Package 'spmoran'

September 5, 2022

Type Package
Title Fast Spatial Regression using Moran Eigenvectors
Version 0.2.2.6
Date 2022-09-05
Author Daisuke Murakami dmuraka@ism.ac.jp
Maintainer Daisuke Murakami dmuraka@ism.ac.jp
Description
Functions for estimating spatial varying coefficient models, mixed models, and other spatial regression models for Gaussian and non-Gaussian data. Moran eigenvectors are used to an approximate Gaussian process modeling which is interpretable in terms of the Moran coefficient. The GP is used for modeling the spatial processes in residuals and regression coefficients. For details see Murakami (2021) arXiv:1703.04467.
License GPL (>=2)
Encoding UTF-8
Imports sp , fields, vegan, Matrix, doParallel, foreach, ggplot2, spdep, rARPACK, RColorBrewer, splines, FNN, methods

Suggests R.rsp, rgdal
VignetteBuilder R.rsp
NeedsCompilation no
Repository CRAN
Date/Publication 2022-09-05 06:00:02 UTC

R topics documented:

besf 2
besf_vc 4
coef_marginal 8
coef_marginal_vc 9
esf 10
lsem 11
lslm 13
meigen 14
meigen0 16
meigen_f 17
nongauss_y 18
plot_n 20
plot_qr 21
plot_s 22
predict0 23
predict0_vc 25
resf 27
resf_qr 31
resf_vc 33
weigen 39
Index 41

Description

Memory-free implementation of RE-ESF-based spatial regression for very large samples. This model estimates residual spatial dependence, constant coefficients, and non-spatially varying coefficients (NVC; coefficients varying with respect to explanatory variable value).

Usage

besf(y, $x=$ NULL, nvc = FALSE, nvc_sel = TRUE, coords, s_id = NULL, covmodel="exp", enum = 200, method = "reml", penalty = "bic", nvc_num = 5, maxiter $=30$, bsize $=4000, \mathrm{cl}=$ NULL)

Arguments

$y \quad$ Vector of explained variables ($\mathrm{N} \times 1$)
$x \quad$ Matrix of explanatory variables ($\mathrm{N} \mathrm{X} \mathrm{K}^{\mathrm{K}}$)
nvc If TRUE, NVCs are assumed on x. Otherwise, constant coefficients are assumed. Default is FALSE
nvc_sel If TRUE, type of coefficients (NVC or constant) is selected through a BIC (default) or AIC minimization. If FALSE, NVCs are assumed across x. Alternatively, nvc_sel can be given by column number(s) of x. For example, if nvc_sel $=2$, the coefficient on the second explanatory variable in x is NVC and the other coefficients are constants. The Default is TRUE
coords Matrix of spatial point coordinates ($\mathrm{N} \times 2$)
s_id Optional. ID specifying groups modeling spatially dependent process ($\mathrm{N} \times 1$). If it is specified, group-level spatial process is estimated. It is useful. e.g., for multilevel modeling (s_id is given by the group ID) and panel data modeling (s_id is given by individual location id). Default is NULL
besf

covmodel	Type of kernel to model spatial dependence. The currently available options are "exp" for the exponential kernel, "gau" for the Gaussian kernel, and "sph" for the spherical kernel Number of Moran eigenvectors to be used for spatial process modeling (scalar). Default is 200
enum	Estimation method. Restricted maximum likelihood method ("reml") and max- imum likelihood method ("ml") are available. Default is "reml" method penalty to select type of coefficients (NVC or constant) to stablize the estimates. The current options are "bic" for the Baysian information criterion-type penalty (N x log(K)) and "aic" for the Akaike information criterion (2K) (see Muller et
nvc_num	al., 2013). Default is "bic" Number of basis functions used to model NVC. An intercept and nvc_num nat- ural spline basis functions are used to model each NVC. Default is 5
maxiter	Maximum number of iterations. Default is 30
bsize	Block/badge size. bsize x bsize elements are iteratively processed during the parallelized computation. Default is 4000
cl	Number of cores used for the parallel computation. If cl = NULL, the number of available cores is detected. Default is NULL

Value

b
c_vc
cse_vc
ct_vc
cp_vc
s
e
vc
r
sf
pred
resid
other

Matrix with columns for the estimated coefficients on x , their standard errors, z-values, and p-values ($\mathrm{K} x 4$). Effective if nvc $=$ FALSE
Matrix of estimated NVCs on $\mathrm{x}(\mathrm{N} \times \mathrm{K})$. Effective if nvc =TRUE
Matrix of standard errors for the NVCs on x ($\mathrm{N} x \mathrm{~K}$). Effective if nvc =TRUE
Matrix of t-values for the NVCs on $\mathrm{x}(\mathrm{N} \times \mathrm{K})$. Effective if nvc =TRUE
Matrix of p-values for the NVCs on x ($\mathrm{N} \times \mathrm{K}$). Effective if nvc =TRUE
Vector of estimated variance parameters (2×1). The first and the second elements denote the standard error and the Moran's I value of the estimated spatially dependent component, respectively. The Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked

Vector whose elements are residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). When method = " ml ", restricted log-likelihood (rlogLik) is replaced with log-likelihood (logLik)
List indicating whether NVC are removed or not during the BIC/AIC minimization. 1 indicates not removed whreas 0 indicates removed
Vector of estimated random coefficients on Moran's eigenvectors (L x 1)
Vector of estimated spatial dependent component ($\mathrm{N} \times 1$)
Vector of predicted values ($\mathrm{N} \times 1$)
Vector of residuals ($\mathrm{N} \times 1$)
List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science \& Business Media.

Murakami, D. and Griffith, D.A. (2015) Random effects specifications in eigenvector spatial filtering: a simulation study. Journal of Geographical Systems, 17 (4), 311-331.

Murakami, D. and Griffith, D.A. (2019) A memory-free spatial additive mixed modeling for big spatial data. Japan Journal of Statistics and Data Science. DOI:10.1007/s42081-019-00063-x.

See Also

resf

Examples

```
require(spdep)
data(boston)
y <- boston.c[, "CMEDV" ]
x <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE",
                                    "DIS" ,"RAD", "TAX", "PTRATIO", "B", "LSTAT")]
xgroup <- boston.c[,"TOWN"]
coords <- boston.c[,c("LON", "LAT")]
######## Regression considering spatially dependent residuals
#res <- besf(y = y, x = x, coords=coords)
#res
######## Regression considering spatially dependent residuals and NVC
######## (coefficients or NVC is selected)
#res2 <- besf(y = y, x = x, coords=coords, nvc = TRUE)
######## Regression considering spatially dependent residuals and NVC
######## (all the coefficients are NVCs)
#res3 <- besf(y = y, x = x, coords=coords, nvc = TRUE, nvc_sel=FALSE)
```

besf_vc	Spatially and non-spatially varying coefficient (SNVC) modeling for very large samples

Description

Memory-free implementation of SNVC modeling for very large samples. The model estimates residual spatial dependence, constant coefficients, spatially varying coefficients (SVCs), non-spatially varying coefficients (NVC; coefficients varying with respect to explanatory variable value), and SNVC (= SVC + NVC). Type of coefficients can be selected through BIC/AIC minimization. By default, it estimates a SVC model.
Note: SNVCs can be mapped just like SVCs. Unlike SVC models, SNVC model is robust against spurious correlation (multicollinearity), so, stable (see Murakami and Griffith, 2020).

Usage

```
besf_vc( y, x, xconst = NULL, coords, s_id = NULL, x_nvc = FALSE, xconst_nvc = FALSE,
    x_sel = TRUE, x_nvc_sel = TRUE, xconst_nvc_sel = TRUE, nvc_num=5,
    method = "reml", penalty = "bic", maxiter = 30,
    covmodel="exp",enum = 200, bsize = 4000, cl=NULL )
```


Arguments

$y \quad$ Vector of explained variables ($\mathrm{N} \times 1$)
$x \quad$ Matrix of explanatory variables with spatially varying coefficients (SVC) (N x K)
xconst Matrix of explanatory variables with constant coefficients (N x K_c). Default is NULL
coords Matrix of spatial point coordinates ($\mathrm{N} \times 2$)
s_id Optional. ID specifying groups modeling spatially dependent process ($\mathrm{N} \times 1$). If it is specified, group-level spatial process is estimated. It is useful for multilevel modeling (s_id is given by the group ID) and panel data modeling (s_id is given by individual location id). Default is NULL
x_nvc If TRUE, SNVCs are assumed on x. Otherwise, SVCs are assumed. Default is FALSE
xconst_nvc If TRUE, NVCs are assumed on xconst. Otherwise, constant coefficients are assumed. Default is FALSE
x_sel If TRUE, type of coefficient (SVC or constant) on x is selected through a BIC (default) or AIC minimization. If FALSE, SVCs are assumed across x. Alternatively, $\mathrm{x} _$sel can be given by column number(s) of x . For example, if $\mathrm{x} _$sel $=$ 2, the coefficient on the second explanatory variable in x is SVC and the other coefficients are constants. The Default is TRUE
x_nvc_sel If TRUE, type of coefficient (NVC or constant) on x is selected through the BIC (default) or AIC minimization. If FALSE, NVCs are assumed across x. Alternatively, x_nvc_sel can be given by column number(s) of x. For example, if $\mathrm{x} _$nvc_sel $=2$, the coefficient on the second explanatory variable in x is NVC and the other coefficients are constants. The Default is TRUE
xconst_nvc_sel If TRUE, type of coefficient (NVC or constant) on xconst is selected through the BIC (default) or AIC minimization. If FALSE, NVCs are assumed across xconst. Alternatively, xconst_nvc_sel can be given by column number(s) of
xconst. For example, if xconst_nvc_sel $=2$, the coefficient on the second explanatory variable in xconst is NVC and the other coefficients are constants.The Default is TRUE
nvc_num Number of basis functions used to model NVC. An intercept and nvc_num natural spline basis functions are used to model each NVC. Default is 5
method Estimation method. Restricted maximum likelihood method ("reml") and maximum likelihood method ("ml") are available. Default is "reml"
penalty Penalty to select type of coefficients (SNVC, SVC, NVC, or constant) to stablize the estimates. The current options are "bic" for the Baysian information criterion-type penalty $(\mathrm{N} \times \log (\mathrm{K}))$ and "aic" for the Akaike information criterion (2 K) (see Muller et al., 2013). Default is "bic"
maxiter Maximum number of iterations. Default is 30
covmodel Type of kernel to model spatial dependence. The currently available options are "exp" for the exponential kernel, "gau" for the Gaussian kernel, and "sph" for the spherical kernel
enum Number of Moran eigenvectors to be used for spatial process modeling (scalar). Default is 200
bsize Block/badge size. bsize x bsize elements are iteratively processed during the parallelized computation. Default is 4000
cl Number of cores used for the parallel computation. If $\mathrm{cl}=$ NULL, the number of available cores is detected. Default is NULL

