Package 'seriation'

July 16, 2022

Type Package
Title Infrastructure for Ordering Objects Using Seriation
Version 1.3.6
Date 2022-07-14
Description Infrastructure for ordering objects with an implementation of several seriation/sequencing/ordination techniques to reorder matrices, dissimilarity matrices, and dendrograms. Also provides (optimally) reordered heatmaps, color images and clustering visualizations like dissimilarity plots, and visual assessment of cluster tendency plots (VAT and iVAT). Hahsler et al (2008) doi:10.18637/jss.v025.i03.

Classification/ACM G.1.6, G.2.1, G. 4
URL https://github.com/mhahsler/seriation
BugReports https://github.com/mhahsler/seriation/issues
Depends R (>= 2.14.0)
Imports stats, grDevices, grid, TSP, qap, cluster, gclus, colorspace, MASS, registry

Suggests DendSer, GA, Rtsne, dbscan, umap, testhat, dendextend, ggplot2, scales
Encoding UTF-8
RoxygenNote 7.2.0
License GPL-3
Copyright The code in src/bea.f is Copyright (C) 1991 F. Murtagh; src/bbwrcg.f, src/arsa.f and src/bburcg.f are Copyright (C) 2005 M. Brusco, H.F. Koehn, and S. Stahl. All other code is Copyright (C) Michael Hahsler, Christian Buchta, and Kurt Hornik.

Collate 'AAA_check_installed.R' 'AAA_color_palette.R' 'AAA_map.R' 'AAA_parameters.R' 'AAA_registry_criterion.R' 'AAA_registry_seriate.R' 'AAA_seriation-package.R' 'Chameleon.R' 'Irish.R' 'Munsingen.R' 'Psych24.R'
'SupremeCourt.R' 'Townships.R' 'VAT.R' 'Wood.R' 'Zoo.R' 'bea.R'

'bertinplot.R' 'criterion.R' 'criterion.array.R'
'criterion.dist.R' 'criterion.matrix.R' 'dissplot.R'
'get_order.R' 'ggVAT.R' 'ggbertinplot.R' 'ggdissplot.R'
'hmap.R' 'gghmap.R' 'pimage.R' 'ggpimage.R' 'grid_helpers.R'
'hclust_greedy.R' 'lines_and_ordered_data.R' 'permute.R'
'register_DendSer.R' 'register_GA.R' 'register_optics.R'
'register_tsne.R' 'register_umap.R' 'reorder.hclust.R'
'robinson.R' 'ser_dist.R' 'ser_permutation.R'
'ser_permutation_vector.R' 'ser_permutation_vector2matrix.R'
'seriate.R' 'seriate.array.R' 'seriate.data.frame.R'
'seriate.dist.R' 'seriate.matrix.R'
'seriate_ARSA_Branch-Bound.R' 'seriate_BEA.R' 'seriate_HC.R'
'seriate_MDS.R' 'seriate_PCA.R' 'seriate_QAP.R' 'seriate_R2E.R'
'seriate_SA.R' 'seriate_SPIN.R' 'seriate_TSP.R' 'seriate_VAT.R'
'seriate_heatmap.R' 'seriate_spectral.R' 'uniscale.R'
\section*{NeedsCompilation yes}
Author Michael Hahsler [aut, cre, cph]
(https://orcid.org/0000-0003-2716-1405),
Christian Buchta [aut, cph],
Kurt Hornik [aut, cph],
Fionn Murtagh [ctb, cph],
Michael Brusco [ctb, cph],
Stephanie Stahl [ctb, cph],
Hans-Friedrich Koehn [ctb, cph]
Maintainer Michael Hahsler mhahsler@lyle.smu.edu
Repository CRAN
Date/Publication 2022-07-16 07:30:02 UTC

R topics documented:

seriation-package 3
bertinplot 4
Chameleon 8
create_lines_data 8
criterion 11
dissplot 17
get_order 23
hmap 24
Irish 28
is.robinson 29
LS 30
Munsingen 31
palette 32
permutation_vector2matrix 34
permute 35
pimage 37
seriation-package3
Psych24 45
register_DendSer 46
register_GA 47
register_optics 49
register_tsne 50
register_umap 51
registry_criterion 52
registry_seriate 54
reorder.hclust 56
seriate 57
ser_dist 65
ser_permutation 68
ser_permutation_vector 69
SupremeCourt 71
Townships 72
uniscale 73
VAT 74
Wood 76
Zoo 77
Index 79
seriation-package seriation: Infrastructure for Ordering Objects Using Seriation

Description

Infrastructure for ordering objects with an implementation of several seriation/sequencing/ordination techniques to reorder matrices, dissimilarity matrices, and dendrograms. Also provides (optimally) reordered heatmaps, color images and clustering visualizations like dissimilarity plots, and visual assessment of cluster tendency plots (VAT and iVAT).

Key functions

- Seriation: seriate(), criterion(), get_order(), permute()
- Visualization: pimage(), bertinplot(), hmap(), dissplot(), VAT()

Author(s)

Michael Hahsler

References

Michael Hahsler, Kurt Hornik, and Christian Buchta. Getting things in order: An introduction to the R package seriation. Journal of Statistical Software, 25(3):1-34, March 2008. doi:10.18637/ jss.v025.i03

Description

Plot a data matrix of cases and variables. Each value is represented by a symbol. Large values are highlighted. Note that Bertin arranges the cases horizontally and the variables as rows. The matrix can be rearranged using seriation techniques to make structure in the data visible (see Falguerolles et al 1997).

Usage

```
bertinplot(
    x,
    order = NULL,
    panel.function = panel.bars,
    highlight = TRUE,
    row_labels = TRUE,
    col_labels = TRUE,
    flip_axes = TRUE,
)
```

panel.bars(value, spacing, hl)
panel.circles(value, spacing, hl)
panel.rectangles(value, spacing, hl)
panel.squares(value, spacing, hl)
panel.tiles(value, spacing, hl)
panel.blocks(value, spacing, hl)
panel.lines(value, spacing, hl)
bertin_cut_line(x = NULL, $y=$ NULL, col = "red")
ggbertinplot(
x ,
order = NULL,
geom = "bar",
highlight = TRUE,
row_labels = TRUE,
col_labels = TRUE,
flip_axes = TRUE,

```
    prop = FALSE,
)
```


Arguments

x
a data matrix. Note that following Bertin, columns are variables and rows are cases. This behavior can be reversed using reverse = TRUE in options.
order an object of class ser_permutation to rearrange x before plotting. If NULL, no rearrangement is performed.
panel. function a function to produce the symbols. Currently available functions are panel. bars (default), panel.circles, panel.rectangles, panel.tiles and panel.lines. For circles and squares neg. values are represented by a dashed border. For blocks all blocks are the same size (can be used with shading = TRUE).
highlight a logical scalar indicating whether to use highlighting. If TRUE, all variables with values greater than the variable-wise mean are highlighted. To control highlighting, also a logical matrix or a matrix with colors with the same dimensions as x can be supplied.
row_labels, col_labels
a logical indicating if row and column labels in x should be displayed. If NULL then labels are displayed if the x contains the appropriate dimname and the number of labels is 25 or less. A character vector of the appropriate length with labels can also be supplied.
flip_axes logical indicating whether to swap cases and variables in the plot. The default (TRUE) is to plot cases as columns and variables as rows.
... ggbertinplot(): further parameters are passed on to ggpimage().
bertinplot(): further parameters can include:

- xlab, ylab labels (default: use labels from x).
- spacing relative space between symbols (default: 0.2).
- shading use gray shades to encode value instead of highlighting (default: FALSE).
- shading. function a function that accepts a single argument in range [.1, .8] and returns a valid corresponding color (e.g., using rgb()).
- frame plot a grid to separate symbols (default: FALSE).
- mar margins (see par()).
- gp_labels gpar object for labels (see gpar())
- gp_panels gpar object for panels (see gpar()).
- newpage a logical indicating whether to start the plot on a new page (see grid. newpage()).
- pop a logical indicating whether to pop the created viewports (see pop. viewport())?
value, spacing, hl
are used internally for the panel functions.
col, $y \quad$ and x in bertin_cut_line() are for adding a line to a bertinplot() (not ggplot2-based).
visualization type. Available ggplot2 geometries are: "tile", "rectangle",
"circle", "line", "bar", "none".
prop logical; change the aspect ratio so cells in the image have a equal width and height.

Details

The plot is organized as a matrix of symbols. The symbols are drawn by a panel function, where all symbols of a row are drawn by one call of the function (using vectorization). The interface for the panel function is panel.myfunction(value, spacing, hl). value is the vector of values for a row scaled between 0 and 1 , spacing contains the relative space between symbols and $h l$ is a logical vector indicating which symbol should be highlighted.

Cut lines can be added to an existing Bertin plot using bertin_cut_line ($x=$ NULL, $y=N U L L$) $\cdot x / y$ is can be a number indicating where to draw the cut line between two columns/rows. If both x and y is specified then one can select a row/column and the other can select a range to draw a line which does only span a part of the row/column. It is important to call bertinplot() with the option pop = FALSE.
ggbertinplot() calls ggpimage() and all additional parameters are passed on.

Value

Nothing.

Author(s)

Michael Hahsler

References

de Falguerolles, A., Friedrich, F., Sawitzki, G. (1997): A Tribute to J. Bertin’s Graphical Data Analysis. In: Proceedings of the SoftStat '97 (Advances in Statistical Software 6), 11-20.

See Also

Other plots: VAT(), dissplot(), hmap(), palette(), pimage()

Examples

```
data("Irish")
scale_by_rank <- function(x) apply(x, 2, rank)
x <- scale_by_rank(Irish[,-6])
# Use the the sum of absolute rank differences
order <- c(
    seriate(dist(x, "minkowski", p = 1)),
    seriate(dist(t(x), "minkowski", p = 1))
)
# Plot
bertinplot(x, order)
```

```
# Some alternative displays
bertinplot(x, order, panel = panel.tiles, shading_col = bluered(100), highlight = FALSE)
bertinplot(x, order, panel = panel.circles, spacing = -. 2)
bertinplot(x, order, panel = panel.rectangles)
bertinplot(x, order, panel = panel.lines)
# Plot with cut lines (we manually set the order here)
order <- ser_permutation(c(21, 16, 19, 18, 14, 12, 20, 15,
    17, 26, 13, 41, 7, 11, 5, 23, 28, 34, 31, 1, 38, 40,
    3, 39, 4, 27, 24, 8, 37, 36, 25, 30, 33, 35, 2,
    22, 32, 29, 10, 6, 9),
    c(4, 2, 1, 6, 8, 7, 5, 3))
bertinplot(x, order, pop=FALSE)
bertin_cut_line(, 4) ## horizontal line between rows 4 and 5
bertin_cut_line(, 7) ## separate "Right to Life" from the rest
bertin_cut_line(14, c(0, 4)) ## separate a block of large values (vertically)
# ggplot2-based plots
if (require("ggplot2")) {
    library(ggplot2)
    # Default plot uses bars and highlighting values larger than the mean
    ggbertinplot(x, order)
    # highlight values in the 4th quartile
    ggbertinplot(x, order, highlight = quantile(x, probs = .75))
    # Use different geoms. "none" lets the user specify their own geom.
    # Variables set are row, col and x (for the value).
    ggbertinplot(x, order, geom = "tile", prop = TRUE)
    ggbertinplot(x, order, geom = "rectangle")
    ggbertinplot(x, order, geom = "rectangle", prop = TRUE)
    ggbertinplot(x, order, geom = "circle")
    ggbertinplot(x, order, geom = "line")
    # Tiles with diverging color scale
    ggbertinplot(x, order, geom = "tile", prop = TRUE) +
        scale_fill_gradient2(midpoint = mean(x))
    # Custom geom (geom = "none"). Defined variables are row, col, and x for the value
    ggbertinplot(x, order, geom = "none", prop = FALSE) +
        geom_point(aes(x = col, y = row, size = x, color = x > 30), pch = 15) +
        scale_size(range = c(1, 10))
    # Use a ggplot2 theme with theme_set()
    old_theme <- theme_set(theme_minimal() +
        theme(panel.grid = element_blank())
        )
    ggbertinplot(x, order, geom = "bar")
    theme_set(old_theme)
```

\}

Chameleon 2D Data Sets used for the CHAMELEON Clustering Algorithm

Description

Several 2D data sets created to evaluate the CHAMELEON clustering algorithm in the paper by Karypis et al (1999).

Format

chameleon_ds4: The format is a $8,000 \times 2$ data.frame.
chameleon_ds5: The format is a $8,000 \times 2$ data.frame.
chameleon_ds7: The format is a $10,000 \times 2$ data.frame.
chameleon_ds8: The format is a $8,000 \times 2$ data.frame.

References

Karypis, G., EH. Han, V. Kumar (1999): CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling, IEEE Computer, 32(8): 68-75. doi:10.1109/2.781637

Examples

```
data(Chameleon)
plot(chameleon_ds4, cex = .1)
plot(chameleon_ds5, cex = .1)
plot(chameleon_ds7, cex = .1)
plot(chameleon_ds8, cex = .1)
```


Description

Several functions to create simulated data to evaluate different aspects of seriation algorithms and criterion functions.

Usage

```
create_lines_data(n = 250)
    create_ordered_data(
        n = 250,
        k = 2,
        size = NULL,
        spacing = 6,
        path = "linear",
        sd1 \(=1\),
        sd2 \(=0\)
)
```


Arguments

$\mathrm{n} \quad$ number of data points to create.
k number of Gaussian components.
size relative size (number of points) of components (length of k). If NULL then all components have the same size.
spacing space between the centers of components. The default of 6 means that the components will barely touch at $\mathrm{ds} 1=1$ (3 standard deviations for each Gaussian component).
path Are the components arranged along a "linear" or "circular" path?
sd1 variation in the direction along the components. A value greater than one means the components are mixing.
sd2 variation perpendicular to the direction along the components. A value greater than 0 will introduce anti-Robinson violation events.

Details

create_lines_data() creates the lines data set used in for iVAT() in Havens and Bezdeck (2012).
create_ordered_data() is a versatile function which creates "orderable" 2D data using Gaussian components along a linear or circular path. The components are equally spaced (spacing) along the path. The default spacing of 6 ensures that 2 adjacent components with a standard deviation of one along the direction of the path will barely touch. The standard deviation along the path is set by sd1. The standard deviation perpendicular to the path is set by sd2. A value larger than zero will result in the data not being perfectly orderable (i.e., the resulting distance matrix will not be a perfect pre-anti-Robinson matrix and contain anti-Robinson violation events after seriation). Note that a circular path always creates anti-Robinson violation since the circle has to be broken at some point to create a linear order. This function was created for this package (Hahsler et al, 2021).

Value

a data.frame with the created data.

Author(s)

Michael Hahsler

References

Havens, T.C. and Bezdek, J.C. (2012): An Efficient Formulation of the Improved Visual Assessment of Cluster Tendency (iVAT) Algorithm, IEEE Transactions on Knowledge and Data Engineering, 24(5), 813-822.

Michael Hahsler, Christian Buchta and Kurt Hornik (2021). seriation: Infrastructure for Ordering Objects Using Seriation. R package version 1.3.2. https://github.com/mhahsler/seriation

See Also

seriate(), criterion(), iVAT().

Examples

```
## lines data set from Havens and Bezdek (2011)
x <- create_lines_data(250)
plot(x, xlim = c(-5, 5), ylim = c(-3, 3), cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "OLO_single"), col = bluered(100, bias = .5), key = TRUE)
## create_ordered_data can produce many types of "orderable" data
## perfect pre-Anti-Robinson matrix (with a single components)
x <- create_ordered_data(250, k = 1)
plot(x, cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias=.5), key = TRUE)
## separated components
x <- create_ordered_data(250, k = 5)
plot(x, cex =.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias = .5), key = TRUE)
## overlapping components
x <- create_ordered_data(250, k = 5, sd1 = 2)
plot(x, cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias = .5), key = TRUE)
## introduce anti-Robinson violations (a non-zero y value)
x <- create_ordered_data(250, k = 5, sd1 = 2, sd2 = 5)
plot(x, cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "MDS"), col = bluered(100, bias = .5), key = TRUE)
## circular path (has always violations)
```

```
x <- create_ordered_data(250, k = 5, path = "circular", sd1 = 2)
plot(x, cex = .2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "OLO"), col = bluered(100, bias = .5), key = TRUE)
## circular path (with more violations violations)
x <- create_ordered_data(250, k = 5, path = "circular", sd1 = 2, sd2 = 1)
plot(x, cex=.2, col = attr(x, "id"))
d <- dist(x)
pimage(d, seriate(d, "OLO"), col = bluered(100, bias = .5), key = TRUE)
```

```
criterion Criterion for a Loss/Merit Function for Data Given a Permutation
```


Description

Compute the value for different loss functions L and merit function M for data given a permutation.

