
Package ‘stenR’
August 19, 2022

Title Standardization of Raw Discrete Questionnaire Scores

Version 0.6.9

Description An user-friendly framework to preprocess raw item
scores of questionnaires into factors or scores and standardize
them. Standardization can be made either by their normalization
in representative sample, or by import of premade scoring table.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Depends R (>= 4.1)

Imports cli, data.table, dplyr, moments, rlang, R6, stats

Suggests covr, ggplot2, jsonlite, knitr, rmarkdown, SimMultiCorrData,
testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

URL https://statismike.github.io/stenR/

NeedsCompilation no

Author Michal Kosinski [aut, cre] (<https://orcid.org/0000-0002-8426-3654>)

Maintainer Michal Kosinski <kosinski.mich@gmail.com>

Repository CRAN

Date/Publication 2022-08-19 11:20:01 UTC

R topics documented:
attach_scales . 2
CombScaleSpec . 3
CompScoreTable . 4
default_scales . 7
export_ScaleSpec . 7

1

https://statismike.github.io/stenR/
https://orcid.org/0000-0002-8426-3654

2 attach_scales

export_ScoringTable . 8
extract_observations . 10
FrequencyTable . 12
GroupAssignment . 13
GroupConditions . 15
GroupedFrequencyTable . 17
GroupedScoreTable . 18
HEXACO_60 . 19
import_ScaleSpec . 19
import_ScoringTable . 21
intersect_GroupAssignment . 22
IPIP_NEO_300 . 24
is_stenR_classes . 25
normalize_score . 26
normalize_scores_df . 27
normalize_scores_grouped . 28
normalize_scores_scoring . 30
plot.GroupedFrequencyTable . 31
plot.GroupedScoreTable . 32
ScaleSpec . 33
ScoreTable . 35
SimFrequencyTable . 37
SLCS . 38
StandardScale . 38
strip_ScoreTable . 39
sum_items_to_scale . 40
to_ScoringTable . 41

Index 44

attach_scales Attach additional StandardScale to already created ScoreTable

Description

Attach additional StandardScale to already created ScoreTable

Usage

attach_scales(x, scale)

Arguments

x A ScoreTable object

scale a StandardScale object or list of multiple StandardScale objects

CombScaleSpec 3

Examples

having a ScoreTable with one StandardScale attached
st <- ScoreTable(FrequencyTable(HEXACO_60$HEX_C), STEN)
st$scale
names(st$table)

possibly attach more scales to ScoreTable
st <- attach_scales(st, list(STANINE, WECHSLER_IQ))
st$scale
names(st$table)

CombScaleSpec Combined Scale Specification

Description

Combine multiple ScaleSpec objects into one in regards of sum_items_to_scale() function.
Useful when one scale of factor contains items of different possible values or if there is hierar-
chy of scale or factors.

Also allows combining CombScaleSpec object if the factor structure have deeper hierarchy.

Usage

CombScaleSpec(name, ..., reverse = character(0))

S3 method for class 'CombScaleSpec'
print(x, ...)

S3 method for class 'CombScaleSpec'
summary(object, ...)

Arguments

name Name of the combined scale or factor

... further arguments passed to or from other methods.

reverse character vector containing names of the underlying subscales or factors that
need to be reversed

x a CombScaleSpec object

object a CombScaleSpec object

Value

CombScaleSpec object

See Also

Other item preprocessing functions: ScaleSpec(), sum_items_to_scale()

4 CompScoreTable

Examples

ScaleSpec objects to Combine

first_scale <- ScaleSpec(
name = "First Scale",
item_names = c("Item_1", "Item_2"),
min = 1,
max = 5

)

second_scale <- ScaleSpec(
name = "Second Scale",
item_names = c("Item_3", "Item_4"),
min = 0,
max = 7,
reverse = "Item_3"

)

third_scale <- ScaleSpec(
name = "Third Scale",
item_names = c("Item_5", "Item_6"),
min = 1,
max = 5

)

You can combine few ScaleSpec objects into CombScaleSpec

first_comb <- CombScaleSpec(
name = "First Comb",
first_scale,
second_scale,
reverse = "Second Scale"

)

print(first_comb)

And also other CombScaleSpec objects!

second_comb <- CombScaleSpec(
name = "Second Comb",
first_comb,
third_scale

)

print(second_comb)

CompScoreTable R6 class for producing easily re-computable ScoreTable

CompScoreTable 5

Description

[Experimental] Computable ScoreTable class. It can compute and store ScoreTables for multiple
variables containing raw score results.

After computation, it could be also used to compute new standardized scores for provided raw
scores and integrate them into stored tables.

summary() function can be used to get general information about CompScoreTable object.

Methods

Public methods:

• CompScoreTable$new()

• CompScoreTable$attach_StandardScale()

• CompScoreTable$attach_FrequencyTable()

• CompScoreTable$export_ScoreTable()

• CompScoreTable$standardize()

• CompScoreTable$clone()

Method new(): Initialize a CompScoreTable object. You can attach one or many StandardScale
and FrequencyTable objects

Usage:
CompScoreTable$new(tables = NULL, scales = NULL)

Arguments:

tables Named list of FrequencyTable objects to be attached. Names will indicate the name
of variable for which the table is calculated. Defaults to NULL, so no tables will be available
at the beginning.

scales StandardScale object or list of such objects to be attached. They will be used for cal-
culation of ScoreTables. Defaults to NULL, so no scales wil be available at the beginning.

Details: Both FrequencyTable and StandardScale objects can be attached with appropriate
methods after object initialization.

Returns: CompScoreTable object

Method attach_StandardScale(): Attach new scale to the object. If there are any ScoreTables
already computed, score for newly-attached scale will be computed automatically.

Usage:
CompScoreTable$attach_StandardScale(scale, overwrite = FALSE)

Arguments:

scale StandardScale object defining a scale
overwrite boolean indicating if the definition for a scale of the same name should be overwrit-

ten

Method attach_FrequencyTable(): Attach previously generated FrequencyTable for a given
variable. ScoreTable containing every attached scale will be calulcated automatically based on
every new FrequencyTable.

6 CompScoreTable

Usage:
CompScoreTable$attach_FrequencyTable(
ft,
var,
if_exists = c("stop", "append", "replace")

)

Arguments:
ft FrequencyTable to be attached
var String with the name of the variable
if_exists Action that should be taken if FrequencyTable for given variable already exists in

the object.
• stop DEFAULT: don’t do anything
• append recalculates existing table
• replace replaces existing table

Method export_ScoreTable(): Export list of ScoreTables from the object
Usage:
CompScoreTable$export_ScoreTable(vars = NULL, strip = FALSE)

Arguments:
vars Names of the variables for which to get the tables. If left at NULL default - get all off them.
strip logical indicating if the ScoreTables should be stripped down to FrequencyTables

during export. Defaults to FALSE

Returns: list of ScoreTable or FrequencyTable object

Method standardize(): Compute standardize scores for data.frame of raw scores. Addi-
tionally, the raw scores can be used to recalculate ScoreTables before computing (using calc =
T).

Usage:
CompScoreTable$standardize(data, what, vars = names(data), calc = FALSE)

Arguments:
data data.frame containing raw scores.
what the values to get. One of either:

• quan - the quantile of raw score in the distribution
• Z - normalized Z score for the raw scores
• name of the scale attached to the CompScoreTable object

vars vector of variable names which will taken into account
calc should the ScoreTables be computed (or recalculated, if some are already provided?).

