# Package 'sparseR' 

August 17, 2022

## Type Package

Title Variable Selection under Ranked Sparsity Principles for Interactions and Polynomials

## Version 0.2.0

Description An implementation of ranked sparsity methods, including penalized regression methods such as the sparsity-ranked lasso, its non-convex alternatives, and elastic net, as well as the sparsity-ranked Bayesian Information Criterion. As described in Peterson and Cavanaugh (2022) [doi:10.1007/s10182-021-00431-7](doi:10.1007/s10182-021-00431-7), ranked sparsity is a philosophy with methods primarily useful for variable selection in the presence of prior informational asymmetry, which occurs in the context of trying to perform variable selection in the presence of interactions and/or polynomials. Ultimately, this package attempts to facilitate dealing with cumbersome interactions and polynomials while not avoiding them entirely. Typically, models selected under ranked sparsity principles will also be more transparent, having fewer falsely selected interactions and polynomials than other methods.

Suggests survival, knitr, rmarkdown, kableExtra, testthat, covr, modeldata, MASS
Imports ncvreg, rlang, magrittr, dplyr, recipes ( $>=1.0 .0$ )
Depends R (>=3.5)
License GPL-3
Encoding UTF-8
LazyData true
VignetteBuilder knitr
RoxygenNote 7.2.0
URL https://petersonr.github.io/sparseR/, https://github.com/petersonR/sparseR/

Date 2022-08-15
NeedsCompilation no
Author Ryan Andrew Peterson [aut, cre]
([https://orcid.org/0000-0002-4650-5798](https://orcid.org/0000-0002-4650-5798))
Maintainer Ryan Andrew Peterson [ryan.a.peterson@cuanschutz.edu](mailto:ryan.a.peterson@cuanschutz.edu)
Repository CRAN
Date/Publication 2022-08-17 07:10:02 UTC
$R$ topics documented:
sparseR-package ..... 2
datasets ..... 3
EBIC ..... 4
effect_plot ..... 5
get_penalties ..... 6
plot.sparseR ..... 7
predict.sparseR ..... 8
print.sparseR ..... 8
sparseR ..... 9
sparseRBIC_bootstrap ..... 11
sparseRBIC_sampsplit ..... 12
sparseRBIC_step ..... 12
sparseR_prep ..... 15
step_center_to ..... 16
summary.sparseR ..... 18
Index ..... 19
sparseR-package sparseR: Implement ranked sparsity for selecting interactions and polynomials

## Description

The sparseR package implements various techniques for selecting from a set of interaction and polynomial terms under ranked sparsity. Additional tools for data pre-processing, post-selection inference, and visualization are also included.

## Author(s)

Maintainer: Ryan Andrew Peterson [ryan.a.peterson@cuanschutz.edu](mailto:ryan.a.peterson@cuanschutz.edu) (ORCID)

## See Also

Useful links:

- https://petersonr.github.io/sparseR/
- https://github.com/petersonR/sparseR/

```
datasets Data sets
```


## Description

Detrano data sets (cleveland, hungarian, switzerland, va); The Iowa Radon Lung Cancer Study (irlcs_radon_syn): Data simulated to resemble the IRLCS study; Sheddon survival data (Z: clinical covariates, S:survival outcome)

## Usage

cleveland
hungarian
switzerland
va
irlcs_radon_syn
Z
S

## Format

An object of class data. frame with 303 rows and 14 columns.
An object of class data. frame with 294 rows and 14 columns.
An object of class data.frame with 123 rows and 14 columns.
An object of class data. frame with 200 rows and 14 columns.
An object of class data. frame with 1027 rows and 16 columns.
An object of class data. frame with 442 rows and 6 columns.
An object of class Surv with 442 rows and 2 columns.