Usage

```
criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)
    ## S3 method for class 'array'
    criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)
    ## S3 method for class 'dist'
    criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)
    ## S3 method for class 'matrix'
    criterion(x, order = NULL, method = NULL, force_loss = FALSE, ...)
```


Arguments

x
order an object of class ser_permutation suitable for x. If NULL, the identity permutation is used.
method a character vector with the names of the criteria to be employed (see list_criterion_methods()), or NULL (default) in which case all available criteria are used.
force_loss
an object of class dist or a matrix (currently no functions are implemented for array).
logical; should merit function be converted into loss functions by multiplying with -1 ?
... additional parameters passed on to the criterion method.

Details

Criteria for distance matrices (dist)

For a symmetric dissimilarity matrix D with elements $d(i, j)$ where $i, j=1 \ldots n$, the aim is generally to place low distance values close to the diagonal. The following criteria to judge the quality of a certain permutation of the objects in a dissimilarity matrix are currently implemented (for a more detailed description and an experimental comparison see Hahsler (2017)):

- "Gradient_raw", "Gradient_weighted" Gradient measures (Hubert et al 2001). A symmetric dissimilarity matrix where the values in all rows and columns only increase when moving away from the main diagonal is called a perfect anti-Robinson matrix (Robinson 1951). A suitable merit measure which quantifies the divergence of a matrix from the anti-Robinson form is

$$
M(D)=\sum_{i=1}^{n} \sum_{i<k<j} f\left(d_{i j}, d_{i k}\right)+\sum_{i<k<j} f\left(d_{i j}, d_{k j}\right)
$$

where $f(.,$.$) is a function which defines how a violation or satisfaction of a gradient condition$ for an object triple (O_{i}, O_{k}, O_{j}) is counted.
Hubert et al (2001) suggest two functions. The first function is given by:

$$
f(z, y)=\operatorname{sign}(y-z)=+1 \text { if } z<y ; 0 i f z=y ; \text { and }-1 i f z>y
$$

It results in raw number of triples satisfying the gradient constraints minus triples which violate the constraints.
The second function is defined as:

$$
f(z, y)=|y-z| \operatorname{sign}(y-z)=y-z
$$

It weights the each satisfaction or violation by the difference by its magnitude given by the absolute difference between the values.

- "AR_events", "AR_deviations" Anti-Robinson events (Chen 2002). An even simpler loss function can be created in the same way as the gradient measures above by concentrating on violations only.

$$
L(D)=\sum_{i=1}^{n} \sum_{i<k<j} f\left(d_{i k}, d_{i j}\right)+\sum_{i<k<j} f\left(d_{k j}, d_{i j}\right)
$$

To only count the violations we use

$$
f(z, y)=I(z, y)=1 \text { if } z<y a n d 0 \text { otherwise }
$$

$I($.$) is an indicator function returning 1$ only for violations. Chen (2002) presented a formulation for an equivalent loss function and called the violations anti-Robinson events and also introduced a weighted versions of the loss function resulting in

$$
f(z, y)=|y-z| I(z, y)
$$

using the absolute deviations as weights.

- "RGAR" Relative generalized Anti-Robinson events (Tien et al 2008). Counts Anti-Robinson events in a variable band (window specified by w defaults to the maximum of $n-1$) around the main diagonal and normalizes by the maximum of possible events.

$$
L(D)=1 / m \sum_{i=1}^{n} \sum_{(i-w) \leq j<k<i} I\left(d_{i j}<d_{i k}\right)+\sum_{i<j<k \leq(i+w))} I\left(d_{i j}>d_{i k}\right)
$$

where $m=(2 / 3-n) w+n w^{2}-2 / 3 w^{3}$, the maximal number of possible anti-Robinson events in the window. The window size w represents the number of neighboring objects (number of entries from the diagonal of the distance matrix) are considered. The window size is $2 \leq w<n$, where smaller values result in focusing on the local structure while larger values look at the global structure. Alternatively, pct can be used instead of w to specify the window as a percentage of n. relative = FALSE can be to get the GAR, i.e., the absolute number of AR events in the window.

- "BAR" Banded Anti-Robinson Form (Earle and Hurley 2015).

Simplified measure for closeness to the anti-Robinson form in a band of size b with $1<=b<$ n around the diagonal.

$$
L(D)=\sum_{|i-j|<=b}(b+1-|i-j|) d_{i j}
$$

For $b=1$ the measure reduces to the Hamiltonian path length. For $b=n-1$ the measure is equivalent to ARc defined (Earle and Hurley, 2015). Note that ARc is equivalent to the Linear Seriation criterion (scaled by $1 / 2$).
b defaults to a band of 20% of n.

- "Path_length" Hamiltonian path length (Caraux and Pinloche 2005).

The order of the objects in a dissimilarity matrix corresponds to a path through a graph where each node represents an object and is visited exactly once, i.e., a Hamilton path. The length of the path is defined as the sum of the edge weights, i.e., dissimilarities.

$$
L(D)=\sum_{i=1}^{n-1} d_{i, i+1}
$$

The length of the Hamiltonian path is equal to the value of the minimal span loss function (as used by Chen 2002). Both notions are related to the traveling salesperson problem (TSP).
If order is not unique or there are non-finite distance values NA is returned.

- "Lazy_path_length" Lazy path length (Earl and Hurley 2015).

A weighted version of the Hamiltonian path criterion. This loss function postpones larger distances to later in the order (i.e., a lazy traveling sales person).

$$
L(D)=\sum_{i=1}^{n-1}(n-i) d_{i, i+1}
$$

Earl and Hurley (2015) proposed this criterion for reordering in visualizations to concentrate on closer objects first.

- "Inertia" Inertia criterion (Caraux and Pinloche 2005).

Measures the moment of the inertia of dissimilarity values around the diagonal as

$$
M(D)=\sum_{i=1}^{n} \sum_{j=1}^{n} d(i, j)|i-j|^{2}
$$

$|i-j|$ is used as a measure for the distance to the diagonal and $d(i, j)$ gives the weight. This criterion gives higher weight to values farther away from the diagonal. It increases with quality.

- "Least_squares" Least squares criterion (Caraux and Pinloche 2005).

The sum of squares of deviations between the dissimilarities and rank differences (in the matrix) between two elements:

$$
L(D)=\sum_{i=1}^{n} \sum_{j=1}^{n}(d(i, j)-|i-j|)^{2}
$$

where $d(i, j)$ is an element of the dissimilarity matrix D and $|i-j|$ is the rank difference between the objects.
Note that if Euclidean distance is used to calculate D from a data matrix X, the order of the elements in X by projecting them on the first principal component of X minimizes this criterion. The least squares criterion is related to unidimensional scaling.

- "LS" Linear Seriation Criterion (Hubert and Schultz 1976).

Weights the distances with the absolute rank differences.

$$
L(D) \sum_{i, j=1}^{n} d(i, j)(-|i-j|)
$$

- "2SUM" 2-Sum Criterion (Barnard, Pothen, and Simon 1993).

The 2-Sum loss criterion multiplies the similarity between objects with the squared rank differences.

$$
L(D) \sum_{i, j=1}^{n} 1 /(1+d(i, j))(i-j)^{2}
$$

where $s(i, j)=1 /(1+d(i, j))$ represents the similarity between objects i and j.

- "ME", "Moore_stress", "Neumann_stress", "Cor_R" These criteria are defined on general matrices (see below for definitions). The dissimilarity matrix is first converted into a similarity matrix using $S=1 /(1+D)$. If a different transformation is required, then perform the transformation first and supply a matrix instead of a dist object.

Criteria for matrices (matrix)

For a general matrix $X=x_{i j}, i=1 \ldots n$ and $j=1 \ldots m$, currently the following loss/merit functions are implemented:

- "ME" Measure of Effectiveness (McCormick 1972).

The measure of effectiveness (ME) for matrix X, is defined as

$$
M(X)=1 / 2 \sum_{i=1}^{n} \sum_{j=1}^{m} x_{i, j}\left(x_{i, j-1}+x_{i, j+1}+x_{i-1, j}+x_{i+1, j}\right)
$$

with, by convention

$$
x_{0, j}=x_{m+1, j}=x_{i, 0}=x_{i, n+1}=0
$$

ME is a merit measure, i.e. a higher ME indicates a better arrangement. Maximizing ME is the objective of the bond energy algorithm (BEA). ME is not defined for matrices with negative values. NA is returned in this case.

- "Cor_R" Weighted correlation coefficient R developed as the Measure of Effectiveness for the Moment Ordering Algorithm (Deutsch and Martin 1971).
R is a merit measure normalized so that its value always lies in $[-1,1]$. For the special case of a square matrix $R=1$ corresponds to only the main diagonal being filled, $R=0$ to a random distribution of value throughout the array, and $R=-1$ to the opposite diagonal only being filled.
- "Moore_stress" Stress (Niermann 2005).

Stress measures the conciseness of the presentation of a matrix/table and can be seen as a purity function which compares the values in a matrix/table with its neighbors. The stress measure used here is computed as the sum of squared distances of each matrix entry from its adjacent entries.

$$
L(X)=\sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i j}
$$

The following types of neighborhoods are available:

- Moore: comprises the eight adjacent entries.

$$
\sigma_{i j}=\sum_{k=\max (1, i-1)}^{\min (n, i+1)} \sum_{l=\max (1, j-1)}^{\min (m, j+1)}\left(x_{i j}-x_{k l}\right)^{2}
$$

- Neumann: comprises the four adjacent entries.

$$
\sigma_{i j}=\sum_{k=\max (1, i-1)}^{\min (n, i+1)}\left(x_{i j}-x_{k j}\right)^{2}+\sum_{l=\max (1, j-1)}^{\min (m, j+1)}\left(x_{i j}-x_{i l}\right)^{2}
$$

The major difference between the Moore and the Neumann neighborhood is that for the later the contribution of row and column permutations to stress are independent and thus can be optimized independently.

Value

A named vector of real values.

Author(s)

Michael Hahsler

References

Barnard, S.T., A. Pothen, and H. D. Simon (1993): A Spectral Algorithm for Envelope Reduction of Sparse Matrices. In Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, 493-502. Supercomputing '93. New York, NY, USA: ACM.
Caraux, G. and S. Pinloche (2005): Permutmatrix: A Graphical Environment to Arrange Gene Expression Profiles in Optimal Linear Order, Bioinformatics, 21(7), 1280-1281.
Chen, C.-H. (2002): Generalized association plots: Information visualization via iteratively generated correlation matrices, Statistica Sinica, 12(1), 7-29.
Deutsch, S.B. and J.J. Martin (1971): An ordering algorithm for analysis of data arrays. Operational Research, 19(6), 1350-1362. doi:10.1287/opre.19.6.1350

Earle, D. and C.B. Hurley (2015): Advances in Dendrogram Seriation for Application to Visualization. Journal of Computational and Graphical Statistics, 24(1), 1-25. doi:10.1080/10618600.2013.874295
Hahsler, M. (2017): An experimental comparison of seriation methods for one-mode two-way data. European Journal of Operational Research, 257, 133-143. doi:10.1016/j.ejor.2016.08.066

Hubert, L. and J. Schultz (1976): Quadratic Assignment as a General Data Analysis Strategy. British Journal of Mathematical and Statistical Psychology, 29(2). Blackwell Publishing Ltd. 190241. doi:10.1111/j.20448317.1976.tb00714.x

Hubert, L., P. Arabie, and J. Meulman (2001): Combinatorial Data Analysis: Optimization by Dynamic Programming. Society for Industrial Mathematics. doi:10.1137/1.9780898718553
Niermann, S. (2005): Optimizing the Ordering of Tables With Evolutionary Computation, The American Statistician, 59(1), 41-46. doi:10.1198/000313005X22770
McCormick, W.T., P.J. Schweitzer and T.W. White (1972): Problem decomposition and data reorganization by a clustering technique, Operations Research, 20(5), 993-1009. doi:10.1287/opre.20.5.993
Robinson, W.S. (1951): A method for chronologically ordering archaeological deposits, American Antiquity, 16, 293-301. doi:10.2307/276978
Tien, Y-J., Yun-Shien Lee, Han-Ming Wu and Chun-Houh Chen (2008): Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles, BMC Bioinformatics, 9(155), 1-16. doi:10.1186/147121059155

See Also

Other criterion: registry_criterion

Examples

```
## create random data and calculate distances
m <- matrix(runif(20),ncol=2)
d <- dist(m)
## get an order for rows (optimal for the least squares criterion)
o <- seriate(d, method = "MDS")
```

\circ
\#\# compare the values for all available criteria
rbind
unordered $=$ criterion(d),
ordered = criterion(d, o)
)
\#\# compare RGAR by window size (from local to global)
w <- 2: (nrow(m)-1)
RGAR <- sapply(w, FUN = function (w)
criterion(d, o, method="RGAR", w = w))
plot(w, RGAR, type = "b", ylim = c(0,1),
xlab = "Windows size (w)", main = "RGAR by window size")
dissplot Dissimilarity Plot

Description

Visualizes a dissimilarity matrix using seriation and matrix shading using the method developed by Hahsler and Hornik (2011). Entries with lower dissimilarities (higher similarity) are plotted darker. Dissimilarity plots can be used to uncover hidden structure in the data and judge cluster quality.

Usage

```
dissplot(
    x,
    labels = NULL,
    method = "Spectral",
    control = NULL,
    lower_tri = TRUE,
    upper_tri = "average",
    diag = TRUE,
    cluster_labels = TRUE,
    cluster_lines = TRUE,
    reverse_columns = FALSE,
    options = NULL,
    ...
)
## S3 method for class 'reordered_cluster_dissimilarity_matrix'
plot(
    x,
    lower_tri = TRUE,
    upper_tri = "average",
    diag = TRUE,
    options = NULL,
```

```
)
## S3 method for class 'reordered_cluster_dissimilarity_matrix'
print(x, ...)
ggdissplot(
    x,
    labels = NULL,
    method = "Spectral",
    control = NULL,
    lower_tri = TRUE,
    upper_tri = "average",
    diag = TRUE,
    cluster_labels = TRUE,
    cluster_lines = TRUE,
    reverse_columns = FALSE,
)
```


Arguments

x
method
control
an object of class dist.
NULL or an integer vector of the same length as rows/columns in x indicating the cluster membership for each object in x as consecutive integers starting with one. The labels are used to reorder the matrix.

A single character string indicating the seriation method used to reorder the clusters (inter cluster seriation) as well as the objects within each cluster (intra cluster seriation). If different algorithms for inter and intra cluster seriation are required, method can be a list of two named elements (inter_cluster and intra_cluster each containing the name of the respective seriation method. Use list_seriation_methods() with kind = "dist" to find available algorithms.
Set method to NA to plot the matrix as is (no or, if cluster labels are supplied, only coarse seriation). For intra cluster reordering with the special method "silhouette width" is available (for dissplot() only). Objects in clusters are then ordered by silhouette width (from silhouette plots). If no method is given, the default method of seriate.dist() is used.
A third list element (named aggregation) can be added to control how inter cluster dissimilarities are computed from from the given dissimilarity matrix. The choices are "avg" (average pairwise dissimilarities; average-link), "min" (minimal pairwise dissimilarities; single-link), "max" (maximal pairwise dissimilarities; complete-link), and "Hausdorff" (pairs up each point from one cluster with the most similar point from the other cluster and then uses the largest dissimilarity of paired up points).
a list of control options passed on to the seriation algorithm. In case of two different seriation algorithms, control can contain a list of two named elements
(inter_cluster and intra_cluster) containing each a list with the control options for the respective algorithm.
upper_tri, lower_tri, diag
a logical indicating whether to show the upper triangle, the lower triangle or the diagonal of the distance matrix. The string "average" can also be used to display within and between cluster averages in the two triangles.
cluster_labels a logical indicating whether to display cluster labels in the plot.
cluster_lines a logical indicating whether to draw lines to separate clusters.
reverse_columns
a logical indicating if the clusters are displayed on the diagonal from north-west to south-east (FALSE; default) or from north-east to south-west (TRUE).
options a list with options for plotting the matrix (dissplot only).