Value

b_vc	Matrix of estimated SNVC (= SVC + NVC) on x ($\mathrm{N} \times \mathrm{K}$)
bse_vc	Matrix of standard errors for the SNVCs on x ($\mathrm{N} \times \mathrm{k}$)
z_vc	Matrix of z-values for the SNVCs on x ($\mathrm{N} \times \mathrm{K}$)
p_vc	Matrix of p-values for the SNVCs on x (Nx K)
B_vc_s	List summarizing estimated SVCs (in SNVC) on x. The four elements are the SVCs ($\mathrm{N} x \mathrm{~K}$), the standard errors ($\mathrm{N} \times \mathrm{K}$), z-values ($\mathrm{N} \times \mathrm{K}$), and p-values ($\mathrm{N} x$ K), respectively
B_vc_n	List summarizing estimated NVCs (in SNVC) on x . The four elements are the NVCs (N x K) , the standard errors (N x K), z-values (N x K), and p-values (N x K), respectively
C	Matrix with columns for the estimated coefficients on xconst, their standard errors, z-values, and p-values (K_c x 4). Effective if xconst_nvc = FALSE
c_vc	Matrix of estimated NVCs on xconst ($\mathrm{N} \times \mathrm{K} _$c). . Effective if xconst_nvc = TRUE
cse_vc	Matrix of standard errors for the NVCs on xconst ($\mathrm{N} \mathrm{x} \mathrm{k}_{\mathrm{k}} \mathrm{c}$). Effective if xconst_nvc = TRUE
cz_vc	Matrix of z-values for the NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE
cp_vc	Matrix of p-values for the NVCs on xconst ($\mathrm{N} x \mathrm{~K}_{-}$c). Effective if xconst_nvc = TRUE

List of variance parameters in the SNVC (SVC + NVC) on x. The first element is a $2 \times \mathrm{K}$ matrix summarizing variance parameters for SVC. The ($1, \mathrm{k}$)-th element is the standard error of the k -th SVC, while the ($2, \mathrm{k}$)-th element is the Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (strongest spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked. The second element of s is the vector of standard errors of the NVCs
s_c Vector of standard errors of the NVCs on xconst
vc List indicating whether SVC/NVC are removed or not during the BIC/AIC minimization. 1 indicates not removed (replaced with constant) whreas 0 indicates removed
e
Vector whose elements are residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). When method = " ml ", restricted log-likelihood (rlogLik) is replaced with log-likelihood (logLik)
pred \quad Vector of predicted values ($\mathrm{N} \times 1$)
resid Vector of residuals (N x 1)
other List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Muller, S., Scealy, J.L., and Welsh, A.H. (2013) Model selection in linear mixed models. Statistical Science, 28 (2), 136-167.

Murakami, D., Yoshida, T., Seya, H., Griffith, D.A., and Yamagata, Y. (2017) A Moran coefficientbased mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68-89.
Murakami, D., and Griffith, D.A. (2019). Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions. Spatial Statistics, 30, 39-64.

Murakami, D. and Griffith, D.A. (2019) A memory-free spatial additive mixed modeling for big spatial data. Japan Journal of Statistics and Data Science. DOI:10.1007/s42081-019-00063-x.
Murakami, D., and Griffith, D.A. (2020) Balancing spatial and non-spatial variations in varying coefficient modeling: a remedy for spurious correlation. ArXiv.

See Also

resf_vc

Examples

```
require(spdep)
```

data(boston)

```
y <- boston.c[, "CMEDV"]
x <- boston.c[,c("CRIM", "AGE")]
xconst <- boston.c[,c("ZN","DIS","RAD","NOX", "TAX","RM", "PTRATIO", "B")]
xgroup <- boston.c[,"TOWN"]
coords <- boston.c[,c("LON", "LAT")]
############## SVC modeling1 #################
######## (SVC on x; Constant coefficients on xconst)
#res <- besf_vc(y=y,x=x,xconst=xconst,coords=coords, x_sel = FALSE )
#res
#plot_s(res,0) # Spatially varying intercept
#plot_s(res,1) # 1st SVC
#plot_s(res,2) # 2nd SVC
############## SVC modeling2 #################
######## (SVC or constant coefficients on x; Constant coefficients on xconst)
#res2 <- besf_vc(y=y,x=x,xconst=xconst,coords=coords )
############## SVC modeling3 #################
######## - Group-level SVC or constant coefficients on x
######## - Constant coefficients on xconst
#res3 <- besf_vc(y=y,x=x,xconst=xconst,coords=coords, s_id=xgroup)
############## SNVC modeling1 #################
######## - SNVC, SVC, NVC, or constant coefficients on x
######## - Constant coefficients on xconst
#res4 <- besf_vc(y=y,x=x,xconst=xconst,coords=coords, x_nvc =TRUE)
############## SNVC modeling2 #################
######## - SNVC, SVC, NVC, or constant coefficients on x
######## - NVC or Constant coefficients on xconst
#res5 <- besf_vc(y=y,x=x,xconst=xconst,coords=coords, x_nvc =TRUE, xconst_nvc=TRUE)
#plot_s(res5,0) # Spatially varying intercept
#plot_s(res5,1) # 1st SNVC (SVC + NVC)
#plot_s(res5,1,btype="svc")# SVC in the 1st SNVC
#plot_n(res5,1,xtype="x") # NVC in the 1st NVC on x
#plot_n(res5,6,xtype="xconst")# NVC in the 6t NVC on xcnost
```

coef_marginal Marginal effects evaluation

Description

This function evaluates the marginal effects from x ($d y / d x$) based on the estimation result of resf. This funtion is for non-Gaussian models transforming y using nongauss_y.
coef_marginal_vc

Usage

coef_marginal(mod)

Arguments

$\bmod \quad$ Output from resf

Value

b Marginal effects from $\mathrm{x}(\mathrm{dy} / \mathrm{dx})$

See Also

resf
coef_marginal_vc Marginal effects evaluation from models with varying coefficients

Description

This function evaluates the marginal effects from $x(d y / d x)$ based on the estimation result of resf_vc. This funtion is for non-Gaussian models transforming y using nongauss_y.

Usage

coef_marginal_vc(mod)

Arguments

mod \quad Output from resf_vc

Value

b_vc Matrix of the marginal effects of $x(d y / d x)(N x K)$
B_vc_n Matrix of the sub-marginal effects of x explained by the spatially varying coefficients ($\mathrm{N} \times \mathrm{K}$)
B_vc_s Matrix of the sub-marginal effects explained by the non-spatially varying coefficients ($\mathrm{N} \times \mathrm{K}$)
c
Matrix of the marginal effects of xconst (N x K_const)
other List of other outputs, which are internally used

See Also

resf_vc

Description

This function estimates the linear eigenvector spatial filtering (ESF) model. The eigenvectors are selected by a forward stepwise method.

Usage

esf(y, $x=$ NULL, vif = NULL, meig, fn = "r2")

Arguments

$y \quad$ Vector of explained variables (N x 1)
$x \quad$ Matrix of explanatory variables (N x K). Default is NULL
vif Maximum acceptable value of the variance inflation factor (VIF) (scalar). For example, if vif $=10$, eigenvectors are selected so that the maximum VIF value among explanatory variables and eigenvectors is equal to or less than 10. Default is NULL
meig Moran eigenvectors and eigenvalues. Output from meigen or meigen_f
fn Objective function for the stepwise eigenvector selection. The adjusted R2 ("r2"), AIC ("aic"), or BIC ("bic") are available. Alternatively, all the eigenvectors in meig are use if $\mathrm{fn}=$ "all". This is acceptable for large samples (see Murakami and Griffith, 2019). Default is "r2"

Value

b Matrix with columns for the estimated coefficients on x, their standard errors, t -values, and p-values ($\mathrm{K} \times 4$)

S
Vector of statistics for the estimated spatial component (2×1). The first element is the standard error and the second element is the Moran's I value of the estimated spatially dependent component. The Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked
$r \quad$ Matrix with columns for the estimated coefficients on Moran's eigenvectors, their standard errors, t -values, and p -values (L x 4)
vif Vector of variance inflation factors of the explanatory variables ($\mathrm{N} \times 1$)
e Vector whose elements are residual standard error (resid_SE), adjusted R2 (adjR2), log-likelihood (logLik), AIC, and BIC
sf Vector of estimated spatial dependent component (E γ) ($\mathrm{N} \times 1$)
pred \quad Vector of predicted values (N x 1)
resid Vector of residuals ($\mathrm{N} \times 1$)
other List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science \& Business Media.
Tiefelsdorf, M., and Griffith, D. A. (2007). Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environment and Planning A, 39 (5), 1193-1221.
Murakami, D. and Griffith, D.A. (2019) Eigenvector spatial filtering for large data sets: fixed and random effects approaches. Geographical Analysis, 51 (1), 23-49.

