
Package ‘stream’
September 3, 2022

Version 2.0-0

Date 2022-09-01

Encoding UTF-8

Title Infrastructure for Data Stream Mining

Description A framework for data stream modeling and associated data mining tasks such as cluster-
ing and classification. The development of this package was supported in part by NSF IIS-
0948893, NSF CMMI 1728612, and NIH R21HG005912. Hah-
sler et al (2017) <doi:10.18637/jss.v076.i14>.

Depends R (>= 3.5.0), methods, proxy (>= 0.4-7), magrittr

Imports clue, cluster, clusterGeneration, dbscan (>= 1.0-0), fpc,
graphics, grDevices, MASS, mlbench, Rcpp (>= 0.11.4), stats,
utils

Suggests animation, DBI, dplyr, rJava, RSQLite, testthat, knitr

URL https://github.com/mhahsler/stream

BugReports https://github.com/mhahsler/stream/issues

LinkingTo Rcpp, BH

License GPL-3

VignetteBuilder knitr

RoxygenNote 7.2.1

NeedsCompilation yes

Author Michael Hahsler [aut, cre, cph]
(<https://orcid.org/0000-0003-2716-1405>),

Matthew Bolaños [ctb],
John Forrest [ctb],
Matthias Carnein [ctb],
Dennis Assenmacher [ctb],
Dalibor Krleža [ctb]

Maintainer Michael Hahsler <mhahsler@lyle.smu.edu>

Repository CRAN

Date/Publication 2022-09-02 23:00:02 UTC

1

https://doi.org/10.18637/jss.v076.i14
https://github.com/mhahsler/stream
https://github.com/mhahsler/stream/issues
https://orcid.org/0000-0003-2716-1405

2 R topics documented:

R topics documented:
stream-package . 3
agreement . 4
animate_cluster . 5
animate_data . 6
close_stream . 7
DSAggregate . 8
DSAggregate_Sample . 9
DSAggregate_Window . 11
DSC . 12
DSClassifier . 14
DSC_BICO . 15
DSC_BIRCH . 16
DSC_DBSCAN . 18
DSC_DBSTREAM . 19
DSC_DStream . 23
DSC_EA . 27
DSC_evoStream . 29
DSC_Hierarchical . 31
DSC_Kmeans . 32
DSC_Macro . 34
DSC_Micro . 35
DSC_R . 36
DSC_Reachability . 37
DSC_Sample . 39
DSC_Static . 40
DSC_TwoStage . 42
DSC_Window . 43
DSD . 45
DSD_BarsAndGaussians . 46
DSD_Benchmark . 47
DSD_Cubes . 48
DSD_Gaussians . 49
DSD_Memory . 52
DSD_MG . 54
DSD_Mixture . 56
DSD_mlbenchData . 57
DSD_mlbenchGenerator . 58
DSD_NULL . 59
DSD_ReadDB . 60
DSD_ReadStream . 62
DSD_Target . 65
DSD_UniformNoise . 66
DSF . 67
DSFP . 68
DSF_Convolve . 69
DSF_Downsample . 72

stream-package 3

DSF_dplyr . 73
DSF_ExponentialMA . 74
DSF_Func . 76
DSF_Scale . 77
DSOutlier . 79
DST . 80
DST_Multi . 81
DST_Runner . 82
DST_WriteStream . 83
evaluate . 84
evaluate.DSC . 85
get_assignment . 91
get_points . 93
MGC . 95
plot.DSC . 98
plot.DSD . 101
predict . 102
prune_clusters . 104
read_saveDSC . 105
recluster . 106
reset_stream . 107
update . 109
write_stream . 110

Index 112

stream-package stream: Infrastructure for Data Stream Mining

Description

A framework for data stream modeling and associated data mining tasks such as clustering and
classification. The development of this package was supported in part by NSF IIS-0948893, NSF
CMMI 1728612, and NIH R21HG005912. Hahsler et al (2017) doi:10.18637/jss.v076.i14.

