I(age^2) + education + black + hispanic + married + nodegree,
    data=lalonde.psid.panel, idname="id", se=FALSE,
    probs=seq(0.05, 0.95, 0.05))
summary(c1)</pre>
```

compute.panel.qtet compute.panel.qtet

Description

compute.panel.qtet uses third period of data, combined with Distributional Difference in Difference assumption (Fan and Yu, 2012) to point identify QTET.

Usage

```
compute.panel.qtet(qp)
```

Arguments

qp QTEparams object containing the parameters passed to ciqte

Value

QTE object

computeDiffSE

Description

Takes two sets of initial estimates and bootstrap estimations (they need to have the same number of iterations) and determines whether or not the estimates are statistically different from each other. It can be used to compare any sets of estimates, but it is particularly used here to compare estimates from observational methods with observations from the experimental data (which also have standard errors because, even though the estimates are cleanly identified, they are still estimated).

Usage

```
computeDiffSE(est1, bootIters1, est2, bootIters2, alp = 0.05)
```

Arguments

est1	A QTE object containing the first set of estimates
bootIters1	A List of QTE objects that have been bootstrapped
est2	A QTE object containing a second set of estimates
bootIters2	A List of QTE objects that have been bootstrapped using the second method
alp	The significance level used for constructing bootstrap confidence intervals

ddid2	ddid2		

Description

ddid2 computes the Quantile Treatment Effect on the Treated (QTET) using the method of Call-away, Li, and Oka (2015).

Usage

```
ddid2(
   formla,
   xformla = NULL,
   t,
   tmin1,
   tname,
   data,
   panel = TRUE,
   dropalwaystreated = TRUE,
   idname = NULL,
   probs = seq(0.05, 0.95, 0.05),
```

```
iters = 100,
alp = 0.05,
method = "logit",
se = TRUE,
retEachIter = FALSE,
seedvec = NULL,
pl = FALSE,
cores = NULL
)
```

Arguments

formla	The formula $y \sim d$ where y is the outcome and d is the treatment indicator (d should be binary)	
xformla	A optional one sided formula for additional covariates that will be adjusted for. E.g \sim age + education. Additional covariates can also be passed by name using the x parameter.	
t	The 3rd time period in the sample (this is the name of the column)	
tmin1	The 2nd time period in the sample (this is the name of the column)	
tname	The name of the column containing the time periods	
data	The name of the data.frame that contains the data	
panel	Boolean indicating whether the data is panel or repeated cross sections	
dropalwaystreat	ed	
	How to handle always treated observations in panel data case (not currently used)	
idname	The individual (cross-sectional unit) id name	
probs	A vector of values between 0 and 1 to compute the QTET at	
iters	The number of iterations to compute bootstrap standard errors. This is only used if se=TRUE	
alp	The significance level used for constructing bootstrap confidence intervals	
method	The method for estimating the propensity score when covariates are included	
se	Boolean whether or not to compute standard errors	
retEachIter	Boolean whether or not to return list of results from each iteration of the boot- strap procedure	
seedvec	Optional value to set random seed; can possibly be used in conjunction with bootstrapping standard errors.	
pl	boolean for whether or not to compute bootstrap error in parallel. Note that computing standard errors in parallel is a new feature and may not work at all on Windows.	
cores	the number of cores to use if bootstrap standard errors are computed in parallel	

Value

QTE object

References

12

Callaway, Brantly, Tong Li, and Tatsushi Oka. "Quantile Treatment Effects in Difference in Differences Models under Dependence Restrictions and with Only Two Time Periods." Working Paper, 2015.

Examples