See Also

resf

Examples

```
require(spdep)
data(boston)
y <- boston.c[, "CMEDV" ]
x <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE")]
coords <- boston.c[,c("LON", "LAT")]
#########Distance-based ESF
meig <- meigen(coords=coords)
esfD <- esf(y=y,x=x,meig=meig, vif=5)
esfD
##########Fast approximation
meig_f<- meigen_f(coords=coords)
esfD <- esf(y=y,x=x,meig=meig_f, vif=10, fn="all")
esfD
#############################Not run
#########Topoligy-based ESF (it is commonly used in regional science)
#
#cknn <- knearneigh(coordinates(coords), k=4) #4-nearest neighbors
#cmat <- nb2mat(knn2nb(cknn), style="B")
#meig <- meigen(cmat=cmat, threshold=0.25)
#esfT <- esf(y=y,x=x,meig=meig)
#esfT
```

lsem Low rank spatial error model (LSEM) estimation

Description

This function estimates the low rank spatial error model.

Usage

lsem(y, x, weig, method = "reml")

Arguments

$y \quad$ Vector of explained variables ($\mathrm{N} \times 1$)
$x \quad$ Matrix of explanatory variables ($\mathrm{N} \times \mathrm{K}$)
weig eigenvectors and eigenvalues of a spatial weight matrix. Output from weigen
method Estimation method. Restricted maximum likelihood method ("reml") and maximum likelihood method ("ml") are available. Default is "reml"

Value

b Matrix with columns for the estimated coefficients on x, their standard errors, t -values, and p-values ($\mathrm{K} \times 4$)

S
Vector of estimated variance parameters (2×1). The first and the second elements denote the estimated rho parameter (sp_lambda) quantfying the scale of spatial dependent process, and the standard error of the process (sp_SE), respectively.
e
Vector whose elements are residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). When method = " ml ", restricted log-likelihood (rlogLik) is replaced with log-likelihood (logLik)
$r \quad$ Vector of estimated random coefficients on the spatial eigenvectors (L x 1)
pred \quad Vector of predicted values ($\mathrm{N} \times 1$)
resid Vector of residuals (N x 1)
other List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Murakami, D., Seya, H. and Griffith, D.A. (2018) Low rank spatial econometric models. Arxiv.

See Also

meigen, meigen_f

Examples

```
require(spdep)
data(boston)
y <- boston.c[, "CMEDV" ]
x <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE",
    "DIS" ,"RAD", "TAX", "PTRATIO", "B", "LSTAT")]
```

```
coords<- boston.c[,c("LON", "LAT")]
weig <- weigen( coords )
res <- lsem(y=y,x=x,weig=weig)
res
```


lslm

Low rank spatial lag model (LSLM) estimation

Description

This function estimates the low rank spatial lag model.

Usage

$\operatorname{lslm}(\mathrm{y}, \mathrm{x}$, weig, method $=$ "reml", boot $=$ FALSE, iter $=200$)

Arguments

y	Vector of explained variables (N x 1)
x	Matrix of explanatory variables (N x K)
weig	eigenvectors and eigenvalues of a spatial weight matrix. Output from weigen
method	Estimation method. Restricted maximum likelihood method ("reml") and max- imum likelihood method ("ml") are available. Default is "reml"
boot	If it is TRUE, confidence intervals for the spatial dependence parameters (s), the mean direct effects (de), and the mean indirect effects (ie), are estimated through a parametric bootstrapping. Default is FALSE
iter	The number of bootstrap replicates. Default is 200

Value

b

S
e
de
ie

Matrix with columns for the estimated coefficients on x , their standard errors, t -values, and p -values ($\mathrm{K} \times 4$)

Vector of estimated shrinkage parameters (2×1). The first and the second elements denote the estimated rho parameter (sp_rho) quantfying the scale of spatial dependence, and the standard error of the spatial dependent component (sp_SE), respectively. If boot = TRUE, their 95 percent confidence intervals and the resulting p-values are also provided
Vector whose elements are residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). When method = " ml ", restricted log-likelihood (rlogLik) is replaced with log-likelihood (logLik)
Matrix with columns for the estimated mean direct effects on x . If boot = TRUE, their 95 percent confidence intervals and the resulting p-values are also provided
Matrix with columns for the estimated mean indirect effects on x. If boot $=$ TRUE, their 95 percent confidence intervals and the resulting p -values are also provided
r
pred \quad Vector of predicted values ($\mathrm{N} x 1$)
resid \quad Vector of residuals ($\mathrm{N} \times 1$)
other List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Murakami, D., Seya, H. and Griffith, D.A. (2018) Low rank spatial econometric models. Arxiv.

See Also

weigen, lsem

Examples

```
require(spdep)
data(boston)
y <- boston.c[, "CMEDV" ]
x <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE",
    "DIS" ,"RAD", "TAX", "PTRATIO", "B", "LSTAT")]
coords <- boston.c[,c("LON", "LAT")]
weig <- weigen(coords)
res <- lslm(y=y,x=x,weig=weig)
## res <- lslm(y=y,x=x,weig=weig, boot=TRUE)
res
```

meigen

Extraction of Moran's eigenvectors

Description

This function calculates Moran eigenvectors and eigenvalues.

Usage

meigen (coords $=$ NULL, model $=$ "exp", threshold $=0$, enum $=$ NULL, cmat $=$ NULL, s_id $=$ NULL)

Arguments

$$
\begin{array}{ll}
\text { coords } & \begin{array}{l}
\text { Matrix of spatial point coordinates (N x 2). If cmat is specified, it is ignored } \\
\text { model } \\
\text { Type of kernel to model spatial dependence. The currently available options are } \\
\text { "exp" for the exponential kernel, "gau" for the Gaussian kernel, and "sph" for } \\
\text { the spherical kernel. Default is "exp" }
\end{array} \\
\text { threshold } & \begin{array}{l}
\text { Threshold for the eigenvalues (scalar). Suppose that lambda_1 is the maximum } \\
\text { eigenvalue, this function extracts eigenvectors whose corresponding eigenvalue } \\
\text { is equal or greater than (threshold x lambda_1). threshold must be a value be- } \\
\text { tween } 0 \text { and 1. Default is zero (see Details) }
\end{array} \\
\text { enum } & \begin{array}{l}
\text { Optional. The muxmum acceptable mumber of eigenvectors to be extracted } \\
\text { (scalar) }
\end{array} \\
\text { cmat } & \begin{array}{l}
\text { Optional. A user-specified spatial connectivity matrix (N x N). It must be pro- } \\
\text { vided when the user wants to use a spatial connectivity matrix other than the } \\
\text { default matrices }
\end{array} \\
\text { Optional. Location/zone ID for modeling spatial effects across groups. If speci- } \\
\text { fied, Moran eigenvectors are extracted by groups. It is useful e.g. for multilevel } \\
\text { modeling (s_id is the groups) and panel data modeling (s_id is given by individ- } \\
\text { ual location id). Default is NULL }
\end{array}
$$

Details

If cmat is not provided and model $=$ "exp" (default), this function extracts Moran eigenvectors from MCM, where $M=I-11^{\prime} / \mathrm{N}$ is a centering operator. C is a Nx N connectivity matrix whose (i, j)-th element equals $\exp (-\mathrm{d}(\mathrm{i}, \mathrm{j}) / \mathrm{h})$, where $\mathrm{d}(\mathrm{i}, \mathrm{j})$ is the Euclidean distance between the sample sites i and j , and h is given by the maximum length of the minimum spanning tree connecting sample sites (see Dray et al., 2006). If cmat is provided, this function performs the same calculation after C is replaced with cmat.

If threshold is not provided (default), all the eigenvectors corresponding to positive eigenvalue, explaining positive spatial dependence, are extracted to model positive spatial dependence. threshold $=0.00$ or 0.25 are standard assumptions (see Griffith, 2003; Murakami and Griffith, 2015).

Value

sf \quad Matrix of the first L eigenvectors (N x L)
ev \quad Vector of the first L eigenvalues (L x 1)
ev_full Vector of all eigenvalues ($\mathrm{N} x$ 1)
other List of other outcomes, which are internally used

Author(s)

Daisuke Murakami

References

Dray, S., Legendre, P., and Peres-Neto, P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196 (3), 483-493.
Griffith, D.A. (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science \& Business Media.
Murakami, D. and Griffith, D.A. (2015) Random effects specifications in eigenvector spatial filtering: a simulation study. Journal of Geographical Systems, 17 (4), 311-331.

See Also
meigen_f for fast eigen-decomposition
meigen0 Nystrom extension of Moran eigenvectors

Description

This function estimates Moran eigenvectors at unobserved sites using the Nystrom extension.

Usage

meigen0(meig, coords0, s_id0 = NULL)

Arguments

coords0	Matrix of spatial point coordinates of unobserved sites (N_0 x 2)
meig	Moran eigenvectors and eigenvalues. Output from meigen or meigen_f
s_id0	Optional. ID specifying groups modeling spatial effects (N_0 x 1). If specified, eling (s_id is the groups) and panel data modeling (s_id is given by individual location id). Default is NULL

Value

sf	Matrix of the first L eigenvectors at unobserved sites (N_0 x L)
$e v$	Vector of the first L eigenvalues $(L \times 1)$
$e v _f u l l$	Vector of all eigenvalues $(N \times 1)$

Author(s)

Daisuke Murakami

References

Drineas, P. and Mahoney, M.W. (2005) On the Nystrom method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6 (2005), 2153-2175.

