Package 'sketching'

September 7, 2022
Type Package
Title Sketching of Data via Random Subspace Embeddings
Version 0.1.2
Description Construct sketches of data via random subspace embeddings.
For more details, see the following papers.
Lee, S. and Ng, S. (2022). "Least Squares Estimation Using Sketched Data with Heteroskedas-
tic Errors," Proceedings of the 39th International Conference on Machine Learn-
ing (ICML22), 162:12498-12520.
Lee, S. and Ng, S. (2020). "An Econometric Perspective on Algorithmic Subsampling," Annual Review of Economics, 12(1): 45-80.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.0
Imports stats, MASS, Rcpp (>= 1.0.7), phangorn (>= 2.8.1)
LinkingTo Rcpp
Suggests knitr, rmarkdown, testthat (>= 3.0.0), lmtest (>=0.9), ivreg ($>=0.6$), sandwich ($>=3.0$)
VignetteBuilder knitr
Depends R (>= 4.1.0)
URL https://github.com/sokbae/sketching/
BugReports https://github.com/sokbae/sketching/issues
Config/testthat/edition 3
NeedsCompilation yes
Author Sokbae Lee [aut, cre],
Serena Ng [aut]
Maintainer Sokbae Lee sl3841@columbia.edu
Repository CRAN
Date/Publication 2022-09-07 07:50:02 UTC

R topics documented:

$$
\text { AK . } 2
$$

simulation_dgp . 4
sketch . 5
sketch_leverage . 6
Index 8

AK AK

Description

Angrist-Krueger (AK) dataset is a data extract from US Censuses that was analyzed in Angrist and Krueger (1991). In particular, the current dataset is from the 1970 Census, consisting of men born 1920-1929 (Year 1929 is the omitted cohort group).

Usage

AK

Format

A data frame with 247,199 rows and 42 variables:
LWKLYWGE Outcome: log weekly wages
EDUC Covariate of interest: years of education
YR20 Indicator variable for the year of birth: equals 1 if yob $=1920$
YR21 Indicator variable for the year of birth: equals 1 if yob $=1921$
YR22 Indicator variable for the year of birth: equals 1 if yob $=1922$
YR23 Indicator variable for the year of birth: equals 1 if yob $=1923$
YR24 Indicator variable for the year of birth: equals 1 if yob $=1924$
YR25 Indicator variable for the year of birth: equals 1 if yob $=1925$
YR26 Indicator variable for the year of birth: equals 1 if yob $=1926$
YR27 Indicator variable for the year of birth: equals 1 if yob $=1927$
YR28 Indicator variable for the year of birth: equals 1 if yob $=1928$
QTR120 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR121 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR122 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR123 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR124 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR125 Quarter-of-birth indicator interacted with year-of-birth indicator

QTR126 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR127 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR128 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR129 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR220 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR221 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR222 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR223 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR224 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR225 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR226 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR227 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR228 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR229 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR320 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR321 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR322 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR323 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR324 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR325 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR326 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR327 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR328 Quarter-of-birth indicator interacted with year-of-birth indicator
QTR329 Quarter-of-birth indicator interacted with year-of-birth indicator
CNST Constant

Source

The dataset is publicly available on Joshua Angrist's website at https://economics.mit.edu/ faculty/angrist/data1/data/angkru1991/.

References

Angrist, J.D. and Krueger, A.B., 1991. Does compulsory school attendance affect schooling and earnings? Quarterly Journal of Economics, 106(4), pp.979-1014. doi:10.2307/2937954
simulation_dgp Simulating observations from the data-generating process considered in Lee and Ng (2022)

Description

Simulates observations from the data-generating process considered in Lee and Ng (2022)

Usage

simulation_dgp(n, d, hetero = FALSE)

Arguments

n
sample size
d dimension of regressors from a multivariate normal distribution
hetero TRUE if the conditional variance of the error term is heteroskedastic and FALSE if it is homoskedastic (default: FALSE)

Value

An S3 object has the following elements.
$Y \quad n$ observations of outcomes
$X \quad n$ times d matrix of regressors
beta d dimensional vector of coefficients

References

Lee, S. and Ng, S. (2022). "Least Squares Estimation Using Sketched Data with Heteroskedastic Errors," arXiv:2007.07781.