```
##load the data
data(lalonde)
## Run the ddid2 method on the observational data with no covariates
d1 <- ddid2(re ~ treat, t=1978, tmin1=1975, tname="year",
    data=lalonde.psid.panel, idname="id", se=FALSE,
    probs=seq(0.05, 0.95, 0.05))
summary(d1)
## Run the ddid2 method on the observational data with covariates
d2 <- ddid2(re ~ treat, t=1978, tmin1=1975, tname="year",
    data=lalonde.psid.panel, idname="id", se=FALSE,
    xformla=~age + I(age^2) + education + black + hispanic + married + nodegree,
    probs=seq(0.05, 0.95, 0.05))
summary(d2)</pre>
```

|--|--|

Description

takes a single set of quantiles:

(not qtes as in diffquantiles) and returns the difference between particular ones

Usage

diffQ(qvec, tauvec, hightau, lowtau)

Arguments

qvec	vector of quantiles
tauvec	vector of tau (should be same length as qvec)
hightau	upper quantile
lowtau	lower quantile

Value

scalar difference between quantiles

DR

Description

A distribution regression object

Usage

DR(yvals, drlist)

Arguments

yvals	A vector of values that y can take
drlist	A list where for each value of y, a distribution regression

|--|

Description

Makes somewhat nicer plots of quantile treatment effects by using ggplot

Usage

```
ggqte(
  qteobj,
  main = "",
  ylab = "QTE",
  ylim = NULL,
  ybreaks = NULL,
  xbreaks = c(0.1, 0.3, 0.5, 0.7, 0.9),
  setype = "pointwise"
)
```

qteobj	a QTE object
main	optional title
ylab	optional y axis label
ylim	optional limits of y axis
ybreaks	optional breaks in y axis
xbreaks	optional breaks in x axis

setype	options are "pointwise", "uniform" or both; pointwise confidence intervals cover
	the QTE at each particular point with a fixed probability, uniform confidence
	bands cover the entire curve with a fixed probability. Uniform confidence bands
	will tend to be wider. The option "both" will plot both types of confidence
	intervals

Value

a ggplot object

lalonde

Lalonde (1986)'s NSW Dataset

Description

lalonde contains data from the National Supported Work Demonstration. This program randomly assigned applicants to the job training program (or out of the job training program). The dataset is discussed in Lalonde (1986). The experimental part of the dataset is combined with an observational dataset from the Panel Study of Income Dynamics (PSID). Lalonde (1986) and many subsequent papers (e.g. Heckman and Hotz (1989), Dehejia and Wahba (1999), Smith and Todd (2005), and Firpo (2007) have used this combination to study the effectiveness of various 'observational' methods (e.g. regression, Heckman selection, Difference in Differences, and propensity score matching) of estimating the Average Treatment Effect (ATE) of participating in the job training program. The idea is that the results from the observational method can be compared to results that can be easily obtained from the experimental portion of the dataset.

To be clear, the observational data combines the observations that are treated from the experimental portion of the data with untreated observations from the PSID.

Usage

data(lalonde)

Format

Four data.frames: (i) lalonde.exp contains a cross sectional version of the experimental data, (ii) lalonde.psid contains a cross sectional version of the observational data, (iii) lalonde.exp.panel contains a panel version of the experimental data, and (iv) lalonde.psid.panel contains a panel version of the observational data. Note: the cross sectional and panel versions of each dataset are identical up to their shape; in demonstrating each of the methods, it is sometimes convenient to have one form of the data or the other.

References

LaLonde, Robert. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data." The American Economics Review, pp. 604-620, 1986. @source The dataset comes from Lalonde (1986) and has been studied in much subsequent work. The qte package uses a version from the causalsens package (https://CRAN.R-project.org/package=causalsens) lalonde.exp

Description

The cross sectional verion of the experimental part of the lalonde dataset. It is loaded with all the datasets with the command data(lalonde)

lalonde.exp.panel Lalonde's Panel Experimental Dataset

Description

The panel verion of the experimental part of the lalonde dataset. It is loaded with all the datasets with the command data(lalonde)

lalonde.psid Lalonde's Observational Dataset

Description

The cross sectional verion of the observational part of the lalonde dataset. It is loaded with all the datasets with the command data(lalonde)

lalonde.psid.panel Lalonde's Experimental Dataset

Description

The panel verion of the observational part of the lalonde dataset. It is loaded with all the datasets with the command data(lalonde)

Description

MDiD is a Difference in Differences type method for computing the QTET.

The method can accommodate conditioning on covariates though it does so in a restrictive way: It specifies a linear model for outcomes conditional on group-time dummies and covariates. Then, after residualizing (see details in Athey and Imbens (2006)), it computes the Change in Changes model based on these quasi-residuals.

Usage