See Also

```
meigen, meigen_f
```

```
meigen_f Fast approximation of Moran eigenvectors
```


Description

This function performs a fast approximation of Moran eigenvectors and eigenvalues.

Usage

meigen_f(coords, model = "exp", enum = 200, s_id = NULL)

Arguments

coords Matrix of spatial point coordinates ($\mathrm{N} x 2$ 2)
model Type of kernel to model spatial dependence. The currently available options are "exp" for the exponential kernel, "gau" for the Gaussian kernel, and "sph" for the spherical kernel. Default is "exp"
enum \quad Number of eigenvectors and eigenvalues to be extracted (scalar). Default is 200
s_id Optional. Location/zone ID for modeling spatial effects across groups. If specified, Moran eigenvectors are extracted by groups. It is useful e.g. for multilevel modeling (s_id is the groups) and panel data modeling (s_id is given by individual location id). Default is NULL

Details

This function extracts approximated Moran eigenvectors from MCM. $\mathrm{M}=\mathrm{I}-11^{\prime} / \mathrm{N}$ is a centering operator, and C is a spatial connectivity matrix whose (i, j)-th element is given by $\exp (-\mathrm{d}(\mathrm{i}, \mathrm{j}) / \mathrm{h})$, where $d(i, j)$ is the Euclidean distance between the sample sites i and j, and h is a range parameter given by the maximum length of the minimum spanning tree connecting sample sites (see Dray et al., 2006).
Following a simulation result that 200 eigenvectors are sufficient for accurate approximation of ESF models (Murakami and Griffith, 2019), this function approximates the 200 eigenvectors corresponding to the 200 largest eigenvalues by default (i.e., enum $=200$). If enum is given by a smaller value like 100, the computation time will be shorter, but with greater approximation error. Eigenvectors corresponding to negative eigenvalues are omitted from the enum eigenvectors.

Value	
sf	Matrix of the first L approximated eigenvectors (N x L)
ev	Vector of the first L approximated eigenvalues (L x 1)
ev_full	Vector of all approximated eigenvalues (enum x 1)
other	List of other outcomes, which are internally used

Author(s)

Daisuke Murakami

References

Dray, S., Legendre, P., and Peres-Neto, P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196 (3), 483-493.
Murakami, D. and Griffith, D.A. (2019) Eigenvector spatial filtering for large data sets: fixed and random effects approaches. Geographical Analysis, 51 (1), 23-49.

See Also

meigen

$$
\begin{array}{ll}
\text { nongauss_y } & \begin{array}{l}
\text { Parameter setup for modeling non-Gaussian continuous data and } \\
\text { count data }
\end{array}
\end{array}
$$

Description

Parameter setup for modeling non-Gaussian continuous data and count data. The SAL transformation (see details) is used to model a wide variety of non-Gaussian data without explicitly assuming data distribution (see Murakami et al., 2021 for further detail). In addition, Box-Cox transformation is used for non-negative continuous variables while another transformation approximating overdispersed Poisson distribution is used for count variables. The output from this function is used as an input of the resf and resf_vc functions. For further details about its implementation and case study examples, see Murakami (2021).

Usage

nongauss_y(y_type = "continuous", y_nonneg = FALSE, tr_num = 0)

Arguments

$$
\begin{array}{ll}
\text { y_type } & \begin{array}{l}
\text { Type of explained variables y. "continuous" for continuous variables and "count" } \\
\text { for count variables }
\end{array} \\
\text { y_nonneg } & \begin{array}{l}
\text { Effective if y_type }=\text { "continuous". TRUE if y cannot take negative value. If } \\
\text { y_nonneg = TRUE and tr_num }=0 \text {, the Box-Cox transformation is applied to } \\
\text { y. If y_nonneg }=\text { TRUE and tr_num > 0, the Box-Cox transformation is applied } \\
\text { first to roughly Gaussianize y. Then, the SAL transformation is iterated tr_num } \\
\text { times to improve the modeling accuracy. Default is FALSE }
\end{array} \\
\text { tr_num } & \begin{array}{l}
\text { Number of the SAL transformations (SinhArcsinh and Affine, where the use of } \\
\text { "L" stems from the "Linear") applied to Gaussianize y. Default is 0 }
\end{array} \\
&
\end{array}
$$

Details

If tr_num >0, the SAL transformation is iterated tr_num times to Gaussianize y. The SAL transformation is defined as $\operatorname{SAL}(y)=a+b^{*} \sinh \left(c^{*} \operatorname{arcsinh}(y)-d\right)$ where a, b, c, d are parameters. Based on Rios and Tobar (2019), the iteration of the SAL transformation approximates a wide variety of nonGaussian distributions without explicitly assuming data distribution. The resf and resf_vc functions return tr _par, which is a list whose k-th element includes the a,b,c,d parameters used for the k-th SAL transformation.
In addition, for non-negative y ($\mathrm{y} _$nonneg = TRUE), the Box-Cox transformation is applied prior to the iterative SAL transformation. tr_num and y_nonneg can be selected by comparing the BIC (or AIC) values across models. This compositionally-warped spatial regression approach is detailed in Murakami et al. (2021).
For count data (y_type = "count"), an overdispersed Poisson distribution (Gaussian approximation) is assumed. If $\operatorname{tr} _$num >0, the distribution is adjusted to fit the data (y) through the iterative SAL transformations. y_nonneg is ignored if y_type = "count".

Value

nongauss List of parameters for modeling non-Gaussian data

References

Rios, G. and Tobar, F. (2019) Compositionally-warped Gaussian processes. Neural Networks, 118, 235-246.

Murakami, D. (2021) Transformation-based generalized spatial regression using the spmoran package: Case study examples, ArXiv.
Murakami, D., Kajita, M., Kajita, S. and Matsui, T. (2021) Compositionally-warped additive mixed modeling for a wide variety of non-Gaussian data. Spatial Statistics, 43, 100520.
Murakami, D., \& Matsui, T. (2021). Improved log-Gaussian approximation for over-dispersed Poisson regression: application to spatial analysis of COVID-19. ArXiv, 2104.13588.

See Also

resf, resf_vc

Examples

```
###### Regression for non-negative data (BC trans.)
ng1 <-nongauss_y( y_nonneg = TRUE )
ng1
###### General non-Gaussian regression for continuous data (two SAL trans.)
ng2 <-nongauss_y( tr_num = 2 )
ng2
###### General non-Gaussian regression for non-negative continuous data
ng3 <-nongauss_y( y_nonneg = TRUE, tr_num = 5 )
ng3
```

```
###### Over-dispersed Poisson regression for count data
ng4 <-nongauss_y( y_type = "count" )
ng4
###### A general non-Gaussian regression for count data
ng5 <-nongauss_y( y_type = "count", tr_num = 5 )
ng5
############################## Fitting example
require(spdep); require(Matrix)
data(boston)
y <- boston.c[, "CMEDV" ]
x <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE",
    "DIS" ,"RAD", "TAX", "PTRATIO", "B", "LSTAT")]
xgroup<- boston.c[,"TOWN"]
coords<- boston.c[,c("LON","LAT")]
meig <- meigen(coords=coords)
res <- resf(y = y, x = x, meig = meig,nongauss=ng2)
res # Estimation results
plot(res$pdf,type="l") # Estimated probability density function
res$skew_kurt # Skew and kurtosis of the estimated PDF
res$pred_quantile[1:2,]# predicted value by quantile
coef_marginal(res) # Estimated marginal effects (dy/dx)
```

plot_n Plot non-spatially varying coefficients (NVCs)

Description

This function plots non-spatially varying coefficients (NVCs; coefficients varying with respect to explanatory variable value) and their 95 percent confidence intervals

Usage

plot_n(mod, xnum = 1, xtype = "x", cex.lab = 20, cex.axis $=15$, $\operatorname{lwd}=1.5$, ylim $=$ NULL, $\operatorname{nmax}=20000$)

Arguments

mod	Outpot from resf, besf, resf_vc, or besf_vc function
xnum	The NVC on the xnum-th explanatory variable is plotted. Default is 1
xtype	Effective for resf_vc and besf_vc. If "x", the num-th NVC in the spatially and non-spatially varying coefficients on x is plotted. If "xconst", the num-th NVC on xconst is plotted. Default is "x"
cex.lab	The size of the x and y axis labels cex.axis
The size of the tick label numbers	

lwd The width of the line drawing the coefficient estimates
ylim The limints of the y-axis
nmax If sample size exceeds nmax, nmax samples are randomly selected and plotted. Default is 20,000

See Also

```
resf, besf,resf_vc, besf_vc
```

```
plot_qr
```


Description

This function plots regression coefficients estimated from the spatial filter unconditional quantile regression (SF-UQR) model.