- plot a logical indicating if a plot should be produced. if FALSE, the returned object can be plotted later using the function plot which takes as the second argument a list of plotting options (see options below).
- silhouettes a logical indicating whether to include a silhouette plot (see Rousseeuw, 1987).
- threshold a numeric. If used, only plot distances below the threshold are displayed. Consider also using zlim for this purpose.
- col colors used for the image plot.
- key a logical indicating whether to place a color key below the plot.
- zlim range of values to display (defaults to range x).
- axes "auto" (default; enabled for less than 25 objects), "y" or "none".
- main title for the plot.
- newpage a logical indicating whether to start plot on a new page (see grid. newpage().
- pop a logical indicating whether to pop the created viewports? (see package grid)
- gp, gp_lines, gp_labels objects of class gpar containing graphical parameters for the plot lines and labels (see gpar().
dissplot(): further arguments are added to options. ggdissplot() further arguments are passed on to ggpimage().

Details

The plot can also be used to visualize cluster quality (see Ling 1973). Objects belonging to the same cluster are displayed in consecutive order. The placement of clusters and the within cluster order is obtained by a seriation algorithm which tries to place large similarities/small dissimilarities close to the diagonal. Compact clusters are visible as dark squares (low dissimilarity) on the diagonal of the plot. Additionally, a Silhouette plot (Rousseeuw 1987) is added. This visualization is similar to CLUSION (see Strehl and Ghosh 2002), however, allows for using arbitrary seriating algorithms.
Note: Since pimage() uses grid, it should not be mixed with base R primitive plotting functions.

Value

dissplot() returns an invisible object of class cluster_proximity_matrix with the following elements:
order NULL or integer vector giving the order used to plot x .
cluster_order NULL or integer vector giving the order of the clusters as plotted.
method vector of character strings indicating the seriation methods used for plotting x.
$k \quad$ NULL or integer scalar giving the number of clusters generated.
description a data.frame containing information (label, size, average intra-cluster dissimilarity and the average silhouette) for the clusters as displayed in the plot (from top/left to bottom/right).

This object can be used for plotting via plot (x , options $=$ NULL, \ldots), where x is the object and options contains a list with plotting options (see above).
ggdissplot() returns a ggplot2 object representing the plot.
The plot description as an object of class reordered_cluster_dissimilarity_matrix.

Author(s)

Michael Hahsler

References

Hahsler, M. and Hornik, K. (2011): Dissimilarity plots: A visual exploration tool for partitional clustering. Journal of Computational and Graphical Statistics, 10(2):335-354. doi:10.1198/jcgs.2010.09139
Ling, R.F. (1973): A computer generated aid for cluster analysis. Communications of the ACM, 16(6), 355-361. doi:10.1145/362248.362263

Rousseeuw, P.J. (1987): Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(1), 53-65. doi:10.1016/03770427(87)901257
Strehl, A. and Ghosh, J. (2003): Relationship-based clustering and visualization for high-dimensional data mining. INFORMS Journal on Computing, 15(2), 208-230. doi:10.1287/ijoc.15.2.208.14448

See Also

Other plots: VAT(), bertinplot(), hmap(), palette(), pimage()

Examples

```
data("iris")
# shuffle rows
x_iris <- iris[sample(seq(nrow(iris))), -5]
d <- dist(x_iris)
# Plot original matrix
dissplot(d, method = NA)
# Plot reordered matrix using the nearest insertion algorithm (from tsp)
dissplot(d, method = "TSP", main = "Seriation (TSP)")
# Cluster iris with k-means and 3 clusters and reorder the dissimality matrix
```

```
l <- kmeans(x_iris, centers = 3)$cluster
dissplot(d, labels = l, main = "k-means")
# show only distances as lower triangle
dissplot(d, labels = l, main = "k-means", lower_tri = TRUE, upper_tri = FALSE)
# Use a grid layout to place several plots on a page
library("grid")
grid.newpage()
pushViewport(viewport(layout=grid.layout(nrow = 2, ncol = 2),
    gp = gpar(fontsize = 8)))
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 1))
# Visualize the clustering (using Spectral between clusters and MDS within)
res <- dissplot(d, l, method = list(inter = "Spectral", intra = "MDS"),
    main = "K-Means + Seriation", newpage = FALSE)
popViewport()
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 2))
# More visualization options. Note that we reuse the reordered object res!
# color: use 10 shades red-blue, biased towards small distances
plot(res, main = "K-Means + Seriation (red-blue + biased)",
    col= bluered(10, bias = .5), newpage = FALSE)
popViewport()
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 1))
# Threshold (using zlim) and cubic scale to highlight differences
plot(res, main = "K-Means + Seriation (cubic + threshold)",
    zlim = c(0, 2), col = grays(100, power = 3), newpage = FALSE)
popViewport()
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 2))
# Use gray scale with logistic transformation
plot(res, main = "K-Means + Seriation (logistic scale)",
    col = gray(
            plogis(seq(max(res$x_reordered), min(res$x_reordered), length.out = 100),
                location = 2, scale = 1/2, log = FALSE)
            ),
        newpage = FALSE)
popViewport(2)
# The reordered_cluster_dissimilarity_matrix object
res
names(res)
## -----------------------------------------------------------------------
## ggplot-based dissplot
if (require("ggplot2")) {
```

```
library("ggplot2")
# Plot original matrix
ggdissplot(d, method = NA)
# Plot seriated matrix
ggdissplot(d, method = "TSP") +
    labs(title = "Seriation (TSP)")
# Cluster iris with k-means and 3 clusters
l <- kmeans(x_iris, centers = 3)$cluster
ggdissplot(d, labels = l) +
    labs(title = "K-means + Seriation")
# show only lower triangle
ggdissplot(d, labels = l, lower_tri = TRUE, upper_tri = FALSE) +
    labs(title = "K-means + Seriation")
# No lines or cluster labels and add a label for the color key (fill)
ggdissplot(d, labels = l, cluster_lines = FALSE, cluster_labels = FALSE) +
    labs(title = "K-means + Seriation", fill = "Distances\n(Euclidean)")
# Diverging color palette with manual set midpoint and different seriation methods
ggdissplot(d, l, method = list(inter = "Spectral", intra = "MDS")) +
    labs(title = "K-Means + Seriation", subtitle = "biased color scale") +
    scale_fill_gradient2(midpoint = median(d))
# Use manipulate scale using package scales
library("scales")
# Threshold (using limit and na.value) and cubic scale to highlight differences
cubic_dist_trans <- trans_new(
    name = "cubic",
    # note that we have to do the inverse transformation for distances
    trans = function(x) }\mp@subsup{x}{}{\wedge}(1/3)
    inverse = function(x) x^3
)
ggdissplot(d, l, method = list(inter = "Spectral", intra = "MDS")) +
    labs(title = "K-Means + Seriation", subtitle = "cubic + biased color scale") +
    scale_fill_gradient(low = "black", high = "white",
            limit = c(0,2), na.value = "white",
            trans = cubic_dist_trans)
# Use gray scale with logistic transformation
logis_2_.5_dist_trans <- trans_new(
    name = "Logistic transform (location, scale)",
    # note that we have to do the inverse transformation for distances
    trans = function(x) plogis(x, location = 2, scale = .5, log = FALSE),
    inverse = function(x) qlogis(x, location = 2, scale = .5, log = FALSE),
)
```

```
ggdissplot(d, l, method = list(inter = "Spectral", intra = "MDS")) +
    labs(title = "K-Means + Seriation", subtitle = "logistic color scale") +
    scale_fill_gradient(low = "black", high = "white",
        trans = logis_2_.5_dist_trans,
        breaks = c(0, 1, 2, 3, 4))
}
```

get_order Extracting Order Information from a Permutation Object

Description

Method to get the order information from an object of class ser_permutation or ser_permutation_vector. Order information can be extracted as an integer permutation vector, a vector containing the object ranks or a permutation matrix.

Usage

```
get_order(x, ...)
## S3 method for class 'ser_permutation_vector'
get_order(x, ...)
## S3 method for class 'ser_permutation'
get_order(x, dim = 1, ...)
## S3 method for class 'hclust'
get_order(x, ...)
## S3 method for class 'dendrogram'
get_order(x, ...)
## S3 method for class 'integer'
get_order(x, ...)
get_rank(x, ...)
get_permutation_matrix(x, ...)
```


Arguments

$x \quad$ an object of class ser_permutation or ser_permutation_vector.
... further arguments are ignored for get_order(). For get_rank() and for get_permutation_matrix() the additional arguments are passed on to get_order() (e.g., as dim).
dim order information for which dimension should be returned?

Details

get_order() returns the seriation as an integer vector containing the order of the objects after permutation. That is, the index of the first, second, \ldots, n-th object. These permuation vectors can directly be used to reorder objects using subsetting with "[". Note: In seriation we usually use these order-based permutation vectors.
get_rank() returns the seriation as an integer vector containing the rank/position for each objects in the permutation. That is, position of the first, second, ..., n-th object after permutation. Note: Use order () to convert ranks back to an order.
get_permutation_matrix() returns a $n \times n$ permutation matrix.

Value

Returns an integer permutation vector/a permutation matrix.

Author(s)

Michael Hahsler

See Also

Other permutation: permutation_vector2matrix(), permute(), ser_dist(), ser_permutation_vector(), ser_permutation()

Examples

```
## permutation_vector
o <- ser_permutation_vector(sample(10))
O
get_order(0)
get_rank(o)
get_permutation_matrix(o)
## permutation
o2 <- ser_permutation(o, sample(5))
O2
get_order(o2, dim = 2)
get_rank(o2, dim = 2)
get_permutation_matrix(o2, dim = 2)
```

hmap Plot Heat Map Reordered Using Seriation

Description

Provides heatmaps reordered using several different seriation methods. This includes dendrogram based reordering with optimal leaf order and matrix seriation-based heat maps.

Usage

```
hmap(
    x,
    distfun = stats::dist,
    method = "OLO",
    control = NULL,
    scale = c("none", "row", "column"),
    showDend = TRUE,
    col = NULL,
    row_labels = NULL,
    col_labels = NULL,
)
gghmap(
    x,
    distfun = stats::dist,
    method = "OLO",
    control = NULL,
    scale = c("none", "row", "column"),
    prop = FALSE,
)
```


Arguments

$x \quad a \operatorname{matrix}$ or a dissimilarity matrix of class dist. If a dissimilarity matrix is used, then the distfun is ignored.
distfun function used to compute the distance (dissimilarity) between both rows and columns. For gghmap(), this parameter is passed on in control.
method a character strings indicating the used seriation algorithm (see seriate.dist ()). If the method results in a dendrogram then stats: :heatmap() is used to show the dendrograms, otherwise reordered distance matrices are shown instead.
control a list of control options passed on to the seriation algorithm specified in method.
scale character indicating if the values should be centered and scaled in either the row direction or the column direction, or none. Default is none.
showDend Show dendrograms in the margin?
col a list of colors used.
row_labels, col_labels
a logical indicating if row and column labels in x should be displayed. If NULL then labels are displayed if the x contains the appropriate dimname and the number of labels is 25 or less. A character vector of the appropriate length with labels can also be supplied.
... further arguments passed on to stats: :heatmap().
prop logical; change the aspect ratio so cells in the image have a equal width and height.

Details

For dendrogram based heat maps, the arguments are passed on to stats: :heatmap() in stats. The following arguments for heatmap() cannot be used: margins, Rowv, Colv, hclustfun, reorderfun. For seriation-based heat maps further arguments include:

- gp an object of class gpar containing graphical parameters (see gpar() in package grid).
- newpage a logical indicating whether to start plot on a new page
- prop a logical indicating whether the height and width of x should be plotted proportional to its dimensions.
- showdist Display seriated dissimilarity matrices? Values are "none", "both", "rows" or "columns".
- key logical; show a colorkey?
- key. lab Label plotted next to the color key.
- margins bottom and right-hand-side margins are calculated automatically or can be specifies as a vector of two numbers (in lines).
- zlim range of values displayed.
- col, col_dist color palettes used.

Value

An invisible list with elements:
rowInd, colInd index permutation vectors.
reorder_method name of the method used to reorder the matrix.
The list may contain additional elements (dendrograms, colors, etc).

Author(s)

Michael Hahsler

See Also

Other plots: VAT(), bertinplot(), dissplot(), palette(), pimage()

Examples

```
data("Wood")
# regular heatmap from package stats
heatmap(Wood, main = "Wood (standard heatmap)")
# Default heatmap does Euclidean distance, hierarchical clustering with
# average-link and optimal leaf ordering
hmap(Wood, main = "Wood (opt. leaf ordering)")
# Heatmap shown without dendrograms (used pimage)
hmap(Wood, main = "Wood (opt. leaf ordering)", showDend = FALSE)
```

```
# Heatmap with correlation-based distance, green-red color (greenred is
# predefined) and optimal leaf ordering and no row label
dist_cor <- function(x) as.dist(1 - cor(t(x)))
hmap(Wood, distfun = dist_cor, col = greenred(100), row_labels = FALSE,
    main = "Wood (reorded by corr. between obs.)")
# Heatmap with order based on the angle in two-dimensional MDS space.
hmap(Wood, method = "MDS_angle", col = greenred(100), row_labels = FALSE,
    main = "Wood (reorderd using ange in MDS space)")
# Heatmap for distances
d <- dist(Wood)
hmap(d, method = "OLO", main = "Wood (Euclidean distances)")
# order-based with dissimilarity matrices
hmap(Wood, method = "MDS_angle", showdist = "both",
    col = greenred(100), col_dist = greens(100),
    keylab = "norm. Expression", main = "Wood (reporderd with distances)")
# Manually seriate and plot as pimage.
o <- seriate(Wood, method = "heatmap", control = list(dist_fun = dist, seriation_method = "OLO"))
O
pimage(Wood, o, prop = FALSE)
# Note: method heatmap calculates reorderd hclust objects which can be used for many heatmap
# implementations.
heatmap(Wood, Rowv = as.dendrogram(o[[1]]), Colv = as.dendrogram(o[[2]]))
# ggplot 2 version does not support dendrograms in the margin (for now)
if (require("ggplot2")) {
    library("ggplot2")
    gghmap(Wood) + labs(title = "Wood", subtitle = "Optimal leaf ordering")
    # More parameters (see ? ggpimage): reverse column order and flip axes, make a proportional plot
    gghmap(Wood, reverse_columns = TRUE) +
        labs(title = "Wood", subtitle = "Optimal leaf ordering")
    gghmap(Wood, flip_axes = TRUE) +
        labs(title = "Wood", subtitle = "Optimal leaf ordering")
    gghmap(Wood, flip_axes = TRUE, prop = TRUE) +
        labs(title = "Wood", subtitle = "Optimal leaf ordering")
    gghmap(Wood, distfun = dist_cor) +
        labs(title = "Wood", subtitle = "Reorded by correlation between observations") +
        scale_fill_gradient2(low = "darkgreen", high = "red")
    gghmap(d, prop = TRUE) +
        labs(title = "Wood", subtitle = "Euclidean distances, reordered)")
```

```
    # Note: the ggplot2-based version cannot show distance matrices in the same plot.
    # Manually seriate and plot as pimage.
    o <- seriate(Wood, method = "heatmap", control = list(dist_fun = dist,
        seriation_method = "OLO"))
    o
    ggpimage(Wood, o, prop = FALSE)
}
```

Irish Irish Referendum Data Set

Description

A data matrix containing the results of 8 referenda for 41 Irish communities used in Falguerolles et al (1997).

Format

The format is a 41×9 matrix. Two values are missing.

Details

Column 6 contains the size of the Electorate in 1992.

Source

The data was kindly provided by Guenter Sawitzki.

References

de Falguerolles, A., Friedrich, F., Sawitzki, G. (1997): A Tribute to J. Bertin's Graphical Data Analysis. In: Proceedings of the SoftStat '97 (Advances in Statistical Software 6), 11-20.

Examples

```
data(Irish)
```


Description

Provides functions to create and recognize (anti) Robinson and pre-Robinson matrices. A (anti) Robinson matrix has strictly decreasing (increasing) values when moving away from the main diagonal. A pre-Robinson matrix is a matrix which can be transformed into a perfect Robinson matrix using simultaneous permutations of rows and columns.