```
MDiD(
   formla,
   xformla = NULL,
   t,
   tmin1,
   tname,
   data,
   panel = FALSE,
   se = TRUE,
   idname = NULL,
   alp = 0.05,
   probs = seq(0.05, 0.95, 0.05),
   iters = 100,
   retEachIter = FALSE
)
```

Arguments

formla	The formula $y \sim d$ where y is the outcome and d is the treatment indicator (d should be binary), d should be equal to one in all time periods for individuals that are eventually treated
xformla	A optional one sided formula for additional covariates that will be adjusted for. E.g \sim age + education. Additional covariates can also be passed by name using the x paramater.
t	The 3rd time period in the sample. Treated individuals should be treated in this time period and untreated individuals should not be treated. The code attempts to enforce this condition, but it is good try to handle this outside the panel.qtet method.
tmin1	The 2nd time period in the sample. This should be a pre-treatment period for all individuals in the sample.
tname	The name of the column containing the time periods
data	A data.frame containing all the variables used

MDiD

panel.checks

panel	Binary variable indicating whether or not the dataset is panel. This is used for computing bootstrap standard errors correctly.
se	Boolean whether or not to compute standard errors
idname	The individual (cross-sectional unit) id name
alp	The significance level used for constructing bootstrap confidence intervals
probs	A vector of values between 0 and 1 to compute the QTET at
iters	The number of iterations to compute bootstrap standard errors. This is only used if se=TRUE
retEachIter	Boolean whether or not to return list of results from each iteration of the boot- strap procedure (default is FALSE). This is potentially useful for debugging but can cause errors due to running out of memory.

Value

A QTE object

References

Athey, Susan and Guido Imbens. "Identification and Inference in Nonlinear Difference-in-Differences Models." Econometrica 74.2, pp. 431-497, 2006.

Thuysbaert, Bram. "Distributional Comparisons in Difference in Differences Models." Working Paper, 2007.

Examples

load the data
data(lalonde)

```
## Run the Mean Difference in Differences method conditioning on
## age, education, black, hispanic, married, and nodegree
md1 <- MDiD(re ~ treat, t=1978, tmin1=1975, tname="year",
    xformla=~age + I(age^2) + education + black + hispanic + married + nodegree,
    data=lalonde.psid.panel, idname="id", se=FALSE,
    probs=seq(0.05, 0.95, 0.05))
summary(md1)
```

panel.checks panel.checks

Description

Does some checking that data setup is valid for using methods in qte package

Usage

panel.checks(qp)

Arguments

qp

QTEparams object containing the parameters passed to ciqte

panel.qtet

panel.qtet

Description

panel.qtet computes the Quantile Treatment Effect on the Treated (QTET) using the method of Callaway and Li (2015). This method should be used when the researcher wants to invoke a Difference in Differences assumption to identify the QTET. Relative to the other Difference in Differences methods available in the qte package, this method's assumptions are more intuitively similar to the identifying assumptions used in identifying the Average Treatment Effect on the Treated (ATT).

Additionally, this method can accommodate covariates in a more flexible way than the other Difference in Differences methods available. In order to accommodate covariates, the user should specify a vector x of covariate names. The user also may specify a method for estimating the propensity score. The default is logit.

panel.qtet can only be used in some situations, however. The method requires three periods of panel data where individuals are not treated until the last period. The data should be formatted as a panel; the names of columns containing time periods and ids for each cross sectional unit need to be passed to the method.

Usage