## Source

Detrano data https://archive.ics.uci.edu/ml/datasets/heart+disease
IRLCS data sets https://cheec.uiowa.edu/research/residential-radon-and-lung-cancer-case-control-stu
Sheddon https://www.gsea-msigdb.org/gsea/msigdb/cards/SHEDDEN_LUNG_CANCER_POOR_ SURVIVAL_A6

## References

Detrano Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J., Sandhu, S., Guppy, K., Lee, S., \& Froelicher, V. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology, 64,304-310.
IRLCS FIELD, R., SMITH, B., STECK, D. et al. Residential radon exposure and lung cancer: Variation in risk estimates using alternative exposure scenarios. J Expo Sci Environ Epidemiol 12, 197-203 (2002). https://www. nature.com/articles/7500215
Shedden Director's Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma, Shedden, K., Taylor, J. M., Enkemann, S. A., Tsao, M. S., Yeatman, T. J., Gerald, W. L., Eschrich, S., Jurisica, I., Giordano, T. J., Misek, D. E., Chang, A. C., Zhu, C. Q., Strumpf, D., Hanash, S., Shepherd, F. A., Ding, K., Seymour, L., Naoki, K., Pennell, N., ... Beer, D. G. (2008). Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nature medicine, 14(8), 822-827. https: //www.nature.com/articles/nm. 1790

## EBIC Custom IC functions for stepwise models

## Description

Custom IC functions for stepwise models

## Usage

EBIC(...)
\#\# Default S3 method:
EBIC(fit, varnames, pen_info, gammafn = NULL, return_df = TRUE, ...)
RBIC(fit, ...)
RAIC(fit, ...)

## Arguments

$\ldots \quad$ additional args
fit a fitted object
varnames names of variables
pen_info penalty information
gammafn What to use for gamma in formula
return_df should the deg. freedom be returned

## Value

A vector of values for the criterion requested, and the degrees of freedom (appended to front of vector) if return_df $==$ TRUE.

```
effect_plot Plot relevant effects of a sparseR object
```


## Description

Plot relevant effects of a sparseR object

## Usage

```
effect_plot(fit, ...)
    ## S3 method for class 'sparseR'
    effect_plot(
        fit,
        coef_name,
        at = c("cvmin", "cv1se"),
        by = NULL,
        by_levels,
        nn = 101,
        plot.args = list(),
        resids = TRUE,
    )
    ## S3 method for class 'sparseRBIC'
    effect_plot(
        fit,
        coef_name,
        by = NULL,
        by_levels,
        nn = 101,
        plot.args = list(),
        resids = TRUE,
    )
```


## Arguments

| fit | a 'sparseR' object |
| :--- | :--- |
| $\ldots$ | additional arguments |
| coef_name | The name of the coefficient to plot along the x-axis |
| at | value of lambda to use |
| by | the variable(s) involved in the (possible) interaction |
| by_levels | values to cut continuous by variable (defaults to 3 quantiles) |
| nn | number of points to plot along prediction line |

plot.args list of arguments passed to the plot itself
resids should residuals be plotted or not?

## Value

nothing returned
Nothing (invisible) returned

## Description

## Helper function to help set up penalties

```
Usage
    get_penalties(
        varnames,
        poly,
        poly_prefix = "poly_",
        int_sep = "\\:",
        pool = FALSE,
        gamma = 0.5,
        cumulative_k = FALSE,
        cumulative_poly = TRUE
    )
```


## Arguments

varnames names of the covariates in the model matrix
poly max polynomial considered
poly_prefix what comes before the polynomial specification in these varnames?
int_sep What denotes the multiplication for interactions?
pool Should polynomials and interactions be pooled?
gamma How much should the penalty increase with group size ( 0.5 assumes equal contribution of prior information)
cumulative_k Should penalties be increased cumulatively as order interaction increases? (only used if !pool)
cumulative_poly
Should penalties be increased cumulatively as order polynomial increases? (only used if !pool)

## Details

This is primarily a helper function for sparseR, but it may be useful if doing the model matrix set up by hand.

## Value

a list of relevant information for the variables, including:
penalties the numeric value of the penalties
vartype Variable type (main effect, order $k$ interaction, etc)
varname names of variables
plot.sparseR Plot relevant properties of sparseR objects

## Description

Plot relevant properties of sparseR objects

## Usage

\#\# S3 method for class 'sparseR'
plot(x, plot_type = c("both", "cv", "path"), cols = NULL, log.l = TRUE, ...)