Usage

is.robinson(x, anti = TRUE, pre = FALSE)
random. robinson(n, anti $=$ TRUE, pre $=$ FALSE, noise $=0$)

Arguments

x
anti logical; check for anti Robinson structure? Note that for distances, anti Robinson structure is appropriate.
pre logical; recognize/create pre-Robinson matrices.
n number of objects.
noise
noise intensity between 0 and 1 . Zero means no noise. Noise more than zero results in non-Robinson matrices.

Details

Note that the default matrices are anti Robinson matrices. This is done because distance matrices (the default in R) are typically anti Robinson matrices with values increasing when moving away from the diagonal.
Robinson matrices are recognized using the fact that they have zero anti Robinson events. For preRobinson matrices we use spectral seriation first since spectral seriation is guaranteed to perfectly reorder pre-Robinson matrices (see Laurent and Seminaroti, 2015).

Random pre-Robinson matrices are generated by reversing the process of unidimensional scaling. We randomly (uniform distribution with range $[0,1]$) choose x coordinates for n points on a straight line and calculate the pairwise distances. For Robinson matrices, the points are sorted first according to x. For noise, y coordinates is added. The coordinates are chosen uniformly between 0 and noise, with noise between 0 and 1 .

Value

A single logical value.

References

M. Laurent, M. Seminaroti (2015): The quadratic assignment problem is easy for Robinsonian matrices with Toeplitz structure, Operations Research Letters 43(1), 103-109.

Examples

```
## create a perfect anti Robinson structure
m <- random.robinson(10)
pimage(m)
is.robinson(m)
## permute the structure to make it not Robinsonian. However,
## it is still pre-Robinson.
o <- sample(10)
m2 <- permute(m, ser_permutation(o,o))
pimage(m2)
is.robinson(m2)
is.robinson(m2, pre = TRUE)
## create a binary random Robinson matrix (not anti Robinson)
m3 <- random.robinson(10, anti = FALSE) > . }
pimage(m3)
is.robinson(m3, anti = FALSE)
## create matrices with noise (as distance matrices)
m4 <- as.dist(random.robinson(50, pre = FALSE, noise = .1))
pimage(m4)
criterion(m4, method = "AR")
m5 <- as.dist(random.robinson(50, pre = FALSE, noise = .5))
pimage(m5)
criterion(m5, method = "AR")
```


Description

Definition of different local neighborhood functions for the method "SA" for seriate().

Usage

LS_swap(o, pos = sample.int(length(o), 2))
LS_insert(o, pos = sample.int(length(o), 2))

```
LS_reverse(o, pos = sample.int(length(o), 2))
LS_mixed(o, pos = sample.int(length(o), 2))
```


Arguments

- an integer vector with the order
pos random positions used for the local move.

Details

Local neighborhood functions are LS_insert, LS_swap, LS_reverse, and LS_mix (1/3 insertion, $1 / 3$ swap and $1 / 3$ reverse). Any neighborhood function can be defined.

Value

returns the new order vector representing the random neighbor.

```
Munsingen Hodson's Munsingen Data Set
```


Description

This data set contains a grave times artifact incidence matrix for the Celtic Münsingen-Rain cemetery in Switzerland as provided by Hodson (1968) and published by Kendall 1971.

Format

A $59 \times 700-1$ matrix. Rows (graves) and columns (artifacts) are in the order determined by Hodson (1968).

References

Hodson, F.R. (1968): The La Tene Cemetery at Münsingen-Rain. Stämpfli, Bern.
Kendall, D.G. (1971): Seriation from abundance matrices. In: Hodson, F.R., Kendall, D.G. and Tautu, P., (Editors). Mathematics in the Archaeological and Historical Sciences, Edinburgh University Press, Edinburgh, 215-232.

Examples

```
data("Munsingen")
## Seriation method after Kendall (1971)
## Kendall's square symmetric matrix S and SoS
S <- function(x, w = 1) {
    sij <- function(i , j) w * sum(pmin(x[i,], x[j,]))
    h <- nrow(x)
```

```
    r <- matrix(ncol = h, nrow =h)
    for(i in 1:h) for (j in 1:h) r[i,j] <- sij(i,j)
    r
}
SoS <- function(x) S(S(x))
## Kendall's horse shoe (Hamiltonian arc)
horse_shoe_plot <- function(mds, sigma, threshold = mean(sigma), ...) {
    plot(mds, main = paste("Kendall's horse shoe with th =", threshold), ...)
    l <- which(sigma > threshold, arr.ind=TRUE)
    for(i in 1:nrow(l)) lines(rbind(mds[l[i,1],], mds[l[i,2],]))
}
## shuffle data
x <- Munsingen[sample(nrow(Munsingen)),]
## calculate matrix and do isoMDS (from package MASS)
sigma <- SoS(x)
library("MASS")
mds <- isoMDS(1/(1+sigma))$points
## plot Kendall's horse shoe
horse_shoe_plot(mds, sigma)
## find order using a TSP
library("TSP")
tour <- solve_TSP(insert_dummy(TSP(dist(mds)), label = "cut"),
    method = "2-opt", control = list(rep = 15))
tour <- cut_tour(tour, "cut")
lines(mds[tour,], col = "red", lwd = 2)
## create and plot order
order <- ser_permutation(tour, 1:ncol(x))
bertinplot(x, order, options= list(panel=panel.circles,
    rev = TRUE))
## compare criterion values
rbind(
    random = criterion(x),
    reordered = criterion(x, order),
    Hodson = criterion(Munsingen)
    )
```

 palette

Description

Defines several color palettes for pimage(), dissplot() and hmap().

Usage

```
    bluered( \(n=100\), bias \(=1\), power \(=1, \ldots\) )
    \(\operatorname{greenred}(\mathrm{n}=100\), bias \(=1\), power \(=1, \ldots\) )
    \(\operatorname{reds}(\mathrm{n}=100\), bias \(=1\), power \(=1, \ldots\) )
    blues( \(\mathrm{n}=100\), bias \(=1\), power \(=1, \ldots\) )
    greens(n = 100, bias = 1, power = 1, ...)
    greys( \(\mathrm{n}=100\), bias \(=1\), power \(=1, \ldots\) )
    \(\operatorname{grays}(\mathrm{n}=100\), bias \(=1\), power \(=1, \ldots\) )
```


Arguments

n
number of different colors produces.
bias a positive number. Higher values give more widely spaced colors at the high end.
power used to control how chroma and luminance is increased ($1=$ linear, $2=$ quadratic, etc.)
... further parameters are passed on to sequential_hcl() or diverging_hcl().

Details

The color palettes are created with sequential_hcl() and diverging_hcl() from package colorspace.

The two sequential palettes are: reds() and grays() (or greys()).
The two diverging palettes are: bluered() and greenred().

Value

A vector with n colors.

Author(s)

Michael Hahsler

See Also

Other plots: VAT(), bertinplot(), dissplot(), hmap(), pimage()

Examples

```
m <- outer(1:10,1:10)
m
pimage(m)
pimage(m, col = greys(100, power = 2))
pimage(m, col = greys(100, bias = 2))
pimage(m, col = bluered(100))
pimage(m, col = bluered(100, power = .5))
pimage(m, col = bluered(100, bias = 2))
pimage(m - 25, col = greenred(20, bias = 2))
## choose your own color palettes
library(colorspace)
hcl_palettes(plot = TRUE)
## blues (with 20 shades)
pimage(m,
    col = colorspace::sequential_hcl(20, "Blues", rev = TRUE))
## blue to green (aka "Cork")
pimage(m,
    col = colorspace::diverging_hcl(100, "Cork"))
```

```
permutation_vector2matrix
```

Conversion Between Permutation Vector and Permutation Matrix

Description

Converts between permutation vectors and matrices.

Usage

permutation_vector2matrix(x)
permutation_matrix2vector(x)

Arguments

x
A permutation vector (any object that can be converted into a permutation vector, e.g., a integer vector or a hclust object) or a matrix representing a permutation. Arguments are checked.

Value

- permutation_vector2matrix(): returns a permutation matrix.
- permutation_matrix2vector(): returns the permutation as a integer vector.

Author(s)

Michael Hahsler

See Also

Other permutation: get_order(), permute(), ser_dist(), ser_permutation_vector(), ser_permutation()

Examples

```
## create a random permutation vector
pv <- sample(1:5)
pv
## convert into a permutation matrix
pm <- permutation_vector2matrix(pv)
pm
## convert back
permutation_matrix2vector(pm)
```

permute Permute the Order in Various Objects

Description

Provides the generic function and methods for permuting the order of various objects including vectors, lists, dendrograms (also hclust objects), the order of observations in a dist object, the rows and columns of a matrix or data.frame, and all dimensions of an array given a suitable ser_permutation object.

Usage

permute(x, order, ...)
\#\# S3 method for class 'array'
permute(x, order, ...)
\#\# S3 method for class 'matrix'
permute(x, order, ...)
\#\# S3 method for class 'data.frame'
permute(x, order, ...)
\#\# S3 method for class 'numeric'
permute(x, order, ...)
\#\# S3 method for class 'character'
permute(x, order, ...)

```
## S3 method for class 'list'
permute(x, order, ...)
## S3 method for class 'dist'
permute(x, order, ...)
## S3 method for class 'dendrogram'
permute(x, order, ...)
## S3 method for class 'hclust'
permute(x, order, ...)
```


Arguments

x
an object (a list, a vector, a dist object, a matrix, an array or any other object which provides dim and standard subsetting with "[").
order an object of class ser_permutation which contains suitable permutation vectors for x .
$\ldots \quad$ additional arguments for the permutation function.

Details

The permutation vectors in ser_permutation are suitable if the number of permutation vectors matches the number of dimensions of x and if the length of each permutation vector has the same length as the corresponding dimension of x.
For 1-dimensional/1-mode data (list, vector, dist), order can also be a single permutation vector of class ser_permutation_vector or data which can be automatically coerced to this class (e.g. a numeric vector).
For matrix-like objects, the additional parameter margin can be specified to permute only a single dimension. In this case, order can be a single permutation vector or a complete liis with pemutations for all dimensions. In the latter case, all permutations but the one specified in margin are ignored.
For dendrogram and hclust, subtrees are rotated to represent the order best possible. If the order is not achieved perfectly then the user is warned. This behavior can be changed with the extra parameter incompatible which can take the values "warn" (default), "stop" or "ignore".

Value

A permuted object of the same class as x.

Author(s)

Michael Hahsler

See Also

Other permutation: get_order(), permutation_vector2matrix(), ser_dist(), ser_permutation_vector(), ser_permutation()

Examples

```
# List data types for permute
methods("permute")
# Permute matrix
m <- matrix(rnorm(10), 5, 2, dimnames = list(1:5, LETTERS[1:2]))
m
# Permute rows and columns
o <- ser_permutation(5:1, 2:1)
permute(m, o)
## permute only columns
permute(m, o, margin = 2)
df <- as.data.frame(m)
permute(df, o)
# Permute objects in a dist object
d <- dist(m)
d
permute(d, ser_permutation(c(3, 2,1,4,5)))
# Permute a list
l <- list(a=1:5, b=letters[1:3], c=0)
l
permute(l, c(2,3,1))
# Permute a dendrogram
hc <- hclust(d)
plot(hc)
plot(permute(hc, 5:1))
```

pimage Permutation Image Plot

Description

Provides methods for matrix shading, i.e., displaying a color image for matrix (including correlation matrices) and dist objects given an optional permutation. The plot arranges colored rectangles to represent the matrix value. Columns and rows appear in the order in the matrix. This visualization is also know asi a heatmap. Implementations based on the grid graphics engine and based nggplot2 are provided.

Usage

pimage(

```
    x,
    order = NULL,
    col = NULL,
    main = "",
    xlab = "",
    ylab = "",
    zlim = NULL,
    key = TRUE,
    keylab = "",
    symkey = TRUE,
    upper_tri = TRUE,
    lower_tri = TRUE,
    diag = TRUE,
    row_labels = NULL,
    col_labels = NULL,
    prop = TRUE,
    flip_axes = FALSE,
    reverse_columns = FALSE,
    ...,
    newpage = TRUE,
    pop = TRUE,
    gp = NULL
)
## S3 method for class 'matrix'
pimage(
    x,
    order = NULL,
    col = NULL,
    main = "",
    xlab = "",
    ylab = "",
    zlim = NULL,
    key = TRUE,
    keylab = "",
    symkey = TRUE,
    upper_tri = TRUE,
    lower_tri = TRUE,
    diag = TRUE,
    row_labels = NULL,
    col_labels = NULL,
    prop = TRUE,
    flip_axes = FALSE,
    reverse_columns = FALSE,
    newpage = TRUE,
    pop = TRUE,
    gp = NULL
```

```
)
## S3 method for class 'dist'
pimage(
    x,
    order = NULL,
    col = NULL,
    main = "",
    xlab = "",
    ylab = "",
    zlim = NULL,
    key = TRUE,
    keylab = "",
    symkey = TRUE,
    upper_tri = FALSE,
    lower_tri = TRUE,
    diag = FALSE,
    row_labels = NULL,
    col_labels = NULL,
    prop = TRUE,
    flip_axes = FALSE,
    reverse_columns = FALSE,
    newpage = TRUE,
    pop = TRUE,
    gp = NULL
)
ggpimage(
    x,
    order = NULL,
    zlim = NULL,
    upper_tri = TRUE,
    lower_tri = TRUE,
    diag = TRUE,
    row_labels = NULL,
    col_labels = NULL,
    prop = TRUE,
    flip_axes = FALSE,
    reverse_columns = FALSE
)
## S3 method for class 'matrix'
ggpimage(
    x,
    order = NULL,
    zlim = NULL,
    upper_tri = TRUE,
```

```
    lower_tri = TRUE,
    diag = TRUE,
    row_labels = NULL,
    col_labels = NULL,
    prop = TRUE,
    flip_axes = FALSE,
    reverse_columns = FALSE
)
## S3 method for class 'dist'
ggpimage(
    x,
    order = NULL,
    zlim = NULL,
    upper_tri = FALSE,
    lower_tri = TRUE,
    diag = FALSE,
    row_labels = NULL,
    col_labels = NULL,
    prop = TRUE,
    flip_axes = FALSE,
    reverse_columns = FALSE
)
```


Arguments

$x \quad$ a matrix or an object of class dist.
order an object of class ser_permutation. If NULL the order in x is plotted.
col a list of colors used. If NULL, a gray scale is used (for matrix larger values are displayed darker and for dist smaller distances are darker). For matrices containing logical data, black and white is used. For matrices containing negative values a symmetric diverging color palette is used.
main plot title.
$x l a b, y l a b \quad$ labels for the x and y axes.
zlim vector with two elements giving the range (min, max) for representing the values in the matrix.
key logical; add a color key? No key is available for logical matrices.
keylab string plotted next to the color key.
symkey logical; if x contains negative values, should the color palate be symmetric (zero is in the middle)>
upper_tri, lower_tri, diag
a logical indicating whether to show the upper triangel, the lower triangle or the diagonal of the (distance) matrix.
row_labels, col_labels
a logical indicating if row and column labels in x should be displayed. If NULL then labels are displayed if the x contains the appropriate dimname and the num-
ber of labels is 25 or less. A character vector of the appropriate length with labels can also be supplied.
prop logical; change the aspect ratio so cells in the image have a equal width and height.
flip_axes logical; exchange rows and columns for plotting.
reverse_columns
logical; revers the order of how the columns are displayed.
... further arguments are ignored.
newpage, pop, gp
Start plot on a new page, pop the viewports after plotting, and use the supplied gpar object (see grid).

Details

Plots a matrix in its original row and column orientation. This means, in a plot the columns become the x-coordinates and the rows the y-coordinates (in reverse order).

If x is of class dist it is converted to full-storage representation before plotting.
Grid-based plot: The viewports used for plotting are called: "plot", "image" and "colorkey". Note: Since pimage uses grid, it should not be mixed with base R primitive plotting functions, but the appropriate functions in grid-package.
ggplot2-based plot: A ggplot2 object is returned. Colors, axis limits and other visual aspects can be added using standard ggplot2 functions (labs, scale_fill_continuous, labs, etc.).

Value

Nothing.