```
panel.qtet(
  formla.
  xformla = NULL,
  t,
  tmin1,
  tmin2,
  tname,
  data.
  idname,
  probs = seq(0.05, 0.95, 0.05),
  iters = 100,
  alp = 0.05,
  method = c("qr", "pscore"),
  se = TRUE,
  retEachIter = FALSE,
  pl = FALSE,
  cores = NULL
)
```

panel.qtet

Arguments

formla	The formula $y \sim d$ where y is the outcome and d is the treatment indicator (d should be binary), d should be equal to one in all time periods for individuals that are eventually treated
xformla	A optional one sided formula for additional covariates that will be adjusted for. E.g \sim age + education. Additional covariates can also be passed by name using the x paramater.
t	The 3rd time period in the sample. Treated individuals should be treated in this time period and untreated individuals should not be treated. The code attempts to enforce this condition, but it is good try to handle this outside the panel.qtet method.
tmin1	The 2nd time period in the sample. This should be a pre-treatment period for all individuals in the sample.
tmin2	The 1st time period in the sample. This should be a pre-treatment period for all individuals in the sample.
tname	The name of the column containing the time periods
data	A data.frame containing all the variables used
idname	The individual (cross-sectional unit) id name
probs	A vector of values between 0 and 1 to compute the QTET at
iters	The number of iterations to compute bootstrap standard errors. This is only used if se=TRUE $% \mathcal{T}_{\mathrm{s}}$
alp	The significance level used for constructing bootstrap confidence intervals
method	The method for including covariates, should either be "QR" for quantile regression or "pscore" for propensity score
se	Boolean whether or not to compute standard errors
retEachIter	Boolean whether or not to return list of results from each iteration of the boot- strap procedure (default is FALSE). This is potentially useful for debugging but can cause errors due to running out of memory.
pl	Whether or not to compute standard errors in parallel
cores	Number of cores to use if computing in parallel

Value

QTE object

References

Callaway, Brantly and Tong Li. "Quantile Treatment Effects in Difference in Differences Models with Panel Data." Working Paper, 2019.

Examples

```
##load the data
data(lalonde)
## Run the panel.gtet method on the experimental data with no covariates
pq1 <- panel.qtet(re ~ treat, t=1978, tmin1=1975, tmin2=1974, tname="year",
data=lalonde.exp.panel, idname="id", se=FALSE,
probs=seq(0.05, 0.95, 0.05))
summary(pq1)
## Run the panel.gtet method on the observational data with no covariates
pq2 <- panel.qtet(re ~ treat, t=1978, tmin1=1975, tmin2=1974, tname="year",
data=lalonde.psid.panel, idname="id", se=FALSE,
probs=seq(0.05, 0.95, 0.05))
summary(pq2)
## Run the panel.gtet method on the observational data conditioning on
## age, education, black, hispanic, married, and nodegree.
## The propensity score will be estimated using the default logit method.
pq3 <- panel.qtet(re ~ treat, t=1978, tmin1=1975, tmin2=1974, tname="year",
xformla=~age + I(age^2) + education + black + hispanic + married + nodegree,
data=lalonde.psid.panel, idname="id", se=FALSE, method="pscore",
probs=seq(0.05, 0.95, 0.05))
summary(pq3)
pq4 <- panel.qtet(re ~ treat, t=1978, tmin1=1975, tmin2=1974, tname="year",
xformla=~age + I(age^2) + education + black + hispanic + married + nodegree,
data=lalonde.psid.panel, idname="id", se=FALSE, method="qr",
probs=seq(0.05, 0.95, 0.05))
summary(pq4)
```

panelize.data panelize.data

Description

get data in correct format for using panel methods in qte package

Usage

panelize.data(data, idname, tname, t, tmin1, tmin2 = NULL)

Arguments

data	A data.frame containing all the variables used
idname	The individual (cross-sectional unit) id name
tname	The name of the column containing the time periods

20

plot.BoundsObj

t	The 3rd time period in the sample. Treated individuals should be treated in this time period and untreated individuals should not be treated. The code attempts to enforce this condition, but it is good try to handle this outside the panel.qtet method.
tmin1	The 2nd time period in the sample. This should be a pre-treatment period for all individuals in the sample.
tmin2	The 1st time period in the sample. This should be a pre-treatment period for all individuals in the sample.

Value

data.frame

plot.BoundsObj Plot Bounds

Description

Plots a BoundObj Object

Usage