Default to TRUE

Returns: data.frame with standardized values

Method clone(): The objects of this class are cloneable with this method.
Usage:
CompScoreTable$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

default_scales 7

default_scales Default Standard Scales

Description

Few StandardScale objects pre-defined for usage. To create any other, use StandardScale()
function.

• STEN: M: 5.5, SD: 2, min: 1, max: 10

• STANINE: M: 5, SD: 2, min: 1, max: 9

• TANINE: M: 50, SD: 10, min: 1, max: 100

• TETRONIC: M: 10, SD: 4, min: 0, max: 20

• WECHSLER_IQ: M: 100, SD: 15, min: 40, max: 160

export_ScaleSpec Export scale specification

Description

Function to export ScaleSpec or CombScaleSpec object into json file which can be imported by
import_ScaleSpec()

Usage

export_ScaleSpec(spec, out_file)

Arguments

spec ScaleSpec or CombScaleSpec object to export

out_file path to output file

See Also

Other import/export functions: export_ScoringTable(), import_ScaleSpec(), import_ScoringTable()

Examples

create temp files
ScaleSpecJSON <- tempfile(fileext = ".json")
CombScaleJSON <- tempfile(fileext = ".json")

import/export ScaleSpec
create scale spec for export
scaleSpec <- ScaleSpec(

name = "First Scale",

8 export_ScoringTable

item_names = c("Item_1", "Item_2"),
min = 1, max = 5)

export / import
export_ScaleSpec(scaleSpec, ScaleSpecJSON)

imported_scaleSpec <- import_ScaleSpec(ScaleSpecJSON)

check if they are the same
all.equal(scaleSpec, imported_scaleSpec)

import/export CombScaleSpec
create second scale and CombScaleSpec object
second_scale <- ScaleSpec(

name = "Second Scale",
item_names = c("Item_3", "Item_4"),
min = 0, max = 7,
reverse = "Item_3"

)
combScale <- CombScaleSpec(

name = "First Comb",
scaleSpec,
second_scale,
reverse = "Second Scale")

export / import
export_ScaleSpec(combScale, CombScaleJSON)
imported_CombScale <- import_ScaleSpec(CombScaleJSON)

check if they are the same
all.equal(combScale, imported_CombScale)

export_ScoringTable Export ScoringTable

Description

After creation of ScoringTable it can be handy to export it into universally recognized and read-
able format. Two formats are currently supported: csv and json. They can be imported back into
ScoringTable using import_ScoringTable() function.

• csv format is universally readable - it can be opened, edited and altered (eg. before publica-
tion) in any spreadsheet editor. In case of ScoringTable created from GroupedScoreTable,
GroupConditions can be exported to another csv file, creating two different files.

• json format can be more obtuse, but it allows export of both ScoringTable itself and GroupConditions
in the same json file.

export_ScoringTable 9

Usage

export_ScoringTable(
table,
out_file,
method = c("csv", "json", "object"),
cond_file

)

Arguments

table A ScoringTable object to export

out_file Output file. Ignored if method = "object"

method Method for export, either "csv", "json" or "object"

cond_file Output file for GroupConditions. Used only if method = csv and table created
with GroupedScoreTable.

Value

list containing ScoringTable as a tibble and GroupConditions if method = "object". NULL for
other methods

See Also

import_ScoringTable

Other import/export functions: export_ScaleSpec(), import_ScaleSpec(), import_ScoringTable()

Examples

Scoring table to export / import

Consc_ST <-
GroupedFrequencyTable(
data = IPIP_NEO_300,
conditions = GroupConditions("Sex", "M" ~ sex == "M", "F" ~ sex == "F"),
var = "C") |>

GroupedScoreTable(scale = STEN) |>
to_ScoringTable(min_raw = 60, max_raw = 300)

Export/import method: csv

scoretable_csv <- tempfile(fileext = ".csv")
conditions_csv <- tempfile(fileext = ".csv")

export_ScoringTable(
table = Consc_ST,
out_file = scoretable_csv,
method = "csv",
cond_file = conditions_csv

)

10 extract_observations

check if these are regular csv files
writeLines(head(readLines(scoretable_csv)))
writeLines(head(readLines(conditions_csv)))

imported_from_csv <- import_ScoringTable(
source = scoretable_csv,
method = "csv",
cond_file = conditions_csv

)

all.equal(Consc_ST, imported_from_csv)

Export/import method: json
scoretable_json <- tempfile(fileext = ".json")

export_ScoringTable(
table = Consc_ST,
out_file = scoretable_json,
method = "json"

)

check if this is regular json file
writeLines(head(readLines(scoretable_json)))

imported_from_json <- import_ScoringTable(
source = scoretable_json,
method = "json"

)

all.equal(Consc_ST, imported_from_json)

extract_observations Extract observations from data

Description

On basis of GroupAssignment extract one or many groups from provided data.frame

Usage

extract_observations(
data,
groups,
group_names = NULL,
extract_mode = c("list", "data.frame"),
strict_names = TRUE,
simplify = FALSE,
id

)

extract_observations 11

Arguments

data data.frame from which to extract data

groups GroupAssignment object on basis of which extract the data.

group_names character vector of group names which to extract. If kept as default NULL, all
groups are extracted.

extract_mode character: either list or data.frame. When kept as default: list, data is ex-
tracted as named list: where the name of list is name of the groups, and each
one contains data.frame with observations. When data.frame is used, then as-
signed data is returned as one data.frame with new column named: GroupAssignment,
declaring the group.

strict_names boolean If TRUE, then intersected groups are extracted using strict strategy:
group_names need to be provided in form: "group1:group2". If FALSE, then
intersected groups will be taken into regard separately, so eg. when "group1" is
provided to group_names, all of: "group1:group2", "group1:group3", "group1:groupN"
will be extracted. Defaults to TRUE

simplify boolean If TRUE, then when only one group is to be returned, it returns as
data.frame without taking into account value of group_name argument. De-
faults to FALSE

id If GroupAssignment mode is id, and you want to overwrite the original id_col,
provide a name of the column there. If none is provided, then the default id_col
will be used.

Value

either:

• named list of data.frames if extract_mode = 'list'

• data.frame if extract_mode = 'data.frame' or if only one group is to be returned and
simplify = TRUE

See Also

Other observation grouping functions: GroupAssignment(), intersect_GroupAssignment()

Examples

Create Group Conditions
sex_grouping <- GroupConditions(

conditions_category = "Sex",
"M" ~ sex == "M",
"F" ~ sex == "F",
"O" ~ !sex %in% c("M", "F")

)

age_grouping <- GroupConditions(
conditions_category = "Age",
"to 20" ~ age < 20,
"20 to 40" ~ age >= 20 & age <= 40,

12 FrequencyTable

"41 to 60" ~ age > 40 & age <= 60,
"above 60" ~ age > 60

)

Create Group Assignement
can be done both with indices, so later this can be used only on the same data
or with IDs - so later it can be done with only subset or transformed original data

sex_assignment <- GroupAssignment(HEXACO_60, sex_grouping, id = "user_id")
age_assignment <- GroupAssignment(HEXACO_60, age_grouping, id = "user_id")

Intersect two Group Assignement
with additional forcing set
intersected <- intersect_GroupAssignment(

sex_assignment,
age_assignment,
force_exhaustive = TRUE,
force_disjoint = FALSE

)

extracted <- extract_observations(
HEXACO_60,
groups = intersected,
group_names = c("M"),
extract_mode = "data.frame",
strict_names = FALSE)

only groups created from "M" group were extracted
groups without observations were dropped
table(extracted$GroupAssignment)

FrequencyTable Create a FrequencyTable

Description

Normalizes the distribution of raw scores. It can be used to construct ScoreTable() with the use
of some StandardScale() to normalize and standardize the raw discrete scores.

plot.FrequencyTable method requires ggplot2 package to be installed.