Author(s)

Christian Buchta and Michael Hahsler

See Also

Other plots: VAT(), bertinplot(), dissplot(), hmap(), palette()

Examples

```
## Example: Logical Matrix
x <- matrix(sample(c(FALSE, TRUE), 300, rep = TRUE), ncol = 10,
    dimnames = list(1:30, LETTERS[1:10]))
# Matrix for logical values. TRUE values are dark and no color key is shown. There are too many
# Row labels (>25) so they are suppressed.
pimage(x)
# Show all labels and flip axes or reverse columns
pimage(x, row_labels = TRUE, col_labels = TRUE, flip_axes = TRUE)
pimage(x, row_labels = TRUE, col_labels = TRUE, reverse_columns = TRUE)
```

```
# Reorder matrix, use custom colors, and add a title.
pimage(x, order = seriate(x), row_labels = TRUE, col_labels = TRUE,
    col = c("white", "red"), main = "Random Data (Reordered)")
## Example: Positive Matrix
x <- matrix(runif(100), ncol = 10,
    dimnames = list(LETTERS[1:10], paste0("X", 1:10)))
pimage(x)
## Example: Pos/Neg. Matrix
x <- matrix(rnorm(100), ncol = 10,
    dimnames = list(LETTERS[1:10], paste0("X", 1:10)))
pimage(x)
## Example: Distance Matrix
# Show a reordered distance matrix (distances between rows).
# Dark means low distance. The aspect ratio is automatically fixed to 1:1.
# The upper triangle is suppressed triangle
d <- dist(x)
pimage(d, order = seriate(d),
    main = "Random Data (Distances)")
# Show only distances that are smaller than 4 using limits on z.
pimage(d, order = seriate(d),
    main = "Random Data (Distances + Theshold)", zlim = c(0, 4))
## Example: Correlation Matrix
# we calculate correlation between rows and seriate the matrix
r<- cor(t(x))
r <- permute(r, seriate(r))
pimage(r, upper = FALSE, diag = FALSE, zlim = c(-1, 1), reverse_columns = TRUE,
    main = "Random Data (Correlation)")
# Add to the plot using functions in package grid
# Note: pop = FALSE allows us to manipulate viewports
library("grid")
pimage(x, pop = FALSE)
# available viewports are: "main", "colorkey", "plot", "image"
current.vpTree()
# Highlight cell column 7 (G) / row 5 (from top)/col with a red arrow starting at 5/2
# Note: columns are x and rows are y.
downViewport(name = "image")
grid.lines(x = c(5, 7), y = c(2, 5), arrow = arrow(),
    default.units = "native", gp = gpar(col = "red", lwd = 3))
# add a red box around rows 15 and 16
grid.rect(x = 0.5, y = 5.5, width = ncol(x), height = 2,
    just = "left",
```

```
    default.units = "native", gp = gpar(col = "red", lwd = 3, fill = NA))
## remove the viewports
popViewport(0)
## put several pimages on a page (use grid viewports and newpage = FALSE)
# set up grid layout
library(grid)
grid.newpage()
top_vp <- viewport(layout = grid.layout(nrow = 1, ncol = 2,
    widths = unit(c(.4, .6), unit = "npc")))
col1_vp <- viewport(layout.pos.row = 1, layout.pos.col = 1, name = "col1_vp")
col2_vp <- viewport(layout.pos.row = 1, layout.pos.col = 2, name = "col2_vp")
splot <- vpTree(top_vp, vpList(col1_vp, col2_vp))
pushViewport(splot)
seekViewport("col1_vp")
o <- seriate(x)
pimage(x, o, labCol = FALSE, main = "Random Data",
    newpage = FALSE)
seekViewport("col2_vp")
## add the reordered dissimilarity matrix for rows
d <- dist(x)
pimage(d, o[[1]], labCol = FALSE, main = "Random Data",
    newpage = FALSE)
popViewport(0)
##----------------------------------------------------------
## ggplot2 Examples
if (require("ggplot2")) {
library("ggplot2")
## Example: Logical Matrix
x <- matrix(sample(c(FALSE, TRUE), 300, rep = TRUE), ncol = 10,
    dimnames = list(1:30, LETTERS[1:10]))
# Matrix for logical values. TRUE values are dark. There are too many
# Row labels (>25) so they are suppressed.
ggpimage(x)
# Show all labels and flip axes or reverse columns
ggpimage(x, flip_axes = TRUE, row_labels = TRUE, col_labels = TRUE)
ggpimage(x, reverse_columns = TRUE, row_labels = TRUE, col_labels = TRUE)
# Add lines
ggpimage(x) +
    geom_hline(yintercept = seq(0, nrow(x)) + .5) +
    geom_vline(xintercept = seq(0, ncol(x)) + .5)
# Reorder matrix, use custom colors, add a title,
```

```
# and hide colorkey.
ggpimage(x, order = seriate(x), row_labels = TRUE, col_labels = TRUE) +
    scale_fill_manual(values = c("grey90", "red")) +
    theme(legend.position = "none") +
    labs(title = "Random Data")
## Example: Positive Matrix
x <- matrix(runif(100), ncol = 10,
    dimnames = list(LETTERS[1:10], paste0("X", 1:10)))
ggpimage(x, order = seriate(x)) +
    labs(title = "Random Data")
#' ## Example: Pos/Neg. Matrix
x <- matrix(rnorm(100), ncol = 10,
    dimnames = list(LETTERS[1:10], paste0("X", 1:10)))
ggpimage(x, order = seriate(x)) +
    labs(title = "Random Data")
## Example: Distance Matrix
# Show a reordered distance matrix (distances between rows).
# Dark means low distance. The aspect ratio is automatically fixed to 1:1.
# The upper triangle is suppressed triangle
d <- dist(x)
ggpimage(d, order = seriate(d)) +
    labs(title = "Random Data", subtitle = "Distances")
# Show also upper triangle and diagonal
ggpimage(d, order = seriate(d), upper_tri = TRUE, diag = TRUE) +
    labs(title = "Random Data", subtitle = "Distances")
# Show only distances that are smaller than 4 using limits on fill.
ggpimage(d, order = seriate(d), zlim = c(0, 4)) +
    labs(title = "Random Data (Distances + Theshold)")
## Example: Correlation Matrix
# we calculate correlation between rows and seriate the matrix
r<- cor(t(x))
r <- permute(r, seriate(r))
ggpimage(r, zlim = c(-1, 1), upper = FALSE, diag = FALSE, reverse_columns = TRUE) +
    geom_text(aes(x = col, y = row, label = round(x, 2)), color = "black", size = 4) +
    labs(title = "Random Data", subtitle = "Correlation")
## Example: Custom themes and colors
# Use ggplot2 themes with theme_set
old_theme <- theme_set(theme_linedraw())
ggpimage(d, order = seriate(d)) +
    labs(title = "Random Data (Distances)")
theme_set(old_theme)
# Use custom color palettes: Gray scale, Colorbrewer (provided in ggplot2) and colorspace
ggpimage(d, order = seriate(d), upper_tri = FALSE) +
```

```
    scale_fill_gradient(low = "black", high = "white", na.value = "white")
ggpimage(d, order = seriate(d), upper_tri = FALSE) +
    scale_fill_distiller(palette = "Spectral", direction = +1, na.value = "white")
ggpimage(d, order = seriate(d), upper_tri = FALSE) +
    colorspace::scale_fill_continuous_sequential("Reds", rev = FALSE, na.value = "white")
}
```

Psych24 Results of 24 Psychological Test for 8th Grade Students

Description

A data set collected by Holzinger and Swineford (1939) which consists of the results of 24 psychological tests given to 145 seventh and eighth grade students in a Chicago suburb. This data set contains the correlation matrix for the 24 test results. The data set was also used as an example for visualization of cluster analysis by Ling (1973).

Format

A 24×24 correlation matrix.

References

Holzinger, K. L., Swineford, F. (1939): A study in factor analysis: The stability of a bi-factor solution. Supplementary Educational Monograph, No. 48. Chicago: University of Chicago Press.

Ling, R. L. (1973): A computer generated aid for cluster analysis. Communications of the ACM, 16(6), pp. 355-361.

Examples

```
data("Psych24")
## create a dist object and also get rid of the one negative entry in the
## correlation matrix
d <- as.dist(1 - abs(Psych24))
pimage(d)
## do hclust as in Ling (1973)
hc <- hclust(d, method = "complete")
plot(hc)
pimage(d, hc)
## use seriation
order <- seriate(d, method = "tsp")
#order <- seriate(d, method = "tsp", control = list(method = "concorde"))
pimage(d, order)
```

```
register_DendSer Register Seriation Methods from Package DendSer
```


Description

Register the DendSer dendrogram seriation method and the ARc criterion (Earle and Hurley, 2015) for use with seriate().

Usage

register_DendSer()

Details

Registers the method "DendSer" for seriate(). DendSer is a fast heuristic for reordering dendrograms developed by Earle and Hurley (2015) able to use different criteria.
control for seriate with method "DendSer" accepts the following parameters:

- "h" or "method" A dendrogram or a method for hierarchical clustering (see hclust). Default: complete-link.
- "criterion" A seriation criterion to optimize (see list_criterion_methods("dist")). Default: "BAR" (Banded anti-Robinson from with 20\}
- "verbose" a logical; print progress information?
- "DendSer_args" additional arguments for DendSer.

For convenience, the following methods (for different cost functions) are also provided: "DendSer_ARc" (anti-robinson form), "DendSer_BAR" (banded anti-Robinson form), "DendSer_LS" (leaf seriation), "DendSer_PL" (path length).

Note: Package DendSer needs to be installed.

Value

Nothing.

Author(s)

Michael Hahsler based on code by Catherine B. Hurley and Denise Earle

References

D. Earle, C. B. Hurley (2015): Advances in dendrogram seriation for application to visualization. Journal of Computational and Graphical Statistics, 24(1), 1-25.

See Also

Other seriation: register_GA(), register_optics(), register_tsne(), register_umap(), registry_seriate, seriate()

Examples

```
## Not run:
register_DendSer()
get_seriation_method("dist", "DendSer")
d <- dist(random.robinson(20, pre=TRUE))
## use Banded AR form with default clustering (complete-link)
o <- seriate(d, "DendSer_BAR")
pimage(d, o)
## use different hclust method (Ward) and AR as the cost function for
## dendrogram reordering
o <- seriate(d, "DendSer", control = list(method = "ward.D2", criterion = "AR"))
pimage(d, o)
## End(Not run)
```

register_GA

Register a Genetic Algorithm Seriation Method

Description

Register a GA-based seriation metaheuristic for use with seriate().

Usage

register_GA()
gaperm_mixedMutation(ismProb $=0.8$)

Arguments

ismProb probability to use GA: :gaperm_ismMutation() (inversion) versus GA: :gaperm_simMutation() (simple insertion).

Details

Registers the method "GA" for seriate(). This method can be used to optimize any criterion in package seriation.
control for seriate with method "GA" accepts the following parameters:

- "criterion" criterion to optimize. Default: BAR
- "suggestions" suggestions to warm start the GA. NA means no warm start. Default: TSP, QAP_LS and Spectral.
- "selection" Selection operator.
- "crossover" Crossover operator.
- "mutation" Mutation operator. Default: a mixture of the simple insertion (80% chance) and simple inversion (20% chance) operators.
- "pmutation" probability for permutations. Default: . 5
- "pcrossover" probability for crossover. Default: . 2
- "popsize" the population size. Default: 100
- "maxiter" maximum number of generations. Default: 1000
- "run" stop after run generations without improvement. Default: 50
- "parallel" use multiple cores? Default: TRUE
- "verbose" a logical; report progress? Default: TRUE

The GA uses by default the ordered cross-over (OX) operator. For mutation, the GA uses a mixture of simple insertion and simple inversion operators. This mixed operator is created using seriation::gaperm_mixedMutation(ismProb $=.8$), where ismProb is the probability that the simple insertion mutation operator is used. See package GA for a description of other available cross-over and mutation operators for permutations. The appropriate operator functions in GA start with gaperm_.
We warm start the GA using "suggestions" given by several heuristics. Set "suggestions" to NA to start with a purely random initial population.
Note: Package GA needs to be installed.

Value

Nothing.

Author(s)

Michael Hahsler

References

Luca Scrucca (2013): GA: A Package for Genetic Algorithms in R. Journal of Statistical Software, 53(4), 1-37. URL doi:10.18637/jss.v053.i04.

See Also

Other seriation: register_DendSer(), register_optics(), register_tsne(), register_umap(), registry_seriate, seriate()

Examples

```
## Not run:
register_GA()
get_seriation_method("dist", "GA")
d <- dist(random.robinson(50, pre=TRUE, noise=.1))
```

```
## use default settings: Banded AR form
o <- seriate(d, "GA")
pimage(d, o)
## optimize for linear sertiation criterion (LS)
o <- seriate(d, "GA", control = list(criterion = "LS"))
pimage(d, o)
## no warm start
o <- seriate(d, "GA", control = list(criterion = "LS", suggestions = NA))
pimage(d, o)
## End(Not run)
```

register_optics Register Seriation Based on OPTICS

Description

Use ordering points to identify the clustering structure (OPTICS) for seriate().

Usage

register_optics()

Details

Registers the method "optics" for seriate(). This method applies the OPTICS ordering algorithm to create an ordering.
Note: Package dbscan needs to be installed.

Value

Nothing.

References

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Joerg Sander (1999). OPTICS: Ordering Points To Identify the Clustering Structure. ACM SIGMOD international conference on Management of data. ACM Press. pp. 49-60. doi:10.1145/304181.304187

See Also

dbscan: :optics() in dbscan.

Other seriation: register_DendSer(), register_GA(), register_tsne(), register_umap(), registry_seriate, seriate()

Examples

```
## Not run:
register_optics()
get_seriation_method("dist", "optics")
d <- dist(random.robinson(50, pre=TRUE, noise=.1))
o <- seriate(d, method = "optics")
pimage(d, o)
## End(Not run)
```

```
register_tsne Register Seriation Based on 1D t-SNE
```


Description

Use t-distributed stochastic neighbor embedding (t-SNE) for seriate().

Usage

register_tsne()

Details

Registers the method "tsne" for seriate(). This method applies 1D t-SNE to data represented by a distance matrix and extracts the order from the 1 D embedding. To speed up the process, an initial embedding is created using multi-dimensional scaling (MDS) which is improved by t-SNE.
The control parameter mds controls if MDS is used to create an initial embedding. See Rtsne: :Rtsne() to learn about the other available control parameters.
Note: Package Rtsne needs to be installed.

Value

Nothing.

References

van der Maaten, L.J.P. \& Hinton, G.E., 2008. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research, 9, pp.2579-2605.

See Also

Rtsne: :Rtsne() in Rtsne.
Other seriation: register_DendSer(), register_GA(), register_optics(), register_umap(), registry_seriate, seriate()

Examples

```
    ## Not run:
    register_tsne()
    get_seriation_method("dist", "tsne")
    d <- dist(random.robinson(50, pre=TRUE, noise=.1))
    o <- seriate(d, method = "tsne")
    pimage(d, o)
    ## End(Not run)
```

 register_umap Register Seriation Based on 1D UMAP

Description

Use uniform manifold approximation and projection (UMAP) to embed the data on the number line and create a order for seriate().

Usage

register_umap()

Details

Registers the method "umap" for seriate(). This method applies 1D UMAP to data represented by a distance matrix and extracts the order from the 1D embedding.
Note: Package umap needs to be installed.

Value

Nothing.

References

McInnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-prints 1802.03426, 2018

See Also

umap: : umap() in umap.
Other seriation: register_DendSer(), register_GA(), register_optics(), register_tsne(), registry_seriate, seriate()

Examples

```
## Not run:
register_umap()
get_seriation_method("dist", "umap")
d <- dist(random.robinson(50, pre=TRUE, noise=.1))
o <- seriate(d, method = "umap")
pimage(d, o)
## End(Not run)
```

 registry_criterion Registry for Criterion Methods

Description

A registry to manage methods used by criterion() to calculate a criterion value given data and a permutation.

Usage

registry_criterion
list_criterion_methods(kind)
get_criterion_method(kind, name)
set_criterion_method(kind, name, fun, description = NULL, merit = NA, ...)
\#\# S3 method for class 'criterion_method'
print(x, ...)

