
Package ‘slendr’
August 19, 2022

Title A Simulation Framework for Spatiotemporal Population Genetics

Version 0.3.0

Description A framework for simulating spatially explicit genomic data which
leverages real cartographic information for programmatic and visual encoding
of spatiotemporal population dynamics on real geographic landscapes. Population
genetic models are then automatically executed by the 'SLiM' software by Haller
et al. (2019) <doi:10.1093/molbev/msy228> behind the scenes, using a custom
built-in simulation 'SLiM' script. Additionally, fully abstract spatial models
not tied to a specific geographic location are supported, and users can also
simulate data from standard, non-spatial, random-mating models. These can be
simulated either with the 'SLiM' built-in back-end script, or using an efficient
coalescent population genetics simulator 'msprime' by Baumdicker et al. (2022)
<doi:10.1093/genetics/iyab229> with a custom-built 'Python' script bundled with the
R package. Simulated genomic data is saved in a tree-sequence format and can be
loaded, manipulated, and summarised using tree-sequence functionality via an R
interface to the 'Python' module 'tskit' by Kelleher et al. (2019)
<doi:10.1038/s41588-019-0483-y>. Complete model configuration, simulation and
analysis pipelines can be therefore constructed without a need to leave the R
environment, eliminating friction between disparate tools for population genetic
simulations and data analysis.

Depends R (>= 3.6.0)

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.0

SystemRequirements 'SLiM' is a forward simulation software for
population genetics and evolutionary biology. See
<https://messerlab.org/slim/> for installation instructions and
further information. The 'Python' coalescent framework
'msprime' and the 'tskit' module can by installed by following
the instructions at <https://tskit.dev/>.

Imports sf, stars, ggplot2, dplyr, purrr, readr, magrittr, reticulate,
tidyr, rnaturalearth, gganimate, png, ijtiff, shinyWidgets,
shiny, ape

1

https://doi.org/10.1093/molbev/msy228
https://doi.org/10.1093/genetics/iyab229
https://doi.org/10.1038/s41588-019-0483-y

2 R topics documented:

Suggests testthat (>= 3.0.0), knitr, rmarkdown, admixr, units, rgdal,
magick, cowplot, forcats, rsvg

VignetteBuilder knitr

URL https://github.com/bodkan/slendr

BugReports https://github.com/bodkan/slendr/issues

Config/testthat/edition 3

NeedsCompilation no

Author Martin Petr [aut, cre] (<https://orcid.org/0000-0003-4879-8421>)

Maintainer Martin Petr <contact@bodkan.net>

Repository CRAN

Date/Publication 2022-08-19 09:20:23 UTC

R topics documented:
animate_model . 3
area . 4
as.phylo.slendr_phylo . 5
check_dependencies . 5
check_env . 6
clear_env . 6
compile_model . 7
distance . 9
expand_range . 10
explore_model . 12
gene_flow . 13
join . 15
move . 16
msprime . 18
overlap . 19
plot_map . 20
plot_model . 21
population . 22
print.slendr_pop . 24
print.slendr_ts . 25
read_model . 26
region . 26
reproject . 27
resize . 28
schedule_sampling . 30
setup_env . 32
set_dispersal . 32
set_range . 34
shrink_range . 37
slim . 39

https://github.com/bodkan/slendr
https://github.com/bodkan/slendr/issues
https://orcid.org/0000-0003-4879-8421

animate_model 3

subtract . 41
ts_afs . 42
ts_ancestors . 43
ts_coalesced . 44
ts_descendants . 45
ts_divergence . 46
ts_diversity . 47
ts_draw . 48
ts_edges . 49
ts_eigenstrat . 50
ts_f2 . 50
ts_fst . 53
ts_genotypes . 54
ts_load . 54
ts_metadata . 56
ts_mutate . 57
ts_nodes . 58
ts_phylo . 59
ts_recapitate . 60
ts_samples . 62
ts_save . 62
ts_segregating . 63
ts_simplify . 64
ts_table . 65
ts_tajima . 67
ts_tree . 68
ts_vcf . 69
world . 69

Index 71

animate_model Animate the simulated population dynamics

Description

Animate the simulated population dynamics

Usage

animate_model(model, file, steps, gif = NULL, width = 800, height = 560)

4 area

Arguments

model Compiled slendr_model model object

file Path to the table of saved individual locations

steps How many frames should the animation have?

gif Path to an output GIF file (animation object returned by default)

width, height Dimensions of the animation in pixels

Value

If gif = NULL, return gganimate animation object. Otherwise a GIF file is saved and no value is
returned.

area Calculate the area covered by the given slendr object

Description

Calculate the area covered by the given slendr object

Usage

area(x)

Arguments

x Object of the class slendr

Value

Area covered by the input object. If a slendr_pop was given, a table with an population range area
in each time point will be returned. If a slendr_region or slendr_world object was specified, the
total area covered by this object’s spatial boundary will be returned.

Examples

region_a <- region("A", center = c(20, 50), radius = 20)
region_b <- region("B", polygon = list(c(50, 40), c(70, 40), c(70, 60), c(50, 60)))
plot_map(region_a, region_b)

note that area won't be *exactly* equal to pi*r^2:
https://stackoverflow.com/a/65280376
area(region_a)

area(region_b)

as.phylo.slendr_phylo 5

as.phylo.slendr_phylo Convert an annotated slendr_phylo object to a phylo object

Description

This function servers as a workaround around a ggtree error: Error in UseMethod("as.phylo") :
no applicable method for 'as.phylo' applied to an object of class "c('phylo', 'slendr_phylo')"

Usage

S3 method for class 'slendr_phylo'
as.phylo(x)

Arguments

x Tree object of the class slendr_phylo

Value

Standard phylogenetic tree object implemented by the R package ape

check_dependencies Check that all dependencies are available for slendr examples

Description

Check that all dependencies are available for slendr examples

Usage

check_dependencies(python = FALSE, slim = FALSE)

Arguments

python Is the slendr Python environment required?

slim Is SLiM required?

Value

No return value. Called only to result in an error message if a particular software dependency is
missing for an example to run.

6 clear_env

check_env Check that the active Python environment is setup for slendr

Description

This function inspects the Python environment which has been activated by the reticulate package
and prints the versions of all slendr Python dependencies to the console.

Usage

check_env(quiet = FALSE)

Arguments

quiet Should a log message be printed? If FALSE, only a logical value is returned
(invisibly).

Value

Either TRUE (slendr Python environment is present) or FALSE (slendr Python environment is not
present).

Examples

check_env()

clear_env Remove the automatically created slendr Python environment

Description

Remove the automatically created slendr Python environment

Usage

clear_env(force = FALSE)

Arguments

force Ask before deleting the environment?

Value

No return value, called for side effects

compile_model 7

compile_model Compile the spatial demographic model

Description

First, compiles the vectorized population spatial maps into a series of binary raster PNG files, which
is the format that SLiM understands and uses it to define population boundaries. Then extracts the
demographic model defined by the user (i.e. population divergences and gene flow events) into a
series of tables which are later used by the built-in SLiM script to program the timing of simulation
events.

Usage

compile_model(
populations,
generation_time,
path = NULL,
resolution = NULL,
competition = NULL,
mating = NULL,
dispersal = NULL,
gene_flow = list(),
overwrite = FALSE,
force = FALSE,
simulation_length = NULL,
direction = NULL,
slim_script = NULL,
description = "",
sim_length = NULL

)

Arguments

populations Object(s) of the slendr_pop class (multiple objects need to be specified in a
list)

generation_time

Generation time (in model time units)

path Output directory for the model configuration files which will be loaded by the
backend SLiM script. If NULL, model configuration files will be saved to a tem-
porary directory.

resolution How many distance units per pixel?
competition, mating

Maximum spatial competition and mating choice distance

dispersal Standard deviation of the normal distribution of the parent-offspring distance

gene_flow Gene flow events generated by the gene_flow function (either a list of data.frame
objects in the format defined by the gene_flow function, or a single data.frame)

8 compile_model

overwrite Completely delete the specified directory, in case it already exists, and create a
new one?

force Force a deletion of the model directory if it is already present? Useful for non-
interactive uses. In an interactive mode, the user is asked to confirm the deletion
manually.

simulation_length

Total length of the simulation (required for forward time models, optional for
models specified in backward time units which by default run to "the present
time")

direction Intended direction of time. Under normal circumstances this parameter is in-
ferred from the model and does not need to be set manually.

slim_script Path to a SLiM script to be used for executing the model (by default, a bundled
backend script will be used). If NULL, the SLiM script bundled with slendr will
be used.

description Optional short description of the model

sim_length Deprecated. Use simulation_length instead.

Value

Compiled slendr_model model object which encapsulates all information about the specified model
(which populations are involved, when and how much gene flow should occur, what is the spatial
resolution of a map, and what spatial dispersal and mating parameters should be used in a SLiM
simulation, if applicable)

Examples

spatial definitions ---

create a blank abstract world 1000x1000 distance units in size
map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

create a circular population with the center of a population boundary at
[200, 800] and a radius of 100 distance units, 1000 individuals at time 1
occupying a map just specified
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100)

printing a population object to a console shows a brief summary
pop1

create another population occupying a polygon range, splitting from pop1
at a given time point (note that specifying a map is not necessary because
it is "inherited" from the parent)
pop2 <- population("pop2", N = 100, time = 50, parent = pop1,

polygon = list(c(100, 100), c(320, 30), c(500, 200),
c(500, 400), c(300, 450), c(100, 400)))

pop3 <- population("pop3", N = 200, time = 80, parent = pop2,
center = c(800, 800), radius = 200)

distance 9

move "pop1" to another location along a specified trajectory and saved the
resulting object to the same variable (the number of intermediate spatial
snapshots can be also determined automatically by leaving out the
`snapshots = ` argument)
pop1_moved <- move(pop1, start = 100, end = 200, snapshots = 6,

trajectory = list(c(600, 820), c(800, 400), c(800, 150)))
pop1_moved

many slendr functions are pipe-friendly, making it possible to construct
pipelines which construct entire history of a population
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100) %>%
move(start = 100, end = 200, snapshots = 6,

trajectory = list(c(400, 800), c(600, 700), c(800, 400), c(800, 150))) %>%
set_range(time = 300, polygon = list(

c(400, 0), c(1000, 0), c(1000, 600), c(900, 400), c(800, 250),
c(600, 100), c(500, 50))

)

population ranges can expand by a given distance in all directions
pop2 <- expand_range(pop2, by = 200, start = 50, end = 150, snapshots = 3)

we can check the positions of all populations interactively by plotting their
ranges together on a single map
plot_map(pop1, pop2, pop3)

gene flow events --

individual gene flow events can be saved to a list
gf <- list(

gene_flow(from = pop1, to = pop3, start = 150, end = 200, rate = 0.15),
gene_flow(from = pop1, to = pop2, start = 300, end = 330, rate = 0.25)

)

compilation ---

compile model components in a serialized form to dist, returning a single
slendr model object (in practice, the resolution should be smaller)
model <- compile_model(

populations = list(pop1, pop2, pop3), generation_time = 1,
resolution = 100, simulation_length = 500,
competition = 5, mating = 5, dispersal = 1

)

distance Calculate the distance between a pair of spatial boundaries

Description

Calculate the distance between a pair of spatial boundaries

10 expand_range

Usage

distance(x, y, measure, time = NULL)

Arguments

x, y Objects of the class slendr
measure How to measure distance? This can be either 'border' (distance between the

borders of x and y) or 'center' (distance between their centroids).
time Time closest to the spatial maps of x and y if they represent slendr_pop popu-

lation boundaries (ignored for general slendr_region objects)

Value

If the coordinate reference system was specified, a distance in projected units (i.e. meters) is re-
turned. Otherwise the function returns a normal Euclidean distance.