```
## S3 method for class 'BoundsObj'
plot(
    x,
    plotate = FALSE,
    plot0 = FALSE,
    qtecol = "black",
    atecol = "black",
    col0 = "black",
    ylim = NULL,
    uselegend = FALSE,
    legloc = "topright",
    ...
)
```

Х	A BoundsObj Object
plotate	Boolean whether or not to plot the ATE
plot0	Boolean whether to plot a line at 0
qtecol	Color for qte plot. Default "black"
atecol	Color for ate plot. Default "black"
col0	Color for 0 plot. Default "black"

The ylim for the plot; if not passed, it will be automatically set based on the values that the QTE takes
Boolean whether or not to print a legend
String location for the legend. Default "topright"
Other parameters to be passed to plot (e.g lwd)

plot.QTE

plot.QTE

Description

Plots a QTE Object

Usage

```
## S3 method for class 'QTE'
plot(
  х,
 plotate = FALSE,
 plot0 = FALSE,
 qtecol = "black",
 atecol = "black",
  col0 = "black",
 xlab = "tau",
 ylab = "QTE",
 legend = NULL,
 ontreated = FALSE,
 ylim = NULL,
 uselegend = FALSE,
  legendcol = NULL,
 legloc = "topright",
  . . .
)
```

х	a QTE Object
plotate	Boolean whether or not to plot the ATE
plot0	Boolean whether to plot a line at 0
qtecol	Color for qte plot. Default "black"
atecol	Color for ate plot. Default "black"
col0	Color for 0 plot. Default "black"
xlab	Custom label for x-axis. Default "tau"
ylab	Custom label for y-axis. Default "QTE"

legend	Vector of strings to add to legend
ontreated	Boolean whether parameters are "on the treated group"
ylim	The ylim for the plot; if not passed, it will be automatically set based on the values that the QTE takes
uselegend	Boolean whether or not to print a legend
legendcol	Legend Colors for plotting
legloc	String location for the legend. Default "topright"
	Other parameters to be passed to plot (e.g lwd)

```
print.summary.BoundsObj
```

Print a summary.BoundsObj

Description

Prints a Summary QTE Object

Usage

S3 method for class 'summary.BoundsObj'
print(x, ...)

Arguments

Х	A summary.BoundsObj
	Other objects to pass (not used)

print.summary.QTE Print

Description

Prints a Summary QTE Object

Usage

S3 method for class 'summary.QTE'
print(x, ...)

х	A summary.QTE object
	Other params (required as generic function, but not used)

Description

QDiD is a Difference in Differences type method for computing the QTET.

The method can accommodate conditioning on covariates though it does so in a restrictive way: It specifies a linear model for outcomes conditional on group-time dummies and covariates. Then, after residualizing (see details in Athey and Imbens (2006)), it computes the Change in Changes model based on these quasi-residuals.

Usage