Author(s)

Michael Hahsler

doi:10.18637/jss.v076.i14

4 agreement

agreement Agreement-based Measures for Clustering

Description

Calculates the agreement between two partitions, typically the known actual cluster labels and the
predicted cluster labels.

Usage

agreement(predicted, actual, method = "cRand", na_as_cluster = TRUE)

Arguments

predicted a vector with predicted cluster labels.

actual the known cluster labels (ground truth).

method the used method (see clue::cl_agreement()).

na_as_cluster logical; should NA labels (noise points) be considered its own cluster?

Details

This convenience function is an interface to clue::cl_agreement(). See methods in that man
page for a list of available methods. A measure typically used for clustering is the corrected Rand
index (also called adjusted Rand index). Numbers close to 1 indicate a very good agreement.

References

Hornik K (2005). A CLUE for CLUster Ensembles. Journal of Statistical Software, 14(12).
doi:10.18637/jss.v014.i12

Examples

Perfect agreement (1 and 2 are just switched)
actual <- c(2, 2, 1, 3, 2, NA)
predicted <- c(1, 1, 2, 3, 1, NA)
agreement(actual, predicted)

No agreement
predicted <- sample(predicted)
agreement(actual, predicted)

https://doi.org/10.18637/jss.v014.i12

animate_cluster 5

animate_cluster Animates Plots of the Clustering Process

Description

Generates an animation of a data stream clustering process.

Usage

animate_cluster(
dsc,
dsd,
measure = NULL,
horizon = 100,
n = 1000,
type = c("auto", "micro", "macro"),
assign = "micro",
assignmentMethod = c("auto", "model", "nn"),
excludeNoise = FALSE,
wait = 0.1,
plot.args = NULL,
...

)

Arguments

dsc a DSC

dsd a DSD

measure the evaluation measure that should be graphed below the animation (see evaluate_stream().)

horizon the number of points displayed at once/used for evaluation.

n the number of points to be plotted
type, assign, assignmentMethod, excludeNoise

are passed on to evaluate_stream() to calculate the evaluation measure.

wait the time interval between each frame

plot.args a list with plotting parameters for the clusters.

... extra arguments are added to plot.args.

Details

Animations are recorded using the library animation and can be replayed (which gives a smoother
experience since the is no more computation done) and saved in various formats (see Examples
section below).

Note: You need to install package animation and its system requirements.

6 animate_data

Author(s)

Michael Hahsler

See Also

animation::ani.replay() for replaying and saving animations.

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), evaluate.DSC,
get_assignment(), plot.DSC(), predict(), prune_clusters(), read_saveDSC, recluster()

Other plot: animate_data(), plot.DSC(), plot.DSD()

Other evaluation: evaluate.DSC, evaluate

Examples

if (interactive()) {
stream <- DSD_Benchmark(1)

animate the clustering process with evaluation
Note: we choose to exclude noise points from the evaluation
measure calculation, even if the algorithm would assign
them to a cluster.
dbstream <- DSC_DBSTREAM(r = .04, lambda = .1, gaptime = 100, Cm = 3,

shared_density = TRUE, alpha = .2)

animate_cluster(dbstream, stream, horizon = 100, n = 5000,
measure = "crand", type = "macro", assign = "micro",
plot.args = list(xlim = c(0, 1), ylim = c(0, 1), shared = TRUE))

}

animate_data Animates the Plotting of a Data Streams

Description

Generates an animation of a data stream.

Usage

animate_data(dsd, horizon = 100, n = 1000, wait = 0.1, plot.args = NULL, ...)

Arguments

dsd a DSD object

horizon the number of points displayed at once/used for evaluation.

n the number of points to be plotted

wait the time interval between each frame

plot.args a list with plotting parameters for the clusters.

... extra arguments are added to plot.args.

close_stream 7

Details

Animations are recorded using the library animation and can be replayed (which gives a smoother
experience since the is no more computation done) and saved in various formats (see Examples
section below).