Examples

create two regions on a blank abstract landscape
region_a <- region("A", center = c(20, 50), radius = 20)
region_b <- region("B", center = c(80, 50), radius = 20)
plot_map(region_a, region_b)

compute the distance between the centers of both population ranges
distance(region_a, region_b, measure = "center")

compute the distance between the borders of both population ranges
distance(region_a, region_b, measure = "border")

expand_range Expand the population range

Description

Expands the spatial population range by a specified distance in a given time-window

Usage

expand_range(
pop,
by,
end,
start,
overlap = 0.8,
snapshots = NULL,
polygon = NULL,
lock = FALSE,
verbose = TRUE

)

expand_range 11

Arguments

pop Object of the class slendr_pop

by How many units of distance to expand by?

start, end When does the expansion start/end?

overlap Minimum overlap between subsequent spatial boundaries

snapshots The number of intermediate snapshots (overrides the overlap parameter)

polygon Geographic region to restrict the expansion to

lock Maintain the same density of individuals. If FALSE (the default), the number of
individuals in the population will not change. If TRUE, the number of individuals
simulated will be changed (increased or decreased) appropriately, to match the
new population range area.

verbose Report on the progress of generating intermediate spatial boundaries?

Value

Object of the class slendr_pop, which contains population parameters such as name, time of ap-
pearance in the simulation, parent population (if any), and its spatial parameters such as map and
spatial boundary.

Examples

spatial definitions ---

create a blank abstract world 1000x1000 distance units in size
map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

create a circular population with the center of a population boundary at
[200, 800] and a radius of 100 distance units, 1000 individuals at time 1
occupying a map just specified
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100)

printing a population object to a console shows a brief summary
pop1

create another population occupying a polygon range, splitting from pop1
at a given time point (note that specifying a map is not necessary because
it is "inherited" from the parent)
pop2 <- population("pop2", N = 100, time = 50, parent = pop1,

polygon = list(c(100, 100), c(320, 30), c(500, 200),
c(500, 400), c(300, 450), c(100, 400)))

pop3 <- population("pop3", N = 200, time = 80, parent = pop2,
center = c(800, 800), radius = 200)

move "pop1" to another location along a specified trajectory and saved the
resulting object to the same variable (the number of intermediate spatial
snapshots can be also determined automatically by leaving out the
`snapshots = ` argument)

12 explore_model

pop1_moved <- move(pop1, start = 100, end = 200, snapshots = 6,
trajectory = list(c(600, 820), c(800, 400), c(800, 150)))

pop1_moved

many slendr functions are pipe-friendly, making it possible to construct
pipelines which construct entire history of a population
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100) %>%
move(start = 100, end = 200, snapshots = 6,

trajectory = list(c(400, 800), c(600, 700), c(800, 400), c(800, 150))) %>%
set_range(time = 300, polygon = list(

c(400, 0), c(1000, 0), c(1000, 600), c(900, 400), c(800, 250),
c(600, 100), c(500, 50))

)

population ranges can expand by a given distance in all directions
pop2 <- expand_range(pop2, by = 200, start = 50, end = 150, snapshots = 3)

we can check the positions of all populations interactively by plotting their
ranges together on a single map
plot_map(pop1, pop2, pop3)

gene flow events --

individual gene flow events can be saved to a list
gf <- list(

gene_flow(from = pop1, to = pop3, start = 150, end = 200, rate = 0.15),
gene_flow(from = pop1, to = pop2, start = 300, end = 330, rate = 0.25)

)

compilation ---

compile model components in a serialized form to dist, returning a single
slendr model object (in practice, the resolution should be smaller)
model <- compile_model(

populations = list(pop1, pop2, pop3), generation_time = 1,
resolution = 100, simulation_length = 500,
competition = 5, mating = 5, dispersal = 1

)

explore_model Open an interactive browser of the spatial model

Description

Open an interactive browser of the spatial model

Usage

explore_model(model)

gene_flow 13

Arguments

model Compiled slendr_model model object

Value

No return value, called in order to start an interactive browser-based interface to explore the dynam-
ics of a slendr model

gene_flow Define a gene-flow event between two populations

Description

Define a gene-flow event between two populations

Usage

gene_flow(from, to, rate, start, end, overlap = TRUE)

Arguments

from, to Objects of the class slendr_pop

rate Scalar value in the range (0, 1] specifying the proportion of migration over given
time period

start, end Start and end of the gene-flow event

overlap Require spatial overlap between admixing populations? (default TRUE)

Value

Object of the class data.frame containing parameters of the specified gene-flow event.

Examples

spatial definitions ---

create a blank abstract world 1000x1000 distance units in size
map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

create a circular population with the center of a population boundary at
[200, 800] and a radius of 100 distance units, 1000 individuals at time 1
occupying a map just specified
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100)

printing a population object to a console shows a brief summary
pop1

create another population occupying a polygon range, splitting from pop1

14 gene_flow

at a given time point (note that specifying a map is not necessary because
it is "inherited" from the parent)
pop2 <- population("pop2", N = 100, time = 50, parent = pop1,

polygon = list(c(100, 100), c(320, 30), c(500, 200),
c(500, 400), c(300, 450), c(100, 400)))

pop3 <- population("pop3", N = 200, time = 80, parent = pop2,
center = c(800, 800), radius = 200)

move "pop1" to another location along a specified trajectory and saved the
resulting object to the same variable (the number of intermediate spatial
snapshots can be also determined automatically by leaving out the
`snapshots = ` argument)
pop1_moved <- move(pop1, start = 100, end = 200, snapshots = 6,

trajectory = list(c(600, 820), c(800, 400), c(800, 150)))
pop1_moved

many slendr functions are pipe-friendly, making it possible to construct
pipelines which construct entire history of a population
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100) %>%
move(start = 100, end = 200, snapshots = 6,

trajectory = list(c(400, 800), c(600, 700), c(800, 400), c(800, 150))) %>%
set_range(time = 300, polygon = list(

c(400, 0), c(1000, 0), c(1000, 600), c(900, 400), c(800, 250),
c(600, 100), c(500, 50))

)

population ranges can expand by a given distance in all directions
pop2 <- expand_range(pop2, by = 200, start = 50, end = 150, snapshots = 3)

we can check the positions of all populations interactively by plotting their
ranges together on a single map
plot_map(pop1, pop2, pop3)

gene flow events --

individual gene flow events can be saved to a list
gf <- list(

gene_flow(from = pop1, to = pop3, start = 150, end = 200, rate = 0.15),
gene_flow(from = pop1, to = pop2, start = 300, end = 330, rate = 0.25)

)

compilation ---

compile model components in a serialized form to dist, returning a single
slendr model object (in practice, the resolution should be smaller)
model <- compile_model(

populations = list(pop1, pop2, pop3), generation_time = 1,
resolution = 100, simulation_length = 500,
competition = 5, mating = 5, dispersal = 1

)

join 15

join Merge two spatial slendr objects into one

Description

Merge two spatial slendr objects into one

Usage

join(x, y, name = NULL)

Arguments

x Object of the class slendr

y Object of the class slendr

name Optional name of the resulting geographic region. If missing, name will be
constructed from the function arguments.

Value

Object of the class slendr_region which encodes a standard spatial object of the class sf with
several additional attributes (most importantly a corresponding slendr_map object, if applicable).

Examples

create a blank abstract world 1000x1000 distance units in size
blank_map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

it is possible to construct custom landscapes (islands, corridors, etc.)
island1 <- region("island1", polygon = list(c(10, 30), c(50, 30), c(40, 50), c(0, 40)))
island2 <- region("island2", polygon = list(c(60, 60), c(80, 40), c(100, 60), c(80, 80)))
island3 <- region("island3", center = c(20, 80), radius = 10)
archipelago <- island1 %>% join(island2) %>% join(island3)

custom_map <- world(xrange = c(1, 100), c(1, 100), landscape = archipelago)

real Earth landscapes can be defined using freely-available Natural Earth
project data and with the possibility to specify an appropriate Coordinate
Reference System, such as this example of a map of Europe

real_map <- world(xrange = c(-15, 40), yrange = c(30, 60), crs = "EPSG:3035")

16 move

move Move the population to a new location in a given amount of time

Description

This function defines a displacement of a population along a given trajectory in a given time frame

Usage

move(
pop,
trajectory,
end,
start,
overlap = 0.8,
snapshots = NULL,
verbose = TRUE

)

Arguments

pop Object of the class slendr_pop

trajectory List of two-dimensional vectors (longitude, latitude) specifying the migration
trajectory

start, end Start/end points of the population migration

overlap Minimum overlap between subsequent spatial boundaries

snapshots The number of intermediate snapshots (overrides the overlap parameter)

verbose Show the progress of searching through the number of sufficient snapshots?

Value

Object of the class slendr_pop, which contains population parameters such as name, time of ap-
pearance in the simulation, parent population (if any), and its spatial parameters such as map and
spatial boundary.

Examples

spatial definitions ---

create a blank abstract world 1000x1000 distance units in size
map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

create a circular population with the center of a population boundary at
[200, 800] and a radius of 100 distance units, 1000 individuals at time 1
occupying a map just specified
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100)

move 17

printing a population object to a console shows a brief summary
pop1

create another population occupying a polygon range, splitting from pop1
at a given time point (note that specifying a map is not necessary because
it is "inherited" from the parent)
pop2 <- population("pop2", N = 100, time = 50, parent = pop1,

polygon = list(c(100, 100), c(320, 30), c(500, 200),
c(500, 400), c(300, 450), c(100, 400)))

pop3 <- population("pop3", N = 200, time = 80, parent = pop2,
center = c(800, 800), radius = 200)

move "pop1" to another location along a specified trajectory and saved the
resulting object to the same variable (the number of intermediate spatial
snapshots can be also determined automatically by leaving out the
`snapshots = ` argument)
pop1_moved <- move(pop1, start = 100, end = 200, snapshots = 6,

trajectory = list(c(600, 820), c(800, 400), c(800, 150)))
pop1_moved

many slendr functions are pipe-friendly, making it possible to construct
pipelines which construct entire history of a population
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100) %>%
move(start = 100, end = 200, snapshots = 6,

trajectory = list(c(400, 800), c(600, 700), c(800, 400), c(800, 150))) %>%
set_range(time = 300, polygon = list(

c(400, 0), c(1000, 0), c(1000, 600), c(900, 400), c(800, 250),
c(600, 100), c(500, 50))

)

population ranges can expand by a given distance in all directions
pop2 <- expand_range(pop2, by = 200, start = 50, end = 150, snapshots = 3)

we can check the positions of all populations interactively by plotting their
ranges together on a single map
plot_map(pop1, pop2, pop3)

gene flow events --

individual gene flow events can be saved to a list
gf <- list(

gene_flow(from = pop1, to = pop3, start = 150, end = 200, rate = 0.15),
gene_flow(from = pop1, to = pop2, start = 300, end = 330, rate = 0.25)

)

compilation ---

compile model components in a serialized form to dist, returning a single
slendr model object (in practice, the resolution should be smaller)
model <- compile_model(

18 msprime

populations = list(pop1, pop2, pop3), generation_time = 1,
resolution = 100, simulation_length = 500,
competition = 5, mating = 5, dispersal = 1

)

msprime Run a slendr model in msprime

Description

This function will execute a built-in msprime script and run a compiled slendr demographic model.

