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elements Data from the periodic table of elements

Description

A dataset containing atomic numbers, chemical symbols, and names of 118 elements.

Usage

elements

Format

A data frame with 118 rows and 3 variables:

Z Atomic number

Symbol Chemical symbol

Name Name of element

Source

https://en.wikipedia.org/wiki/Symbol_(chemistry)

relate Map inputs from a vector of keys to a vector of values.

Description

relate returns a vector Y = F (X) where F maps each element of input vector X from its position
in vector A to its corresponding position in vector B. Can be applied as a vectorised key-value dic-
tionary with an optional default return value. Additional options restrict mapping types so relation
F must be a function, injective, surjective, etc.

relation returns a reusable function F that performs the same operation as relate. In addition to
providing a reusable function, if handle_duplicate_mappings = TRUE, relation checks for and
eliminates duplicate mappings that would be invalid inputs for relate. If report_properties = TRUE,
relation also prints the restrictions the mapping from A to B conforms to.

https://en.wikipedia.org/wiki/Symbol_(chemistry)
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Usage

relate(X, A, B, default = NA, atomic = TRUE, named = FALSE,
allow_default = TRUE, heterogeneous_outputs = FALSE,
handle_duplicate_mappings = FALSE, report_properties = FALSE,
relation_type = "func", restrictions = list(),
map_error_response = "warn")

relation(A, B, default = NA, atomic = TRUE, named = FALSE,
allow_default = TRUE, heterogeneous_outputs = FALSE,
handle_duplicate_mappings = FALSE, report_properties = FALSE,
relation_type = "func", restrictions = list(),
map_error_response = "warn")

Arguments

X A vector of inputs

A A vector possible inputs ordered to correspond to desired outputs given by B.

B A vector possible outputs ordered to correspond to each input to the relation
given by A.

default The default value to return if the value of F (x) is undefined.

atomic If TRUE, the return vector Y will be atomic; If TRUE Y will be a list vector. To
allow for multiple outputs from a single input, atomic must be set to FALSE if
relation_type = "many_to_many" or "one_to_many", or if relation_type = NULL
and max_one_y_per_x = FALSE is an element of restrictions list.

named The elements of the returned vector Y will be named by to their corresponding
inputs in X.

allow_default If TRUE, the provided default will be returned when F (x) is undefined; other-
wise invalid mappings will return an error determined by the map_error_response
argument.

heterogeneous_outputs

By default, elements y of the output vector Y will be returned as atomic vectors.
In many-to-many and one-to-many relations, if the elements in the codomain
are not all of the same type, this will coerce outputs to the same type. Set
heterogeneous_outputs = TRUE to return each y as a list vector. This will
avoid coercion of individual outputs to the same type, but may also result in
messy nested list vectors.

handle_duplicate_mappings

If TRUE, each possible input/output pair in the returned function F for duplicate
mappings and removes them. This may increase the runtime for larger map-
pings, but only for the first instance of relation. The function returned by
relation does not need to re-check these properties, so will run more quickly.
If handle_duplicate_mappings = FALSE, duplicate mappings from A to B
in relate or relation will return multiple instances of the same output. See
Examples.

report_properties

If TRUE, relation reports which restrictions F conforms to. See Details.
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relation_type Ensure that the relation is restricted to a certain type, e.g. "bijection". See
Details.

restrictions A named list of logicals imposing constraints on the relation. These will only
be used if relation_type is NULL. See Details.

map_error_response

How to deal with mapping errors caused by violated restrictions. Takes values
"ignore", "warn", or "throw".

Details

relate returns vector of outputs Y = F (X) where the F is a relation defined by the collection of
ordered pairs (ai, bi) where ai, bi are the ith elements of A and B respectively. If F (x) is undefined
because x is not in A or it does not map to an element of B, relate will either return default if
allow_default = TRUE. Otherwise the function will throw an error.