Usage

FrequencyTable(data)

S3 method for class 'FrequencyTable'
print(x, ...)

S3 method for class 'FrequencyTable'
plot(x, ...)

GroupAssignment 13

S3 method for class 'FrequencyTable'
summary(object, ...)

Arguments

data vector of raw scores. Double values are coerced to integer

x A FrequencyTable object

... further arguments passed to or from other methods.

object A FrequencyTable object

Value

FrequencyTable object. Consists of:

• table: data.frame with number of observations (n), frequency in sample (freq), quantile
(quan) and normalized Z-score (Z) for each point in raw score

• status: list containing the total number of simulated observations (n) and information about
raw scores range completion (range): complete or incomplete

data.frame of descriptive statistcs

See Also

SimFrequencyTable()

GroupAssignment Assign to groups based on GroupConditions

Description

Using GroupConditions object, assign observations to one of the groups. It can export either indices
of the observations, or their unique ID: if column name is provided in id argument. Mostly used
internally by more complex functions and R6 classes, but could also be useful on its own.

Usage

GroupAssignment(
data,
conditions,
id,
force_disjoint,
force_exhaustive,
skip_faulty = FALSE,
.all = FALSE,
...

)

14 GroupAssignment

S3 method for class 'GroupAssignment'
print(x, ...)

S3 method for class 'GroupAssignment'
summary(object, ...)

Arguments

data data.frame containing observations

conditions GroupConditions object

id character name of the column containing unique ID of the observations to as-
sign to each group. If not provided, indices will be used instead.

force_disjoint boolean indicating if groups disjointedness should be forced in case when one
observation would pass conditions for more than one group. If TRUE, the first
condition which will be met will indicate the group the observation will be as-
signed to. If not provided, the default from conditions will be used

force_exhaustive

boolean indicating if groups exhausiveness should be forced in case when there
are observations that don’t pass any of the provided conditions. If TRUE, then
they will be assigned to .NA group. If not provided, the default from conditions
will be used

skip_faulty boolean should the faulty condition be skipped? If FALSE as in default, error
will be produced. Faultiness of seemingly correct condition may be caused by
variable names to not be present in the data.

.all boolean. If TRUE, then additional group named .all will be created, which
will contain all observations. Useful when object will be used for creation of
GroupedFrequencyTable()

... additional arguments to be passed to or from method

x object

object GroupAssignment object

Value

GroupAssignment object

list of summaries, invisibly

See Also

Other observation grouping functions: extract_observations(), intersect_GroupAssignment()

Examples

age_grouping <- GroupConditions(
conditions_category = "Age",
"to 20" ~ age < 20,
"20 to 40" ~ age >= 20 & age <= 40,

GroupConditions 15

"40 to 60" ~ age >= 40 & age < 60
)

on basis of GroupConditions create GroupAssignment

age_assignment <- GroupAssignment(
data = HEXACO_60,
age_grouping)

print(age_assignment)

overwrite the default settings imposed by `GroupConditions`

age_assignment_forced <- GroupAssignment(
data = HEXACO_60,
age_grouping,
force_exhaustive = TRUE)

summary(age_assignment_forced)

you can also use other unique identifier from your data

age_assignment_forced_w_id <- GroupAssignment(
data = HEXACO_60,
age_grouping,
id = "user_id",
force_exhaustive = TRUE)

summary(age_assignment_forced_w_id)

GroupConditions Conditions for observation grouping

Description

With help of this function you can create GroupingConditions object, holding the basis of observa-
tion grouping. Objects of this class can be provided to complex functions to automatically group
observations accordingly.

Usage

GroupConditions(
conditions_category,
...,
force_disjoint = TRUE,
force_exhaustive = FALSE,
.dots = list()

)

16 GroupConditions

S3 method for class 'GroupConditions'
print(x, ...)

S3 method for class 'GroupConditions'
as.data.frame(x, ...)

Arguments

conditions_category

chracter value describing character of the group conditions. Mainly informative.

... additional arguments to be passed to or from methods.

force_disjoint boolean indicating if the condition formulas by default should be handled with
force_disjoint strategy. By default TRUE. If TRUE, the first condition which
will be met will indicate the group the observation will be assigned to.

force_exhaustive

boolean indicating if groups exhaustiveness should be forced in case when there
are observations that don’t pass any of the provided conditions. If TRUE, then
they will be assigned to .NA group. Defaults to FALSE

.dots formulas in form of a list

x GroupConditions object

Value

GroupConditions object

Examples

create GroupConditions with formula-style conditions per each group

sex_grouping <- GroupConditions(
conditions_category = "Sex",
"M" ~ sex == "M",
"F" ~ sex == "F",
"O" ~ !sex %in% c("M", "F")

)
print(sex_grouping)

GroupConditions can also mark if the groups should be handled by default
with forced disjoint (default `TRUE`) and exhaustiveness (default `FALSE`)

age_grouping <- GroupConditions(
conditions_category = "Age",
"to 20" ~ age < 20,
"20 to 40" ~ age >= 20 & age <= 40,
"40 to 60" ~ age >= 40 & age < 60,
force_disjoint = FALSE,
force_exhaustive = TRUE

)
print(age_grouping)

GroupedFrequencyTable 17

GroupedFrequencyTable Create GroupedFrequencyTable

Description

Using GroupConditions() object and source data.frame compute a set of FrequencyTable()s
for single variable

Usage

GroupedFrequencyTable(
data,
conditions,
var,
force_disjoint = FALSE,
.all = TRUE

)

S3 method for class 'GroupedFrequencyTable'
print(x, ...)

S3 method for class 'GroupedFrequencyTable'
summary(object, ...)

Arguments

data source data.frame

conditions up to two GroupConditions objects. These objects will be passed along during
creation of higher-level objects and used when normalize_scores_grouped()
will be called. If two objects are provided, then intersection of groups will be
made.

var name of variable to compute GroupedFrequencyTable for

force_disjoint It is recommended to keep it as default FALSE, unless the sample size is very big
and it is completely mandatory to have the groups disjointed.

.all should .all or .all1 and .all2 groups be generated. If they are not generated, all
score normalization procedures will fail if the observation can’t be assigned to
any of the provided conditions (eg. because of missing data), leaving it’s score
as NA. Defaults to TRUE

x A GroupedFrequencyTable object

... further arguments passed to or from other methods.

object A GroupedFrequencyTable object

Details

force_exhaustive will always be checked as FALSE during the calculations. It is mandatory for
validity of the created FrequencyTables

18 GroupedScoreTable

Value

data.frame of descriptive statistcs

See Also

plot.GroupedFrequencyTable

GroupedScoreTable Create GroupedScoreTable

Description

Create GroupedScoreTable

Usage

GroupedScoreTable(table, scale)

S3 method for class 'GroupedScoreTable'
print(x, ...)