## Arguments

x
plot_type should the solution path, CV results, or both be plotted?
cols option to specify color of groups
log. 1 should the x -axis (lambda) be logged?
... extra plotting options

## Value

nothing returned

```
predict.sparseR Predict coefficients or responses for sparseR object
```


## Description

Predict coefficients or responses for sparseR object

## Usage

```
## S3 method for class 'sparseR'
    predict(object, newdata, lambda, at = c("cvmin", "cv1se"), ...)
    ## S3 method for class 'sparseR'
    coef(object, lambda, at = c("cvmin", "cv1se"), ...)
```


## Arguments

| object | sparseR object |
| :--- | :--- |
| newdata | new data on which to make predictions |
| lambda | a particular value of lambda to predict with |
| at | a "smart" guess to use for lambda |
| $\ldots$ | additional arguments passed to predict.ncvreg |

## Value

predicted outcomes for 'newdata' (or coefficients) at specified (or smart) lambda value

```
print.sparseR Print sparseR object
```


## Description

Print sparseR object

## Usage

\#\# S3 method for class 'sparseR'
print(x, prep = FALSE, ...)

## Arguments

| x | a sparseR object |
| :--- | :--- |
| prep | Should the SR set-up information be printed as well? |
| $\ldots$ | additional arguments passed to print.ncvreg |

## Value

returns x invisibly
sparseR Fit a ranked-sparsity model with regularized regression

## Description

Fit a ranked-sparsity model with regularized regression

## Usage

```
sparseR(
    formula,
    data,
    family = c("gaussian", "binomial", "poisson", "coxph"),
    penalty = c("lasso", "MCP", "SCAD"),
    alpha = 1,
    ncvgamma = 3,
    lambda.min = 0.005,
    k = 1,
    poly = 1,
    gamma = 0.5,
    cumulative_k = FALSE,
    cumulative_poly = TRUE,
    pool = FALSE,
    ia_formula = NULL,
    pre_process = TRUE,
    model_matrix = NULL,
    y = NULL,
    poly_prefix = "_poly_",
    int_sep = "\\:",
    pre_proc_opts = c("knnImpute", "scale", "center", "otherbin", "none"),
    filter = c("nzv", "zv"),
    extra_opts = list(),
)
```


## Arguments

| formula | Names of the terms |
| :--- | :--- |
| data | Data |
| family | The family of the model |
| penalty | What penalty should be used (lasso, MCP, or SCAD) |
| alpha | The mix of L1 penalty (lower values introduce more L2 ridge penalty) |


| ncvgamma | The tuning parameter for ncvreg (for MCP or SCAD) |
| :---: | :---: |
| lambda.min | The minimum value to be used for lambda (as ratio of max, see ?ncvreg) |
| k | The maximum order of interactions to consider |
| poly | The maximum order of polynomials to consider |
| gamma | The degree of extremity of sparsity rankings (see details) |
| cumulative_k | Should penalties be increased cumulatively as order interaction increases? |
| cumulative_poly |  |
|  | Should penalties be increased cumulatively as order polynomial increases? |
| pool | Should interactions of order $k$ and polynomials of order $k+1$ be pooled together for calculating the penalty? |
| ia_formula | formula to be passed to step_interact (for interactions, see details) |
| pre_process | Should the data be preprocessed (if FALSE, must provide model_matrix) |
| model_matrix | A data frame or matrix specifying the full model matrix (used if !pre_process) |
| $y$ | A vector of responses (used if !pre_process) |
| poly_prefix | If model_matrix is specified, what is the prefix for polynomial terms? |
| int_sep | If model_matrix is specified, what is the separator for interaction terms? |
| pre_proc_opts | List of preprocessing steps (see details) |
| filter | The type of filter applied to main effects + interactions |
| extra_opts | A list of options for all preprocess steps (see details) |
|  | Additional arguments (passed to fitting function) |

## Details

Selecting gamma: higher values of gamma will penalize "group" size more. By default, this is set to 0.5 , which yields equal contribution of prior information across orders of interactions/polynomials (this is a good default for most settings).
Additionally, setting cumulative_poly or cumulative_k to TRUE increases the penalty cumulatively based on the order of either polynomial or interaction.
The options that can be passed to pre_proc_opts are: - knnImpute (should missing data be imputed?) - scale (should data be standardized)? - center (should data be centered to the mean or another value?) - otherbin (should factors with low prevalence be combined?) - none (should no preprocessing be done? can also specify a null object)
The options that can be passed to extra_opts are: - centers (named numeric vector which denotes where each covariate should be centered) - center_fn (alternatively, a function can be specified to calculate center such as min or median) - freq_cut, unique_cut (see ?step_nzv - these get used by the filtering steps) - neighbors (the number of neighbors for knnImpute) - one_hot (see ?step_dummy), this defaults to cell-means coding which can be done in regularized regression (change at your own risk) - raw (should polynomials not be orthogonal? defaults to true because variables are centered and scaled already by this point by default)
ia_formula will by default interact all variables with each other up to order k. If specified, ia_formula will be passed as the terms argument to recipes: :step_interact, so the help documentation for that function can be investigated for further assistance in specifying specific interactions.