Arguments

kind name	the data type the method works on. For example, "dist", "matrix" or "array".
fun	the name for the method used to refer to the method in the function criterion().
description	a function containing the method's code. a description of the method. For example, a long name. merit
a boolean indicating if the criterion measure is a merit (TRUE) or a loss (FALSE) measure.	
\ldots	further information that is stored for the method in the registry.
an object of class "criterion_method" to be printed.	

Format

An object of class criterion_registry (inherits from registry) of length 20.

Details

All methods below are convenience methods for the registry named registry_criterion.
list_criterion_method() lists all available methods for a given data type (kind). The result is a vector of character strings with the short names of the methods. If kind is missing, then a list of methods is returned.
get_criterion_method() returns information (including the implementing function) about a given method in form of an object of class "criterion_method".
With set_criterion_method() new criterion methods can be added by the user. The implementing function (fun) needs to have the formal arguments x, order, ..., where x is the data object, order is an object of class ser_permutation_vector and . . . can contain additional information for the method passed on from criterion(). The implementation has to return the criterion value as a scalar.

Value

- list_criterion_method() results is a vector of character strings with the names of the methods used for criterion().
- get_criterion_method() returns a given method in form of an object of class "criterion_method".

Author(s)

Michael Hahsler

See Also

This registry uses registry() in package registry.
Other criterion: criterion()

Examples

```
## the registry
registry_criterion
# List all criterion calculation methods by type
list_criterion_methods()
# List methods for matrix
list_criterion_methods("matrix")
get_criterion_method("dist", "AR_d")
# Define a new method (sum of the diagonal elements)
## 1. implement a function to calculate the measure
criterion_method_matrix_foo <- function(x, order, ...) {
```

```
if(!is.null(order)) x <- permute(x,order)
        sum(diag(x))
}
## 2. Register new method
set_criterion_method("matrix", "DiagSum", criterion_method_matrix_foo,
    description = "Calculated the sum of all diagonal entries", merit = FALSE)
list_criterion_methods("matrix")
get_criterion_method("matrix", "DiagSum")
## 3. use all criterion methods (including the new one)
criterion(matrix(1:9, ncol = 3))
```

registry_seriate Registry for Seriation Methods

Description

A registry to manage methods used by seriate().

Usage

```
registry_seriate
list_seriation_methods(kind)
get_seriation_method(kind, name)
set_seriation_method(
    kind,
    name,
    definition,
    description = NULL,
    control = list(),
    )
    ## S3 method for class 'seriation_method'
    print(x, ...)
```


Arguments

kind	the data type the method works on. For example, "dist", "matrix" or "array".
If missing, then methods for any type are shown.	
name	the name for the method used to refer to the method in seriate().
definition	a function containing the method's code.

```
description a description of the method. For example, a long name.
control a list with control arguments and default values.
... further information that is stored for the method in the registry.
x an object of class "seriation_method" to be printed.
```


Format

An object of class seriation_registry (inherits from registry) of length 47.

Details

The functions below are convenience function for the registry registry_seriate.
list_seriation_method() lists all available methods for a given data type (kind) (e.g., "dist", "matrix"). The result is a vector of character strings with the method names that can be used in function seriate(). If kind is missing, then a list of methods is returned.
get_seriation_method() returns detailed information for a given method in form of an object of class "seriation_method". The information includes a description, parameters and the implementing function.
With set_seriation_method() new seriation methods can be added by the user. The implementing function (definition) needs to have the formal arguments x, control, where x is the data object and control contains a list with additional information for the method passed on from seriate(). The implementation has to return a list of objects which can be coerced into ser_permutation_vector objects (e.g., integer vectors). The elements in the list have to be in corresponding order to the dimensions of x.

Value

- list_seriation_method() result is a vector of character strings with the names of the methods. These names are used for methods in seriate().
- get_seriation_method() returns a given method in form of an object of class "seriation_method".

Author(s)

Michael Hahsler

See Also

This registry uses registry() in package registry.
Other seriation: register_DendSer(), register_GA(), register_optics(), register_tsne(), register_umap(), seriate()

Examples

```
# Registry
registry_seriate
# List all seriation methods by type
list_seriation_methods()
```

```
    # List methods for matrix seriation
list_seriation_methods("matrix")
get_seriation_method(name = "BEA")
# Example for defining a new seriation method (reverse identity function for matrix)
# 1. Create the seriation method
seriation_method_reverse <- function(x, control) {
    # return a list of order vectors, one for each dimension
    list(seq(nrow(x), 1), seq(ncol(x), 1))
}
# 2. Register new method
set_seriation_method("matrix", "Reverse", seriation_method_reverse,
    description = "Reverse identity order", control = list())
list_seriation_methods("matrix")
get_seriation_method("matrix", "reverse")
# 3. Use the new seriation methods
seriate(matrix(1:12, ncol=3), "reverse")
```

reorder.hclust Reorder Dendrograms using Optimal Leaf Ordering

Description

Reorder method for dendrograms for optimal leaf ordering.

Usage

\#\# S3 method for class 'hclust'
reorder(x, dist, method = "OLO", ...)

Arguments

x
dist
method
an object of class hclust.
an object of class dist with dissimilarities between the objects in x.
a character string with the name of the used measure. Available are:

- "OLO" (optimal leaf ordering; Bar-Joseph et al., 2001) implemented in this package and
- "GW" (Gruvaeus and Wainer, 1972) from package gclus.
.. further arguments are currently ignored.

Details

Minimizes the distance between neighboring objects (leaf nodes) in the dendrogram by flipping the order of subtrees. The algorithm by Gruvaeus and Wainer is implemented in package gclus (Hurley 2004).

Value

A reordered hclust object.

Author(s)

Michael Hahsler

References

Bar-Joseph, Z., E. D. Demaine, D. K. Gifford, and T. Jaakkola. (2001): Fast Optimal Leaf Ordering for Hierarchical Clustering. Bioinformatics, 17(1), 22-29.
Gruvaeus, G. and Wainer, H. (1972): Two Additions to Hierarchical Cluster Analysis, British Journal of Mathematical and Statistical Psychology, 25, 200-206.
Hurley, Catherine B. (2004): Clustering Visualizations of Multidimensional Data. Journal of Computational and Graphical Statistics, 13(4), 788-806.

See Also

```
gclus::reorder.hclust()
```


Examples

```
## cluster European cities by distance
data("eurodist")
d <- as.dist(eurodist)
hc <- hclust(eurodist)
## plot original dendrogram and the reordered dendrograms
plot(hc)
plot(reorder(hc, d, method = "GW"))
plot(reorder(hc, d, method = "OLO"))
```

seriate Seriate Dissimilarity Matrices, Matrices or Arrays

Description

Tries to find an linear order for objects using data in form of a dissimilarity matrix (two-way one mode data), a data matrix (two-way two-mode data) or a data array (k-way k-mode data). The order can then be used to reorder the dissimilarity matrix/data matrix using permute().

Usage

```
seriate(x, ...)
\#\# S3 method for class 'array'
seriate(x, method = "PCA", control = NULL, margin = seq(length(dim(x))), ...)
\#\# S3 method for class 'data.frame'
seriate (x, method = "Heatmap", control = NULL, margin \(=c(1,2), \ldots)\)
    \#\# S3 method for class 'dist'
    seriate(x, method = "Spectral", control = NULL, ...)
    \#\# S3 method for class 'matrix'
    seriate( \(x\), method \(=\) "PCA", control \(=\) NULL, margin \(=c(1,2), \ldots)\)
```


Arguments

x	the data.
\ldots	further arguments are added to the control list.
method	a character string with the name of the seriation method (default: varies by data type).
control	a list of control options passed on to the seriation algorithm.
margin	a vector giving the margin indices (dimensions) to be seriated. For example, for a matrix, 1 indicates rows, 2 indicates columns, $c(1,2)$ indicates rows and columns.

Details

Seriation methods are managed via a registry. See list_seriation_methods() for help. In the following, we discuss only the built-in methods that are registered automatically by the package seriation.
Many seriation methods (heuristically) optimize (minimize or maximize) an objective function. The value of the function for a given seriation can be calculated using criterion(). In this manual page, we include the measure which is optimized by each method using bold font. If no measure is mentioned, then the measure does not directly optimize a measure. A definition of the measures can be found in the criterion() manual page.

Seriation methods for distance matrices (dist)

One-mode two-way data has to be provided as a dist object (not as a symmetric matrix). Similarities have to be transformed into dissimilarities. Currently, the following methods are implemented (for a more detailed description and an experimental comparison see Hahsler (2017):

- "ARSA" Anti-Robinson seriation by simulated annealing to minimize the linear seriation criterion (simulated annealing initialization used in Brusco et al 2008).
- "BBURCG" Anti-Robinson seriation by branch-and-bound to minimize the unweighted gradient measure (Brusco and Stahl 2005). This is only feasible for a relatively small number of objects.
- "BBWRCG" Anti-Robinson seriation by branch-and-bound to minimize the weighted gradient measure (Brusco and Stahl 2005). This is only feasible for a relatively small number of objects.
- "TSP" Traveling salesperson problem solver to minimize the Hamiltonian path length. The solvers in TSP are used (see solve_TSP). The solver method can be passed on via the control argument, e.g. control = list(method = "two_opt"). Default is the est of 10 runs of arbitrary insertion heuristic with 2-opt improvement.
Since a tour returned by a TSP solver is a connected circle and we are looking for a path representing a linear order, we need to find the best cutting point. Climer and Zhang (2006) suggest to add a dummy city with equal distance to each other city before generating the tour. The place of this dummy city in an optimal tour with minimal length is the best cutting point (it lies between the most distant cities).
- "R2E" Rank-two ellipse seriation (Chen 2002).

This method starts with generating a sequence of correlation matrices $R^{1}, R^{2}, \ldots . R^{1}$ is the correlation matrix of the original distance matrix D (supplied to the function as x), and

$$
R^{n+1}=\phi R^{n}
$$

where ϕ calculates the correlation matrix.
The rank of the matrix R^{n} falls with increasing n. The first R^{n} in the sequence which has a rank of 2 is found. Projecting all points in this matrix on the first two eigenvectors, all points fall on an ellipse. The order of the points on this ellipse is the resulting order.
The ellipse can be cut at the two interception points (top or bottom) of the vertical axis with the ellipse. In this implementation the top most cutting point is used.

- "MDS", "MDS_metric", "MDS_nonmetric", "MDS_angle" Multidimensional scaling (MDS). Use multidimensional scaling techniques to find an linear order by minimizing stress. Note MDS algorithms used for a single dimension tend to end up in local optima and unidimensional scaling (see Maier and De Leeuw, 2015) would be more appropriate. However, generally, ordering along the first component of MDS provides good results.
By default, metric MDS (cmdscale() in stats) is used. In case of of general dissimilarities, non-metric MDS can be used. The choices are isoMDS and sammon from MASS. The method can be specified as the element method ("cmdscale", "isoMDS" or "sammon") in control. For convenience, "MDS_metric" performs cmdscale() and "MDS_nonmetric" performs isoMDS(). "MDS_angle" projects the data on the first two components found by MDS and then orders by the angle in this space. The order is split by the larges gap between adjacent angles. A similar method was used for ordering correlation matrices by Friendly (2002).
- "HC", "HC_single", "HC_complete", "HC_average", "HC_ward" Hierarchical clustering.

Using the order of the leaf nodes in a dendrogram obtained by hierarchical clustering can be used as a very simple seriation technique. This method applies hierarchical clustering (hclust) to x . The clustering method can be given using a "method" element in the control list. If omitted, the default "average" is used.
For convenience the other methods are provided as shortcuts.

- "GW" Hierarchical clustering (Gruvaeus and Wainer, 1972).

The methods start with a dendrogram created by hclust. As the "method" element in the control list a clustering method (default "average") can be specified. Alternatively, a hclust object can be supplied using an element named "hclust".

A dendrogram (binary tree) has 2^{n-1} internal nodes (subtrees) and the same number of leaf orderings. That is, at each internal node the left and right subtree (or leaves) can be swapped, or, in terms of a dendrogram, be flipped. The leaf-node reordering to minimize Hamiltonian path length (restricted).
Method "GW" uses an algorithm developed by Gruvaeus and Wainer (1972) and implemented in package gclus (Hurley 2004). The clusters are ordered at each level so that the objects at the edge of each cluster are adjacent to that object outside the cluster to which it is nearest. The method produces an unique order.
For convenience "GW_single", "GW_average", "GW_complete", and "GW_ward" are provided.

- "OLO" Optimal leaf ordering (Bar-Joseph et al., 2001).

Also starts with a dendrogram and produces an optimal leaf ordering with respect to the minimizing the sum of the distances along the (Hamiltonian) path connecting the leaves in the given order. The time complexity of the algorithm is $O\left(n^{3}\right)$. Note that non-finite distance values are not allowed.
For convenience "OLO_single", "OLO_average", "OLO_complete", and "OLO_ward" are provided.

- "VAT" Visual Assessment of (Clustering) Tendency (Bezdek and Hathaway (2002)).

Creates an order based on Prim's algorithm for finding a minimum spanning tree (MST) in a weighted connected graph representing the distance matrix. The order is given by the order in which the nodes (objects) are added to the MST.

- "SA" Simulated Annealing for diverse criterion measures.

Implement simulated annealing similar to the ARSA method, however, it works for any criterion measure defined in seriation. By default the algorithm optimizes for raw gradient measure and is warm started with the result of spectral seriation (2-Sum problem) since Hahsler (2017) shows that 2-Sum solutions are similar to solutions for the gradient measure.

Several popular local neighborhood functions are provided an new can be defined (see LS).
Note that this is an R implementation repeatedly calling criterion, and therefore is relatively slow.

- "Spectral", "Spectral_norm" Spectral seriation (Ding and He 2004).

Spectral seriation uses a relaxation to minimize the 2-Sum Problem (Barnard, Pothen, and Simon, 1993). It uses the order of the Fiedler vector of the similarity matrix's (normalized) Laplacian.
Spectral seriation gives a good trade-off between seriation quality, speed and scalability (see Hahsler, 2017).

- "SPIN_STS", "SPIN_NH" Sorting Points Into Neighborhoods (SPIN) (Tsafrir 2005).

Given a weight matrix W, the algorithms try to minimize the energy for a permutation (matrix P) given by

$$
F(P)=\operatorname{tr}\left(P D P^{T} W\right)
$$

where $t r$ denotes the matrix trace.
"SPIN_STS" implements the Side-to-Side algorithm which tries to push out large distance values. The default weight matrix suggested in the paper with $W=X X^{T}$ and $X_{i}=i-$ $(n+1) / 2$ is used. We run the algorithm from step (25) iteration and restart the algorithm nstart (10) with random initial permutations (default values in parentheses). Via control the parameters step, nstart, X and verbose.
"SPIN_NH" implements the neighborhood algorithm (concentrate low distance values around the diagonal) with a Gaussian weight matrix $W_{i j}=\exp \left(-(i-j)^{2} / n \sigma\right)$, where n is the size of the dissimilarity matrix and σ is the variance around the diagonal that control the influence of global (large σ) or local (small σ) structure.
We use the heuristic suggested in the paper for the linear assignment problem. We do not terminate as indicated in the algorithm, but run all the iterations since the heuristic does not guarantee that the energy is strictly decreasing. We also implement the heuristic "annealing" scheme where σ is successively reduced. The parameters in control are sigma which can be a single value or a decreasing sequence (default: 20 to 1 in 10 steps) and step which defines how many update steps are performed before for each value of alpha. Via W_function a custom function to create W with the function signature function(n, sigma, verbose) can be specified. The parameter verbose can be used to display progress information.

- "QAP_LS", "QAP_2SUM", "QAP_BAR", "QAP_Inertia" Quadratic assignment problem formulations for seriation using a simulated annealing solver.
These methods minimize the Linear Seriation Problem (LS) formulation (Hubert and Schultz 1976), the 2-Sum Problem formulation (Barnard, Pothen, and Simon 1993), the banded antiRobinson form (BAR) or the inertia criterion.
The parameters in control are passed on to qap in qap. An important parameter is rep to return the best result out of the given number of repetitions with random restarts. Default is 1 , but bigger numbers result in better and more stable results.
- "GA" Use a genetic algorithm to optimize for various criteria.

The GA code has to be first registered. A detailed description can be found in the manual page for register_GA().