Arguments

table GroupedFrequencyTable object

scale a StandardScale object or list of multiple StandardScale objects

x A GroupedScoreTable object

... further arguments passed to or from other methods.

Value

GroupedScoreTable object, which consists of named list of ScoreTable objects and GroupConditions
object used for grouping

See Also

plot.GroupedScoreTable

HEXACO_60 19

HEXACO_60 Sample data of HEXACO-60 questionnaire results

Description

Dataset containing summed scale scores of HEXACO-60 questionnaire. They were obtained during
2020 study on Polish incidental sample.

Usage

HEXACO_60

Format

A data frame with 204 rows and 9 variables

user_id identity anonimized with ’ids::adjective_animal’

sex sex of the participant (’M’ale, ’F’emale or ’O’ther)

age age of the participant (15–62)

HEX_H Honesty-Humility raw score (14–50)

HEX_E Emotionality raw score (10–47)

HEX_X eXtraversion raw score (11–46)

HEX_A Agreeableness raw score (12–45)

HEX_C Consciousness raw score (17–50)

HEX_O Openness to Experience raw score (18–50)

Details

All HEXACO scales consists of 10 items with responses as numeric values 1-5 (so the absolute min
and max are 10-50)

import_ScaleSpec Import scale specification

Description

Function to import ScaleSpec or CombScaleSpec object from json file that havebeen exported with
export_ScaleSpec()

Usage

import_ScaleSpec(source)

20 import_ScaleSpec

Arguments

source path to JSON file containing exported object

See Also

Other import/export functions: export_ScaleSpec(), export_ScoringTable(), import_ScoringTable()

Examples

create temp files
ScaleSpecJSON <- tempfile(fileext = ".json")
CombScaleJSON <- tempfile(fileext = ".json")

import/export ScaleSpec
create scale spec for export
scaleSpec <- ScaleSpec(

name = "First Scale",
item_names = c("Item_1", "Item_2"),
min = 1, max = 5)

export / import
export_ScaleSpec(scaleSpec, ScaleSpecJSON)

imported_scaleSpec <- import_ScaleSpec(ScaleSpecJSON)

check if they are the same
all.equal(scaleSpec, imported_scaleSpec)

import/export CombScaleSpec
create second scale and CombScaleSpec object
second_scale <- ScaleSpec(

name = "Second Scale",
item_names = c("Item_3", "Item_4"),
min = 0, max = 7,
reverse = "Item_3"

)
combScale <- CombScaleSpec(

name = "First Comb",
scaleSpec,
second_scale,
reverse = "Second Scale")

export / import
export_ScaleSpec(combScale, CombScaleJSON)
imported_CombScale <- import_ScaleSpec(CombScaleJSON)

check if they are the same
all.equal(combScale, imported_CombScale)

import_ScoringTable 21

import_ScoringTable Import ScoringTable

Description

ScoringTable can be imported from csv, json file or tibble. Source file or object can be either
an output of export_ScoringTable() function, or created by hand - though it needs to be created
following the correct format.

Usage

import_ScoringTable(
source,
method = c("csv", "json", "object"),
cond_file,
conditions

)

Arguments

source Path to the file to import the ScoringTable from (for csv and json methods) or
ScoringTable in form of data.frame (for object method)

method Method for import, either csv, json or object

cond_file File to import the GroupConditions from, if using csv method

conditions GroupCondition object or list of up to two of them. Mandatory for object
method and csv method if no cond_file is provided. If provided while using
json method, original GroupConditions will be ignored.

Value

ScoringTable object

See Also

export_ScoringTable

Other import/export functions: export_ScaleSpec(), export_ScoringTable(), import_ScaleSpec()

Examples

Scoring table to export / import

Consc_ST <-
GroupedFrequencyTable(
data = IPIP_NEO_300,
conditions = GroupConditions("Sex", "M" ~ sex == "M", "F" ~ sex == "F"),
var = "C") |>

GroupedScoreTable(scale = STEN) |>

22 intersect_GroupAssignment

to_ScoringTable(min_raw = 60, max_raw = 300)

Export/import method: csv

scoretable_csv <- tempfile(fileext = ".csv")
conditions_csv <- tempfile(fileext = ".csv")

export_ScoringTable(
table = Consc_ST,
out_file = scoretable_csv,
method = "csv",
cond_file = conditions_csv

)

check if these are regular csv files
writeLines(head(readLines(scoretable_csv)))
writeLines(head(readLines(conditions_csv)))

imported_from_csv <- import_ScoringTable(
source = scoretable_csv,
method = "csv",
cond_file = conditions_csv

)

all.equal(Consc_ST, imported_from_csv)

Export/import method: json
scoretable_json <- tempfile(fileext = ".json")

export_ScoringTable(
table = Consc_ST,
out_file = scoretable_json,
method = "json"

)

check if this is regular json file
writeLines(head(readLines(scoretable_json)))

imported_from_json <- import_ScoringTable(
source = scoretable_json,
method = "json"

)

all.equal(Consc_ST, imported_from_json)

intersect_GroupAssignment

Intersect two GroupAssignment

intersect_GroupAssignment 23

Description

You can intersect two GroupAssignment with this function.

Usage

intersect_GroupAssignment(
GA1,
GA2,
force_disjoint = TRUE,
force_exhaustive = FALSE

)

Arguments

GA1, GA2 GroupAssignment objects to intersect. No previously intersected objects can be
intersected again.

force_disjoint boolean indicating if groups disjointedness should be forced in case when one
observation would end in multiple intersections. If TRUE, observation will re-
main only in the first intersection to which it will be assigned. Default to TRUE.

force_exhaustive

boolean indicating if elements that are not assigned to any of the intersecting
groups should be gathered together in .NA:.NA group

Value

GroupAssignment object with intersected groups.

See Also

Other observation grouping functions: GroupAssignment(), extract_observations()

Examples

sex_grouping <- GroupConditions(
conditions_category = "Sex",
"M" ~ sex == "M",
"F" ~ sex == "F",
"O" ~ !sex %in% c("M", "F")

)

age_grouping <- GroupConditions(
conditions_category = "Age",
"to 20" ~ age < 20,
"20 to 40" ~ age >= 20 & age <= 40,
"40 to 60" ~ age >= 40 & age < 60,
force_exhaustive = TRUE,
force_disjoint = FALSE

)

intersect two distinct GroupAssignements

24 IPIP_NEO_300

intersected <- intersect_GroupAssignment(
GA1 = GroupAssignment(HEXACO_60, sex_grouping),
GA2 = GroupAssignment(HEXACO_60, age_grouping),
force_exhaustive = TRUE,
force_disjoint = FALSE

)

summary(intersected)

IPIP_NEO_300 Sample data of IPIP-NEO-300 questionnaire results

Description

Dataset containing sample of 13198 results of IPIP-NEO-300 results from Johnson J.A. study pub-
lished at 2014, preprocessed using sum_items_to_scale() function. It contains many observa-
tions of different ages and sexes, also including NA values, whenever at least one of the underlying
item scores were missing.