Note: You need to install package animation and its system requirements.

Author(s)

Michael Hahsler

See Also

animation::ani.replay() for replaying and saving animations.

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_UniformNoise(), DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Other plot: animate_cluster(), plot.DSC(), plot.DSD()

Examples

if (interactive()) {

stream <- DSD_Benchmark(1)
animate_data(stream, horizon = 100, n = 5000, xlim = c(0,1), ylim = c(0,1))

animations can be replayed with the animation package
library(animation)
animation::ani.options(interval = .1) ## change speed
ani.replay()

animations can also be saved as HTML, animated gifs, etc.
saveHTML(ani.replay())
}

close_stream Close a Data Stream

Description

Close a data stream that needs closing (e.g., a file or a connection).

Usage

close_stream(dsd, ...)

8 DSAggregate

Arguments

dsd An object of class a subclass of DSD which implements a reset function.

... further arguments.

Details

close_stream() is implemented for:

• DSD

• DSD_ReadCSV

• DSD_ReadDB

• DSD_ReadStream

• DSF

Author(s)

Michael Hahsler

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_UniformNoise(), DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(),
get_points(), plot.DSD(), reset_stream()

DSAggregate Data Stream Aggregator Base Classes

Description

Abstract base classes for all DSAggregate (Data Stream Aggregator) classes to aggregate streams.

Usage

DSAggregate(...)

S3 method for class 'DSAggregate'
update(object, dsd, n = 1, ...)

S3 method for class 'DSAggregate'
get_points(x, ...)

S3 method for class 'DSAggregate'
get_weights(x, ...)

DSAggregate_Sample 9

Arguments

... Further arguments.

dsd a data stream object.

n the number of data points used for the update.

x, object a concrete implementation of DSAggregate.

Details

The DSAggreagate class cannot be instantiated, but it serve as a base class from which other DSAg-
gregate subclasses inherit.

Data stream operators use update.DSAggregate() to process new data from the DSD stream. The
result of the operator can be obtained via get_points() and get_weights() (if available).

Author(s)

Michael Hahsler

See Also

Other DST: DSClassifier(), DSC(), DSF_Scale(), DSOutlier(), DST_Runner(), DST_WriteStream(),
DST(), evaluate, predict(), update()

Other DSAggregate: DSAggregate_Sample(), DSAggregate_Window()

Examples

DSAggregate()

DSAggregate_Sample Sampling from a Data Stream (Data Stream Operator)

Description

Extracts a sample form a data stream using Reservoir Sampling.

Usage

DSAggregate_Sample(k = 100, biased = FALSE)

Arguments

k the number of points to be sampled from the stream.

biased if FALSE then a regular (unbiased) reservoir sampling is used. If true then the
sample is biased towards keeping more recent data points (see Details section).

10 DSAggregate_Sample

Details

If biased = FALSE then the reservoir sampling algorithm by McLeod and Bellhouse (1983) is used.
This sampling makes sure that each data point has the same chance to be sampled. All sampled
points will have a weight of 1. Note that this might not be ideal for an evolving stream since very
old data points have the same chance to be in the sample as newer points.

If bias = TRUE then sampling prefers newer points using the modified reservoir sampling algorithm
2.1 by Aggarwal (2006). New points are always added. They replace a random point in thre
reservoir with a probability of reservoir size over k. This an exponential bias function of 2−lambda

with lambda = 1/k.

Value

An object of class DSAggregate_Sample (subclass of DSAggregate).

Author(s)

Michael Hahsler

References

Vitter, J. S. (1985): Random sampling with a reservoir. ACM Transactions on Mathematical Soft-
ware, 11(1), 37-57.

McLeod, A.I., Bellhouse, D.R. (1983): A Convenient Algorithm for Drawing a Simple Random
Sample. Applied Statistics, 32(2), 182-184.

Aggarwal C. (2006) On Biased Reservoir Sampling in the Presence of Stream Evolution. Interna-
tional Conference on Very Large Databases (VLDB’06). 607-618.