- "DendSer" Use heuristic dendrogram seriation to optimize for various criteria.

The DendSer code has to be first registered. A detailed description can be found in the manual page for register_DendSer().

- "Identity" Produces an identity permutation.
- "Random" Produces a random permutation.

Seriation methods for matrices (matrix or data.frame)

Two-mode two-way data are general matrices. Some methods also require that the matrix is positive. Data frames are just a different representation of a matrix and all seriation methods for matrix can be also used for data frames. The default method for data frames is heatmap seriation which calculates distances between rows and between columns and then applies seriation on these using hierarchical clustering and optimal leaf ordering (OLO).
Currently the following methods are implemented for matrix:

- "BEA" Bond Energy Algorithm (BEA; McCormick 1972).

The algorithm tries to maximize the Measure of Effectiveness. of a non-negative matrix. Due to the definition of this measure, the tasks of ordering rows and columns is separable and can be solved independently.
A row is arbitrarily placed; then rows are positioned one by one. When this is completed, the columns are treated similarly. The overall procedure amounts to two approximate traveling salesperson problems (TSP), one on the rows and one on the columns. The so-called 'best insertion strategy' is used: rows (or columns) are inserted into the current permuted list of rows (or columns). Several consecutive runs of the algorithm might improve the energy.

Note that Arabie and Hubert (1990) question its use with non-binary data if the objective is to find a seriation or one-dimensional orderings of rows and columns.
The BEA code used in this package was implemented by Fionn Murtagh.
In control as element "rep" the number of runs can be specified. The results of the best run will be returned.

- "BEA_TSP" Use a TSP to optimize the Measure of Effectiveness (Lenstra 1974).

In control as element "method" a TSP solver method can be specified (see package TSP).

- "Heatmap" Heatmap seriation

Calculates distances between rows and between columns and then applies seriation on these using hierarchical clustering and optimal leaf ordering (method "OLO" for distance matrices).

- "PCA" Order by the first principal component.

Uses the projection of the data on its first principal component to determine the order.
Note that for a distance matrix calculated from x with Euclidean distance, this methods minimizes the least square criterion.

- "PCA_angle" Order using the first two principal components.

Projects the data on the first two principal components and then orders by the angle in this space. The order is split by the larges gap between adjacent angles. A similar method was used for ordering correlation matrices by Friendly (2002).

- "Identity" Produces an identity permutation.
- "Random" Produces a random permutation.

For general arrays no built-in methods are currently available.

Value

Returns an object of class ser_permutation.

Author(s)

Michael Hahsler

References

Arabie, P. and L.J. Hubert (1990): The bond energy algorithm revisited, IEEE Transactions on Systems, Man, and Cybernetics, 20(1), 268-274. doi:10.1109/21.47829
Bar-Joseph, Z., E. D. Demaine, D. K. Gifford, and T. Jaakkola. (2001): Fast Optimal Leaf Ordering for Hierarchical Clustering. Bioinformatics, 17(1), 22-29. doi:10.1093/bioinformatics/ 17.suppl_1.S22

Barnard, S. T., A. Pothen, and H. D. Simon (1993): A Spectral Algorithm for Envelope Reduction of Sparse Matrices. In Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, 493-502. Supercomputing '93. New York, NY, USA: ACM. https://ieeexplore.ieee.org/document/ 1263497
Bezdek, J.C. and Hathaway, R.J. (2002): VAT: a tool for visual assessment of (cluster) tendency. Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN '02), Volume: 3, 2225-2230. doi:10.1109/IJCNN.2002.1007487
seriate

Brusco, M., Koehn, H.F., and Stahl, S. (2008): Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis. Psychometrika, 73(3), 503-522. doi:10.1007/s1133600790495
Brusco, M., and Stahl, S. (2005): Branch-and-Bound Applications in Combinatorial Data Analysis. New York: Springer. doi:10.1007/0387288104

Chen, C. H. (2002): Generalized Association Plots: Information Visualization via Iteratively Generated Correlation Matrices. Statistica Sinica, 12(1), 7-29.
Ding, C. and Xiaofeng He (2004): Linearized cluster assignment via spectral ordering. Proceedings of the Twenty-first International Conference on Machine learning (ICML '04). doi:10.1145/ 1015330.1015407

Climer, S. and Xiongnu Zhang (2006): Rearrangement Clustering: Pitfalls, Remedies, and Applications, Journal of Machine Learning Research, 7(Jun), 919-943.
Friendly, M. (2002): Corrgrams: Exploratory Displays for Correlation Matrices. The American Statistician, 56(4), 316-324. doi:10.1198/000313002533

Gruvaeus, G. and Wainer, H. (1972): Two Additions to Hierarchical Cluster Analysis, British Journal of Mathematical and Statistical Psychology, 25, 200-206. doi:10.1111/j.20448317.1972.tb00491.x
Hahsler, M. (2017): An experimental comparison of seriation methods for one-mode two-way data. European Journal of Operational Research, 257, 133-143. doi:10.1016/j.ejor.2016.08.066

Hubert, Lawrence, and James Schultz (1976): Quadratic Assignment as a General Data Analysis Strategy. British Journal of Mathematical and Statistical Psychology 29(2). Blackwell Publishing Ltd. 190-241. doi:10.1111/j.20448317.1976.tb00714.x
Hurley, Catherine B. (2004): Clustering Visualizations of Multidimensional Data. Journal of Computational and Graphical Statistics, 13(4), 788-806. doi:10.1198/106186004X12425

Lenstra, J.K (1974): Clustering a Data Array and the Traveling-Salesman Problem, Operations Research, 22(2) 413-414. doi:10.1287/opre.22.2.413
Mair P., De Leeuw J. (2015). Unidimensional scaling. In Wiley StatsRef: Statistics Reference Online, Wiley, New York. doi:10.1002/9781118445112.stat06462.pub2

McCormick, W.T., P.J. Schweitzer and T.W. White (1972): Problem decomposition and data reorganization by a clustering technique, Operations Research, 20(5), 993-1009. doi:10.1287/opre.20.5.993
Tsafrir, D., Tsafrir, I., Ein-Dor, L., Zuk, O., Notterman, D.A. and Domany, E. (2005): Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices, Bioinformatics, 21(10) 2301-8. doi:10.1093/bioinformatics/bti329

See Also

Other seriation: register_DendSer(), register_GA(), register_optics(), register_tsne(), register_umap(), registry_seriate

Examples

```
# Show available seriation methods (for dist and matrix)
list_seriation_methods()
### Seriate as distance matrix (for the iris dataset)
data("iris")
```

```
x <- as.matrix(iris[-5])
x <- x[sample(1:nrow(x)), ]
d <- dist(x)
order <- seriate(d)
order
pimage(d, main = "Distances (Random Order)")
pimage(d, order, main = "Distances (Reordered)")
# Compare seriation quality
rbind(
    random = criterion(d),
    reordered = criterion(d, order)
    )
# Reorder the distance matrix
d_reordered <- permute(d, order)
pimage(d_reordered, main = "Distances (Reordered)")
### Seriate matrix
data("iris")
x <- as.matrix(iris[-5])
# To make the variables comparable, we scale the data
x <- scale(x, center = FALSE)
# The iris flowers are ordered by species in the data set
pimage(x, main = "original data", prop = FALSE)
criterion(x)
# Apply some methods
order <- seriate(x, method = "BEA_TSP")
pimage(x, order, main = "TSP to optimize ME", prop = FALSE)
criterion(x, order)
order <- seriate(x, method = "PCA")
pimage(x, order, main = "First principal component", prop = FALSE)
criterion(x, order)
order <- seriate(x, method = "heatmap")
pimage(x, order, main = "Heatmap seriation", prop = FALSE)
criterion(x, order)
# reorder the matrix
x_reordered <- permute(x, order)
# create a heatmap seriation manually by calculating
# distances between rows and between columns
order <- c(
    seriate(dist(x), method = "OLO"),
    seriate(dist(t(x)), method = "OLO")
```

)
pimage(x, order, main = "Heatmap seriation", prop = FALSE)
criterion(x, order)
\#\#\# Seriate a correlation matrix
corr <- cor (x)
pimage (corr, upper_tri = FALSE, main = "Correlation matrix")
\# we need to define a distance (we used $d=\operatorname{sqrt}(2(1-r))$) and
\# then reorder the matrix (rows and columns).
d <- as.dist(sqrt(2 * (1 - corr)))
o <- seriate(d)
corr_reordered <- permute(corr, order = c(o, o))
pimage(corr_reordered, upper_tri = FALSE, main = "Correlation matrix (reordered)")
ser_dist Dissimilarities and Correlations Between Seriation Orders

Description

Calculates dissimilarities/correlations between seriation orders in a list of type ser_permutation_vector.

Usage

```
ser_dist(x, y = NULL, method = "spearman", reverse = TRUE, ...)
ser_cor(x, y = NULL, method = "spearman", reverse = TRUE, test = FALSE)
ser_align(x, method = "spearman")
```


Arguments

x
y if not NULL then a single seriation order can be specified. In this case x has to be a single seriation order and not a list.
method a character string with the name of the used measure. Available measures are: "kendall", "spearman", "manhattan", "euclidean", "hamming", "ppc" (positional proximity coefficient), and "aprd" (absolute pairwise rank differences).
reverse a logical indicating if the orders should also be checked in reverse order and the best value (highest correlation, lowest distance) is reported. This only affect ranking-based measures and not precedence invariant measures (e.g., ppc, aprd).
... Further arguments passed on to the method.
test a logical indicating if a correlation test should be performed.

Details

ser_cor () calculates the correlation between two sequences (orders). Note that a seriation order and its reverse are identical and purely an artifact due to the method that creates the order. This is a major difference to rankings. For ranking-based correlation measures (Spearman and Kendall) the absolute value of the correlation is returned for reverse $=$ TRUE (in effect returning the correlation for the reversed order). If test = TRUE then the appropriate test for association is performed and a matrix with p-values is returned as the attribute " p-value". Note that no correction for multiple testing is performed.
For ser_dist(), the correlation coefficients (Kendall's tau and Spearman's rho) are converted into a dissimilarity by taking one minus the correlation value. Note that Manhattan distance between the ranks in a linear order is equivalent to Spearman's footrule metric (Diaconis 1988). reverse $=$ TRUE returns the pairwise minima using also reversed orders.

The positional proximity coefficient (ppc) is a precedence invariant measure based on product of the squared positional distances in two permutations defined as (see Goulermas et al 2016):

$$
d_{p p c}(R, S)=1 / h \sum_{j=2}^{n} \sum_{i=1}^{j-1}\left(\pi_{R}(i)-\pi_{R}(j)\right)^{2} *\left(\pi_{S}(i)-\pi_{S}(j)\right)^{2}
$$

where R and S are two seriation orders, $p i_{R}$ and $p i_{S}$ are the associated permutation vectors and h is a normalization factor. The associated generalized correlation coefficient is defined as $1-d_{p p c}$. For this precedence invariant measure reverse is ignored.
The absolute pairwise rank difference (aprd) is also precedence invariant and defined as a distance measure:

$$
d_{a p r d}(R, S)=\sum_{j=2}^{n} \sum_{i=1}^{j-1}\left\|\pi_{R}(i)-\pi_{R}(j)|-| \pi_{S}(i)-\pi_{S}(j)\right\|^{p}
$$

where p is the power which can be passed on as parameter p and is by default set to 2 . For this precedence invariant measure reverse is ignored.
ser_align() tries to normalize the direction in a list of seriations such that ranking-based methods can be used. We add for each permutation also the reversed order to the set and then use a modified version of Prim's algorithm for finding a minimum spanning tree (MST) to choose if the original seriation order or its reverse should be used. We use the orders first added to the MST. Every time an order is added, its reverse is removed from the possible remaining orders.

Value

- ser_dist() returns an object of class dist.
- ser_align() returns a new list with elements of class ser_permutation.

Author(s)
Michael Hahsler

References

P. Diaconis (1988): Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward, CA.
J.Y. Goulermas, A. Kostopoulos, and T. Mu (2016): A New Measure for Analyzing and Fusing Sequences of Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 38(5):83348. doi:10.1109/TPAMI.2015.2470671

See Also

Other permutation: get_order(), permutation_vector2matrix(), permute(), ser_permutation_vector(), ser_permutation()

Examples

```
set.seed(1234)
## seriate dist of 50 flowers from the iris data set
data("iris")
x <- as.matrix(iris[-5])
x <- x[sample(1:nrow(x), 50), ]
rownames(x) <- 1:50
d <- dist(x)
## Create a list of different seriations
methods <- c("HC_single", "HC_complete", "OLO", "GW", "R2E", "VAT",
    "TSP", "Spectral", "SPIN", "MDS", "Identity", "Random")
os <- sapply(methods, function(m) {
    cat("Doing", m, "... ")
    tm <- system.time(o <- seriate(d, method = m))
    cat("took", tm[3],"s.\n")
    O
})
## Compare the methods using distances. Default is based on
## Spearman's rank correlation coefficient where reverse orders are
## also considered.
ds <- ser_dist(os)
hmap(ds, margin = c(7,7))
## Compare using correlation between orders. Reversed orders have
## negative correlation!
cs <- ser_cor(os, reverse = FALSE)
hmap(cs, margin = c(7,7))
## Compare orders by allowing orders to be reversed.
## Now all but random and identity are highly positive correlated
cs2 <- ser_cor(os, reverse = TRUE)
hmap(cs2, margin=c(7,7))
## A better approach is to align the direction of the orders first
## and then calculate correlation.
```

```
os_aligned <- ser_align(os)
cs3 <- ser_cor(os_aligned, reverse = FALSE)
hmap(cs3, margin = c(7,7))
## Compare the orders using clustering. We use Spearman's foot rule
## (Manhattan distance of ranks). In order to use rank-based method,
## we align the direction of the orders.
os_aligned <- ser_align(os)
ds <- ser_dist(os_aligned, method = "manhattan")
plot(hclust(ds))
```

ser_permutation Class ser_permutation - A Collection of Permutation Vectors for Seri-
ation

Description

The class ser_permutation is a collection of permutation vectors (see class ser_permutation_vector), one for each dimension (mode) of the data to be permuted.

Usage

ser_permutation(x, ...)
\#\# S3 method for class 'ser_permutation'
print(x, ...)
\#\# S3 method for class 'ser_permutation'
summary (object, ...)
\#\# S3 method for class 'ser_permutation'
$c(\ldots$, recursive $=$ FALSE $)$
\#\# S3 method for class 'ser_permutation'
object[i, ...]

Arguments

x, object	an object of class ser_permutation_vector or any object which can be con- verted into a object of class ser_permutation (e.g. an integer vector).
\ldots	vectors for further dimensions.
recursive	ignored.
i	index of the dimension(s) to extract.

Value

An object of class ser_permutation.

Author(s)

Michael Hahsler

See Also

Other permutation: get_order(), permutation_vector2matrix(), permute(), ser_dist(), ser_permutation_vector(

Examples

```
o <- ser_permutation(1:5, 10:1)
O
## length (number of dimensions)
length(o)
## get permutation vector for 2nd dimension
get_order(o, 2)
## reverse dimensions
o[2:1]
## combine
o <- c(o, ser_permutation(1:15))
O
## get an individual permutation
o[[2]]
## reverse the order of a permutation
o[[2]] <- rev(o[[2]])
get_order(o,2)
```

```
ser_permutation_vector
```

Class ser_permutation_vector - A Single Permutation Vector for Seriation

Description

The class ser_permutation_vector represents a single permutation vector.

Usage

ser_permutation_vector (x, method = NULL)
\#\# S3 method for class 'ser_permutation_vector'
c(..., recursive = FALSE)
\#\# S3 method for class 'ser_permutation_vector'

```
rev(x)
get_method(x, printable = FALSE)
## S3 method for class 'ser_permutation_vector'
length(x)
## S3 method for class 'ser_permutation_vector'
print(x, ...)
## S3 method for class 'ser_permutation_vector'
summary(object, ...)
```


Arguments

x, object	an object which contains a permutation vector (currently an integer vector or an object of class hclust). The value NA creates an identity permutation.
method	a string representing the method used to obtain the permutation vector.
\ldots	further arguments.
recursive	ignored
printable	a logical; prints "unknown" instead of NULL for non-existing methods.