Usage

IPIP_NEO_300

Format

A data frame with 13198 rows and 7 variables

sex sex of the participant (’M’ale or ’F’emale)

age age of the participant (10–98)

N Raw score for Neuroticism scale (63–292)

E Raw score for Extraversion scale (80–296)

O Raw score for Openness to Experience (76–298)

A Raw score for Agreeableness (66–292)

C Raw score for Consciousness (81–299)

References

Johnson, J. A. (2014). Measuring thirty facets of the five factor model with a 120-item public
domain inventory: Development of the IPIP-NEO-120. Journal of Research in Personality, 51,
78-89.

is_stenR_classes 25

is_stenR_classes Checkers for stenR S3 and R6 classes

Description

Various functions to check if given R object is of given class. Additionally:

• is.intersected() checks if the GroupAssignment object have been created with intersect_GroupAssignment()
and GroupedFrequencyTable, GroupedScoreTable or ScoringTable have been created with
two GroupConditions objects.

• is.Simulated() checks if the FrequencyTable or ScoreTable have been created on basis
of simulated distribution (based on SimFrequencyTable())

Usage

is.GroupConditions(x)

is.GroupAssignment(x)

is.intersected(x)

is.ScaleSpec(x)

is.CombScaleSpec(x)

is.FrequencyTable(x)

is.GroupedFrequencyTable(x)

is.Simulated(x)

is.ScoreTable(x)

is.GroupedScoreTable(x)

is.ScoringTable(x)

is.StandardScale(x)

Arguments

x any R object

26 normalize_score

normalize_score Normalize raw scores

Description

Use computed FrequencyTable or ScoreTable to normalize the provided raw scores.

Usage

normalize_score(x, table, what)

Arguments

x vector of raw scores to normalize

table FrequencyTable or ScoreTable object

what the values to get. One of either:

• quan - the quantile of x in the raw score distribution
• Z - normalized Z score for the x raw score
• name of the scale calculated in ScoreTable provided to table argument

Value

Numeric vector with values specified in what argument

See Also

Other score-normalization functions: normalize_scores_df(), normalize_scores_grouped(),
normalize_scores_scoring()

Examples

normalize with FrequencyTable
suppressMessages(

ft <- FrequencyTable(HEXACO_60$HEX_H)
)

normalize_score(HEXACO_60$HEX_H[1:5], ft, what = "Z")

normalize with ScoreTable
st <- ScoreTable(ft, list(STEN, STANINE))

normalize_score(HEXACO_60$HEX_H[1:5], st, what = "sten")
normalize_score(HEXACO_60$HEX_H[1:5], st, what = "stanine")

normalize_scores_df 27

normalize_scores_df Normalize raw scores for multiple variables

Description

Wrapper for normalize_score() that works on data frame and multiple variables

Usage

normalize_scores_df(data, vars, ..., what, retain = FALSE, .dots = list())

Arguments

data data.frame containing raw scores

vars names of columns to normalize. Length of vars need to be the same as number
of tables provided to either ... or .dots

... ScoreTable or FrequencyTable objects to be used for normalization

what the values to get. One of either:

• quan - the quantile of x in the raw score distribution
• Z - normalized Z score for the x raw score
• name of the scale calculated in ScoreTables provided to ... or .dots

argument

retain either boolean: TRUE if all columns in the data are to be retained, FALSE if none;
or character vector with names of columns to be retained

.dots ScoreTable or FrequencyTable objects provided as a list, instead of individu-
ally in

Value

data.frame with normalized scores

See Also

Other score-normalization functions: normalize_scores_grouped(), normalize_scores_scoring(),
normalize_score()

Examples

normalize multiple variables with FrequencyTable
suppressMessages({

ft_H <- FrequencyTable(HEXACO_60$HEX_H)
ft_E <- FrequencyTable(HEXACO_60$HEX_E)
ft_X <- FrequencyTable(HEXACO_60$HEX_X)

})

normalize_scores_df(data = head(HEXACO_60),

28 normalize_scores_grouped

vars = c("HEX_H", "HEX_E", "HEX_X"),
ft_H,
ft_E,
ft_X,
what = "quan")

normalize multiple variables with ScoreTable
st_H <- ScoreTable(ft_H, STEN)
st_E <- ScoreTable(ft_E, STEN)
st_X <- ScoreTable(ft_X, STEN)

normalize_scores_df(data = head(HEXACO_60),
vars = c("HEX_H", "HEX_E", "HEX_X"),
st_H,
st_E,
st_X,
what = "sten")

normalize_scores_grouped

Normalize scores using GroupedFrequencyTables or Grouped-
ScoreTables

Description

Normalize scores using either GroupedFrequencyTable or GroupedScoreTable for one or more
variables. Given data.frame should also contain columns used in GroupingConditions attached to
the table

Usage

normalize_scores_grouped(
data,
vars,
...,
what,
retain = FALSE,
group_col = NULL,
.dots = list()

)

Arguments

data data.frame object containing raw scores

vars names of columns to normalize. Length of vars need to be the same as number
of tables provided to either ... or .dots

... GroupedFrequencyTable or GroupedScoreTable objects to be used for nor-
malization. They should be provided in the same order as vars

normalize_scores_grouped 29

what the values to get. One of either:

• quan - the quantile of x in the raw score distribution
• Z - normalized Z score for the x raw score
• name of the scale calculated in GroupedScoreTables provided to ... or
.dots argument

retain either boolean: TRUE if all columns in the data are to be retained, FALSE if none;
or character vector with names of columns to be retained

group_col name of the column for name of the group each observation was qualified into.
If left as default NULL, they won’t be returned.

.dots GroupedFrequencyTable or GroupedScoreTable objects provided as a list, in-
stead of individually in

Value

data.frame with normalized scores

See Also

Other score-normalization functions: normalize_scores_df(), normalize_scores_scoring(),
normalize_score()

Examples

setup - create necessary objects
suppressMessages({

age_grouping <- GroupConditions(
conditions_category = "Age",
"below 22" ~ age < 22,
"23-60" ~ age >= 23 & age <= 60,
"above 60" ~ age > 60

)
sex_grouping <- GroupConditions(

conditions_category = "Sex",
"Male" ~ sex == "M",
"Female" ~ sex == "F"

)
NEU_gft <- GroupedFrequencyTable(

data = IPIP_NEO_300,
conditions = list(age_grouping, sex_grouping),
var = "N"

)
NEU_gst <- GroupedScoreTable(

NEU_gft,
scale = list(STEN, STANINE)

)
})

normalize scores
to Z score or quantile using GroupedFrequencyTable
normalized_to_quan <- normalize_scores_grouped(

30 normalize_scores_scoring

IPIP_NEO_300,
vars = "N",
NEU_gft,
what = "quan",
retain = c("sex", "age")

)

only 'sex' and 'age' are retained
head(normalized_to_quan)

to StandardScale attached to GroupedScoreTable
normalized_to_STEN <- normalize_scores_grouped(

IPIP_NEO_300,
vars = "N",
NEU_gst,
what = "stanine",
retain = FALSE,
group_col = "sex_age_group"

)

none is retained, 'sex_age_group' is created
head(normalized_to_STEN)

normalize_scores_scoring

Normalize scores using ScoringTables

Description

Normalize scores using either ScoringTable objects for one or more variables. Given data.frame
should also contain columns used in GroupingConditions attached to the table (if any)