## Value

an object of class sparseR containing the following:

| fit | the fit object returned by ncvreg |
| :---: | :---: |
| srprep | a recipes object used to prep the data |
| pen_factors | the factor multiple on penalties for ranked sparsity |
| results | all coefficients and penalty factors at minimum CV lambda |
| results_summary |  |
|  | a tibble of summary results at minimum CV lambda |
| results1se | all coefficients and penalty factors at lambda_1se |
| results1se_summary |  |
|  | a tibble of summary results at lambda_1se |
| data | the (unprocessed) data |
| family | the family argument (for non-normal, eg. poisson) |
| info | a list containing meta-info about the procedure |

## References

For fitting functionality, the ncvreg package is used; see Breheny, P. and Huang, J. (2011) Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann. Appl. Statist., 5: 232-253.

## Description

Runs bootstrap on models selection procedure using RBIC to find bootstrapped standard error (smoothed, see Efron 2014) as well as selection percentage across candidate variables. (experimental)

## Usage

sparseRBIC_bootstrap(srbic_fit, B = 100, quiet = FALSE)

## Arguments

srbic_fit An object fitted by sparseRBIC_step
B Number of bootstrap samples
quiet Should the display of a progress bar be silenced?

## Value

a list containing:
results a tibble containing coefficients, p-values, selection pct
bootstraps a tibble of bootstrapped coefficients
sparseRBIC_sampsplit Sample split procedure for stepwise regression

## Description

Runs multiple on models selection procedures using RBIC to achieve valid inferential results postselection

## Usage

sparseRBIC_sampsplit(srbic_fit, S = 100, quiet = FALSE)

## Arguments

| srbic_fit | An object fitted by sparseRBIC_step |
| :--- | :--- |
| S | Number of splitting iterations |
| quiet | Should the display of a progress bar be silenced? |

## Value

a list containing:
results a tibble containing coefficients, p -values, selection pet
splits a tibble of different split-based coefficients
sparseRBIC_step Fit a ranked-sparsity model with forward stepwise RBIC (experimental)

## Description

Fit a ranked-sparsity model with forward stepwise RBIC (experimental)

## Usage

```
sparseRBIC_step(
    formula,
    data,
    family = c("gaussian", "binomial", "poisson"),
    k = 1,
    poly = 1,
    ic = c("RBIC", "RAIC", "BIC", "AIC", "EBIC"),
    hier = c("strong", "weak", "none"),
    sequential = (hier[1] != "none"),
    cumulative_k = FALSE,
```

```
    cumulative_poly = TRUE,
    pool = FALSE,
    ia_formula = NULL,
    pre_process = TRUE,
    model_matrix = NULL,
    y = NULL,
    poly_prefix = "_poly_",
    int_sep = "\\:",
    pre_proc_opts = c("knnImpute", "scale", "center", "otherbin", "none"),
    filter = c("nzv", "zv"),
    extra_opts = list(),
    trace = 0,
    message = TRUE,
)
```


## Arguments

| formula | Names of the terms |
| :---: | :---: |
| data | Data |
| family | The family of the model |
| k | The maximum order of interactions to consider |
| poly | The maximum order of polynomials to consider |
| ic | The information criterion to use |
| hier | Should hierarchy be enforced (weak or strong)? Must be set with sequential == TRUE (see details) |
| sequential | Should the main effects be considered first, orders sequentially added/considered? |
| cumulative_k | Should penalties be increased cumulatively as order interaction increases? |
| cumulative_poly |  |
|  | Should penalties be increased cumulatively as order polynomial increases? |
| pool | Should interactions of order $k$ and polynomials of order $k+1$ be pooled together for calculating the penalty? |
| ia_formula | formula to be passed to step_interact via terms argument |
| pre_process | Should the data be preprocessed (if FALSE, must provide model_matrix) |
| model_matrix | A data frame or matrix specifying the full model matrix (used if !pre_process) |
| $y$ | A vector of responses (used if !pre_process) |
| poly_prefix | If model_matrix is specified, what is the prefix for polynomial terms? |
| int_sep | If model_matrix is specified, what is the separator for interaction terms? |
| pre_proc_opts | List of preprocessing steps (see details) |
| filter | The type of filter applied to main effects + interactions |
| extra_opts | A list of options for all preprocess steps (see details) |
| trace | Should intermediate results of model selection process be output |
| message | should experimental message be suppressed |
|  | additional arguments for running stepwise selection |