Examples

```
    data <- simulation_dgp(100, 5, hetero = TRUE)
    y <- data$Y
    x <- data$X
    model <- lm(y ~ x)
```

sketch Sketch

Description

Provides a subsample of data using sketches

Usage

sketch(data, m, method = "unif")

Arguments

data

m
method
(n times d)-dimensional matrix of data.
(expected) subsample size that is less than n
method for sketching: "unif" uniform sampling with replacement (default); "unif_without_replacement" uniform sampling without replacement; "bernoulli" Bernoulli sampling; "gaussian" Gaussian projection; "countsketch" CountSketch; "srht" subsampled randomized Hadamard transform; "fft" subsampled randomized trigonometric transforms using the real part of fast discrete Fourier transform (stats::ftt).

Value

(m times d)-dimensional matrix of data For Bernoulli sampling, the number of rows is not necessarily m .

Examples

```
## Least squares: sketch and solve
# setup
n <- 1e+6 # full sample size
d<- 5 # dimension of covariates
m <- 1e+3 # sketch size
# generate psuedo-data
X <- matrix(stats::rnorm(n*d), nrow = n, ncol = d)
beta <- matrix(rep(1,d), nrow = d, ncol = 1)
eps <- matrix(stats::rnorm(n), nrow = n, ncol = 1)
Y <- X %*% beta + eps
intercept <- matrix(rep(1,n), nrow = n, ncol = 1)
# full sample including the intercept term
fullsample <- cbind(Y,intercept,X)
# generate a sketch using CountSketch
s_cs <- sketch(fullsample, m, "countsketch")
# solve without the intercept
ls_cs <- lm(s_cs[,1] ~ s_cs[,2] - 1)
# generate a sketch using SRHT
s_srht <- sketch(fullsample, m, "srht")
# solve without the intercept
ls_srht <- lm(s_srht[,1] ~ s_srht[,2] - 1)
```

sketch_leverage Sketch using leverage score type sampling

Description

Provides a subsample of data using sketches

Usage

sketch_leverage(data, m, method = "leverage")

Arguments

data (n times d)-dimensional matrix of data. The first column needs to be a vector of the dependent variable (Y)
m subsample size that is less than n
method method for sketching: "leverage" leverage score sampling using X (default); "root_leverage" square-root leverage score sampling using X.

Value

An S3 object has the following elements.

subsample	(m times d)-dimensional matrix of data
prob	m -dimensional vector of probabilities

References

Ma, P., Zhang, X., Xing, X., Ma, J. and Mahoney, M.. (2020). Asymptotic Analysis of Sampling Estimators for Randomized Numerical Linear Algebra Algorithms. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108:1026-1035.

Examples

```
## Least squares: sketch and solve
# setup
n <- 1e+6 # full sample size
d <- 5 # dimension of covariates
m <- 1e+3 # sketch size
# generate psuedo-data
X <- matrix(stats::rnorm(n*d), nrow = n, ncol = d)
beta <- matrix(rep(1,d), nrow = d, ncol = 1)
eps <- matrix(stats::rnorm(n), nrow = n, ncol = 1)
Y <- X %*% beta + eps
intercept <- matrix(rep(1,n), nrow = n, ncol = 1)
# full sample including the intercept term
```

```
fullsample <- cbind(Y,intercept,X)
# generate a sketch using leverage score sampling
s_lev <- sketch_leverage(fullsample, m, "leverage")
# solve without the intercept with weighting
ls_lev <- lm(s_lev$subsample[,1] ~ s_lev$subsample[,2] - 1, weights = s_lev$prob)
```


Index

* datasets

AK, 2
AK, 2
simulation_dgp, 4
sketch, 5
sketch_leverage, 6