Usage

normalize_scores_scoring(
data,
vars,
...,
retain = FALSE,
group_col = NULL,
.dots = list()

)

Arguments

data data.frame containing raw scores

vars names of columns to normalize. Length of vars need to be the same as number
of tables provided to either ... or .dots

plot.GroupedFrequencyTable 31

... ScoringTable objects to be used for normalization. They should be provided
in the same order as vars

retain either boolean: TRUE if all columns in the data are to be retained, FALSE if none;
or names of columns to be retained

group_col name of the column for name of the group each observation was qualified into.
If left as default NULL, they won’t be returned. Ignored if no conditions are
available

.dots ScoringTable objects provided as a list, instead of individually in

Value

data.frame with normalized scores

See Also

Other score-normalization functions: normalize_scores_df(), normalize_scores_grouped(),
normalize_score()

Examples

Scoring table to export / import
suppressMessages(

Consc_ST <-
GroupedFrequencyTable(

data = IPIP_NEO_300,
conditions = GroupConditions("Sex", "M" ~ sex == "M", "F" ~ sex == "F"),
var = "C") |>

GroupedScoreTable(scale = STEN) |>
to_ScoringTable(min_raw = 60, max_raw = 300)

)

normalize scores
Consc_norm <-

normalize_scores_scoring(
data = IPIP_NEO_300,
vars = "C",
Consc_ST,
group_col = "Group"

)

str(Consc_norm)

plot.GroupedFrequencyTable

Gerenic plot of the GroupedFrequencyTable

32 plot.GroupedScoreTable

Description

Generic plot using ggplot2. It plots FrequencyTables for all groups by default, or only chosen ones
using when group_names argument is specified.

Usage

S3 method for class 'GroupedFrequencyTable'
plot(
x,
group_names = NULL,
strict_names = TRUE,
plot_grid = is.intersected(x),
...

)

Arguments

x A GroupedFrequencyTable object

group_names vector specifying which groups should appear in the plots

strict_names If TRUE, then intersected groups are filtered using strict strategy: group_names
need to be provided in form: "group1:group2". If FALSE, then intersected
groups will be taken into regard separately, so eg. when "group1" is provided to
group_names, all of: "group1:group2", "group1:group3", "group1:groupN"
will be plotted. Defaults to TRUE

plot_grid boolean indicating if the ggplot2::facet_grid() should be used. If FALSE,
then ggplot2::facet_wrap() is used. If groups are not intersected, then it will
be ignored and facet_wrap will be used.

... named list of additional arguments passed to facet function used.

plot.GroupedScoreTable

Gerenic plot of the GroupedScoreTable

Description

Generic plot using ggplot2. It plots ScoreTables for all groups by default, or only chosen ones
using when group_names argument is specified.

Usage

S3 method for class 'GroupedScoreTable'
plot(
x,
scale_name = NULL,
group_names = NULL,

ScaleSpec 33

strict_names = TRUE,
plot_grid = is.intersected(x),
...

)

Arguments

x A GroupedScoreTable object
scale_name if scores for multiple scales available, provide the name of the scale for plotting.
group_names names specifying which groups should appear in the plots
strict_names If TRUE, then intersected groups are filtered using strict strategy: group_names

need to be provided in form: "group1:group2". If FALSE, then intersected
groups will be taken into regard separately, so eg. when "group1" is provided to
group_names, all of: "group1:group2", "group1:group3", "group1:groupN"
will be plotted. Defaults to TRUE

plot_grid boolean indicating if the ggplot2::facet_grid() should be used. If FALSE,
then ggplot2::facet_wrap() is used. If groups are not intersected, then it will
be ignored and facet_wrap will be used.

... named list of additional arguments passed to facet function.

ScaleSpec Scale Specification object

Description

Object containing scale or factor specification data. It describes the scale or factor, with regard to
which items from the source data are part of it, which need to be summed with reverse scoring, and
how to handle NAs. To be used with sum_items_to_scale() function to preprocess item data.

Usage

ScaleSpec(
name,
item_names,
min,
max,
reverse = character(0),
na_strategy = c("asis", "mean", "median", "mode"),
na_value = as.integer(NA),
na_value_custom

)

S3 method for class 'ScaleSpec'
print(x, ...)

S3 method for class 'ScaleSpec'
summary(object, ...)

34 ScaleSpec

Arguments

name character with name of the scale/factor

item_names character vector containing names of the items that the scale/factor consists of.

min, max integer containing the default minimal/maximal value that the answer to the item
can be scored as.

reverse character vector containing names of the items that need to be reversed during
scale/factor summing. Reversed using the default "min" and "max" values.

na_strategy character vector specifying which strategy should be taken during filling of
NA. Defaults to "asis" and, other options are "mean", "median" and "mode".
Strategies are explained in the details section.

na_value integer value to be input in missing values as default. Defaults to as.integer(NA).

na_value_custom

if there are any need for specific questions be gives specific values in place of
NAs, provide a named integer vector there. Names should be the names of the
questons.

x a ScaleSpec object

... further arguments passed to or from other methods.

object a ScaleSpec object

Details

NA imputation:
it specifies how NA values should be treated during sum_items_to_scale() function run. asis
strategy is literal: the values specified in na_value or na_value_custom will be used without
any changes. mean, median and mode are functional strategies. They work on a rowwise basis,
so the appropriate value for every observation will be used. If there are no values provided to
check for the mean, median or mode, the value provided in na_value or na_value_custom will
be used. The values of mean and median will be rounded before imputation.

Order of operations:

• item reversion
• functional NAs imputation
• literal NAs imputation

Value

object of ScaleSpec class

data.frame of item names, if they are reversed, and custom NA value if available, invisibly

See Also

Other item preprocessing functions: CombScaleSpec(), sum_items_to_scale()

ScoreTable 35

Examples

simple scale specification

simple_scaleSpec <- ScaleSpec(
name = "simple",
scale consists of 5 items
item_names = c("item_1", "item_2", "item_3", "item_4", "item_5"),
item scores can take range of values: 1-5
min = 1,
max = 5,
item 2 and 5 need to be reversed
reverse = c("item_2", "item_5"))

print(simple_scaleSpec)

scale specification with literal NA imputation strategy

asis_scaleSpec <- ScaleSpec(
name = "w_asis",
item_names = c("item_1", "item_2", "item_3", "item_4", "item_5"),
min = 1,
max = 5,
reverse = "item_2",
na values by default will be filled with `3`
na_value = 3,
except for item_4, where they will be filled with `2`
na_value_custom = c(item_4 = 2)

)

print(asis_scaleSpec)

scale specification with functional NA imputation strategy

func_scaleSpec <- ScaleSpec(
name = "w_func",
item_names = c("item_1", "item_2", "item_3", "item_4", "item_5"),
min = 1,
max = 5,
reverse = "item_2",
strategies available are 'mean', 'median' and 'mode'
na_strategy = "mean"

)

print(func_scaleSpec)

ScoreTable Create a ScoreTable

36 ScoreTable

Description

Creates a table to calculate scores in specified standardized scale for each discrete raw score. Uses
normalization provided by FrequencyTable() and scale definition created with StandardScale().

After creation it can be used to normalize and standardize raw scores with normalize_score() or
normalize_scores_df().

plot.ScoreTable() method requires ggplot2 package to be installed.