The relation F can be restricted so it conforms to a particular type specified, for example relation_type = "one_to_many".
If relation_type = NULL, the properties are determined by restrictions specified with a named
list, for example restrictions = list(min_one_y_per_x = TRUE). For all relations where
min_one_y_per_x = FALSE, only a list vector can be returned, so an error will be thrown if
atomic = TRUE. If A and B do not produce a relation that conforms to the specified type or re-
strictions, the value of map_error_response will determine whether the relate ignores the error,
reports it, or throws it. The full list of restrictions and relation types are listed below:

Restrictions
NB: 1) The restrictions argument is only used if relation_type = NULL; 2) If relation is
allowed to return multiple values, i.e. max_one_y_per_x = FALSE, then atomic must be set to
FALSE, otherwise an error will be throw; 3). All unspecified restrictions are assumed false, e.g.
restrictions = list() is equivalent to restrictions = list("min_one_y_per_x" = FALSE,"min_one_x_per_y" = FALSE,"max_one_y_per_x" = FALSE,"max_one_x_per_y" = FALSE)

min_one_y_per_x Guarantees at least one y = F (x) in B exists for each x in A. Returns an error if
B is longer than A.

min_one_x_per_y Guarantees at least one x in A exists for each y in B such that y = F (x). Returns
an error if A is longer than B.

max_one_y_per_x Guarantees no more than one y = F (x) in B exists for each x in A. Returns an
error if A contains duplicate elements.

max_one_x_per_y Guarantees no more than one x in A exists for each y in B such that y = F (x).
Returns an error if B contains duplicate elements.

Relation types

relation_type = "one_to_one" One-to-one relations require that each element in the domain to
map to at most one element in the codomain, and each element of the codomain to map from
the only one element in the domain. There may still be elements in A that do not have a map-
ping to an element in B, and vice versa. This is equivalent to restrictions = list("min_one_y_per_x" = FALSE,"min_one_x_per_y" = FALSE,"max_one_y_per_x" = TRUE,"max_one_x_per_y" = TRUE)

relation_type = "many_to_many" Many-to-many relations allow multiple elements in the do-
main to map to the same element of the codomain, and multiple elements of the codomain to
map from the same element of the domain. This is equivalent to restrictions = list("min_one_y_per_x" = FALSE,"min_one_x_per_y" = FALSE,"max_one_y_per_x" = FALSE,"max_one_x_per_y" = FALSE)

relation_type = "one_to_many" One-to-many relations require each element of the domain
to map to a distinct set of one or more elements in the codomain. This is equivalent to
restrictions = list("min_one_y_per_x" = FALSE,"min_one_x_per_y" = FALSE,"max_one_y_per_x" = FALSE,"max_one_x_per_y" = TRUE)
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relation_type = "many_to_one" Many-to-one relations allows sets of one or more elements
in the domain to map to the same distinct element in the codomain. This is equivalent to
restrictions = list("min_one_y_per_x" = FALSE,"min_one_x_per_y" = FALSE,"max_one_y_per_x" = TRUE,"max_one_x_per_y" = FALSE)

relation_type = "func" Functions map each element in the domain to exactly one element in
the codomain. This is equivalent to restrictions = list("min_one_y_per_x" = TRUE,"min_one_x_per_y" = FALSE,"max_one_y_per_x" = TRUE,"max_one_x_per_y" = FALSE)

relation_type = "injection" A function is injective if every element of the domain maps to a
unique element of the codomain. This is equivalent to restrictions = list("min_one_y_per_x" = TRUE,"min_one_x_per_y" = FALSE,"max_one_y_per_x" = TRUE,"max_one_x_per_y" = TRUE)

relation_type = "surjection" A function is surjective if every element of the codomain maps
from an element of the domain. This is equivalent to restrictions = list("min_one_y_per_x" = TRUE,"min_one_x_per_y" = TRUE,"max_one_y_per_x" = TRUE,"max_one_x_per_y" = FALSE)

relation_type = "bijection" A function is bijective if it is both injective and surjective, i.e. a
complete one-to-one mapping. This is equivalent to restrictions = list("min_one_y_per_x" = TRUE,"min_one_x_per_y" = TRUE,"max_one_y_per_x" = TRUE,"max_one_x_per_y" = TRUE)