Usage

plot_qr (mod, pnum = 1, par = "b", cex.main = 20, cex.lab = 18, cex. axis = 15, lwd = 1.5)

Arguments

mod	
pnum	Outpot from the resf_qr function A number specifying the parameter being plotted. If par $=$ " $\mathrm{b} "$ ", the coefficients on the pnum-th explanatory variable are plotted (intercepts are plotted if pnum = 1). If par $=$ "s" and pnum $=1$, the estimated standard errors for the reidual spatial process are plotted. If par $=$ "s" and pnum $=2$, the Moran's I values of the residual spatial process are plotted. The Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is in- terpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; $0.90-1.00: m a r k e d ~$
par	If it is "b", regression coefficeints are plotted. If it is "s", shrinkage (variance) parameters for the residual spatial process are plotted. Default is "b"
cex.main	Graphical parameter specifying the size of the main title
cex.lab	Graphical parameter specifying the size of the x and y axis labels
cex.axis	Graphical parameter specifying the size of the tick label numbers
lwd	Graphical parameters specifying the width of the line drawing the coefficient estimates

Note

See par for the graphical parameters

See Also

resf_qr

```
plot_s
```

Mapping spatially (and non-spatially) varying coefficients (SVCs or SNVC)

Description

This function plots spatially and non-spatially varying coefficients (SNVC) or spatially varying coefficients (SVC). Note that SNVC $=\mathrm{SVC}+\mathrm{NVC}$ (NVC is a coefficient varying with respect to explanatory variable value)

Usage

$$
\begin{gathered}
\text { plot_s (mod, xnum }=0 \text {, btype }=" \text { snvc", xtype }=" x ", \text { pmax }=\text { NULL, ncol = 8, } \\
\text { col = NULL, inv =FALSE, brks = "regular", cex = } 1 \text {, nmax = 20000) }
\end{gathered}
$$

Arguments

mod Outpot from resf, besf, resf_vc, or besf_vc function
xnum For resf_vc and besf_vc, xnum-th $S(N) V C$ on x is plotted. If num $=0$, spatially varying intercept is plotted. For resf and besf, estimated spatially dependent component in the residuals is plotted irrespective of the xnum value. Default is 0
btype Effective for resf_vc and besf_vc. If "snvc" (default), SNVC (= SVC + NVC) is plotted. If "svc", SVC is plotted. If "nvc", NVC is plotted
xtype If " x " (default), coefficients on x is plotted. If "xconst", those on xconst is plotted
pmax The maximum p-value for the $S(N) V C$ to be displayed. For example, if pmax $=$ 0.05 , only coefficients that are statistically significant at the 5 percent level are plotted. If NULL, all the coefficients are plotted. Default is NULL
ncol Number of colors in the color palette. Default is 8
col Color palette used for the mapping. If NULL, the blue-pink-yellow color scheme is used. Palettes in the RColorBrewer package are available. Default is NULL
inv If TRUE, the color palett is inverted. Default is FALSE
brks If "regular", color is changed at regular intervals. If "quantile", color is changed for each quantile
cex Size of the dots representing sample sites
nmax If sample size exceeds nmax, nmax samples are randomly selected and plotted. Default is 20,000

See Also
resf, besf, resf_vc, besf_vc

```
predict0 Spatial predictions
```


Description

This function predicts explained variables using eigenvector spatial filtering (ESF) or random effects ESF. The Nystrom extension is used to perform a prediction minimizing the expected prediction error

Usage

predict0(mod, meig0, x0 = NULL, xgroup0 = NULL, offset0 = NULL, weight0 = NULL, compute_se=FALSE, compute_quantile = FALSE)

Arguments

mod	Output from esf or resf
meig0	Moran eigenvectors at predicted sites. Output from meigen0
x0	Matrix of explanatory variables at predicted sites (N_0 x K). Default is NULL xgroup0
Matrix of group IDs that may be group IDs (integers) or group names (N_0 x K_group). Default is NULL	
offset0	Vector of offset variables at predicted sites (N_0 x 1). Effective if y is count (see nongauss_y). Default is NULL
weight0	Vector of weights for predicted sites (N_0 x 1). Required if compute_se = TRUE or compute_quantile = TRUE
compute_se	If TRUE, predictive standard error is evaulated. It is currently supported only for continuous variables. If nongauss is specified in mod, standard error for the transformed y is evaluated. Default is FALSE
compute_quantile	
If TRUE, Matrix of the quantiles for the predicted values (N x 15) is evaulated.	
It is currently supported only for continuous variables. Default is FALSE	

Value

pred Matrix with the first column for the predicted values (pred). The second and the third columns are the predicted trend component (xb) and the residual spatial process (sf_residual). If xgroup0 is specified, the fourth column is the predicted group effects (group). If $\operatorname{tr} _$num >0 or tr_nonneg $==$ TRUE (i.e., y is transformed) in resf, another column including the predicted values in the transformed/normalized scale (pred_trans) is inserted as the second column. In addition, if compute_quantile =TRUE, predictive standard errors (pred_se) is evaluated and inserted as another column
pred_quantile Effective if compute_quantile = TRUE. Matrix of the quantiles for the predicted values ($\mathrm{N} \times 15$). It is useful to evaluate uncertainty in the predictive value

$$
\begin{array}{ll}
\text { c_vc } & \begin{array}{l}
\text { Matrix of estimated non-spatially varying coefficients }(\mathrm{NVCs}) \text { on x0 (N x K). } \\
\text { Effective if nvc =TRUE in resf }
\end{array} \\
\text { cse_vc } & \begin{array}{l}
\text { Matrix of standard errors for the NVCs on } x 0(\mathrm{~N} \times \mathrm{K}) . \text { Effective if nvc =TRUE } \\
\text { in resf }
\end{array} \\
\text { ct_vc } & \begin{array}{l}
\text { Matrix of t-values for the NVCs on } x 0(\mathrm{~N} \mathrm{x} \mathrm{~K}) . \text { Effective if nvc =TRUE in resf } \\
c p_{-} v c
\end{array} \\
\text { Matrix of p-values for the NVCs on } \mathrm{x} 0(\mathrm{~N} \mathrm{x} \mathrm{~K}) . \text { Effective if nvc =TRUE in resf }
\end{array}
$$

References

Drineas, P. and Mahoney, M.W. (2005) On the Nystrom method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6 (2005), 2153-2175.

See Also

meigen0, predict0_vc

Examples

```
require(spdep)
data(boston)
samp <- sample( dim( boston.c )[ 1 ], 400)
d <- boston.c[ samp, ] ## Data at observed sites
y <- d[, "CMEDV"]
x <- d[,c("ZN","INDUS", "NOX","RM", "AGE", "DIS")]
coords <- d[,c("LON", "LAT")]
d0 <- boston.c[-samp, ] ## Data at unobserved sites
y0 <- d0[, "CMEDV"]
x0 <- d0[,c("ZN","INDUS", "NOX","RM", "AGE", "DIS")]
coords0 <- d0[,c("LON", "LAT")]
############ Model estimation
meig <- meigen( coords = coords )
mod <- resf(y=y, x=x, meig=meig)
## or
# mod <- esf(y=y,x=x,meig=meig)
############ Spatial prediction
meig0 <- meigen0( meig = meig, coords0 = coords0 )
pred0 <- predict0( mod = mod, x0 = x0, meig0 = meig0 )
pred0$pred[1:10,]
######################## If NVCs are assumed
#mod2 <- resf(y=y, x=x, meig=meig, nvc=TRUE)
#pred02 <- predict0( mod = mod2, x0 = x0, meig0 = meig0 )
#pred02$pred[1:10,] # Predicted explained variables
#pred02$c_vc[1:10,] # Predicted NVCs
```

predict0_vc	Spatial predictions for explained variables and spatially varying coef- ficients

Description

This function predicts explained variables and spatially and non-spatially varying coefficients. The
Nystrom extension is used to perform a prediction minimizing the expected prediction error

Usage

predict0_vc(mod, meig0, $x 0=$ NULL, $x g r o u p 0=$ NULL, x const0 $=$ NULL, offset0 $=$ NULL, weight0 $=$ NULL, compute_se=FALSE, compute_quantile = FALSE)

Arguments

\(\left.$$
\begin{array}{ll}\text { mod } & \text { Output from resf_vc or besf_vc } \\
\text { meige } & \begin{array}{l}\text { Moran eigenvectors at predicted sites. Output from meigen0 } \\
\text { x0 }\end{array}
$$

Matrix of explanatory variables at predicted sites whose coefficients are allowed

to vary across geographical space (N_0 x K). Default is NULL

Matrix of group indeces that may be group IDs (integers) or group names (N_0

x K_group). Default is NULL\end{array}\right]\)| Matrix of explanatory variables at predicted sites whose coefficients are assumed |
| :--- |
| constant (or NVC) across space (N_0 x K_const). Default is NULL |

Value

pred Matrix with the first column for the predicted values (pred). The second and the third columns are the predicted trend component (i.e., component explained by x 0 and xconst 0) (xb) and the residual spatial process (sf_residual). If xgroup0 is specified, the fourth column is the predicted group effects (group) If tr_num >0 or tr_nonneg $==$ TRUE (i.e., y is transformed) in resf_vc, another column including the predicted values in the transformed/normalized scale (pred_trans) is inserted into the second column

b_vc	Matrix of estimated spatially (and non-spatially) varying coefficients (S(N)VCs) on $x 0\left(N _0 \times K\right)$
bse_vc	Matrix of estimated standard errors for the $\mathrm{S}(\mathrm{N}) \mathrm{VCs}\left(\mathrm{N} _0 \times \mathrm{K}\right)$ t_vc
Matrix of estimated t-values for the $\mathrm{S}(\mathrm{N}) \mathrm{VCs}\left(\mathrm{N} _0 \times \mathrm{K}\right)$	
c_vc	Matrix of estimated p-values for the $\mathrm{S}(\mathrm{N}) \mathrm{VCs}\left(\mathrm{N} _0 \times \mathrm{K}\right)$ Matrix of estimated non-spatially varying coefficients (NVCs) on xconst0 (N_0 x K)
cse_vc	Matrix of estimated standard errors for the NVCs (N_0 x K) ct_vc cp_vc

References

Drineas, P. and Mahoney, M.W. (2005) On the Nystrom method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6 (2005), 2153-2175.
Murakami, D., Yoshida, T., Seya, H., Griffith, D.A., and Yamagata, Y. (2017) A Moran coefficientbased mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68-89.