Usage

msprime(
model,
sequence_length,
recombination_rate,
samples = NULL,
output = NULL,
random_seed = NULL,
load = TRUE,
verbose = FALSE,
debug = FALSE,
sampling = NULL

)

Arguments

model Model object created by the compile function
sequence_length

Total length of the simulated sequence (in base-pairs)
recombination_rate

Recombination rate of the simulated sequence (in recombinations per basepair
per generation)

samples A data frame of times at which a given number of individuals should be remem-
bered in the tree-sequence (see schedule_sampling for a function that can gen-
erate the sampling schedule in the correct format). If missing, only individuals
present at the end of the simulation will be recorded in the tree-sequence output
file.

output Path to the output tree-sequence file. If NULL (the default), tree sequence will be
saved to a temporary file.

random_seed Random seed (if missing, SLiM’s own seed will be used)

load Should the final tree sequence be immediately loaded and returned? Default is
TRUE. The alternative (FALSE) is useful when a tree-sequence file is written to a
custom location to be loaded at a later point.

overlap 19

verbose Write the output log to the console (default FALSE)?

debug Write msprime’s debug log to the console (default FALSE)?

sampling Deprecated in favor of samples.

Value

A tree-sequence object loaded via Python-R reticulate interface function ts_load (internally repre-
sented by the Python object tskit.trees.TreeSequence)

Examples

load an example model
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

afr and eur objects would normally be created before slendr model compilation,
but here we take them out of the model object already compiled for this
example (in a standard slendr simulation pipeline, this wouldn't be necessary)
afr <- model$populations[["AFR"]]
eur <- model$populations[["EUR"]]
chimp <- model$populations[["CH"]]

schedule the sampling of a couple of ancient and present-day individuals
given model at 20 ky, 10 ky, 5ky ago and at present-day (time 0)
modern_samples <- schedule_sampling(model, times = 0, list(afr, 10), list(eur, 100), list(chimp, 1))
ancient_samples <- schedule_sampling(model, times = c(40000, 30000, 20000, 10000), list(eur, 1))

sampling schedules are just data frames and can be merged easily
samples <- rbind(modern_samples, ancient_samples)

run a simulation using the msprime back end from a compiled slendr model object
ts <- msprime(model, sequence_length = 1e5, recombination_rate = 0, samples = samples)

automatic loading of a simulated output can be prevented by `load = FALSE`, which can be
useful when a custom path to a tree-sequence output is given for later downstream analyses
output_file <- tempfile(fileext = ".trees")
msprime(model, sequence_length = 1e5, recombination_rate = 0, samples = samples,

output = output_file, load = FALSE, random_seed = 42)
... at a later stage:
ts <- ts_load(output_file, model)

summary(ts)

overlap Generate the overlap of two slendr objects

Description

Generate the overlap of two slendr objects

20 plot_map

Usage

overlap(x, y, name = NULL)

Arguments

x Object of the class slendr

y Object of the class slendr

name Optional name of the resulting geographic region. If missing, name will be
constructed from the function arguments.

Value

Object of the class slendr_region which encodes a standard spatial object of the class sf with
several additional attributes (most importantly a corresponding slendr_map object, if applicable).

plot_map Plot slendr geographic features on a map

Description

Plots objects of the three slendr spatial classes (slendr_map, slendr_region, and slendr_pop).

Usage

plot_map(
...,
time = NULL,
gene_flow = FALSE,
graticules = "original",
intersect = TRUE,
show_map = TRUE,
title = NULL,
interpolated_maps = NULL

)

Arguments

... Objects of classes slendr_map, slendr_region, or slendr_pop

time Plot a concrete time point

gene_flow Indicate geneflow events with an arrow

graticules Plot graticules in the original Coordinate Reference System (such as longitude-
latitude), or in the internal CRS (such as meters)?

intersect Intersect the population boundaries against landscape and other geographic bound-
aries (default TRUE)?

show_map Show the underlying world map

plot_model 21

title Title of the plot

interpolated_maps

Interpolated spatial boundaries for all populations in all time points (this is only
used for plotting using the explore shiny app)

Value

A ggplot2 object with the visualized slendr map

plot_model Plot demographic history encoded in a slendr model

Description

Plot demographic history encoded in a slendr model

Usage

plot_model(model, sizes = TRUE, proportions = FALSE, log = FALSE)

Arguments

model Compiled slendr_model model object

sizes Should population size changes be visualized?

proportions Should gene flow proportions be visualized (FALSE by default to prevent clutter-
ing and overplotting)

log Should the y-axis be plotted on a log scale? Useful for models over very long
time-scales.

Value

A ggplot2 object with the visualized slendr model

Examples

load an example model with an already simulated tree sequence
path <- system.file("extdata/models/introgression", package = "slendr")
model <- read_model(path)

plot_model(model, sizes = FALSE, log = TRUE)

22 population

population Define a population

Description

Defines the parameters of a population (non-spatial and spatial).

Usage

population(
name,
time,
N,
parent = "ancestor",
map = FALSE,
center = NULL,
radius = NULL,
polygon = NULL,
remove = NULL,
intersect = TRUE,
competition = NA,
mating = NA,
dispersal = NA,
dispersal_fun = NULL,
aquatic = FALSE

)

Arguments

name Name of the population

time Time of the population’s first appearance

N Number of individuals at the time of first appearance

parent Parent population object or "ancestor" (indicating that the population does not
have an ancestor, and that it is the first population in its "lineage")

map Object of the type slendr_map which defines the world context (created using
the world function). If the value FALSE is provided, a non-spatial model will be
run.

center Two-dimensional vector specifying the center of the circular range

radius Radius of the circular range

polygon List of vector pairs, defining corners of the polygon range or a geographic re-
gion of the class slendr_region from which the polygon coordinates will be
extracted (see the region() function)

remove Time at which the population should be removed

intersect Intersect the population’s boundaries with landscape features?

population 23

competition, mating

Maximum spatial competition and mating choice distance

dispersal Standard deviation of the normal distribution of the distance that offspring dis-
perses from its parent

dispersal_fun Distribution function governing the dispersal of offspring. One of "normal",
"uniform", "cauchy", "exponential", or "brownian" (in which vertical and hori-
zontal displacements are drawn from a normal distribution independently).

aquatic Is the species aquatic (FALSE by default, i.e. terrestrial species)?

Details

There are four ways to specify a spatial boundary: i) circular range specified using a center coordi-
nate and a radius, ii) polygon specified as a list of two-dimensional vector coordinates, iii) polygon
as in ii), but defined (and named) using the region function, iv) with just a world map specified
(circular or polygon range parameters set to the default NULL value), the population will be allowed
to occupy the entire landscape.

Value

Object of the class slendr_pop, which contains population parameters such as name, time of ap-
pearance in the simulation, parent population (if any), and its spatial parameters such as map and
spatial boundary.

Examples

spatial definitions ---

create a blank abstract world 1000x1000 distance units in size
map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

create a circular population with the center of a population boundary at
[200, 800] and a radius of 100 distance units, 1000 individuals at time 1
occupying a map just specified
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100)

printing a population object to a console shows a brief summary
pop1

create another population occupying a polygon range, splitting from pop1
at a given time point (note that specifying a map is not necessary because
it is "inherited" from the parent)
pop2 <- population("pop2", N = 100, time = 50, parent = pop1,

polygon = list(c(100, 100), c(320, 30), c(500, 200),
c(500, 400), c(300, 450), c(100, 400)))

pop3 <- population("pop3", N = 200, time = 80, parent = pop2,
center = c(800, 800), radius = 200)

move "pop1" to another location along a specified trajectory and saved the
resulting object to the same variable (the number of intermediate spatial

24 print.slendr_pop

snapshots can be also determined automatically by leaving out the
`snapshots = ` argument)
pop1_moved <- move(pop1, start = 100, end = 200, snapshots = 6,

trajectory = list(c(600, 820), c(800, 400), c(800, 150)))
pop1_moved

many slendr functions are pipe-friendly, making it possible to construct
pipelines which construct entire history of a population
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100) %>%
move(start = 100, end = 200, snapshots = 6,

trajectory = list(c(400, 800), c(600, 700), c(800, 400), c(800, 150))) %>%
set_range(time = 300, polygon = list(

c(400, 0), c(1000, 0), c(1000, 600), c(900, 400), c(800, 250),
c(600, 100), c(500, 50))

)

population ranges can expand by a given distance in all directions
pop2 <- expand_range(pop2, by = 200, start = 50, end = 150, snapshots = 3)

we can check the positions of all populations interactively by plotting their
ranges together on a single map
plot_map(pop1, pop2, pop3)

gene flow events --

individual gene flow events can be saved to a list
gf <- list(

gene_flow(from = pop1, to = pop3, start = 150, end = 200, rate = 0.15),
gene_flow(from = pop1, to = pop2, start = 300, end = 330, rate = 0.25)

)

compilation ---

compile model components in a serialized form to dist, returning a single
slendr model object (in practice, the resolution should be smaller)
model <- compile_model(

populations = list(pop1, pop2, pop3), generation_time = 1,
resolution = 100, simulation_length = 500,
competition = 5, mating = 5, dispersal = 1

)

print.slendr_pop Print a short summary of a slendr object

Description

All spatial objects in the slendr package are internally represented as Simple Features (sf) objects.
This fact is hidden in most circumstances this, as the goal of the slendr package is to provide func-
tionality at a much higher level (population boundaries, geographic regions, instead of individual

print.slendr_ts 25

polygons and other "low-level" geometric objects), without the users having to worry about low-
level details involved in handling spatial geometries. However, the full sf object representation can
be always printed by calling x[].

Usage

S3 method for class 'slendr_pop'
print(x, ...)

S3 method for class 'slendr_region'
print(x, ...)

S3 method for class 'slendr_map'
print(x, ...)

S3 method for class 'slendr_model'
print(x, ...)

S3 method for class 'slendr_nodes'
print(x, ...)

Arguments

x Object of a class slendr (either slendr_pop, slendr_map, slendr_region, or
slendr_table)

... Additional arguments passed to print

Value

No return value, used only for printing

print.slendr_ts Print tskit’s summary table of the Python tree-sequence object

Description

Print tskit’s summary table of the Python tree-sequence object

Usage

S3 method for class 'slendr_ts'
print(x, ...)

Arguments

x Tree object of the class slendr_phylo

... Additional arguments normally passed to print (not used in this case)

26 region

Value

No return value, simply prints the tskit summary table to the terminal

read_model Read a previously serialized model configuration

Description

Reads all configuration tables and other model data from a location where it was previously com-
piled to by the compile function.

Usage

read_model(path)

Arguments

path Directory with all required configuration files

Value

Compiled slendr_model model object which encapsulates all information about the specified model
(which populations are involved, when and how much gene flow should occur, what is the spatial
resolution of a map, and what spatial dispersal and mating parameters should be used in a SLiM
simulation, if applicable)

Examples

load an example model with an already simulated tree sequence
path <- system.file("extdata/models/introgression", package = "slendr")
model <- read_model(path)

plot_model(model, sizes = FALSE, log = TRUE)

region Define a geographic region

Description

Creates a geographic region (a polygon) on a given map and gives it a name. This can be used to
define objects which can be reused in multiple places in a slendr script (such as region arguments
of population) without having to repeatedly define polygon coordinates.

Usage

region(name = NULL, map = NULL, center = NULL, radius = NULL, polygon = NULL)

reproject 27

Arguments

name Name of the geographic region

map Object of the type sf which defines the map

center Two-dimensional vector specifying the center of the circular range

radius Radius of the circular range

polygon List of vector pairs, defining corners of the polygon range or a geographic re-
gion of the class slendr_region from which the polygon coordinates will be
extracted (see the region() function)

Value

Object of the class slendr_region which encodes a standard spatial object of the class sf with
several additional attributes (most importantly a corresponding slendr_map object, if applicable).