Examples

## Map from one vector to another
relate(c("a", "e", "i", "o", "u"), letters, LETTERS)
# [1] "A" "E" "I" "O" "U"
## or
caps <- relation(letters, LETTERS)
caps("t")
# [1] "T"
caps(c("p", "q", "r"))
# [1] "P" "Q" "R"

## Create a new column in a data frame
df <- data.frame(
name = c("Alice", "Bob", "Charlotte", "Dan", "Elise", "Frank"),
position = c("right", "lean-left", "left", "left", "lean-right", "no response")
)
positions <- c("left", "lean-left", "independent", "lean-right", "right")
colours <- c("darkblue", "lightblue", "green", "lightred", "darkred")
df$colour <- relate(df$position, positions, colours, default = "gray")
df
# name position colour
# 1 Alice right darkred
# 2 Bob lean-left lightblue
# 3 Charlotte left darkblue
# 4 Dan left darkblue
# 5 Elise lean-right lightred
# 6 Frank no response gray

## Authors have a many-to-many relation with books:
## a book can have multiple authors and authors can write multiple books
my_library <- data.frame(

author = c(
"Arendt",
"Austen-Smith",
"Austen-Smith",
"Austen-Smith",
"Banks",
"Banks",
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"Camus",
"Camus",
"Arendt",
"Dryzek",
"Dunleavy"

),
work = c(

"The Human Condition",
"Social Choice and Voting Models",
"Information Aggregation, Rationality, and the Condorcet Jury Theorem",
"Positive Political Theory I",
"Information Aggregation, Rationality, and the Condorcet Jury Theorem",
"Positive Political Theory I",
"The Myth of Sisyphus",
"The Rebel",
"The Origins of Totalitarianism",
"Theories of the Democratic State",
"Theories of the Democratic State"

),
stringsAsFactors = FALSE

)
relate(

X = c("Arendt", "Austen-Smith", "Banks", "Dryzek", "Dunleavy"),
A = my_library$author,
B = my_library$work,
atomic = FALSE,
named = TRUE,
relation_type = "many_to_many"

)
# $Arendt
# [1] "The Human Condition" "The Origins of Totalitarianism"
#
# $`Austen-Smith`
# [1] "Social Choice and Voting Models"
# [2] "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
# [3] "Positive Political Theory I"
#
# $Banks
# [1] "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
# [2] "Positive Political Theory I"
#
# $Dryzek
# [1] "Theories of the Democratic State"
#
# $Dunleavy
# [1] "Theories of the Democratic State"

## Duplicate mappings will return multiple copies by default:
relate(

X = 1:3,
A = c(1, 2, 2, 3, 4, 5),
B = c('a', 'b', 'b', 'c', 'd', 'e'),
relation_type = "many_to_many",
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atomic = FALSE
)
# [[1]]
# [1] "a"
#
# [[2]]
# [1] "b" "b"
#
# [[3]]
# [1] "c"

## Use handle_duplicate_mappings = TRUE to ignore these and avoid mapping errors.
nums_to_letters <- relation(

A = c(1, 2, 2, 3, 4, 5),
B = c('a', 'b', 'b', 'c', 'd', 'e'),
relation_type = "bijection",
handle_duplicate_mappings = TRUE

)
nums_to_letters(X = c(1, 2, 3))
# [1] "a" "b" "c"

## Use relation with report_properties = TRUE to determine the properties of specified relation
domain <- -3:3
image <- domain^2
relation(domain, image, report_properties = TRUE)
# Relation properties:
# min_one_y_per_x min_one_x_per_y max_one_y_per_x max_one_x_per_y
# TRUE TRUE TRUE FALSE
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