See Also

meigen0, predict0

Examples

```
require(spdep)
data(boston)
samp <- sample( dim( boston.c )[ 1 ], 300)
d <- boston.c[ samp, ] ## Data at observed sites
y <- d[, "CMEDV"]
x <- d[,c("ZN", "LSTAT")]
xconst <- d[,c("CRIM", "NOX", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "RM")]
coords <- d[,c("LON", "LAT")]
d0 <- boston.c[-samp, ] ## Data at unobserved sites
y0 <- d0[, "CMEDV"]
x0 <- d0[,c("ZN", "LSTAT")]
xconst0 <- d0[,c("CRIM", "NOX", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "RM")]
coords0 <- d0[,c("LON", "LAT")]
############ Model estimation
meig <- meigen( coords = coords )
mod <- resf_vc(y=y, x=x, xconst=xconst, meig=meig )
############ Spatial prediction of y and spatially varying coefficients
meig0 <- meigen0( meig = meig, coords0 = coords0 )
pred0 <- predict0_vc( mod = mod, x0 = x0, xconst0=xconst0, meig0 = meig0 )
```

```
pred0$pred[1:10,] # Predicted explained variables
pred0$b_vc[1:10,] # Predicted SVCs
pred0$bse_vc[1:10,]# Predicted standard errors of the SVCs
pred0$t_vc[1:10,] # Predicted t-values of the SNVCs
pred0$p_vc[1:10,] # Predicted p-values of the SNVCs
plot(y0,pred0$pred[,1]);abline(0,1)
############ or spatial prediction of spatially varying coefficients only
# pred00 <- predict0_vc( mod = mod, meig0 = meig0 )
# pred00$b_vc[1:10,]
# pred00$bse_vc[1:10,]
# pred00$t_vc[1:10,]
# pred00$p_vc[1:10,]
######################## If SNVCs are assumed on x
# mod2 <- resf_vc(y=y, x=x, xconst=xconst, meig=meig, x_nvc=TRUE,xconst_nvc=TRUE )
# pred02 <- predict0_vc( mod = mod2, x0 = x0, xconst0=xconst0 ,meig0 = meig0 )
# pred02$pred[1:10,] # Predicted explained variables
# pred02$b_vc[1:10,] # Predicted SNVCs
# pred02$bse_vc[1:10,]# Predicted standard errors of the SNVCs
# pred02$t_vc[1:10,] # Predicted t-values of the SNVCs
# pred02$p_vc[1:10,] # Predicted p-values of the SNVCs
# plot(y0,pred02$pred[,1]);abline(0,1)
```

resf Gaussian and non-Gaussian spatial regression models

Description

This model estimates regression coefficients, coefficients varying depending on x (non-spatially varying coefficients; NVC), group effects, and residual spatial dependence. The random-effects eigenvector spatial filtering, which is an approximate Gaussian process approach, is used for modeling the spatial dependence. The explained variables are transformed to fit the data distribution if nongauss is specified. Thus, this function is available for modeling Gaussian and non-Gaussian continuous data and count data (see nongauss_y).

Usage

```
resf( y, x = NULL, xgroup = NULL, weight = NULL, offset = NULL,
    nvc = FALSE, nvc_sel = TRUE, nvc_num = 5, meig,
    method = "reml", penalty = "bic", nongauss = NULL )
```


Arguments

$y \quad$ Vector of explained variables (N x 1)
$x \quad$ Matrix of explanatory variables ($\mathrm{N} x \mathrm{~K}$). Default is NULL

xgroup	Matrix of group IDs. The IDs may be group numbers or group names (N x K_group). Default is NULL veight Vector of weights for samples (N x 1). If non-NULL, the adjusted R-squared value is evaluated for weighted explained variables. Default is NULL
offset	Vector of offset variables (N x 1). Available if y is count (y_type = "count" is specified in the nongauss_y function). Default is NULL
nvc	If TRUE, non-spatially varying coefficients (NVCs; coefficients varying with respect to explanatory variable value) are asumed. If FALSE, constant coeffi- cients are assumed. Default is FALSE
nvc_sel	If TRUE, type of each coefficient (NVC or constant) is selected through a BIC (default) or AIC minimization. If FALSE, NVCs are assumed across x. Alterna- tively, nvc_sel can be given by column number(s) of x. For example, if nvc_sel = 2, the coefficient on the second explanatory variable is NVC and the other coefficients are constants. Default is TRUE
nvc_num	Number of basis functions used to model NVC. An intercept and nvc_num nat- ural spline basis functions are used to model each NVC. Default is 5
meig	Moran eigenvectors and eigenvalues. Output from meigen or meigen_f method
Estimation method. Restricted maximum likelihood method ("reml") and max-	
imum likelihood method ("ml") are available. Default is "reml"	

Details

This function estimates Gaussian and non-Gaussian spatial model for continuous and count data. For non-Gaussian modeling, see nongauss_y.

Value

b Matrix with columns for the estimated constant coefficients on x, their standard errors, t-values, and p-values ($\mathrm{K} \times 4$)
b_g List of K_group matrices with columns for the estimated group effects, their standard errors, and t -values
c_vc Matrix of estimated NVCs on $x(N x K)$. Effective if nvc = TRUE
cse_vc Matrix of standard errors for the NVCs on x ($\mathrm{N} x \mathrm{~K}$). Effective if nvc = TRUE
ct_vc Matrix of t-values for the NVCs on $x(N x$ K). Effective if nvc = TRUE
cp_vc Matrix of p-values for the NVCs on $x(N \times K)$. Effective if nvc $=$ TRUE
s
Vector of estimated variance parameters (2×1). The first and the second elements are the standard error and the Moran's I value of the estimated spatially dependent process, respectively. The Moran's I value is scaled to take a
value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked
s_c Vector of standard errors of the NVCs on xconst
s_g Vector of estimated standard errors of the group effects
e Error statistics. When y_type="continuous", it includes residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). rlogLik is replaced with log-likelihood (logLik) if method $=$ " ml ". resid_SE is replaced with the residual standard error for the transformed y (resid_SE_trans) if nongauss is specified. When y_type="count", the error statistics includes root mean squared error (RMSE), Gaussian likelihood approximating the model, AIC and BIC based on the likelihood, and the proportion of the null deviance explained by the model (deviance explained (\%)). deviance explained, which is also used in the mgcv package, corresponds to the adjusted R2 in case of the linear regression
vc List indicating whether NVC are removed or not during the BIC/AIC minimization. 1 indicates not removed whreas 0 indicates removed
$r \quad$ Vector of estimated random coefficients on Moran's eigenvectors (L x 1)
sf Vector of estimated spatial dependent component ($\mathrm{N} x$ 1)
pred Matrix of predicted values for y (pred) and their standard errors (pred_se) ($\mathrm{N} x$ 2). If y is transformed by specifying nongauss_y, the predicted values in the transformed/normalized scale are added as another column named pred_trans
pred_quantile Matrix of the quantiles for the predicted values ($\mathrm{N} x$ 15). It is useful to evaluate uncertainty in the predictive value
tr_par List of the parameter estimates for the tr_num SAL transformations. The k-th element of the list includes the four parameters for the k-th SAL transformation (see nongauss_y)
tr_bpar The estimated parameter in the Box-Cox transformation
tr_y Vector of the transformed explaied variables
resid Vector of residuals ($\mathrm{N} \times 1$)
pdf Matrix whose first column consists of evenly spaced values within the value range of y and the second column consists of the estimated value of the probability density function for y if $y _t y p e$ in nongauss_y is "continuous" and probability mass function (PMF) if y_type = "count". If offset is specified (and y_type = "count"), the PMF given median offset value is evaluated
skew_kurt Skewness and kurtosis of the estimated probability density/mass function of y
other List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Murakami, D. and Griffith, D.A. (2015) Random effects specifications in eigenvector spatial filtering: a simulation study. Journal of Geographical Systems, 17 (4), 311-331.
Murakami, D., and Griffith, D.A. (2020) Balancing spatial and non-spatial variations in varying coefficient modeling: a remedy for spurious correlation. Geographical Analysis, DOI: 10.1111/gean.12310.

Murakami, D., Kajita, M., Kajita, S. and Matsui, T. (2021) Compositionally-warped additive mixed modeling for a wide variety of non-Gaussian data. Spatial Statistics, 43, 100520.