Examples

create a blank abstract world 1000x1000 distance units in size
blank_map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

it is possible to construct custom landscapes (islands, corridors, etc.)
island1 <- region("island1", polygon = list(c(10, 30), c(50, 30), c(40, 50), c(0, 40)))
island2 <- region("island2", polygon = list(c(60, 60), c(80, 40), c(100, 60), c(80, 80)))
island3 <- region("island3", center = c(20, 80), radius = 10)
archipelago <- island1 %>% join(island2) %>% join(island3)

custom_map <- world(xrange = c(1, 100), c(1, 100), landscape = archipelago)

real Earth landscapes can be defined using freely-available Natural Earth
project data and with the possibility to specify an appropriate Coordinate
Reference System, such as this example of a map of Europe

real_map <- world(xrange = c(-15, 40), yrange = c(30, 60), crs = "EPSG:3035")

reproject Reproject coordinates between coordinate systems

Description

Converts between coordinates on a compiled raster map (i.e. pixel units) and different Geographic
Coordinate Systems (CRS).

Usage

reproject(
from,
to,
x = NULL,

28 resize

y = NULL,
coords = NULL,
model = NULL,
add = FALSE,
input_prefix = "",
output_prefix = "new"

)

Arguments

from, to Either a CRS code accepted by GDAL, a valid integer EPSG value, an object of
class crs, the value "raster" (converting from/to pixel coordinates), or "world"
(converting from/to whatever CRS is set for the underlying map)

x, y Coordinates in two dimensions (if missing, coordinates are expected to be in the
data.frame specified in the coords parameter as columns "x" and "y")

coords data.frame-like object with coordinates in columns "x" and "y"

model Object of the class slendr_model

add Add column coordinates to the input data.frame coords (coordinates otherwise
returned as a separate object)?

input_prefix, output_prefix

Input and output prefixes of data frame columns with spatial coordinates

Value

Data.frame with converted two-dimensional coordinates given as input

Examples

lon_lat_df <- data.frame(x = c(30, 0, 15), y = c(60, 40, 10))

reproject(
from = "epsg:4326",
to = "epsg:3035",
coords = lon_lat_df,
add = TRUE # add converted [lon,lat] coordinates as a new column

)

resize Change the population size

Description

Resizes the population starting from the current value of N individuals to the specified value

Usage

resize(pop, N, how, time, end = NULL)

resize 29

Arguments

pop Object of the class slendr_pop

N Population size after the change

how How to change the population size (options are "step" or "exponential")

time Time of the population size change

end End of the population size change period (used for exponential change events)

Details

In the case of exponential size change, if the final N is larger than the current size, the population
will be exponentially growing over the specified time period until it reaches N individuals. If N is
smaller, the population will shrink exponentially.

Value

Object of the class slendr_pop, which contains population parameters such as name, time of ap-
pearance in the simulation, parent population (if any), and its spatial parameters such as map and
spatial boundary.

Examples

spatial definitions ---

create a blank abstract world 1000x1000 distance units in size
map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

create a circular population with the center of a population boundary at
[200, 800] and a radius of 100 distance units, 1000 individuals at time 1
occupying a map just specified
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100)

printing a population object to a console shows a brief summary
pop1

create another population occupying a polygon range, splitting from pop1
at a given time point (note that specifying a map is not necessary because
it is "inherited" from the parent)
pop2 <- population("pop2", N = 100, time = 50, parent = pop1,

polygon = list(c(100, 100), c(320, 30), c(500, 200),
c(500, 400), c(300, 450), c(100, 400)))

pop3 <- population("pop3", N = 200, time = 80, parent = pop2,
center = c(800, 800), radius = 200)

move "pop1" to another location along a specified trajectory and saved the
resulting object to the same variable (the number of intermediate spatial
snapshots can be also determined automatically by leaving out the
`snapshots = ` argument)
pop1_moved <- move(pop1, start = 100, end = 200, snapshots = 6,

30 schedule_sampling

trajectory = list(c(600, 820), c(800, 400), c(800, 150)))
pop1_moved

many slendr functions are pipe-friendly, making it possible to construct
pipelines which construct entire history of a population
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100) %>%
move(start = 100, end = 200, snapshots = 6,

trajectory = list(c(400, 800), c(600, 700), c(800, 400), c(800, 150))) %>%
set_range(time = 300, polygon = list(

c(400, 0), c(1000, 0), c(1000, 600), c(900, 400), c(800, 250),
c(600, 100), c(500, 50))

)

population ranges can expand by a given distance in all directions
pop2 <- expand_range(pop2, by = 200, start = 50, end = 150, snapshots = 3)

we can check the positions of all populations interactively by plotting their
ranges together on a single map
plot_map(pop1, pop2, pop3)

gene flow events --

individual gene flow events can be saved to a list
gf <- list(

gene_flow(from = pop1, to = pop3, start = 150, end = 200, rate = 0.15),
gene_flow(from = pop1, to = pop2, start = 300, end = 330, rate = 0.25)

)

compilation ---

compile model components in a serialized form to dist, returning a single
slendr model object (in practice, the resolution should be smaller)
model <- compile_model(

populations = list(pop1, pop2, pop3), generation_time = 1,
resolution = 100, simulation_length = 500,
competition = 5, mating = 5, dispersal = 1

)

schedule_sampling Define sampling events for a given set of populations

Description

Schedule sampling events at specified times and, optionally, a given set of locations on a landscape

Usage

schedule_sampling(model, times, ..., locations = NULL, strict = FALSE)

schedule_sampling 31

Arguments

model Object of the class slendr_model

times Integer vector of times (in model time units) at which to schedule remembering
of individuals in the tree-sequence

... Lists of two elements (slendr_pop population object-<number of individuals to
sample), representing from which populations should how many individuals be
remembered at times given by times

locations List of vector pairs, defining two-dimensional coordinates of locations at which
the closest number of individuals from given populations should be sampled. If
NULL (the default), individuals will be sampled randomly throughout their spatial
boundary.

strict Should any occurence of a population not being present at a given time result in
an error? Default is FALSE, meaning that invalid sampling times for any popula-
tions will be quietly ignored.

Details

If both times and locations are given, the the sampling will be scheduled on each specified location
in each given time-point. Note that for the time-being, in the interest of simplicity, no sanity checks
are performed on the locations given except the restriction that the sampling points must fall within
the bounding box around the simulated world map. Other than that, slendr will simply instruct
its SLiM backend script to sample individuals as close to the sampling points given as possible,
regardless of whether those points lie within a population spatial boundary at that particular moment
of time.

Value

Data frame with three columns: time of sampling, population to sample from, how many individuals
to sample

Examples

load an example model with an already simulated tree sequence
path <- system.file("extdata/models/introgression", package = "slendr")
model <- read_model(path)

afr and eur objects would normally be created before slendr model compilation,
but here we take them out of the model object already compiled for this
example (in a standard slendr simulation pipeline, this wouldn't be necessary)
afr <- model$populations[["AFR"]]
eur <- model$populations[["EUR"]]

schedule the recording of 10 African and 100 European individuals from a
given model at 20 ky, 10 ky, 5ky ago and at present-day (time 0)
schedule <- schedule_sampling(

model, times = c(20000, 10000, 5000, 0),
list(afr, 10), list(eur, 100)

)

32 set_dispersal

the result of `schedule_sampling` is a simple data frame (note that the locations
of sampling locations have `NA` values because the model is non-spatial)
schedule

setup_env Setup a dedicated Python virtual environment for slendr

Description

This function will automatically download a Python miniconda distribution dedicated to an R-
Python interface. It will also create a slendr-specific Python environment with all the required
Python dependencies.

Usage

setup_env(quiet = FALSE, agree = FALSE, pip = NULL)

Arguments

quiet Should informative messages be printed to the console? Default is FALSE.

agree Automatically agree to all questions?

pip Should pip be used instead of conda for installing slendr’s Python dependencies?
Note that this will still use the conda distribution to install Python itself, but will
change the repository from which slendr will install its Python dependencies.
Unless explicitly set to TRUE, Python dependencies will be installed from conda
repositories by default, expect for the case of osx-arm64 Mac architecture, for
which conda dependencies are broken.

Value

No return value, called for side effects

set_dispersal Change dispersal parameters

Description

Changes either the competition interactive distance, mating choice distance, or the dispersal of
offspring from its parent

set_dispersal 33

Usage

set_dispersal(
pop,
time,
competition = NA,
mating = NA,
dispersal = NA,
dispersal_fun = NULL

)

Arguments

pop Object of the class slendr_pop

time Time of the population size change
competition, mating

Maximum spatial competition and mating choice distance

dispersal Standard deviation of the normal distribution of the distance that offspring dis-
perses from its parent

dispersal_fun Distribution function governing the dispersal of offspring. One of "normal",
"uniform", "cauchy", "exponential", or "brownian" (in which vertical and hori-
zontal displacements are drawn from a normal distribution independently).

Value

Object of the class slendr_pop, which contains population parameters such as name, time of ap-
pearance in the simulation, parent population (if any), and its spatial parameters such as map and
spatial boundary.

Examples

spatial definitions ---

create a blank abstract world 1000x1000 distance units in size
map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

create a circular population with the center of a population boundary at
[200, 800] and a radius of 100 distance units, 1000 individuals at time 1
occupying a map just specified
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100)

printing a population object to a console shows a brief summary
pop1

create another population occupying a polygon range, splitting from pop1
at a given time point (note that specifying a map is not necessary because
it is "inherited" from the parent)
pop2 <- population("pop2", N = 100, time = 50, parent = pop1,

polygon = list(c(100, 100), c(320, 30), c(500, 200),

34 set_range

c(500, 400), c(300, 450), c(100, 400)))

pop3 <- population("pop3", N = 200, time = 80, parent = pop2,
center = c(800, 800), radius = 200)

move "pop1" to another location along a specified trajectory and saved the
resulting object to the same variable (the number of intermediate spatial
snapshots can be also determined automatically by leaving out the
`snapshots = ` argument)
pop1_moved <- move(pop1, start = 100, end = 200, snapshots = 6,

trajectory = list(c(600, 820), c(800, 400), c(800, 150)))
pop1_moved

many slendr functions are pipe-friendly, making it possible to construct
pipelines which construct entire history of a population
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100) %>%
move(start = 100, end = 200, snapshots = 6,

trajectory = list(c(400, 800), c(600, 700), c(800, 400), c(800, 150))) %>%
set_range(time = 300, polygon = list(

c(400, 0), c(1000, 0), c(1000, 600), c(900, 400), c(800, 250),
c(600, 100), c(500, 50))

)

population ranges can expand by a given distance in all directions
pop2 <- expand_range(pop2, by = 200, start = 50, end = 150, snapshots = 3)

we can check the positions of all populations interactively by plotting their
ranges together on a single map
plot_map(pop1, pop2, pop3)

gene flow events --

individual gene flow events can be saved to a list
gf <- list(

gene_flow(from = pop1, to = pop3, start = 150, end = 200, rate = 0.15),
gene_flow(from = pop1, to = pop2, start = 300, end = 330, rate = 0.25)

)

compilation ---

compile model components in a serialized form to dist, returning a single
slendr model object (in practice, the resolution should be smaller)
model <- compile_model(

populations = list(pop1, pop2, pop3), generation_time = 1,
resolution = 100, simulation_length = 500,
competition = 5, mating = 5, dispersal = 1

)

set_range Update the population range

set_range 35

Description

This function allows a more manual control of spatial map changes in addition to the expand and
move functions

Usage

set_range(
pop,
time,
center = NULL,
radius = NULL,
polygon = NULL,
lock = FALSE

)

Arguments

pop Object of the class slendr_pop

time Time of the change

center Two-dimensional vector specifying the center of the circular range

radius Radius of the circular range

polygon List of vector pairs, defining corners of the polygon range (see also the region
argument) or a geographic region of the class slendr_region from which the
polygon coordinates will be extracted

lock Maintain the same density of individuals. If FALSE (the default), the number of
individuals in the population will not change. If TRUE, the number of individuals
simulated will be changed (increased or decreased) appropriately, to match the
new population range area.