See Also

Other DSAggregate: DSAggregate_Window(), DSAggregate()

Examples

set.seed(1500)

stream <- DSD_Gaussians(k = 3, noise = 0.05)

sample <- DSAggregate_Sample(k = 50)
update(sample, stream, 500)
sample

head(get_points(sample))

apply k-means clustering to the sample (data without info columns)
km <- kmeans(get_points(sample, info = FALSE), centers = 3)
plot(get_points(sample, info = FALSE))
points(km$centers, col = "red", pch = 3, cex = 2)

DSAggregate_Window 11

DSAggregate_Window Sliding Window (Data Stream Operator)

Description

Implements a sliding window data stream operator which keeps a fixed amount (window length) of
the most recent data points of the stream.

Usage

DSAggregate_Window(horizon = 100, lambda = 0)

Arguments

horizon the window length.

lambda decay factor damped window model. lambda = 0 means no dampening.

Details

If lambda is greater than 0 then the weight uses a damped window model (Zhu and Shasha, 2002).
The weight for points in the window follows 2(− lambda ∗ t) where t is the age of the point.

Value

An object of class DSAggregate_Window (subclass of DSAggregate).

Author(s)

Michael Hahsler

References

Zhu, Y. and Shasha, D. (2002). StatStream: Statistical Monitoring of Thousands of Data Streams
in Real Time, Intl. Conference of Very Large Data Bases (VLDB’02).

See Also

Other DSAggregate: DSAggregate_Sample(), DSAggregate()

Examples

set.seed(1500)

stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

window <- DSAggregate_Window(horizon = 10)
window

update with only two points. The window is mostly empty (NA)

12 DSC

update(window, stream, 2)
get_points(window)

update window
update(window, stream, 100)
get_points(window)

DSC Data Stream Clustering Base Class

Description

Abstract base classes for Data Stream Clustering (DSC). Concrete implementations are functions
starting with DSC_ (RStudio use auto-completion with Tab to select one).

Usage

DSC(...)

get_centers(x, type = c("auto", "micro", "macro"), ...)

get_weights(x, type = c("auto", "micro", "macro"), scale = NULL, ...)

get_copy(x)

nclusters(x, type = c("auto", "micro", "macro"), ...)

get_microclusters(x, ...)

get_microweights(x, ...)

get_macroclusters(x, ...)

get_macroweights(x, ...)

Arguments

... further parameter

x a DSC object.

type Return weights of micro- or macro-clusters in x. Auto uses the class of x to
decide.

scale a range (from, to) to scale the weights. Returns by default the raw weights.

DSC 13

Details

The DSC class cannot be instantiated (calling DSC() produces only a message listing the available
implementations), but they serve as a base class from which other DSC classes inherit.

Data stream clustering has typically an

• online clustering component (see DSC_Micro), and an

• offline reclustering component (see DSC_Macro).

Class DSC provides several generic functions that can operate on all DSC subclasses. See Usage and
Functions sections for methods. Additional, separately documented methods are:

• update() adds new data points from a stream to a clustering.

• predict() predicts the cluster assignment for new data points.

• plot() plots cluster centers (see plot.DSC()).

get_centers() and get_weights() are typically overwritten by subclasses of DSC.

Since DSC objects often contain external pointers, regular saving and reading operations will fail.
Use saveDSC() and readDSC() which will serialize the objects first appropriately.

Functions

• get_centers(): Gets the cluster centers (micro- or macro-clusters) from a DSC object.

• get_weights(): Get the weights of the clusters in the DSC (returns 1s if not implemented by
the clusterer)

• get_copy(): Create a Deep Copy of a DSC Object that contain reference classes (e.g., Java
data structures for MOA).

• nclusters(): Returns the number of micro-clusters from the DSC object.

• get_microclusters(): Used as internal interface.

• get_microweights(): Used as internal interface.

• get_macroclusters(): Used as internal interface.