See Also

meigen, meigen_f, coef_marginal, besf

Examples

```
require(spdep);require(Matrix)
data(boston)
y <- boston.c[, "CMEDV" ]
x <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE",
    "DIS" ,"RAD", "TAX", "PTRATIO", "B", "LSTAT")]
xgroup<- boston.c[,"TOWN"]
coords<- boston.c[,c("LON","LAT")]
meig <- meigen(coords=coords)
# meig<- meigen_f(coords=coords) ## for large samples
######################################################
######## Gaussian spatial regression models #########
#######################################################
res <- resf(y = y, x = x, meig = meig)
res
plot_s(res) ## spatially dependent component (intercept)
######## Group-wise random intercepts ###############
#res2 <- resf(y = y, x = x, meig = meig, xgroup = xgroup)
######## Group-wise random intercepts and ###########
######## Group-level spatial dependence ###########
#meig_g<- meigen(coords=coords, s_id = xgroup)
#res3 <- resf(y = y, x = x, meig = meig_g, xgroup = xgroup)
######## Coefficients varying depending on x ########
#res4 <- resf(y = y, x = x, meig = meig, nvc = TRUE)
#res4
#plot_s(res4) # spatially dependent component (intercept)
#plot_s(res4,5) # spatial plot of the 5-th NVC
#plot_s(res4,6) # spatial plot of the 6-th NVC
#plot_s(res4,13)# spatial plot of the 13-th NVC
```

```
#plot_n(res4,5) # 1D plot of the 5-th NVC
#plot_n(res4,6) # 1D plot of the 6-th NVC
#plot_n(res4,13)# 1D plot of the 13-th NVC
#####################################################
###### Non-Gaussian spatial regression models #######
#####################################################
#### Generalized model for continuous data ##############
# - Data distribution is estimated
#ng5 <- nongauss_y( tr_num = 2 )# 2 SAL transformations to Gaussianize y
#res5 <- resf(y = y, x = x, meig = meig, nongauss = ng5)
#res5 ## tr_num may be selected by comparing BIC (or AIC)
#plot(res5$pdf,type="l") # Estimated probability density function
#res5$skew_kurt # Skew and kurtosis of the estimated PDF
#res5$pred_quantile[1:2,]# predicted value by quantile
#coef_marginal(res5) # Estimated marginal effects (dy/dx)
#### Generalized model for non-negative continuous data #
# - Data distribution is estimated
#ng6 <- nongauss_y( tr_num = 2, y_nonneg = TRUE )
#res6 <- resf(y = y, x = x, meig = meig, nongauss = ng6 )
#coef_marginal(res6)
#### Overdispersed Poisson model for count data #####
# - y is assumed as a count data
#ng7 <- nongauss_y( y_type = "count" )
#res7 <- resf(y = y, x = x, meig = meig, nongauss = ng7 )
#### Generalized model for count data ###############
# - y is assumed as a count data
# - Data distribution is estimated
#ng8 <- nongauss_y( y_type = "count", tr_num = 2 )
#res8 <- resf(y = y, x = x, meig = meig, nongauss = ng8 )
```

resf_qr

Spatial filter unconditional quantile regression

Description

This function estimates the spatial filter unconditional quantile regression (SF-UQR) model.

Usage

resf_qr($y, x=$ NULL, meig, tau $=$ NULL, boot $=$ TRUE, iter $=200, ~ c l=N U L L ~) ~$

Arguments

y
x
meig
tau The quantile(s) to be modeled. It must be a number (or a vector of numbers) strictly between 0 and 1 . By default, tau $=c(0.1,0.2, \ldots, 0.9)$
boot If it is TRUE, confidence intervals of regression coefficients are estimated by a semiparametric bootstrapping. Default is TRUE
iter The number of bootstrap replications. Default is 200
cl
Number of cores used for the parallel computation. If cl=NULL, which is the default, the number of available cores is detected and used

Value

b
r
S
e

B

S

B0

S0
Matrix of estimated regression coefficients ($\mathrm{K} \times \mathrm{Q}$), where Q is the number of quantiles (i.e., the length of tau)
Matrix of estimated random coefficients on Moran eigenvectors (L x Q)
Vector of estimated variance parameters (2×1). The first and the second elements denote the standard error and the Moran's I value of the estimated spatially dependent component, respectively. The Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (the maximum possible spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked

Vector whose elements are residual standard error (resid_SE) and adjusted quasi conditional R2 (quasi_adjR2(cond))
Q matrices ($\mathrm{K} \times 4$) summarizing bootstrapped estimates for the regression coefficients. Columns of these matrices consist of the estimated coefficients, the lower and upper bounds for the 95 percent confidencial intervals, and p-values. It is returned if boot $=$ TRUE
Q matrices (2×3) summarizing bootstrapped estimates for the variance parameters. Columns of these matrices consist of the estimated parameters, the lower and upper bounds for the 95 percent confidencial intervals. It is returned if boot = TRUE

List of Q matrices (K x iter) summarizing bootstrapped coefficients. The q-th matrix consists of the coefficients on the q-th quantile. Effective if boot = TRUE
List of Q matrices (2 x iter) summarizing bootstrapped variance parameters. The q-th matrix consists of the parameters on the q-th quantile. Effective if boot $=$ TRUE

Author(s)

Daisuke Murakami

References

Murakami, D. and Seya, H. (2017) Spatially filtered unconditional quantile regression. ArXiv.

See Also

```
plot_qr
```


Examples

```
require(spdep)
data(boston)
y <- boston.c[, "CMEDV" ]
x <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE",
                            "DIS" ,"RAD", "TAX", "PTRATIO", "B", "LSTAT")]
coords <- boston.c[,c("LON", "LAT")]
meig <- meigen(coords=coords)
res <- resf_qr(y=y,x=x,meig=meig, boot=FALSE)
res
plot_qr(res,1) # Intercept
plot_qr(res,2) # Coefficient on CRIM
plot_qr(res,1,"s") # spcomp_SE
plot_qr(res,2,"s") # spcomp_Moran.I/max(Moran.I)
###Not run
#res <- resf_qr(y=y,x=x,meig=meig, boot=TRUE)
#res
#plot_qr(res,1) # Intercept + 95 percent confidence interval (CI)
#plot_qr(res,2) # Coefficient on CRIM + 95 percent CI
#plot_qr(res,1,"s") # spcomp_SE + 95 percent CI
#plot_qr(res,2,"s") # spcomp_Moran.I/max(Moran.I) + 95 percent CI
```

resf_vc \quad| Gaussian and non-Gaussian spatial regression models with varying |
| :--- |
| coefficients |

Description

This model estimates regression coefficients, spatially varying coefficients (SVCs), non-spatially varying coefficients (NVC; coefficients varying with respect to explanatory variable value), SNVC (= SVC + NVC), group effects, and residual spatial dependence. The random-effects eigenvector spatial filtering, which is an approximate Gaussian process approach, is used for modeling the spatial process in coefficients and residuals. While the resf_vc function estimates a SVC model by default, the type of coefficients (constant, SVC, NVC, or SNVC) can be selected through a BIC/AIC minimization. The explained variables are transformed to fit the data distribution if nongauss is
specified. Thus, this function is available for modeling Gaussian and non-Gaussian continuous data and count data (see nongauss_y).
Note that SNVCs can be mapped just like SVCs. SNVC model is more robust against spurious correlation (multicollinearity) and stable than SVC models (see Murakami and Griffith, 2020).

Usage

```
resf_vc(y, x, xconst = NULL, xgroup = NULL, weight = NULL, offset = NULL,
    x_nvc = FALSE, xconst_nvc = FALSE, x_sel = TRUE, x_nvc_sel = TRUE,
    xconst_nvc_sel = TRUE, nvc_num = 5, meig, method = "reml",
    penalty = "bic", maxiter = 30, nongauss = NULL )
```


Arguments

y	
x	Vector of explained variables (N x 1)
Matrix of explanatory variables with spatially varying coefficients (SVC) (N x	
K)	

nvc_num	Number of basis functions used to model NVC. An intercept and nvc_num nat- ural spline basis functions are used to model each NVC. Default is 5
meig	Moran eigenvectors and eigenvalues. Output from meigen or meigen_f
method	Estimation method. Restricted maximum likelihood method ("reml") and max- imum likelihood method ("ml") are available. Default is "reml"
penalty	Penalty to select varying coefficients and stablize the estimates. The current options are "bic" for the Baysian information criterion-type penalty (N x log(K)) and "aic" for the Akaike information criterion (2K). Default is "bic"
maxiter	Maximum number of iterations. Default is 30
nongauss	Parameter setup for modeling non-Gaussian continuous and count data. Output from nongauss_y

Details

This function estimates Gaussian and non-Gaussian spatial model for continuous and count data. For non-Gaussian modeling, see nongauss_y.

Value

b_vc	Matrix of estimated spatially and non-spatially varying coefficients (SNVC $=$ SVC + NVC) on x ($\mathrm{N} \times \mathrm{K}$)
bse_vc	Matrix of standard errors for the SNVCs on x (Nx x)
t_vc	Matrix of t-values for the SNVCs on x ($\mathrm{N} \times \mathrm{K}$)
p_vc	Matrix of p-values for the SNVCs on x ($\mathrm{N} \times \mathrm{K}$)
B_vc_s	List summarizing estimated SVCs (in SNVC) on x. The four elements are the SVCs ($\mathrm{N} \times \mathrm{K}$), the standard errors ($\mathrm{N} \times \mathrm{K}$), t-values ($\mathrm{N} \times \mathrm{K}$), and p-values ($\mathrm{N} x$ K), respectively
B_vc_n	List summarizing estimated NVCs (in SNVC) on x . The four elements are the NVCs ($\mathrm{N} \times \mathrm{K}$), the standard errors ($\mathrm{N} \times \mathrm{K}$), t -values ($\mathrm{N} \times \mathrm{K}$), and p-values ($\mathrm{N} x$ K), respectively
c	Matrix with columns for the estimated coefficients on xconst, their standard errors, t -values, and p-values (K_c x 4). Effective if xconst_nvc = FALSE
C_vc	Matrix of estimated NVCs on xconst (Nx K_c). Effective if xconst_nvc = TRUE
cse_vc	Matrix of standard errors for the NVCs on xconst (N x k_c). Effective if xconst_nvc = TRUE
ct_vc	Matrix of t -values for the NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE
cp_vc	Matrix of p-values for the NVCs on xconst (N x K_c). Effective if xconst_nvc = TRUE
b_g	List of K_g matrices with columns for the estimated group effects, their standard errors, and t -values