```
QDiD(
  formla,
  xformla = NULL,
  t,
  tmin1,
  tname,
  data,
  panel = FALSE,
  se = TRUE,
  idname = NULL,
  alp = 0.05,
 probs = seq(0.05, 0.95, 0.05),
  iters = 100,
  retEachIter = FALSE,
 pl = FALSE,
  cores = NULL
)
```

Arguments

formla	The formula $y \sim d$ where y is the outcome and d is the treatment indicator (d should be binary), d should be equal to one in all time periods for individuals that are eventually treated
xformla	A optional one sided formula for additional covariates that will be adjusted for. E.g \sim age + education. Additional covariates can also be passed by name using the x paramater.
t	The 3rd time period in the sample. Treated individuals should be treated in this time period and untreated individuals should not be treated. The code attempts to enforce this condition, but it is good try to handle this outside the panel.qtet method.
tmin1	The 2nd time period in the sample. This should be a pre-treatment period for all individuals in the sample.

QDiD

QDiD

tname	The name of the column containing the time periods
data	A data.frame containing all the variables used
panel	Binary variable indicating whether or not the dataset is panel. This is used for computing bootstrap standard errors correctly.
se	Boolean whether or not to compute standard errors
idname	The individual (cross-sectional unit) id name
alp	The significance level used for constructing bootstrap confidence intervals
probs	A vector of values between 0 and 1 to compute the QTET at
iters	The number of iterations to compute bootstrap standard errors. This is only used if se=TRUE $% \mathcal{T}_{\mathrm{s}}$
retEachIter	Boolean whether or not to return list of results from each iteration of the boot- strap procedure (default is FALSE). This is potentially useful for debugging but can cause errors due to running out of memory.
pl	Whether or not to compute standard errors in parallel
cores	Number of cores to use if computing in parallel

Value

QTE Object

References

Athey, Susan and Guido Imbens. "Identification and Inference in Nonlinear Difference-in-Differences Models." Econometrica 74.2, pp. 431-497, 2006.

Examples

```
## load the data
data(lalonde)
## Run the Quantile Difference in Differences method conditioning on
## age, education, black, hispanic, married, and nodegree
qd1 <- QDiD(re ~ treat, t=1978, tmin1=1975, tname="year",
    xformla=~age + I(age^2) + education + black + hispanic + married + nodegree,
    data=lalonde.psid.panel, idname="id", se=FALSE,
    probs=seq(0.05, 0.95, 0.05))
summary(qd1)</pre>
```

QTE

Description

Main class of objects. A QTE object is returned by all of the methods that compute the QTE or QTET.

Usage

```
QTE(
 qte,
  ate = NULL,
 qte.se = NULL,
 qte.lower = NULL,
 qte.upper = NULL,
  ate.se = NULL,
  ate.lower = NULL,
  ate.upper = NULL,
  c = NULL,
  pscore.reg = NULL,
  probs,
  type = "On the Treated",
  F.treated.t = NULL,
  F.untreated.t = NULL,
  F.treated.t.cf = NULL,
  F.treated.tmin1 = NULL,
  F.treated.tmin2 = NULL,
  F.treated.change.tmin1 = NULL,
  F.untreated.change.t = NULL,
  F.untreated.change.tmin1 = NULL,
  F.untreated.tmin1 = NULL,
  F.untreated.tmin2 = NULL,
  condQ.treated.t = NULL,
  condQ.treated.t.cf = NULL,
  eachIterList = NULL,
  inffunct = NULL,
  inffuncu = NULL
```