Value

Object of the class slendr_pop, which contains population parameters such as name, time of ap-
pearance in the simulation, parent population (if any), and its spatial parameters such as map and
spatial boundary.

Examples

spatial definitions ---

create a blank abstract world 1000x1000 distance units in size
map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

create a circular population with the center of a population boundary at
[200, 800] and a radius of 100 distance units, 1000 individuals at time 1
occupying a map just specified
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100)

36 set_range

printing a population object to a console shows a brief summary
pop1

create another population occupying a polygon range, splitting from pop1
at a given time point (note that specifying a map is not necessary because
it is "inherited" from the parent)
pop2 <- population("pop2", N = 100, time = 50, parent = pop1,

polygon = list(c(100, 100), c(320, 30), c(500, 200),
c(500, 400), c(300, 450), c(100, 400)))

pop3 <- population("pop3", N = 200, time = 80, parent = pop2,
center = c(800, 800), radius = 200)

move "pop1" to another location along a specified trajectory and saved the
resulting object to the same variable (the number of intermediate spatial
snapshots can be also determined automatically by leaving out the
`snapshots = ` argument)
pop1_moved <- move(pop1, start = 100, end = 200, snapshots = 6,

trajectory = list(c(600, 820), c(800, 400), c(800, 150)))
pop1_moved

many slendr functions are pipe-friendly, making it possible to construct
pipelines which construct entire history of a population
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100) %>%
move(start = 100, end = 200, snapshots = 6,

trajectory = list(c(400, 800), c(600, 700), c(800, 400), c(800, 150))) %>%
set_range(time = 300, polygon = list(

c(400, 0), c(1000, 0), c(1000, 600), c(900, 400), c(800, 250),
c(600, 100), c(500, 50))

)

population ranges can expand by a given distance in all directions
pop2 <- expand_range(pop2, by = 200, start = 50, end = 150, snapshots = 3)

we can check the positions of all populations interactively by plotting their
ranges together on a single map
plot_map(pop1, pop2, pop3)

gene flow events --

individual gene flow events can be saved to a list
gf <- list(

gene_flow(from = pop1, to = pop3, start = 150, end = 200, rate = 0.15),
gene_flow(from = pop1, to = pop2, start = 300, end = 330, rate = 0.25)

)

compilation ---

compile model components in a serialized form to dist, returning a single
slendr model object (in practice, the resolution should be smaller)
model <- compile_model(

populations = list(pop1, pop2, pop3), generation_time = 1,

shrink_range 37

resolution = 100, simulation_length = 500,
competition = 5, mating = 5, dispersal = 1

)

shrink_range Shrink the population range

Description

Shrinks the spatial population range by a specified distance in a given time-window

Usage

shrink_range(
pop,
by,
end,
start,
overlap = 0.8,
snapshots = NULL,
lock = FALSE,
verbose = TRUE

)

Arguments

pop Object of the class slendr_pop

by How many units of distance to shrink by?

start, end When does the boundary shrinking start/end?

overlap Minimum overlap between subsequent spatial boundaries

snapshots The number of intermediate snapshots (overrides the overlap parameter)

lock Maintain the same density of individuals. If FALSE (the default), the number of
individuals in the population will not change. If TRUE, the number of individuals
simulated will be changed (increased or decreased) appropriately, to match the
new population range area.

verbose Report on the progress of generating intermediate spatial boundaries?

Value

Object of the class slendr_pop, which contains population parameters such as name, time of ap-
pearance in the simulation, parent population (if any), and its spatial parameters such as map and
spatial boundary.

38 shrink_range

Examples

spatial definitions ---

create a blank abstract world 1000x1000 distance units in size
map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

create a circular population with the center of a population boundary at
[200, 800] and a radius of 100 distance units, 1000 individuals at time 1
occupying a map just specified
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100)

printing a population object to a console shows a brief summary
pop1

create another population occupying a polygon range, splitting from pop1
at a given time point (note that specifying a map is not necessary because
it is "inherited" from the parent)
pop2 <- population("pop2", N = 100, time = 50, parent = pop1,

polygon = list(c(100, 100), c(320, 30), c(500, 200),
c(500, 400), c(300, 450), c(100, 400)))

pop3 <- population("pop3", N = 200, time = 80, parent = pop2,
center = c(800, 800), radius = 200)

move "pop1" to another location along a specified trajectory and saved the
resulting object to the same variable (the number of intermediate spatial
snapshots can be also determined automatically by leaving out the
`snapshots = ` argument)
pop1_moved <- move(pop1, start = 100, end = 200, snapshots = 6,

trajectory = list(c(600, 820), c(800, 400), c(800, 150)))
pop1_moved

many slendr functions are pipe-friendly, making it possible to construct
pipelines which construct entire history of a population
pop1 <- population("pop1", N = 1000, time = 1,

map = map, center = c(200, 800), radius = 100) %>%
move(start = 100, end = 200, snapshots = 6,

trajectory = list(c(400, 800), c(600, 700), c(800, 400), c(800, 150))) %>%
set_range(time = 300, polygon = list(

c(400, 0), c(1000, 0), c(1000, 600), c(900, 400), c(800, 250),
c(600, 100), c(500, 50))

)

population ranges can expand by a given distance in all directions
pop2 <- expand_range(pop2, by = 200, start = 50, end = 150, snapshots = 3)

we can check the positions of all populations interactively by plotting their
ranges together on a single map
plot_map(pop1, pop2, pop3)

gene flow events --

slim 39

individual gene flow events can be saved to a list
gf <- list(

gene_flow(from = pop1, to = pop3, start = 150, end = 200, rate = 0.15),
gene_flow(from = pop1, to = pop2, start = 300, end = 330, rate = 0.25)

)

compilation ---

compile model components in a serialized form to dist, returning a single
slendr model object (in practice, the resolution should be smaller)
model <- compile_model(

populations = list(pop1, pop2, pop3), generation_time = 1,
resolution = 100, simulation_length = 500,
competition = 5, mating = 5, dispersal = 1

)

slim Run a slendr model in SLiM

Description

This function will execute a SLiM script generated by the compile function during the compilation
of a slendr demographic model.

Usage

slim(
model,
sequence_length,
recombination_rate,
samples = NULL,
output = NULL,
burnin = 0,
max_attempts = 1,
spatial = !is.null(model$world),
coalescent_only = TRUE,
method = c("batch", "gui"),
random_seed = NULL,
verbose = FALSE,
load = TRUE,
locations = NULL,
slim_path = NULL,
sampling = NULL

)

40 slim

Arguments

model Model object created by the compile function

sequence_length

Total length of the simulated sequence (in base-pairs)

recombination_rate

Recombination rate of the simulated sequence (in recombinations per basepair
per generation)

samples A data frame of times at which a given number of individuals should be remem-
bered in the tree-sequence (see schedule_sampling for a function that can gen-
erate the sampling schedule in the correct format). If missing, only individuals
present at the end of the simulation will be recorded in the tree-sequence output
file.

output Path to the output tree-sequence file. If NULL (the default), tree sequence will be
saved to a temporary file.

burnin Length of the burnin (in model’s time units, i.e. years)

max_attempts How many attempts should be made to place an offspring near one of its parents?
Serves to prevent infinite loops on the SLiM backend. Default value is 1.

spatial Should the model be executed in spatial mode? By default, if a world map was
specified during model definition, simulation will proceed in a spatial mode.

coalescent_only

Should initializeTreeSeq(retainCoalescentOnly = <...>) be set to TRUE
(the default) or FALSE? See "retainCoalescentOnly" in the SLiM manual for
more detail.

method How to run the script? ("gui" - open in SLiMgui, "batch" - run on the command-
line)

random_seed Random seed (if missing, SLiM’s own seed will be used)

verbose Write the SLiM output log to the console (default FALSE)?

load Should the final tree sequence be immediately loaded and returned? Default is
TRUE. The alternative (FALSE) is useful when a tree-sequence file is written to a
custom location to be loaded at a later point.

locations If NULL, locations are not saved. Otherwise, the path to the file where locations
of each individual throughout the simulation will be saved (most likely for use
with animate_model).

slim_path Optional way to specify path to an appropriate SLiM binary (this is useful if the
slim binary is not on the $PATH).

sampling Deprecated in favor of samples.

Value

A tree-sequence object loaded via Python-R reticulate interface function ts_load (internally repre-
sented by the Python object tskit.trees.TreeSequence)

subtract 41

Examples

load an example model
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

afr and eur objects would normally be created before slendr model compilation,
but here we take them out of the model object already compiled for this
example (in a standard slendr simulation pipeline, this wouldn't be necessary)
afr <- model$populations[["AFR"]]
eur <- model$populations[["EUR"]]
chimp <- model$populations[["CH"]]

schedule the sampling of a couple of ancient and present-day individuals
given model at 20 ky, 10 ky, 5ky ago and at present-day (time 0)
modern_samples <- schedule_sampling(model, times = 0, list(afr, 5), list(eur, 5), list(chimp, 1))
ancient_samples <- schedule_sampling(model, times = c(30000, 20000, 10000), list(eur, 1))

sampling schedules are just data frames and can be merged easily
samples <- rbind(modern_samples, ancient_samples)

run a simulation using the SLiM back end from a compiled slendr model object and return
a tree-sequence output
ts <- slim(model, sequence_length = 1e5, recombination_rate = 0, samples = samples)

automatic loading of a simulated output can be prevented by `load = FALSE`, which can be
useful when a custom path to a tree-sequence output is given for later downstream analyses
output_file <- tempfile(fileext = ".trees")
slim(model, sequence_length = 1e5, recombination_rate = 0, samples = samples,

output = output_file, load = FALSE)
... at a later stage:
ts <- ts_load(output_file, model)

ts

subtract Generate the difference between two slendr objects

Description

Generate the difference between two slendr objects

Usage

subtract(x, y, name = NULL)

Arguments

x Object of the class slendr

y Object of the class slendr

42 ts_afs

name Optional name of the resulting geographic region. If missing, name will be
constructed from the function arguments.

Value

Object of the class slendr_region which encodes a standard spatial object of the class sf with
several additional attributes (most importantly a corresponding slendr_map object, if applicable).

ts_afs Compute the allele frequency spectrum (AFS)

Description

This function computes the AFS with respect to the given set of individuals

Usage

ts_afs(
ts,
sample_sets = NULL,
mode = c("site", "branch", "node"),
windows = NULL,
span_normalise = FALSE,
polarised = FALSE

)

Arguments

ts Tree sequence object of the class slendr_ts

sample_sets A list (optionally a named list) of character vectors with individual names (one
vector per set). If NULL, allele frequency spectrum for all individuals in the tree
sequence will be computed.

mode The mode for the calculation ("sites" or "branch")

windows Coordinates of breakpoints between windows. The first coordinate (0) and the
last coordinate (equal to ts$sequence_length) are added automatically)

span_normalise Argument passed to tskit’s allele_frequency_spectrum method

polarised When FALSE (the default) the allele frequency spectrum will be folded (i.e. the
counts will not depend on knowing which allele is ancestral)

Details

For more information on the format of the result and dimensions, in particular the interpretation
of the first and the last element of the AFS, please see the tskit manual at https://tskit.dev/
tskit/docs/stable/python-api.html

https://tskit.dev/tskit/docs/stable/python-api.html
https://tskit.dev/tskit/docs/stable/python-api.html

ts_ancestors 43

Value

Allele frequency spectrum values for the given sample set

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, mutate = TRUE, mutation_rate = 1e-8, random_seed = 42)

samples <- ts_samples(ts) %>% .[.$pop %in% c("AFR", "EUR"),]

compute AFS for the given set of individuals
ts_afs(ts, sample_sets = list(samples$name))

ts_ancestors Extract (spatio-)temporal ancestral history for given
nodes/individuals

Description

Extract (spatio-)temporal ancestral history for given nodes/individuals

Usage

ts_ancestors(ts, x, verbose = FALSE, complete = TRUE)

Arguments

ts Tree sequence object of the class slendr_ts

x Either an individual name or an integer node ID

verbose Report on the progress of ancestry path generation?

complete Does every individual in the tree sequence need to have complete metadata
recorded? If TRUE, only individuals/nodes with complete metadata will be in-
cluded in the reconstruction of ancestral relationships. For instance, nodes added
during the coalescent recapitation phase will not be included because they don’t
have spatial information associated with them.