List of variance parameters in the SNVC (SVC + NVC) on x. The first element is a 2 x K matrix summarizing variance parameters for SVC. The ($1, \mathrm{k}$)-th element is the standard error of the k -th SVC, while the ($2, \mathrm{k}$)-th element is the Moran's I value is scaled to take a value between 0 (no spatial dependence) and 1 (strongest spatial dependence). Based on Griffith (2003), the scaled Moran'I value is interpretable as follows: 0.25-0.50:weak; 0.50-0.70:moderate; 0.70-0.90:strong; 0.90-1.00:marked. The second element of s is the vector of standard errors of the NVCs
s_c Vector of standard errors of the NVCs on xconst
s_g Vector of standard errors of the group effects
vc List indicating whether SVC/NVC are removed or not during the BIC/AIC minimization. 1 indicates not removed (replaced with constant) whreas 0 indicates removed
e
Error statistics. When y_type="continuous", it includes residual standard error (resid_SE), adjusted conditional R2 (adjR2(cond)), restricted log-likelihood (rlogLik), Akaike information criterion (AIC), and Bayesian information criterion (BIC). rlogLik is replaced with log-likelihood (logLik) if method $=$ " ml ". resid_SE is replaced with the residual standard error for the transformed y (resid_SE_trans) if nongauss is specified. When y_type="count", the error statistics includes root mean squared error (RMSE), Gaussian likelihood approximating the model, AIC and BIC based on the likelihood, and the proportion of the null deviance explained by the model (deviance explained (\%)). deviance explained, which is also used in the mgcv package, corresponds to the adjusted R2 in case of the linear regression
pred \quad Matrix of predicted values for y (pred) and their standard errors (pred_se) (Nx 2). If y is transformed by specifying nongauss_y, the predicted values in the transformed/normalized scale are added as another column named pred_trans
pred_quantile Matrix of the quantiles for the predicted values ($\mathrm{N} x 15$). It is useful to evaluate uncertainty in the predictive value
tr_par List of the parameter estimates for the tr_num SAL transformations. The k-th element of the list includes the four parameters for the k-th SAL transformation (see nongauss_y)
tr_bpar The estimated parameter in the Box-Cox transformation
tr_y Vector of the transformed explaied variables
resid Vector of residuals ($\mathrm{N} \times 1$)
pdf Matrix whose first column consists of evenly spaced values within the value range of y and the second column consists of the estimated value of the probability density function for y if y_type in nongauss_y is "continuous" and probability mass function if y_type = "count". If offset is specified (and y_type = "count"), the PMF given median offset value is evaluated
skew_kurt Skewness and kurtosis of the estimated probability density/mass function of y
other List of other outputs, which are internally used

Author(s)

Daisuke Murakami

References

Murakami, D., Yoshida, T., Seya, H., Griffith, D.A., and Yamagata, Y. (2017) A Moran coefficientbased mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68-89.
Murakami, D., Kajita, M., Kajita, S. and Matsui, T. (2021) Compositionally-warped additive mixed modeling for a wide variety of non-Gaussian data. Spatial Statistics, 43, 100520.
Murakami, D., and Griffith, D.A. (2021) Balancing spatial and non-spatial variations in varying coefficient modeling: a remedy for spurious correlation. Geographical Analysis, DOI: 10.1111/gean.12310.
Griffith, D. A. (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science \& Business Media.

See Also

meigen, meigen_f, coef_marginal, besf_vc

Examples

```
require(spdep)
data(boston)
y <- boston.c[, "CMEDV"]
x <- boston.c[,c("CRIM", "AGE")]
xconst <- boston.c[,c("ZN","DIS","RAD","NOX", "TAX","RM", "PTRATIO", "B")]
xgroup <- boston.c[,"TOWN"]
coords <- boston.c[,c("LON", "LAT")]
meig <- meigen(coords=coords)
# meig <- meigen_f(coords=coords) ## for large samples
######################################################
############## Gaussian SVC models ###################
######################################################
#### SVC or constant coefficients on x ###############
res <- resf_vc(y=y,x=x,xconst=xconst,meig=meig )
res
plot_s(res,0) # Spatially varying intercept
plot_s(res,1) # 1st SVC (Not shown because the SVC is estimated constant)
plot_s(res,2) # 2nd SVC
#### SVC on x ########################################
#res2 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_sel = FALSE )
#### Group-level SVC or constant coefficients on x ##
#### Group-wise random intercepts ####################
#meig_g <- meigen(coords, s_id=xgroup)
#res3 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig_g,xgroup=xgroup)
#####################################################
```

```
############## Gaussian SNVC models ##################
#####################################################
#### SNVC, SVC, NVC, or constant coefficients on x ###
#res4 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_nvc =TRUE)
#### SNVC, SVC, NVC, or constant coefficients on x ###
#### NVC or Constant coefficients on xconst ###########
#res5 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_nvc =TRUE, xconst_nvc=TRUE)
#plot_s(res5,0) # Spatially varying intercept
#plot_s(res5,1) # Spatial plot of the SNVC (SVC + NVC) on x[,1]
#plot_s(res5,1,btype="svc")# Spatial plot of SVC in the SNVC
#plot_s(res5,1,btype="nvc")# Spatial plot of NVC in the SNVC
#plot_n(res5,1) # 1D plot of the NVC
#plot_s(res5,6,xtype="xconst")# Spatial plot of the NVC on xconst[,6]
#plot_n(res5,6,xtype="xconst")# 1D plot of the NVC on xconst[,6]
######################################################
############## Non-Gaussian SVC models ##############
######################################################
#### Generalized model for continuous data ##########
# - Probability distribution is estimated from data
#ng6 <- nongauss_y( tr_num = 2 )# 2 SAL transformations to Gaussianize y
#res6 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, nongauss = ng6 )
#res6 # tr_num may be selected by comparing BIC (or AIC)
#coef_marginal_vc(res6) # marginal effects from x (dy/dx)
#plot(res6$pdf,type="l") # Estimated probability density function
#res6$skew_kurt # Skew and kurtosis of the estimated PDF
#res6$pred_quantile[1:2,]# predicted value by quantile
#### Generalized model for non-negative continuous data
# - Probability distribution is estimated from data
#ng7 <- nongauss_y( tr_num = 2, y_nonneg = TRUE )
#res7 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, nongauss = ng7 )
#coef_marginal_vc(res7)
#### Overdispersed Poisson model for count data #####
# - y is assumed as a count data
#ng8 <- nongauss_y( y_type = "count" )
#res8 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, nongauss = ng8 )
#### Generalized model for count data ###############
# - y is assumed as a count data
```

```
# - Probability distribution is estimated from data
#ng9 <- nongauss_y( y_type = "count", tr_num = 2 )
#res9 <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, nongauss = ng9 )
```

weigen Extract eigenvectors from a spatial weight matrix

Description

This function extracts eigenvectors and eigenvalues from a spatial weight matrix.

Usage

weigen($x=$ NULL, type $=$ "knn", k = 4, threshold $=0.25$, enum $=$ NULL)

Arguments

x
type Type of spatial weights. The currently available options are "knn" for the knearest neighbor-based weights, and "tri" for the Delaunay triangulation-based weights. If ShapePolygons are provided for x , type is ignored, and the rook-type neighborhood matrix is created
k
threshold Threshold for the eigenvalues (scalar). Suppose that lambda_1 is the maximum eigenvalue. Then, this fucntion extracts eigenvectors whose corresponding eigenvalues are equal or greater than [threshold x lambda_1]. It must be a value between 0 and 1. Default is 0.25 (see Details)
enum Optional. The muximum acceptable mumber of eigenvectors to be used for spatial modeling (scalar)

Details

If user-specified spatial weight matrix is provided for x, this function returns the eigen-pairs of the matrix. Otherwise, if a SpatialPolygons object is provided to x, the rook-type neighborhood matrix is created using this polygon, and eigen-decomposed. Otherwise, if point coordinats are provided to x, a spatial weight matrix is created according to type, and eigen-decomposed.

By default, the ARPACK routine is implemented for fast eigen-decomposition.
threshold $=0.25$ (default) is a standard setting for topology-based ESF (see Tiefelsdorf and Griffith, 2007) while threshold $=0.00$ is a usual setting for distance-based ESF.

Value

sf	Matrix of the first L eigenvectors $(\mathrm{N} \times \mathrm{L})$
ev	Vector of the first L eigenvalues $(\mathrm{L} \times 1)$
other	List of other outcomes, which are internally used

Author(s)

Daisuke Murakami

References

Tiefelsdorf, M. and Griffith, D.A. (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environment and Planning A, 39 (5), 1193-1221.
Murakami, D. and Griffith, D.A. (2018) Low rank spatial econometric models. Arxiv, 1810.02956.

See Also

meigen, meigen_f

Examples

```
require(spdep);library(rgdal)
data(boston)
########## Rook adjacency-based W
poly <- readOGR(system.file("shapes/boston_tracts.shp",package="spData")[1])
weig1 <- weigen( poly )
########## knn-based W
coords <- boston.c[,c("LON", "LAT")]
weig2 <- weigen( coords, type = "knn" )
########## Delaunay triangulation-based W
coords <- boston.c[,c("LON", "LAT")]
weig3 <- weigen( coords, type = "tri")
########## User-specified W
dmat <- as.matrix(dist(coords))
cmat <- exp(-dmat)
diag(cmat)<- 0
weig4 <- weigen( cmat, threshold = 0 )
```


Index

```
besf, 2, 20-22, 30
besf_vc, 4, 20-22, 25, 37
coef_marginal, 8, 30, 37
coef_marginal_vc, 9
esf, 10,23
lsem, 11, 14
lslm,13
meigen, 10, 12, 14, 16-18, 28, 30, 32, 35, 37,
    4 0
meigen0, 16, 23-26
meigen_f, 10, 12, 16, 17,17,28, 30, 32, 35,
    37,40
nongauss_y, 8, 9, 18, 23, 25, 27-29, 34-36
par,21
plot_n, 20
plot_qr, 21, 33
plot_s, 22
predict0, 23, 26
predict0_vc, 24, 25
resf, 4, 8, 9, 11, 19-24,27
resf_qr, 21, 22,31
resf_vc, 7, 9, 19-22, 25, 33
weigen, 12-14, 39
```