```
)
```

qte	The Quantile Treatment Effect at each value of probs
ate	The Average Treatment Effect (or Average Treatment Effect on the Treated)
qte.se	A vector of standard errors for each qte

qte.lower	A vector of lower confidence intervals for each qte (it is based on the bootstrap confidence interval – not the se – so it may not be symmyetric about the qte
qte.upper	A vector of upper confidence intervals for each qte (it is based on the bootstrap confidence interval – not the se – so it may not be symmetric about the qte
ate.se	The standard error for the ATE
ate.lower	Lower confidence interval for the ATE (it is based on the bootstrap confidence intervall – not the se – so it may not be symmetric about the ATE
ate.upper	Upper confidence interval for the ATE (it is based on the bootstrap confidence interval – not the se – so it may not be symmetric about the ATE
с	The critical value from a KS-type statistic used for creating uniform confidence bands
pscore.reg	The results of propensity score regression, if specified
probs	The values for which the qte is computed
type	Takes the values "On the Treated" or "Population" to indicate whether the esti- mated QTE is for the treated group or for the entire population
F.treated.t	Distribution of treated outcomes for the treated group at period t
F.untreated.t	Distribution of untreated potential outcomes for the untreated group at period t
F.treated.t.cf	Counterfactual distribution of untreated potential outcomes for the treated group at period t
F.treated.tmin1	
	Distribution of treated outcomes for the treated group at period tmin1
F.treated.tmin2	
E tracted abone	Distribution of treated outcomes for the treated group at period tmin2
r.treated.chang	Distribution of the change in outcomes for the treated group between periods
	tmin1 and tmin2
F.untreated.cha	inge.t
	Distribution of the change in outcomes for the untreated group between periods t and tmin1
F.untreated.cha	nge.tmin1
	Distribution of the change in outcomes for the untreated group between periods
F.untreated.tmi	n1
	Distribution of outcomes for the untreated group in period tmin1
F.untreated.tmi	n2
	Distribution of outcomes for the untreated group in period tmin2
condQ.treated.t	
	Conditional quantiles for the treated group in period t
condQ.treated.t	a.cf
1	Counterfactual conditional quantiles for the treated group in period t
eachiterList	An optional list of the outcome of each bootstrap iteration
inffunct	The influence function for the treated group; used for inference when there are multiple periods and in the case with panel data. It is needed for computing covariance terms in the variance-covariance matrix.
inffuncu	The influence function for the untreated group

QTEparams

Description

QTEparams is an object that contains all the parameters passed to QTE methods

Usage

```
QTEparams(
  formla,
  xformla = NULL,
  t = NULL,
  tmin1 = NULL,
  tmin2 = NULL,
  tname = NULL,
  data,
 panel = FALSE,
 w = NULL,
  idname = NULL,
  probs,
  alp = NULL,
 method = NULL,
 plot = NULL,
  se = NULL,
  iters = NULL,
  retEachIter = NULL,
 bootstrapiter = NULL,
  seedvec = NULL,
 pl = NULL,
  cores = NULL
)
```

formla	Should be some y on treatment variable
xformla	a formula for the other covariates such as $\sim x1 + x2$
t	The last period (not always used)
tmin1	The last pre-treatment period (not always used)
tmin2	The 2nd to last pre-treatment period (not always used)
tname	The name of the column containing time periods (not always used)
data	The name of the data frame
panel	Whether or not the data is panel
W	Additional (usually sampling) weights

qtes2mat

idname	The name of the id column used with panel data (not always used)
probs	Which quantiles to produce quantile treatment effects for
alp	The significance level
method	The method to compute the propensity score
plot	boolean for whether or not to plot qtes
se	boolean whether or not to compute standard errors
iters	The number of bootstrap iterations to use to compute standard errors
retEachIter	boolean whether or not to return the full results from each bootstrap iteration
bootstrapiter	Used internally for determining whether or not a call is part of computing stan- dard errors via the bootstrap
seedvec	A seed to compute the same bootstrap standard errors each time the method is called (not always used)
pl	Boolean for whether or not computing bootstrap standard errors in parallel
cores	The number of cores to use if computing standard errors in in parallel

qtes2mat

qtes2mat

Description

Turn multiple qtes into a matrix for printing

Usage

qtes2mat(qteList, sset = NULL, se = TRUE, rnd = 3)

Arguments

qteList	a list of qte objects
sset	subset of qtes to keep
se	whether or not to include standard errors in the resulting matrix
rnd	how many disgits to round to

Value

matrix

qteToTexreg

diffQ

Description

takes a single set of quantiles:

(not qtes as in diffquantiles) and returns the difference between particular ones

Usage

```
qteToTexreg(qteobj, tau = NULL, reportAte = T)
```

Arguments

qteobj	A QTE object
tau	Optional vector of taus to texreg results for
reportAte	Whether or not texreg the ATE (or ATT) as well

Description

setupData sets up the data to use in each compute method in the QTE package

Usage