Value

A table of ancestral nodes of a given tree-sequence node all the way up to the root of the tree
sequence

44 ts_coalesced

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE)

find the complete ancestry information for a given individual
ts_ancestors(ts, "EUR_1", verbose = TRUE)

ts_coalesced Check that all trees in the tree sequence are fully coalesced

Description

Check that all trees in the tree sequence are fully coalesced

Usage

ts_coalesced(ts, return_failed = FALSE)

Arguments

ts Tree sequence object of the class slendr_ts

return_failed Report back which trees failed the coalescence check?

Value

TRUE or FALSE value if return_failed = FALSE, otherwise a vector of (tskit Python 0-based)
indices of trees which failed the coalescence test

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE)

ts_coalesced(ts) # is the tree sequence fully coalesced? (TRUE or FALSE)

returns a vector of tree sequence segments which are not coalesced
not_coalesced <- ts_coalesced(ts, return_failed = TRUE)

ts_descendants 45

ts_descendants Extract all descendants of a given tree-sequence node

Description

Extract all descendants of a given tree-sequence node

Usage

ts_descendants(ts, x, verbose = FALSE, complete = TRUE)

Arguments

ts Tree sequence object of the class slendr_ts

x An integer node ID of the ancestral node

verbose Report on the progress of ancestry path generation?

complete Does every individual in the tree sequence need to have complete metadata
recorded? If TRUE, only individuals/nodes with complete metadata will be in-
cluded in the reconstruction of ancestral relationships. For instance, nodes added
during the coalescent recapitation phase will not be included because they don’t
have spatial information associated with them.

Value

A table of descendant nodes of a given tree-sequence node all the way down to the leaves of the tree
sequence

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE)

find the complete descendancy information for a given individual
ts_descendants(ts, x = 62, verbose = TRUE)

46 ts_divergence

ts_divergence Calculate pairwise divergence between sets of individuals

Description

Calculate pairwise divergence between sets of individuals

Usage

ts_divergence(
ts,
sample_sets,
mode = c("site", "branch", "node"),
windows = NULL,
span_normalise = TRUE

)

Arguments

ts Tree sequence object of the class slendr_ts

sample_sets A list (optionally a named list) of character vectors with individual names (one
vector per set)

mode The mode for the calculation ("sites" or "branch")

windows Coordinates of breakpoints between windows. The first coordinate (0) and the
last coordinate (equal to ts$sequence_length) do not have to be specified as
they are added automatically.

span_normalise Divide the result by the span of the window? Default TRUE, see the tskit docu-
mentation for more detail.

Value

For each pairwise calculation, either a single divergence value or a vector of divergence values (one
for each window)

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, mutate = TRUE, mutation_rate = 1e-8, random_seed = 42)

collect sampled individuals from all populations in a list
sample_sets <- ts_samples(ts) %>%

split(., .$pop) %>%

ts_diversity 47

lapply(function(pop) pop$name)

compute the divergence between individuals from each sample set (list of
individual names generated in the previous step)
ts_divergence(ts, sample_sets) %>% .[order(.$divergence),]

ts_diversity Calculate diversity in given sets of individuals

Description

Calculate diversity in given sets of individuals

Usage

ts_diversity(
ts,
sample_sets,
mode = c("site", "branch", "node"),
windows = NULL,
span_normalise = TRUE

)

Arguments

ts Tree sequence object of the class slendr_ts

sample_sets A list (optionally a named list) of character vectors with individual names (one
vector per set). If a simple vector is provided, it will be interpreted as as.list(sample_sets),
meaning that a given statistic will be calculated for each individual separately.

mode The mode for the calculation ("sites" or "branch")

windows Coordinates of breakpoints between windows. The first coordinate (0) and the
last coordinate (equal to ts$sequence_length) are added automatically)

span_normalise Divide the result by the span of the window? Default TRUE, see the tskit docu-
mentation for more detail.

Value

For each set of individuals either a single diversity value or a vector of diversity values (one for each
window)

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

48 ts_draw

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, mutate = TRUE, mutation_rate = 1e-8, random_seed = 42)

collect sampled individuals from all populations in a list
sample_sets <- ts_samples(ts) %>%

split(., .$pop) %>%
lapply(function(pop) pop$name)

compute diversity in each population based on sample sets extracted
in the previous step
ts_diversity(ts, sample_sets) %>% .[order(.$diversity),]

ts_draw Plot a graphical representation of a single tree

Description

This function first obtains an SVG representation of the tree by calling the draw_svg method of tskit
and renders it as a bitmap image in R. All of the many optional keyword arguments of the draw_svg
method can be provided and will be automatically passed to the method behind the scenes.

Usage

ts_draw(
x,
width = 1500,
height = 500,
labels = FALSE,
sampled_only = TRUE,
...

)

Arguments

x A single tree extracted by ts_tree

width, height Pixel dimensions of the rendered bitmap

labels Label each node with the individual name?

sampled_only Should only individuals explicitly sampled through simplification be labeled?
This is relevant in situations in which sampled individuals can themselves be
among the ancestral nodes.

... Keyword arguments to the tskit draw_svg function.

Value

No return value, called for side effects

ts_edges 49

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE)

extract the first tree in the tree sequence and draw it
tree <- ts_tree(ts, i = 1)

ts_draw accepts various optional arguments of tskit.Tree.draw_svg
ts_draw(tree, time_scale = "rank")

ts_edges Extract spatio-temporal edge annotation table from a given tree or tree
sequence

Description

Extract spatio-temporal edge annotation table from a given tree or tree sequence

Usage

ts_edges(x)

Arguments

x Tree object generated by ts_phylo or a slendr tree sequence object produced
by ts_load, ts_recapitate, ts_simplify, or ts_mutate

Value

Data frame of the sf type containing the times of nodes and start-end coordinates of edges across
space

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE)

extract an annotated table with (spatio-)temporal edge information
ts_edges(ts)

50 ts_f2

ts_eigenstrat Convert genotypes to the EIGENSTRAT file format

Description

EIGENSTRAT data produced by this function can be used by the admixr R package (https://
bodkan.net/admixr/).

Usage

ts_eigenstrat(ts, prefix, chrom = "chr1", outgroup = NULL)

Arguments

ts Tree sequence object of the class slendr_ts

prefix EIGENSTRAT trio prefix

chrom The name of the chromosome in the EIGENSTRAT snp file (default "chr1")

outgroup Should a formal, artificial outgroup be added? If NULL (default), no outgroup is
added. A non-NULL character name will serve as the name of the outgroup in
an ind file.

Details

In case an outgroup was not formally specified in a slendr model which generated the tree sequence
data, it is possible to artificially create an outgroup sample with the name specified by the outgroup
argument, which will carry all ancestral alleles (i.e. value "2" in a geno file for each position in a
snp file).

Value

Object of the class EIGENSTRAT created by the admixr package

ts_f2 Calculate the f2, f3, f4, and f4-ratio statistics

Description

Calculate the f2, f3, f4, and f4-ratio statistics

https://bodkan.net/admixr/
https://bodkan.net/admixr/

ts_f2 51

Usage

ts_f2(
ts,
A,
B,
mode = c("site", "branch", "node"),
span_normalise = TRUE,
windows = NULL

)

ts_f3(
ts,
A,
B,
C,
mode = c("site", "branch", "node"),
span_normalise = TRUE,
windows = NULL

)

ts_f4(
ts,
W,
X,
Y,
Z,
mode = c("site", "branch", "node"),
span_normalise = TRUE,
windows = NULL

)

ts_f4ratio(
ts,
X,
A,
B,
C,
O,
mode = c("site", "branch"),
span_normalise = TRUE

)

Arguments

ts Tree sequence object of the class slendr_ts

mode The mode for the calculation ("sites" or "branch")

span_normalise Divide the result by the span of the window? Default TRUE, see the tskit docu-
mentation for more detail.

52 ts_f2

windows Coordinates of breakpoints between windows. The first coordinate (0) and the
last coordinate (equal to ts$sequence_length) do not have to be specified as
they are added automatically.

W, X, Y, Z, A, B, C, O

Character vectors of individual names (following the nomenclature of Patterson
et al. 2021)

Value

Data frame with statistics calculated for the given sets of individuals

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, mutate = TRUE, mutation_rate = 1e-8, random_seed = 42)

calculate f2 for two individuals in a previously loaded tree sequence
ts_f2(ts, A = "AFR_1", B = "EUR_1")

calculate f2 for two sets of individuals
ts_f2(ts, A = c("AFR_1", "AFR_2"), B = c("EUR_1", "EUR_3"))

calculate f3 for two individuals in a previously loaded tree sequence
ts_f3(ts, A = "EUR_1", B = "AFR_1", C = "NEA_1")

calculate f3 for two sets of individuals
ts_f3(ts, A = c("AFR_1", "AFR_2", "EUR_1", "EUR_2"),

B = c("NEA_1", "NEA_2"),
C = "CH_1")

calculate f4 for single individuals
ts_f4(ts, W = "EUR_1", X = "AFR_1", Y = "NEA_1", Z = "CH_1")

calculate f4 for sets of individuals
ts_f4(ts, W = c("EUR_1", "EUR_2"),

X = c("AFR_1", "AFR_2"),
Y = "NEA_1",
Z = "CH_1")

calculate f4-ratio for a given set of target individuals X
ts_f4ratio(ts, X = c("EUR_1", "EUR_2", "EUR_4", "EUR_5"),

A = "NEA_1", B = "NEA_2", C = "AFR_1", O = "CH_1")

ts_fst 53

ts_fst Calculate pairwise statistics between sets of individuals

Description

For a discussion on the difference between "site", "branch", and "node" options of the mode ar-
gument, please see the tskit documentation at https://tskit.dev/tskit/docs/stable/stats.
html#sec-stats-mode.

Usage

ts_fst(
ts,
sample_sets,
mode = c("site", "branch", "node"),
windows = NULL,
span_normalise = TRUE

)

Arguments

ts Tree sequence object of the class slendr_ts

sample_sets A list (optionally a named list) of character vectors with individual names (one
vector per set)

mode The mode for the calculation ("sites" or "branch")

windows Coordinates of breakpoints between windows. The first coordinate (0) and the
last coordinate (equal to ts$sequence_length) do not have to be specified as
they are added automatically.

span_normalise Divide the result by the span of the window? Default TRUE, see the tskit docu-
mentation for more detail.