Details

A permutation vector maps a set of n objects $\left\{O_{1}, O_{2}, \ldots, O_{n}\right\}$ onto itself. In seriation we represent a permutation π as a vector which lists the objects in their permuted order. For example, the permutation vector $\langle 3,1,2\rangle$ indicates that in first position is the object with index 3 then the object with index 1 and finally the object with index 2 . A permutation vector can be extracted from a permutation vector object via get_order (). Such a permutation vector can be directly used to subset the list of original objects with "[" to apply the permutation. Note: An alternative way to specify a permutation is via a list of the ranks of the objects after permutation (see get_rank()).
ser_permutation_vector objects are usually packed into a ser_permutation object which is a collection of k permutation vectors for k-mode data.

The constructor ser_permutation_vector() checks if the permutation vector is valid (i.e. if all integers occur exactly once).

Value

An object of class ser_permutation_vector.

Author(s)

Michael Hahsler

See Also

Other permutation: get_order(), permutation_vector2matrix(), permute(), ser_dist(), ser_permutation()

Examples

```
p <- ser_permutation_vector(sample(10), "random")
p
## some methods
length(p)
get_method(p)
get_order(p)
get_rank(p)
get_permutation_matrix(p)
r <- rev(p)
r
get_order(r)
## create a identity permutation vector (with unknown length)
ip <- ser_permutation_vector(NA)
ip
```

SupremeCourt Voting Patterns in the Second Rehnquist U.S. Supreme Court

Description

Contains a (a subset of the) decisions for the stable 8-yr period 1995-2002 of the second Rehnquist Supreme Court. Decisions are aggregated to the joint probability for disagreement between judges.

Format

A square, symmetric 9-by-9 matrix with the joint probability for disagreement.

Author(s)

Michael Hahsler

References

Sirovich, L. (2003). A pattern analysis of the second Rehnquist
U.S. Supreme Court. \emph\{Proceedings of the National Academy of Sciences of the United States of America,\} 100, 7432-7437. \doi\{10.1073/pnas.1132164100\}

Examples

```
data("SupremeCourt")
# joint probability of disagreement
SupremeCourt
```

```
d <- as.dist(SupremeCourt)
0 <- seriate(d)
O
# judges in original alphabetical order
pimage(d, diag = TRUE, upper = TRUE)
# judges reordered by seriation based on similar decisions
pimage(d, o, diag = TRUE, upper = TRUE)
# Use optimal leaf ordering (hierarchical clustering with reordering)
# which uses a dendrogram
o <- seriate(d, method = "OLO")
O
plot(o[[1]])
```

Townships Bertin's Characteristics of Townships

Description

This data contains nine characteristics for 16 townships. The data set was used by Bertin (1981) to illustrate that the conciseness of presentation can be improved by seriating the rows and columns.

Format

A matrix with $160-1$ variables (columns) indicating the presence (1) or absence (0) of characteristics of townships (rows).

Author(s)

Michael Hahsler

References

Bertin, J. (1981): Graphics and Graphic Information Processing. Berlin, Walter de Gruyter.

Examples

```
data("Townships")
## original data
pimage(Townships)
criterion(Townships)
## seriated data
order <- seriate(Townships, method = "BEA", control = list(rep = 5))
pimage(Townships, order)
criterion(Townships, order)
```


uniscale Unidimensional Scaling from Seriation Results

Description

Performs (approximate) unidimensional scaling by first performing seriation to obtain a permutation and the using the permutation to calculate the configuration.

Usage

uniscale(d, order $=$ NULL, method $=$ "QAP_LS", rep $=10, \ldots$)
orderplot(x, main, pch = 19, ...)

Arguments

d	a dissimilarity matrix.
order	a precomputed permutation (configuration) order. If NULL, then seriation is per- formed using the method specified in method.
method	seriation method used if o is NULL.
rep	Number of repetitions of the seriation heuristic.
\ldots	additional arguments are passed on to the seriation method.
x	a scaling returned by uniscale().
main	main plot label
pch	print character

Details

Uses the method describes in Maier and De Leeuw (2015) to calculate the minimum stress configuration for either a given configuration/permutation/order or for a permutation computed via a seriation method.
The code is similar to uniscale() in smacof, but scales to larger datasets since it does not check all permutations.

Value

A vector with the fitted configuration.

Author(s)

Michael Hahsler with code from Patrick Mair (from smacof).

References

Mair P., De Leeuw J. (2015). Unidimensional scaling. In Wiley StatsRef: Statistics Reference Online, Wiley, New York. doi:10.1002/9781118445112.stat06462.pub2

Examples

```
data(SupremeCourt)
d <- as.dist(SupremeCourt)
sc <- uniscale(d)
Sc
    orderplot(sc)
```


Description

Implements Visual Analysis for Cluster Tendency Assessment (VAT; Bezdek and Hathaway, 2002) and Improved Visual Analysis for Cluster Tendency Assessment (iVAT; Wang et al, 2010).

Usage

VAT (x, upper_tri = TRUE, lower_tri = TRUE, ...)
iVAT (x, upper_tri = TRUE, lower_tri = TRUE, ...)
path_dist(x)
ggVAT $(x$, upper_tri $=$ TRUE, lower_tri $=$ TRUE,...$)$
ggiVAT(x, upper_tri = TRUE, lower_tri = TRUE, ...)

Arguments

$x \quad$ a dist object.
upper_tri, lower_tri
a logical indicating whether to show the upper or lower triangle of the VAT matrix.
... further arguments are passed on to pimage for the regular plots and ggpimage for the ggplot2 plots.

Details

path_dist() redefines the distance between two objects as the minimum over the largest distances in all possible paths between the objects as used for iVAT.

Value

Nothing.

Author(s)

Michael Hahsler

References

Bezdek, J.C. and Hathaway, R.J. (2002): VAT: a tool for visual assessment of (cluster) tendency.
Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN '02), Volume: 3, 2225-2230.
Havens, T.C. and Bezdek, J.C. (2012): An Efficient Formulation of the Improved Visual Assessment of Cluster Tendency (iVAT) Algorithm, IEEE Transactions on Knowledge and Data Engineering, 24(5), 813-822.
Wang L., U.T.V. Nguyen, J.C. Bezdek, C.A. Leckie and K. Ramamohanarao (2010): iVAT and aVAT: Enhanced Visual Analysis for Cluster Tendency Assessment, Proceedings of the PAKDD 2010, Part I, LNAI 6118, 16-27.

See Also

Other plots: bertinplot(), dissplot(), hmap(), palette(), pimage()

Examples

```
## lines data set from Havens and Bezdek (2011)
x <- create_lines_data(250)
plot(x, xlim=c(-5,5), ylim=c(-3,3), cex=.2)
d <- dist(x)
## create regular VAT
VAT(d, main = "VAT for Lines")
## same as: pimage(d, seriate(d, "VAT"))
## ggplot2 version
if (require("ggplot2")) {
    ggVAT(d) + labs(title = "VAT")
}
## create iVAT which shows visually the three lines
iVAT(d, main = "iVAT for Lines")
## same as:
## d_path <- path_dist(d)
## pimage(d_path, seriate(d_path, "VAT for Lines"))
## ggplot2 version
if (require("ggplot2")) {
    ggiVAT(d) + labs(title = "iVAT for Lines")
}
## compare with dissplot (shows banded structures and relationship between
## center line and the two outer lines)
dissplot(d, method = "OLO_single", main = "Dissplot for Lines", col = bluered(100, bias = .5))
```

\#\# compare with optimally reordered heatmap
hmap(d, method = "OLO_single", main = "Heatmap for Lines (opt. leaf ordering)",
col = bluered(100, bias = .5))

Description

A data matrix containing a sample of the normalized gene expression data for 6 locations in the stem of Popla trees published in the study by Herzberg et al (2001). The sample of 136 genes selected by Caraux and Pinloche (2005).

Format

The format is a 136×6 matrix.

Source

The data was obtained from http://www.atgc-montpellier.fr/permutmatrix/manual/Exemples/ Wood/Wood.htm.

References

Hertzberg M., H. Aspeborg, J. Schrader, A. Andersson, R.Erlandsson, K. Blomqvist, R. Bhalerao, M. Uhlen, T. T. Teeri, J. Lundeberg, Bjoern Sundberg, P. Nilsson and Goeran Sandberg (2001): A transcriptional roadmap to wood formation, PNAS, 98(25), 14732-14737.

Caraux G. and Pinloche S. (2005): PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order, Bioinformatics, 21(7) 1280-1281.

Examples

```
data(Wood)
```

head(Wood)

Zoo Zoo Data Set

Description

A database containing characteristics of different animals. The database was created and donated by Richard S. Forsyth and is available from the UCI Machine Learning Repository (Newman et al, 1998).

Format

A data frame with 101 observations on the following 17 variables.
hair a numeric vector
feathers a numeric vector
eggs a numeric vector
milk a numeric vector
airborne a numeric vector
aquatic a numeric vector
predator a numeric vector
toothed a numeric vector
backbone a numeric vector
breathes a numeric vector
venomous a numeric vector
fins a numeric vector
legs a numeric vector
tail a numeric vector
domestic a numeric vector
catsize a numeric vector
class a factor with levels amphibian bird fish insect invertebrate mammal reptile

Source

D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz (1998): UCI Repository of machine learning databases, https://www.ics.uci.edu/~mlearn/MLRepository.html, University of California, Irvine, Dept. of Information and Computer Sciences.

Examples

```
data("Zoo")
x <- scale(Zoo[, -17])
d <- dist(x)
pimage(d)
order <- seriate(d, method = "tsp")
pimage(d, order)
```


Index

* classes
ser_permutation, 68
ser_permutation_vector, 69
* cluster
bertinplot, 4
criterion, 11
dissplot, 17
register_DendSer, 46
register_GA, 47
register_optics, 49
register_tsne, 50
register_umap, 51
reorder.hclust, 56
ser_dist, 65
seriate, 57
VAT, 74
* criterion
criterion, 11
registry_criterion, 52
* datasets

Chameleon, 8
create_lines_data, 8
Irish, 28
Munsingen, 31
Psych24, 45
SupremeCourt, 71
Townships, 72
Wood, 76
Zoo, 77

* hplot
bertinplot, 4
dissplot, 17
hmap, 24
palette, 32
pimage, 37
* manip
get_order, 23
permutation_vector2matrix, 34
permute, 35

VAT, 74

* misc
registry_criterion, 52
registry_seriate, 54
* optimize
register_DendSer, 46
register_GA, 47
register_optics, 49
register_tsne, 50
register_umap, 51
reorder.hclust, 56
seriate, 57
uniscale, 73
* permutation
get_order, 23
permutation_vector2matrix, 34
permute, 35
ser_dist, 65
ser_permutation, 68
ser_permutation_vector, 69
* plots
bertinplot, 4
dissplot, 17
hmap, 24
palette, 32
pimage, 37
VAT, 74
* seriation
register_DendSer, 46
register_GA, 47
register_optics, 49
register_tsne, 50
register_umap, 51
registry_seriate, 54
seriate, 57
[.ser_permutation(ser_permutation), 68
bertin_cut_line (bertinplot), 4
bertinplot, 4, 20, 26, 33, 41, 75
bertinplot(), 3
bluered (palette), 32
blues (palette), 32
c.ser_permutation (ser_permutation), 68
c.ser_permutation_vector (ser_permutation_vector), 69
Chameleon, 8
chameleon (Chameleon), 8
chameleon_ds4 (Chameleon), 8
chameleon_ds5 (Chameleon), 8
chameleon_ds7 (Chameleon), 8
chameleon_ds8 (Chameleon), 8
cmdscale(), 59
colors (palette), 32
create_lines_data, 8
create_ordered_data
(create_lines_data), 8
criterion, 11, 53
criterion(), 3, 10, 52, 53, 58
dbscan::optics(), 49
DendSer (register_DendSer), 46
dendser (register_DendSer), 46
dissplot, 6, 17, 26, 33, 41, 75
dissplot(), 3, 32
dist, $11,18,66$
diverging_hcl(), 33
GA (register_GA), 47
ga (register_GA), 47
GA: : gaperm_ismMutation(), 47
GA: :gaperm_simMutation(), 47
gaperm_mixedMutation (register_GA), 47
gclus::reorder.hclust(), 57
get_criterion_method
(registry_criterion), 52
get_method (ser_permutation_vector), 69
get_order, 23, 35, 36, 67, 69, 70
get_order(), 3, 70
get_permutation_matrix (get_order), 23
get_rank (get_order), 23
get_rank(), 70
get_seriation_method (registry_seriate), 54
ggbertinplot (bertinplot), 4
ggdissplot (dissplot), 17
gghmap (hmap), 24
ggiVAT (VAT), 74
ggpimage, 74
ggpimage (pimage), 37
ggpimage(), 5, 6, 19
ggVAT (VAT), 74
gpar(), 5, 19, 26
grays (palette), 32
greenred (palette), 32
greens (palette), 32
greys (palette), 32
grid. newpage(), 5, 19
hclust, 70
hmap, 6, 20, 24, 33, 41, 75
hmap(), 3, 32
Irish, 28
is.robinson, 29
isoMDS(), 59
iVAT (VAT), 74
iVAT(), 9, 10
length.ser_permutation_vector
(ser_permutation_vector), 69
list_criterion_methods
(registry_criterion), 52
list_criterion_methods(), 11
list_seriation_methods
(registry_seriate), 54
list_seriation_methods(), 18, 58
LS, 30, 60
LS_insert (LS), 30
LS_mixed (LS), 30
LS_reverse (LS), 30
LS_swap (LS), 30
Munsingen, 31
OPTICS (register_optics), 49
optics (register_optics), 49
orderplot (uniscale), 73
palette, $6,20,26,32,41,75$
palette, (palette), 32
panel.bars (bertinplot), 4
panel.blocks (bertinplot), 4
panel.circles (bertinplot), 4
panel.lines (bertinplot), 4
panel.rectangles (bertinplot), 4
panel.squares (bertinplot), 4
panel.tiles (bertinplot), 4
par(), 5
path_dist (VAT), 74
permutation_matrix2vector (permutation_vector2matrix), 34
permutation_vector2matrix, 24, 34, 36, 67, 69, 70
permute, $24,35,35,67,69,70$
permute(), 3, 57
pimage, $6,20,26,33,37,74,75$
pimage(), 3, 19, 32
plot.reordered_cluster_dissimilarity_matrix (dissplot), 17
pop.viewport(), 5
print.criterion_method
(registry_criterion), 52
print.reordered_cluster_dissimilarity_matrix (dissplot), 17
print.ser_permutation
(ser_permutation), 68
print.ser_permutation_vector
(ser_permutation_vector), 69
print.seriation_method (registry_seriate), 54
Psych24, 45
random.robinson (is.robinson), 29
reds (palette), 32
register_DendSer, 46, 48-51, 55, 63
register_DendSer(), 61
register_GA, 46, 47, 49-51, 55, 63
register_GA(),61
register_optics, 46, 48, 49, 50, 51, 55, 63
register_tsne, 46, 48, 49, 50, 51, 55, 63
register_umap, 46, 48-50, 51, 55, 63
registry(),53,55
registry_criterion, 16, 52
registry_seriate, 46, 48-51, 54, 63
reorder (reorder.hclust), 56
reorder.hclust, 56
rev.ser_permutation_vector
(ser_permutation_vector), 69
rgb(), 5
Robinson(is.robinson), 29
Rtsne: :Rtsne(), 50
sequential_hcl(), 33
ser_align(ser_dist), 65
ser_cor (ser_dist), 65
ser_dist, $24,35,36,65,69,70$
ser_permutation, $11,23,24,35,36,62,66$, 67, 68, 70
ser_permutation_vector, $23,24,35,36,53$, 65,67-69, 69
seriate, 46, 48-51, 55, 57
seriate(), 3, 10, 30, 46, 47, 49-51, 54
seriate.dist(), 18,25
seriation-package, 3
set_criterion_method (registry_criterion), 52
set_seriation_method (registry_seriate), 54
stats: :heatmap(), 25, 26
summary.ser_permutation (ser_permutation), 68
summary.ser_permutation_vector (ser_permutation_vector), 69
SupremeCourt, 71
Townships, 72
tSNE (register_tsne), 50
tsne (register_tsne), 50
umap (register_umap), 51
umap: : umap(), 51
uniscale, 73
VAT, 6, 20, 26, 33, 41, 74
$\operatorname{VAT}(), 3$
Wood, 76
Zoo, 77