```
setupData(qteParams)
```

Arguments

qteParams object holding the function parameters

Value

qteData object holding data to be used in QTE functions

spatt

Description

spatt computes the Average Treatment Effect on the Treated (ATT) using the method of Abadie (2005)

Usage

```
spatt(
  formla,
  xformla = NULL,
  t,
  tmin1,
  tname,
 data,
 w = NULL,
 panel = FALSE,
  idname = NULL,
  iters = 100,
  alp = 0.05,
 method = "logit",
 plot = FALSE,
 se = TRUE,
 retEachIter = FALSE,
 seedvec = NULL,
 pl = FALSE,
 cores = 2
)
```

formla	The formula $y \sim d$ where y is the outcome and d is the treatment indicator (d should be binary)
xformla	A optional one sided formula for additional covariates that will be adjusted for. E.g \sim age + education. Additional covariates can also be passed by name using the x paramater.
t	The 3rd time period in the sample (this is the name of the column)
tmin1	The 2nd time period in the sample (this is the name of the column)
tname	The name of the column containing the time periods
data	The name of the data.frame that contains the data
W	an additional vector of sampling weights
panel	Boolean indicating whether the data is panel or repeated cross sections
idname	The individual (cross-sectional unit) id name

iters	The number of iterations to compute bootstrap standard errors. This is only used if se=TRUE
alp	The significance level used for constructing bootstrap confidence intervals
method	The method for estimating the propensity score when covariates are included
plot	Boolean whether or not the estimated QTET should be plotted
se	Boolean whether or not to compute standard errors
retEachIter	Boolean whether or not to return list of results from each iteration of the bootstrap procedure
seedvec	Optional value to set random seed; can possibly be used in conjunction with bootstrapping standard errors.
pl	boolean for whether or not to compute bootstrap error in parallel. Note that computing standard errors in parallel is a new feature and may not work at all on Windows.
cores	the number of cores to use if bootstrap standard errors are computed in parallel

Value

QTE object

References

Abadie (2005)

Examples

```
##load the data
data(lalonde)
## Run the panel.qtet method on the experimental data with no covariates
att1 <- spatt(re ~ treat, t=1978, tmin1=1975, tname="year",
    x=NULL, data=lalonde.psid.panel, idname="id", se=FALSE)
summary(att1)</pre>
```

Run the panel.qtet method on the observational data with no covariates

summary.BoundsObj Summary of BoundsObj

Description

summary.BoundsObj is an object for holding bounds results

summary.QTE

Usage

S3 method for class 'BoundsObj'
summary(object, ...)

Arguments

object	A BoundsObj Object
	Other params (for consistency as generic S3 method, but not used)

Value

summary.BoundsObj Object

summary.QTE	Summary		
-------------	---------	--	--

Description

summary.QTE summarizes QTE objects

Usage

S3 method for class 'QTE'
summary(object, ...)

object	A QTE Object
	Other params (to work as generic method, but not used)

Index

* datasets lalonde, 14 lalonde.exp, 15 lalonde.exp.panel, 15 lalonde.psid, 15 lalonde.psid.panel, 15 bounds, 2 ci.qte,4 ci.qtet, 5 CiC, **7** compute.panel.qtet,9 computeDiffSE, 10 ddid2, 10 diffQ, 12 DR, 13 ggqte, 13 lalonde, 14 lalonde.exp, 15 lalonde.exp.panel, 15 lalonde.psid, 15 lalonde.psid.panel, 15 MDiD, 16 panel.checks, 17 panel.qtet, 18 panelize.data, 20plot.BoundsObj, 21 plot.QTE, 22 print.summary.BoundsObj, 23 print.summary.QTE, 23 QDiD, 24 QTE, 26 QTEparams, 28

qtes2mat, 29

qteToTexreg, 30

setupData, 30
spatt, 31
summary.BoundsObj, 32
summary.QTE, 33