Value

For each pairwise calculation, either a single Fst value or a vector of Fst values (one for each
window)

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, mutate = TRUE, mutation_rate = 1e-8, random_seed = 42)

compute F_st between two sets of individuals in a given tree sequence ts

https://tskit.dev/tskit/docs/stable/stats.html#sec-stats-mode
https://tskit.dev/tskit/docs/stable/stats.html#sec-stats-mode

54 ts_load

ts_fst(ts, sample_sets = list(afr = c("AFR_1", "AFR_2", "AFR_3"),
eur = c("EUR_1", "EUR_2")))

ts_genotypes Extract genotype table from the tree sequence

Description

Extract genotype table from the tree sequence

Usage

ts_genotypes(ts)

Arguments

ts Tree sequence object of the class slendr_ts

Value

Data frame object of the class tibble containing genotypes of simulated individuals in columns

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE, mutate = TRUE,

mutation_rate = 1e-8, random_seed = 42)

extract the genotype matrix (this could take a long time consume lots
of memory!)
gts <- ts_genotypes(ts)

ts_load Load a tree sequence file produced by a given model

Description

This function loads a tree sequence file simulated from a given slendr model. Optionally, the tree
sequence can be recapitated and simplified.

ts_load 55

Usage

ts_load(
file,
model = NULL,
recapitate = FALSE,
simplify = FALSE,
mutate = FALSE,
recombination_rate = NULL,
mutation_rate = NULL,
Ne = NULL,
random_seed = NULL,
simplify_to = NULL,
keep_input_roots = FALSE,
demography = NULL

)

Arguments

file A path to the tree-sequence file (either originating from a slendr model or a
standard non-slendr tree sequence)

model Optional slendr_model object which produced the tree-sequence file. Used
for adding various annotation data and metadata to the standard tskit tree-sequence
object.

recapitate Should the tree sequence be recapitated?
simplify Should the tree sequence be simplified down to a set of sampled individuals

(those explicitly recorded)?
mutate Should the tree sequence be mutated?
recombination_rate, Ne

Arguments passed to ts_recapitate

mutation_rate Mutation rate passed to ts_mutate

random_seed Random seed passed to pyslim’s recapitate method
simplify_to A character vector of individual names. If NULL, all remembered individuals

will be retained. Only used when simplify = TRUE.
keep_input_roots

Should the history ancestral to the MRCA of all samples be retained in the tree
sequence? Default is FALSE.

demography Ancestral demography to be passed internally to msprime.sim_ancestry()
(see msprime’s documentation for mode detail)

Details

The loading, recapitation and simplification is performed using the Python module pyslim which
serves as a link between tree sequences generated by SLiM and the tskit module for manipulation
of tree sequence data. All of these steps have been modelled after the official pyslim tutorial and
documentation available at: https://tskit.dev/pyslim/docs/latest/tutorial.html.

The recapitation and simplification steps can also be performed individually using the functions
ts_recapitate and ts_simplify.

https://tskit.dev/pyslim/docs/latest/tutorial.html

56 ts_metadata

Value

Tree-sequence object of the class slendr_ts, which serves as an interface point for the Python
module tskit using slendr functions with the ts_ prefix.

See Also

ts_nodes for extracting useful information about individuals, nodes, coalescent times and geospa-
tial locations of nodes on a map

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load tree sequence generated by a given model
ts <- ts_load(slendr_ts, model)

even tree sequences generated by non-slendr models can be
msprime_ts <- system.file("extdata/models/msprime.trees", package = "slendr")
ts <- ts_load(msprime_ts)

load tree sequence and immediately simplify it only to sampled individuals
(note that the example tree sequence is already simplified so this operation
does not do anything in this case)
ts <- ts_load(slendr_ts, model = model, simplify = TRUE)

load tree sequence and simplify it to a subset of sampled individuals
ts_small <- ts_simplify(ts, simplify_to = c("CH_1", "NEA_1", "NEA_2",

"AFR_1", "AFR_2", "EUR_1", "EUR_2"))

load tree sequence, recapitate it and simplify it
ts <- ts_load(slendr_ts, model, recapitate = TRUE, simplify = TRUE,

recombination_rate = 1e-8, Ne = 10000, random_seed = 42)

load tree sequence, recapitate it, simplify it and overlay neutral mutations
ts <- ts_load(slendr_ts, model, recapitate = TRUE, simplify = TRUE, random_seed = 42,

recombination_rate = 1e-8, Ne = 10000, mutation_rate = 1e-8)

ts

ts_metadata Extract list with tree sequence metadata saved by SLiM

Description

Extract list with tree sequence metadata saved by SLiM

ts_mutate 57

Usage

ts_metadata(ts)

Arguments

ts Tree sequence object of the class slendr_ts

Value

List of metadata fields extracted from the tree-sequence object

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model)

extract the list of metadata information from the tree sequence
ts_metadata(ts)

ts_mutate Add mutations to the given tree sequence

Description

Add mutations to the given tree sequence

Usage

ts_mutate(
ts,
mutation_rate,
random_seed = NULL,
keep_existing = TRUE,
mut_type = NULL

)

Arguments

ts Tree sequence object of the class slendr_ts

mutation_rate Mutation rate used by msprime to simulate mutations

random_seed Random seed passed to msprime’s mutate method

keep_existing Keep existing mutations?

58 ts_nodes

mut_type Assign SLiM mutation type to neutral mutations? If NULL (default), no special
mutation type will be used. If an integer number is given, mutations of the SLiM
mutation type with that integer identifier will be created.

Value

Tree-sequence object of the class slendr_ts, which serves as an interface point for the Python
module tskit using slendr functions with the ts_ prefix.

See Also

ts_nodes for extracting useful information about individuals, nodes, coalescent times and geospa-
tial locations of nodes on a map

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

ts <- ts_load(slendr_ts, model)
ts_mutate <- ts_mutate(ts, mutation_rate = 1e-8, random_seed = 42)

ts_mutate

ts_nodes Extract combined annotated table of individuals and nodes

Description

This function combines information from the table of individuals and table of nodes into a single
data frame which can be used in downstream analyses.

Usage

ts_nodes(x, sf = TRUE)

Arguments

x Tree sequence object of the class slendr_ts or a phylo object extracted by
ts_phylo

sf Should spatial data be returned in an sf format? If FALSE, spatial geometries
will be returned simply as x and y columns, instead of the standard POINT data
type.

ts_phylo 59

Details

The source of data (tables of individuals and nodes recorded in the tree sequence generated by
SLiM) are combined into a single data frame. If the model which generated the data was spatial,
coordinates of nodes (which are pixel-based by default because SLiM spatial simulations occur on
a raster), the coordinates are automatically converted to an explicit spatial object of the sf class
unless spatial = FALSE. See https://r-spatial.github.io/sf/ for an extensive introduction
to the sf package and the ways in which spatial data can be processed, analysed, and visualised.

Value

Data frame with processed information from the tree sequence object. If the model which generated
this data was spatial, result will be returned as a spatial object of the class sf.

See Also

ts_table for accessing raw tree sequence tables without added metadata annotation. See also
ts_ancestors to learn how to extract information about relationship beteween nodes in the tree
sequence, and how to analysed data about distances between nodes in the spatial context.

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE)

extract an annotated table with (spatio-)temporal node information
ts_nodes(ts)

ts_phylo Convert a tree in the tree sequence to an object of the class phylo

Description

Convert a tree in the tree sequence to an object of the class phylo

Usage

ts_phylo(
ts,
i,
mode = c("index", "position"),
labels = c("tskit", "pop"),
quiet = FALSE

)

https://r-spatial.github.io/sf/

60 ts_recapitate

Arguments

ts Tree sequence object of the class slendr_ts

i Position of the tree in the tree sequence. If mode = "index", an i-th tree will be
returned (in one-based indexing), if mode = "position", a tree covering an i-th
base of the simulated genome will be returned.

mode How should the i argument be interpreted? Either "index" as an i-th tree in the
sequence of genealogies, or "position" along the simulated genome.

labels What should be stored as node labels in the final phylo object? Options are
either a population name or a tskit integer node ID (which is a different thing
from a phylo class node integer index).

quiet Should ape’s internal phylo validity test be printed out?

Value

Standard phylogenetic tree object implemented by the R package ape

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE)

extract the 1st tree from a given tree sequence, return ape object
tree <- ts_phylo(ts, i = 1, mode = "index", quiet = TRUE)
tree

extract the tree at a 42th basepair in the given tree sequence
tree <- ts_phylo(ts, i = 42, mode = "position", quiet = TRUE)

because the tree is a standard ape phylo object, we can plot it easily
plot(tree, use.edge.length = FALSE)
ape::nodelabels()

ts_recapitate Recapitate the tree sequence

Description

Recapitate the tree sequence

ts_recapitate 61

Usage

ts_recapitate(
ts,
recombination_rate,
Ne = NULL,
demography = NULL,
random_seed = NULL

)

Arguments

ts Tree sequence object loaded by ts_load

recombination_rate

A constant value of the recombination rate

Ne Effective population size during the recapitation process

demography Ancestral demography to be passed internally to msprime.sim_ancestry()
(see msprime’s documentation for mode detail)

random_seed Random seed passed to pyslim’s recapitate method

Value

Tree-sequence object of the class slendr_ts, which serves as an interface point for the Python
module tskit using slendr functions with the ts_ prefix.

See Also

ts_nodes for extracting useful information about individuals, nodes, coalescent times and geospa-
tial locations of nodes on a map

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

ts <-
ts_load(slendr_ts, model) %>%
ts_recapitate(recombination_rate = 1e-8, Ne = 10000, random_seed = 42)

ts

62 ts_save

ts_samples Extract names and times of individuals of interest in the current tree
sequence (either all sampled individuals or those that the user simpli-
fied to)

Description

Extract names and times of individuals of interest in the current tree sequence (either all sampled
individuals or those that the user simplified to)

Usage

ts_samples(ts)

Arguments

ts Tree sequence object of the class slendr_ts

Value

Table of individuals scheduled for sampling across space and time

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE)

extract the table of individuals scheduled for simulation and sampling
ts_samples(ts)

ts_save Save a tree sequence to a file

Description

Save a tree sequence to a file

Usage

ts_save(ts, file)

ts_segregating 63

Arguments

ts Tree sequence object loaded by ts_load

file File to which the tree sequence should be saved

Value

No return value, called for side effects

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree sequence
ts <- ts_load(slendr_ts, model)

save the tree-sequence object to a different location
another_file <- paste(tempfile(), ".trees")
ts_save(ts, another_file)

ts_segregating Calculate the density of segregating sites for the given sets of individ-
uals

Description

Calculate the density of segregating sites for the given sets of individuals

Usage

ts_segregating(
ts,
sample_sets,
mode = c("site", "branch", "node"),
windows = NULL,
span_normalise = FALSE

)

Arguments

ts Tree sequence object of the class slendr_ts

sample_sets A list (optionally a named list) of character vectors with individual names (one
vector per set). If a simple vector is provided, it will be interpreted as as.list(sample_sets),
meaning that a given statistic will be calculated for each individual separately.

mode The mode for the calculation ("sites" or "branch")

64 ts_simplify

windows Coordinates of breakpoints between windows. The first coordinate (0) and the
last coordinate (equal to ts$sequence_length) are added automatically)

span_normalise Divide the result by the span of the window? Default TRUE, see the tskit docu-
mentation for more detail.

Value

For each set of individuals either a single diversity value or a vector of diversity values (one for each
window)

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, mutate = TRUE, mutation_rate = 1e-8, random_seed = 42)

collect sampled individuals from all populations in a list
sample_sets <- ts_samples(ts) %>%

split(., .$pop) %>%
lapply(function(pop) pop$name)

ts_segregating(ts, sample_sets)

ts_simplify Simplify the tree sequence down to a given set of individuals

Description

This function is a convenience wrapper around the simplify method implemented in tskit, designed
to work on tree sequence data simulated by SLiM using the slendr R package.