## Details

This function mirrors sparseR but uses stepwise selection guided by RBIC.
Additionally, setting cumulative_poly or cumulative_k to TRUE increases the penalty cumulatively based on the order of either polynomial or interaction.

The hier hierarchy enforcement will only work if sequential == TRUE, and notably will only consider the "first gen" hierarchy, that is, that all main effects which make up an interaction are already in the model. It is therefore possible for a third order interaction ( $\mathrm{x} 1: \mathrm{x} 2: \mathrm{x} 3$ ) to enter a model without $\mathrm{x} 1: \mathrm{x} 2$ or $\mathrm{x} 2: \mathrm{x} 3$, so long as $\mathrm{x} 1, \mathrm{x} 2$, and x 3 are all in the model.

The options that can be passed to pre_proc_opts are:

- knnImpute (should missing data be imputed?)
- scale (should data be standardized)?
- center (should data be centered to the mean or another value?)
- otherbin (should factors with low prevalence be combined?)
- none (should no preprocessing be done? can also specify a null object)

The options that can be passed to extra_opts are:

- centers (named numeric vector which denotes where each covariate should be centered)
- center_fn (alternatively, a function can be specified to calculate center such as min or median)
- freq_cut, unique_cut (see ?step_nzv - these get used by the filtering steps)
- neighbors (the number of neighbors for knnImpute)
- one_hot (see ?step_dummy), this defaults to cell-means coding which can be done in regularized regression (change at your own risk)
- raw (should polynomials not be orthogonal? defaults to true because variables are centered and scaled already by this point by default)


## Value

an object of class sparseRBIC containing the following:

| fit | the final fit object |
| :--- | :--- |
| srprep | a recipes object used to prep the data |
| pen_info | coefficient-level variable counts, types + names |
| data | the (unprocessed) data |
| family | the family argument (for non-normal, eg. poisson) |
| info | a list containing meta-info about the procedure |
| stats | the IC for each fit and respective terms included |

sparseR_prep Preprocess \& create a model matrix with interactions + polynomials

## Description

Preprocess \& create a model matrix with interactions + polynomials

## Usage

```
sparseR_prep(
        formula,
        data,
        k = 1,
        poly = 1,
        pre_proc_opts = c("knnImpute", "scale", "center", "otherbin", "none"),
        ia_formula = NULL,
        filter = c("nzv", "zv"),
        extra_opts = list(),
        family = "gaussian"
    )
```


## Arguments

| formula | A formula of the main effects + outcome of the model |
| :--- | :--- |
| data | A required data frame or tibble containing the variables in formula |
| k | Maximum order of interactions to numeric variables |
| poly | the maximum order of polynomials to consider |
| pre_proc_opts | A character vector specifying methods for preprocessing (see details) |
| ia_formula | formula to be passed to step_interact (for interactions, see details) |
| filter | which methods should be used to filter out variables with (near) zero variance? <br> (see details) |
| extra_opts | extra options to be used for preprocessing <br> family |
| family passed from sparseR |  |

## Details

The pre_proc_opts acts as a wrapper for the corresponding procedures in the recipes package. The currently supported options that can be passed to pre_proc_opts are: knnImpute: Should k-nearest-neighbors be performed (if necessary?) scale: Should variables be scaled prior to creating interactions (does not scale factor variables or dummy variables) center: Should variables be centered (will not center factor variables or dummy variables ) otherbin:
ia_formula will by default interact all variables with each other up to order k. If specified, ia_formula will be passed as the terms argument to recipes: :step_interact, so the help documentation for that function can be investigated for further assistance in specifying specific interactions.