Usage

ScoreTable(ft, scale)

S3 method for class 'ScoreTable'
print(x, ...)

S3 method for class 'ScoreTable'
plot(x, scale_name = NULL, ...)

Arguments

ft a FrequencyTable object

scale a StandardScale object or list of multiple StandardScale objects

x a ScoreTable object

... further arguments passed to or from other methods

scale_name if scores for multiple scales available, provide the name of the scale for plotting.

Value

object of class ScoreTable. Consists of:

• table: data.frame containing for each point in the raw score:

– number of observations (n),
– frequency in sample (freq),
– quantile (quan),
– normalized Z-score (Z),
– score transformed to every of provided StandardScales

• status: list containing the total number of simulated observations (n) and information about
raw scores range completion (range): complete or incomplete

• scale: named list of all attached StandardScale objects \

Examples

firstly compute FrequencyTable for a variable
ft <- FrequencyTable(HEXACO_60$HEX_A)

then create a ScoreTable
st <- ScoreTable(ft, STEN)

SimFrequencyTable 37

ScoreTable is ready to use!
st

SimFrequencyTable Generate FrequencyTable using simulated distribution

Description

It is always best to use raw scores for computing the FrequencyTable. They aren’t always available
- in that case, this function can be used to simulate the distribution given its descriptive statistics.

This simulation should be always treated as an estimate.

The distribution is generated using the Fleishmann method from SimMultiCorrData::nonnormvar1()
function. The SimMultiCorrData package needs to be installed.

Usage

SimFrequencyTable(min, max, M, SD, skew = 0, kurt = 3, n = 10000, seed = NULL)

Arguments

min minimum value of raw score

max maximum value of raw score

M mean of the raw scores distribution

SD standard deviation of the raw scores distribution

skew skewness of the raw scores distribution. Defaults to 0 for normal distribution

kurt kurtosis of the raw scores distribution. Defaults to 3 for normal distribution

n number of observations to simulate. Defaults to 10000, but greater values could
be used to generate better estimates. Final number of observations in the gen-
erated Frequency Table may be less - all values lower than min and higher than
max are filtered out.

seed the seed value for random number generation

Value

FrequencyTable object created with simulated data. Consists of:

• table: data.frame with number of observations (n), frequency in sample (freq), quantile
(quan) and normalized Z-score (Z) for each point in raw score

• status: list containing the total number of simulated observations (n) and information about
raw scores range completion (range): complete or incomplete

38 StandardScale

SLCS Sample data of SLCS questionnaire results

Description

Dataset containing individual items answers of SLCS questionnaire. They were obtained during
2020 study on Polish incidental sample.

Usage

SLCS

Format

A data frame with 103 rows and 19 variables

user_id identity anonimized with ’ids::adjective_animal’

sex sex of the participant (’M’ale, ’F’emale or ’O’ther)

age age of the participant (15–68)

SLCS_1, SLCS_2, SLCS_3, SLCS_4, SLCS_5, SLCS_6, SLCS_7, SLCS_8, SLCS_9, SLCS_10, SLCS_11, SLCS_12, SLCS_13, SLCS_14, SLCS_15, SLCS_16
Score for each of measure items. (1–5)

Details

All SLCS item responses can take integer values 1-5. The measure consists of two sub-scales:
Self-Liking and Self-Competence, and the General Score can also be calculated. Below are the
item numbers that are used for each sub-scale (R near the number means that the item need to be
reversed.)

• Self-Liking: 1R, 3, 5, 6R, 7R, 9, 11, 15R

• Self-Competence: 2, 4, 8R, 10R, 12, 13R, 14, 16

• General Score: All of the above items (they need to be reversed as in sub-scales)

StandardScale Specify standard scale

Description

StandardScale objects are used with ScoreTable() or GroupedScoreTable() objects to recal-
culate FrequencyTable() or GroupedFrequencyTable() into some standardized scale score.

There are few StandardScale defaults available.

Plot method requires ggplot2 package to be installed.

strip_ScoreTable 39

Usage

StandardScale(name, M, SD, min, max)

S3 method for class 'StandardScale'
print(x, ...)

S3 method for class 'StandardScale'
plot(x, n = 1000, ...)

Arguments

name Name of the scale

M Mean of the scale

SD Standard deviation of the scale

min Minimal value the scale takes

max Maximal value the scale takes

x a StandardScale object

... further arguments passed to or from other methods.

n Number of points the plot generates. The higher the number, the more detailed
are the plots. Default to 1000 for nicely detailed plot.

Value

StandardScale object

strip_ScoreTable Revert the ScoreTable back to FrequencyTable object.

Description

Revert the ScoreTable back to FrequencyTable object.

Usage

strip_ScoreTable(x)

Arguments

x a ScoreTable object

40 sum_items_to_scale

Examples

having a ScoreTable object
st <- ScoreTable(FrequencyTable(HEXACO_60$HEX_X), TANINE)
class(st)

revert it back to the FrequencyTable
ft <- strip_ScoreTable(st)
class(ft)

sum_items_to_scale Sum up discrete raw data

Description

Helper function to sum-up and - if needed - automatically reverse discrete raw item values to scale
or factor that they are measuring.

Usage

sum_items_to_scale(data, ..., retain = FALSE, .dots = list())

Arguments

data data.frame object containing numerical values of items data

... objects of class ScaleSpec or CombScaleSpec. If all item names are found in
data, summed items will be available in returned data.frame as column named
as their name value.

retain either boolean: TRUE if all columns in the data are to be retained, FALSE if
none, or character vector with names of columns to be retained

.dots ScaleSpec or CombScaleSpec objects provided as a list, instead of individually
in

Details

All summing up of the raw discrete values into scale or factor score is done according to provided
specifications utilizing ScaleSpec() objects. For more information refer to their constructor help
page.

Value

object of class data.frame

See Also

Other item preprocessing functions: CombScaleSpec(), ScaleSpec()

to_ScoringTable 41

Examples

create the Scale Specifications for SLCS dataset
Self-Liking specification
SL_spec <- ScaleSpec(

name = "Self-Liking",
item_names = paste("SLCS", c(1, 3, 5, 6, 7, 9, 11, 15), sep = "_"),
reverse = paste("SLCS", c(1, 6, 7, 15), sep = "_"),
min = 1,
max = 5)

Self-Competence specification
SC_spec <- ScaleSpec(

name = "Self-Competence",
item_names = paste("SLCS", c(2, 4, 8, 10, 12, 13, 14, 16), sep = "_"),
reverse = paste("SLCS", c(8, 10, 13), sep = "_"),
min = 1,
max = 5)

General Score specification
GS_spec <- CombScaleSpec(

name = "General Score",
SL_spec,
SC_spec)

Sum the raw item scores to raw scale scores
SLCS_summed <- sum_items_to_scale(SLCS, SL_spec, SC_spec, GS_spec, retain = "user_id")
summary(SLCS_summed)

to_ScoringTable Create ScoringTable

Description

ScoringTable is a simple version of ScoreTable() or GroupedScoreTable(), that don’t include the
FrequencyTable internally. It can be easily saved to csv or json using export_ScoringTable()
and loaded from these files using import_ScoringTable().