Usage

ts_simplify(ts, simplify_to = NULL, keep_input_roots = FALSE)

Arguments

ts Tree sequence object of the class slendr_ts

simplify_to A character vector of individual names. If NULL, all explicitly remembered
individuals (i.e. those specified via the schedule_sampling function will be
left in the tree sequence after the simplification.

keep_input_roots

Should the history ancestral to the MRCA of all samples be retained in the tree
sequence? Default is FALSE.

ts_table 65

Details

The simplification process is used to remove redundant information from the tree sequence and
retains only information necessary to describe the genealogical history of a set of samples.

For more information on how simplification works in pyslim and tskit, see the official documenta-
tion at https://tskit.dev/tskit/docs/stable/python-api.html#tskit.TreeSequence.simplify
and https://tskit.dev/pyslim/docs/latest/tutorial.html#simplification.

A very clear description of the difference between remembering and retaining and how to use these
techniques to implement historical individuals (i.e. ancient DNA samples) is in the pyslim docu-
mentation at https://tskit.dev/pyslim/docs/latest/tutorial.html#historical-individuals.

Value

Tree-sequence object of the class slendr_ts, which serves as an interface point for the Python
module tskit using slendr functions with the ts_ prefix.

See Also

ts_nodes for extracting useful information about individuals, nodes, coalescent times and geospa-
tial locations of nodes on a map

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

ts <- ts_load(slendr_ts, model)
ts

simplify tree sequence to sampled individuals
ts_simplified <- ts_simplify(ts)

simplify to a subset of sampled individuals
ts_small <- ts_simplify(

ts,
simplify_to = c("CH_1", "NEA_1", "NEA_2", "AFR_1",

"AFR_2", "EUR_1", "EUR_2")
)

ts_small

ts_table Get the table of individuals/nodes/edges/mutations from the tree se-
quence

https://tskit.dev/tskit/docs/stable/python-api.html#tskit.TreeSequence.simplify
https://tskit.dev/pyslim/docs/latest/tutorial.html#simplification
https://tskit.dev/pyslim/docs/latest/tutorial.html#historical-individuals

66 ts_table

Description

This function extracts data from a given tree sequence table. All times are converted to model-
specific time units from tskit’s "generations backwards" time direction.

Usage

ts_table(ts, table = c("individuals", "edges", "nodes", "mutations"))

Arguments

ts Tree sequence object of the class slendr_ts

table Which tree sequence table to return

Details

For further processing and analyses, the output of the function ts_nodes might be more useful, as
it merges the information in node and individual tables into one table and further annotates it with
useful information from the model configuration data.

Value

Data frame with the information from the give tree-sequence table (can be either a table of individ-
uals, edges, nodes, or mutations).

See Also

ts_nodes and ts_edges for accessing an annotated, more user-friendly and analysis-friendly tree-
sequence table data

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE, mutate = TRUE,

mutation_rate = 1e-8, random_seed = 42)

get the 'raw' tskit table of individuals
ts_table(ts, "individuals")

get the 'raw' tskit table of edges
ts_table(ts, "edges")

get the 'raw' tskit table of nodes
ts_table(ts, "nodes")

get the 'raw' tskit table of mutations
ts_table(ts, "mutations")

ts_tajima 67

ts_tajima Calculate Tajima’s D for given sets of individuals

Description

For a discussion on the difference between "site" and "branch" options of the mode argument,
please see the tskit documentation at https://tskit.dev/tskit/docs/stable/stats.html#
sec-stats-mode

Usage

ts_tajima(ts, sample_sets, mode = c("site", "branch", "node"), windows = NULL)

Arguments

ts Tree sequence object of the class slendr_ts

sample_sets A list (optionally a named list) of character vectors with individual names (one
vector per set). If a simple vector is provided, it will be interpreted as as.list(sample_sets),
meaning that a given statistic will be calculated for each individual separately.

mode The mode for the calculation ("sites" or "branch")

windows Coordinates of breakpoints between windows. The first coordinate (0) and the
last coordinate (equal to ts$sequence_length) are added automatically)

Value

For each set of individuals either a single Tajima’s D value or a vector of Tajima’s D values (one for
each window)

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, mutate = TRUE, mutation_rate = 1e-8, random_seed = 42)

calculate Tajima's D for given sets of individuals in a tree sequence ts
ts_tajima(ts, list(eur = c("EUR_1", "EUR_2", "EUR_3", "EUR_4", "EUR_5"),

nea = c("NEA_1", "NEA_2")))

https://tskit.dev/tskit/docs/stable/stats.html#sec-stats-mode
https://tskit.dev/tskit/docs/stable/stats.html#sec-stats-mode

68 ts_tree

ts_tree Get a tree from a given tree sequence

Description

For more information about optional keyword arguments see tskit documentation: https://tskit.
dev/tskit/docs/stable/python-api.html#the-treesequence-class

Usage

ts_tree(ts, i, mode = c("index", "position"), ...)

Arguments

ts Tree sequence object of the class slendr_ts

i Position of the tree in the tree sequence. If mode = "index", an i-th tree will be
returned (in one-based indexing), if mode = "position", a tree covering an i-th
base of the simulated genome will be returned.

mode How should the i argument be interpreted? Either "index" as an i-th tree in the
sequence of genealogies, or "position" along the simulated genome.

... Additional keyword arguments accepted by tskit.TreeSequence.at and tskit.TreeSequence.at_index
methods

Value

Python-reticulate-based object of the class tskit.trees.Tree

Examples

load an example model with an already simulated tree sequence
slendr_ts <- system.file("extdata/models/introgression.trees", package = "slendr")
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

load the tree-sequence object from disk
ts <- ts_load(slendr_ts, model, simplify = TRUE)

extract the first tree in the tree sequence
tree <- ts_tree(ts, i = 1)

extract the tree at a position 100000bp in the tree sequence
tree <- ts_tree(ts, i = 100000, mode = "position")

https://tskit.dev/tskit/docs/stable/python-api.html#the-treesequence-class
https://tskit.dev/tskit/docs/stable/python-api.html#the-treesequence-class

ts_vcf 69

ts_vcf Save genotypes from the tree sequence as a VCF file

Description

Save genotypes from the tree sequence as a VCF file

Usage

ts_vcf(ts, path, chrom = NULL, individuals = NULL)

Arguments

ts Tree sequence object of the class slendr_ts

path Path to a VCF file

chrom Chromosome name to be written in the CHROM column of the VCF

individuals A character vector of individuals in the tree sequence. If missing, all individuals
present in the tree sequence will be saved.

Value

No return value, called for side effects

world Define a world map for all spatial operations

Description

Defines either an abstract geographic landscape (blank or containing user-defined landscape) or us-
ing a real Earth cartographic data from the Natural Earth project (https://www.naturalearthdata.
com).

Usage

world(
xrange,
yrange,
landscape = "naturalearth",
crs = NULL,
scale = c("small", "medium", "large")

)

https://www.naturalearthdata.com
https://www.naturalearthdata.com

70 world

Arguments

xrange Two-dimensional vector specifying minimum and maximum horizontal range
("longitude" if using real Earth cartographic data)

yrange Two-dimensional vector specifying minimum and maximum vertical range ("lat-
itude" if using real Earth cartographic data)

landscape Either "blank" (for blank abstract geography), "naturalearth" (for real Earth ge-
ography) or an object of the class sf defining abstract geographic features of the
world

crs EPSG code of a coordinate reference system to use for spatial operations. No
CRS is assumed by default (NULL), implying an abstract landscape not tied to any
real-world geographic region (when landscape = "blank" or when landscape
is a custom-defined geographic landscape), or implying WGS-84 (EPSG 4326)
coordinate system when a real Earth landscape was defined (landscape = "naturalearth").

scale If Natural Earth geographic data is used (i.e. landscape = "naturalearth"),
this parameter determines the resolution of the data used. The value "small"
corresponds to 1:110m data and is provided with the package, values "medium"
and "large" correspond to 1:50m and 1:10m respectively and will be downloaded
from the internet. Default value is "small".

Value

Object of the class slendr_map, which encodes a standard spatial object of the class sf with addi-
tional slendr-specific attributes such as requested x-range and y-range.

Examples

create a blank abstract world 1000x1000 distance units in size
blank_map <- world(xrange = c(0, 1000), yrange = c(0, 1000), landscape = "blank")

it is possible to construct custom landscapes (islands, corridors, etc.)
island1 <- region("island1", polygon = list(c(10, 30), c(50, 30), c(40, 50), c(0, 40)))
island2 <- region("island2", polygon = list(c(60, 60), c(80, 40), c(100, 60), c(80, 80)))
island3 <- region("island3", center = c(20, 80), radius = 10)
archipelago <- island1 %>% join(island2) %>% join(island3)

custom_map <- world(xrange = c(1, 100), c(1, 100), landscape = archipelago)

real Earth landscapes can be defined using freely-available Natural Earth
project data and with the possibility to specify an appropriate Coordinate
Reference System, such as this example of a map of Europe

real_map <- world(xrange = c(-15, 40), yrange = c(30, 60), crs = "EPSG:3035")

Index

animate_model, 3
area, 4
as.phylo.slendr_phylo, 5

check_dependencies, 5
check_env, 6
clear_env, 6
compile_model, 7

distance, 9

expand_range, 10
explore_model, 12

gene_flow, 13

join, 15

move, 16
msprime, 18

overlap, 19

plot_map, 20
plot_model, 21
population, 22
print.slendr_map (print.slendr_pop), 24
print.slendr_model (print.slendr_pop),

24
print.slendr_nodes (print.slendr_pop),

24
print.slendr_pop, 24
print.slendr_region (print.slendr_pop),

24
print.slendr_ts, 25

read_model, 26
region, 26
reproject, 27
resize, 28

schedule_sampling, 30, 64

set_dispersal, 32
set_range, 34
setup_env, 32
shrink_range, 37
slim, 39
subtract, 41

ts_afs, 42
ts_ancestors, 43, 59
ts_coalesced, 44
ts_descendants, 45
ts_divergence, 46
ts_diversity, 47
ts_draw, 48
ts_edges, 49, 66
ts_eigenstrat, 50
ts_f2, 50
ts_f3 (ts_f2), 50
ts_f4 (ts_f2), 50
ts_f4ratio (ts_f2), 50
ts_fst, 53
ts_genotypes, 54
ts_load, 54
ts_metadata, 56
ts_mutate, 57
ts_nodes, 56, 58, 58, 61, 65, 66
ts_phylo, 59
ts_recapitate, 55, 60
ts_samples, 62
ts_save, 62
ts_segregating, 63
ts_simplify, 55, 64
ts_table, 59, 65
ts_tajima, 67
ts_tree, 48, 68
ts_vcf, 69

world, 69

71

	animate_model
	area
	as.phylo.slendr_phylo
	check_dependencies
	check_env
	clear_env
	compile_model
	distance
	expand_range
	explore_model
	gene_flow
	join
	move
	msprime
	overlap
	plot_map
	plot_model
	population
	print.slendr_pop
	print.slendr_ts
	read_model
	region
	reproject
	resize
	schedule_sampling
	setup_env
	set_dispersal
	set_range
	shrink_range
	slim
	subtract
	ts_afs
	ts_ancestors
	ts_coalesced
	ts_descendants
	ts_divergence
	ts_diversity
	ts_draw
	ts_edges
	ts_eigenstrat
	ts_f2
	ts_fst
	ts_genotypes
	ts_load
	ts_metadata
	ts_mutate
	ts_nodes
	ts_phylo
	ts_recapitate
	ts_samples
	ts_save
	ts_segregating
	ts_simplify
	ts_table
	ts_tajima
	ts_tree
	ts_vcf
	world
	Index