The methods specified in filter are important; filtering is necessary to cut down on extraneous polynomials and interactions (in cases where they really don't make sense). This is true, for instance, when using dummy variables in polynomials, or when using interactions of dummy variables that relate to the same categorical variable.

## Value

an object of class recipe; see recipes: : recipe()
step_center_to Centering numeric data to a value besides their mean

## Description

'step_center_to' generalizes 'step_center' to allow for a different function than the 'mean' function to calculate centers. It creates a *specification* of a recipe step that will normalize numeric data to have a 'center' of zero.

## Usage

step_center_to( recipe,
...,
role $=$ NA,
trained = FALSE,
centers = NULL,
center_fn = mean,
na_rm = TRUE,
skip = FALSE,
id = rand_id("center_to")
)
\#\# S3 method for class 'step_center_to'
tidy (x, ...)

## Arguments

recipe A recipe object. The step will be added to the sequence of operations for this recipe.
... One or more selector functions to choose which variables are affected by the step. See [selections()] for more details. For the 'tidy' method, these are not currently used.
role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
centers A named numeric vector of centers. This is 'NULL' until computed by [prep.recipe()] (or it can be specified as a named numeric vector as well?).

| center_fn <br> na_rm | a function to be used to calculate where the center should be <br> A logical value indicating whether 'NA' values should be removed during com- <br> putations. |
| :--- | :--- |
| skip | A logical. Should the step be skipped when the recipe is baked by [bake.recipe()]? <br> While all operations are baked when [prep.recipe()] is run, some operations may <br> not be able to be conducted on new data (e.g. processing the outcome vari- <br> able(s)). Care should be taken when using 'skip = TRUE' as it may affect the <br> computations for subsequent operations |
| id | A character string that is unique to this step to identify it. <br> x 'step_center_to' object. |

## Details

Centering data means that the average of a variable is subtracted from the data. 'step_center_to' estimates the variable centers from the data used in the 'training' argument of 'prep.recipe'. 'bake.recipe' then applies the centering to new data sets using these centers.

## Value

An updated version of 'recipe' with the new step added to the sequence of existing steps (if any). For the 'tidy' method, a tibble with columns 'terms" (the selectors or variables selected) and 'value' (the centers).

## See Also

[recipe()] [prep.recipe()] [bake.recipe()]

## Examples

```
data(biomass, package = "modeldata")
biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]
rec <- recipes::recipe(
    HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
    data = biomass_tr)
center_trans <- rec %>%
    step_center_to(carbon, contains("gen"), -hydrogen)
center_obj <- recipes::prep(center_trans, training = biomass_tr)
transformed_te <- recipes::bake(center_obj, biomass_te)
biomass_te[1:10, names(transformed_te)]
transformed_te
recipes::tidy(center_trans)
recipes::tidy(center_obj)
```

```
    summary.sparseR Summary of sparseR model coefficients
```


## Description

Summary of sparseR model coefficients

## Usage

\#\# S3 method for class 'sparseR'
summary (object, lambda, at = c("cvmin", "cv1se"), ...)

## Arguments

| object | a sparseR object |
| :--- | :--- |
| lambda | a particular value of lambda to predict with |
| at | a "smart" guess to use for lambda |
| . . | additional arguments to be passed to summary.ncvreg |

## Value

an object of class 'summary.ncvreg' at specified or smart value of lambda.

## Index

```
* datagen
    step_center_to, 16
* datasets
    datasets, }
* normalization_methods
    step_center_to,16
* preprocessing
    step_center_to, 16
_PACKAGE (sparseR-package), 2
cleveland (datasets), 3
coef.sparseR (predict.sparseR), 8
datasets, 3
EBIC,4
effect_plot,5
get_penalties,6
hungarian(datasets), 3
irlcs_radon_syn(datasets), 3
plot.sparseR,7
predict.sparseR,8
print.sparseR,8
RAIC (EBIC), 4
RBIC (EBIC), 4
recipes::recipe(),16
S(datasets), 3
sparseR, }
sparseR-package, 2
sparseR_prep,15
sparseRBIC_bootstrap,11
sparseRBIC_sampsplit,12
sparseRBIC_step, 12
step_center_to,16
summary.sparseR,18
```

switzerland (datasets), 3
tidy.step_center_to(step_center_to), 16
va (datasets), 3
Z (datasets), 3