When using GroupedScoreTable, the columns will be named the same as the name of group. If it
was created using two GroupCondition object, the names of columns will be names of the groups
seperated by :

Usage

to_ScoringTable(table, ...)

S3 method for class 'ScoreTable'
to_ScoringTable(
table,
scale = NULL,

42 to_ScoringTable

min_raw = NULL,
max_raw = NULL,
score_colname = "Score",
...

)

S3 method for class 'GroupedScoreTable'
to_ScoringTable(table, scale = NULL, min_raw = NULL, max_raw = NULL, ...)

S3 method for class 'ScoringTable'
summary(object, ...)

Arguments

table ScoreTable or GroupedScoreTable object

... further arguments passed to or from other methods.

scale name of the scale attached in table. If only one scale is attached, it can be left
as default NULL

min_raw, max_raw

absolute minimum/maximum score that can be received. If left as default NULL,
the minimum/maximum available in the data will be used.

score_colname Name of the column containing the raw scores

object ScoringTable object

Value

ScoringTable object

Examples

Extr_ST <-
create FrequencyTable
FrequencyTable(data = IPIP_NEO_300$E) |>
create ScoreTable
ScoreTable(scale = STEN) |>
and transform into ScoringTable
to_ScoringTable(
min_raw = 60,
max_raw = 300

)

summary(Extr_ST)
GroupConditions creation

sex_grouping <- GroupConditions(
conditions_category = "Sex",
"Male" ~ sex == "M",
"Female" ~ sex == "F"

)

to_ScoringTable 43

Creating ScoringTable
based on grouped data

Neu_ST <-
create FrequencyTable
GroupedFrequencyTable(
data = IPIP_NEO_300,
conditions = sex_grouping,
var = "N") |>

create ScoreTable
GroupedScoreTable(

scale = STEN) |>
and transform into ScoringTable
to_ScoringTable(

min_raw = 60,
max_raw = 300

)

summary(Neu_ST)

Index

∗ datasets
HEXACO_60, 19
IPIP_NEO_300, 24
SLCS, 38

∗ import/export functions
export_ScaleSpec, 7
export_ScoringTable, 8
import_ScaleSpec, 19
import_ScoringTable, 21

∗ item preprocessing functions
CombScaleSpec, 3
ScaleSpec, 33
sum_items_to_scale, 40

∗ observation grouping functions
extract_observations, 10
GroupAssignment, 13
intersect_GroupAssignment, 22

∗ score-normalization functions
normalize_score, 26
normalize_scores_df, 27
normalize_scores_grouped, 28
normalize_scores_scoring, 30

as.data.frame.GroupConditions
(GroupConditions), 15

attach_scales, 2

CombScaleSpec, 3, 34, 40
CompScoreTable, 4

default_scales, 7

export_ScaleSpec, 7, 9, 20, 21
export_ScaleSpec(), 19
export_ScoringTable, 7, 8, 20, 21
export_ScoringTable(), 21, 41
extract_observations, 10, 14, 23

FrequencyTable, 12
FrequencyTable(), 17, 36, 38

ggplot2::facet_grid(), 32, 33
ggplot2::facet_wrap(), 32, 33
GroupAssignment, 11, 13, 23
GroupConditions, 15
GroupConditions(), 17
GroupedFrequencyTable, 17
GroupedFrequencyTable(), 14, 38
GroupedScoreTable, 18
GroupedScoreTable(), 38, 41

HEXACO_60, 19

import_ScaleSpec, 7, 9, 19, 21
import_ScaleSpec(), 7
import_ScoringTable, 7, 9, 20, 21
import_ScoringTable(), 8, 41
intersect_GroupAssignment, 11, 14, 22
intersect_GroupAssignment(), 25
IPIP_NEO_300, 24
is.CombScaleSpec (is_stenR_classes), 25
is.FrequencyTable (is_stenR_classes), 25
is.GroupAssignment (is_stenR_classes),

25
is.GroupConditions (is_stenR_classes),

25
is.GroupedFrequencyTable

(is_stenR_classes), 25
is.GroupedScoreTable

(is_stenR_classes), 25
is.intersected (is_stenR_classes), 25
is.ScaleSpec (is_stenR_classes), 25
is.ScoreTable (is_stenR_classes), 25
is.ScoringTable (is_stenR_classes), 25
is.Simulated (is_stenR_classes), 25
is.StandardScale (is_stenR_classes), 25
is_stenR_classes, 25

normalize_score, 26, 27, 29, 31
normalize_score(), 27, 36
normalize_scores_df, 26, 27, 29, 31

44

INDEX 45

normalize_scores_df(), 36
normalize_scores_grouped, 26, 27, 28, 31
normalize_scores_grouped(), 17
normalize_scores_scoring, 26, 27, 29, 30

plot.FrequencyTable (FrequencyTable), 12
plot.GroupedFrequencyTable, 31
plot.GroupedScoreTable, 32
plot.ScoreTable (ScoreTable), 35
plot.ScoreTable(), 36
plot.StandardScale (StandardScale), 38
print.CombScaleSpec (CombScaleSpec), 3
print.FrequencyTable (FrequencyTable),

12
print.GroupAssignment

(GroupAssignment), 13
print.GroupConditions

(GroupConditions), 15
print.GroupedFrequencyTable

(GroupedFrequencyTable), 17
print.GroupedScoreTable

(GroupedScoreTable), 18
print.ScaleSpec (ScaleSpec), 33
print.ScoreTable (ScoreTable), 35
print.StandardScale (StandardScale), 38

ScaleSpec, 3, 33, 40
ScaleSpec(), 40
ScoreTable, 5, 35
ScoreTable(), 12, 38, 41
SimFrequencyTable, 37
SimFrequencyTable(), 13, 25
SimMultiCorrData::nonnormvar1(), 37
SLCS, 38
StandardScale, 38
StandardScale(), 7, 12, 36
STANINE (default_scales), 7
STEN (default_scales), 7
strip_ScoreTable, 39
sum_items_to_scale, 3, 34, 40
sum_items_to_scale(), 3, 24, 33, 34
summary.CombScaleSpec (CombScaleSpec), 3
summary.FrequencyTable

(FrequencyTable), 12
summary.GroupAssignment

(GroupAssignment), 13
summary.GroupedFrequencyTable

(GroupedFrequencyTable), 17
summary.ScaleSpec (ScaleSpec), 33

summary.ScoringTable (to_ScoringTable),
41

TANINE (default_scales), 7
TETRONIC (default_scales), 7
to_ScoringTable, 41

WECHSLER_IQ (default_scales), 7

	attach_scales
	CombScaleSpec
	CompScoreTable
	default_scales
	export_ScaleSpec
	export_ScoringTable
	extract_observations
	FrequencyTable
	GroupAssignment
	GroupConditions
	GroupedFrequencyTable
	GroupedScoreTable
	HEXACO_60
	import_ScaleSpec
	import_ScoringTable
	intersect_GroupAssignment
	IPIP_NEO_300
	is_stenR_classes
	normalize_score
	normalize_scores_df
	normalize_scores_grouped
	normalize_scores_scoring
	plot.GroupedFrequencyTable
	plot.GroupedScoreTable
	ScaleSpec
	ScoreTable
	SimFrequencyTable
	SLCS
	StandardScale
	strip_ScoreTable
	sum_items_to_scale
	to_ScoringTable
	Index