• get_macroweights(): Used as internal interface.

Author(s)

Michael Hahsler

See Also

Other DST: DSAggregate(), DSClassifier(), DSF_Scale(), DSOutlier(), DST_Runner(), DST_WriteStream(),
DST(), evaluate, predict(), update()

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), predict(), prune_clusters(), read_saveDSC,
recluster()

14 DSClassifier

Examples

DSC()

set.seed(1000)
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)
dstream <- DSC_DStream(gridsize = .1, gaptime = 100)
update(dstream, stream, 500)
dstream

get micro-cluster centers
get_centers(dstream)

get the number of clusters
nclusters(dstream)

get the micro-cluster weights
get_weights(dstream)

D-Stream also has macro-clusters
get_weights(dstream, type = "macro")
get_centers(dstream, type = "macro")

plot the clustering result
plot(dstream, stream)
plot(dstream, stream, type = "both")

predict macro clusters for new points (see predict())
points <- get_points(stream, n = 5)
points

predict(dstream, points, type = "macro")

DSClassifier Abstract Class for Data Stream Classifiers

Description

Abstract class for data stream classifiers. Currently, stream does not implement classification algo-
rithms. Implementations can be found in package streamMOA.

Usage

DSClassifier(...)

Arguments

... Further arguments.

DSC_BICO 15

Author(s)

Michael Hahsler

See Also

Other DST: DSAggregate(), DSC(), DSF_Scale(), DSOutlier(), DST_Runner(), DST_WriteStream(),
DST(), evaluate, predict(), update()

Examples

DSClassifier()

DSC_BICO BICO - Fast computation of k-means coresets in a data stream

Description

Micro Clusterer. BICO maintains a tree which is inspired by the clustering tree of BIRCH. Each
node in the tree represents a subset of these points. Instead of storing all points as individual
objects, only the number of points, the sum and the squared sum of the subset’s points are stored as
key features of each subset. Points are inserted into exactly one node.

Usage

DSC_BICO(formula = NULL, k = 5, space = 10, p = 10, iterations = 10)

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

k number of centers

space coreset size

p number of random projections used for nearest neighbor search in first level

iterations number of repetitions for the kmeans++ procedure in the offline component

Details

In this implementation, the nearest neighbor search on the first level of the tree is sped up by
projecting all points to random 1-d subspaces. The first estimation of the optimal clustering cost
is computed in a buffer phase at the beginning of the algorithm. This implementation interfaces
the original C++ implementation available here: http://ls2-www.cs.tu-dortmund.de/grav/
de/bico. For micro-clustering, the algorithm computes the coreset of the stream. Reclustering is
performed by using the kmeans++ algorithm on the coreset.

http://ls2-www.cs.tu-dortmund.de/grav/de/bico
http://ls2-www.cs.tu-dortmund.de/grav/de/bico

16 DSC_BIRCH

Author(s)

R-Interface: Matthias Carnein (<Matthias.Carnein@uni-muenster.de>), Dennis Assenmacher.
C-Implementation: Hendrik Fichtenberger, Marc Gille, Melanie Schmidt, Chris Schwiegelshohn,
Christian Sohler.

References

Hendrik Fichtenberger, Marc Gille, Melanie Schmidt, Chris Schwiegelshohn, Christian Sohler:
BICO: BIRCH Meets Coresets for k-Means Clustering. ESA 2013: 481-492.

See Also

Other DSC_Micro: DSC_BIRCH(), DSC_DBSTREAM(), DSC_DStream(), DSC_Micro(), DSC_Sample(),
DSC_Window(), DSC_evoStream()

Examples

stream <- DSD_Gaussians(k = 3, d = 2)

BICO <- DSC_BICO(k = 3, p = 10, space = 100, iterations = 10)
update(BICO, stream, n = 500)

plot(BICO,stream)

DSC_BIRCH Balanced Iterative Reducing Clustering using Hierarchies

Description

Micro Clusterer. BIRCH builds a balanced tree of Clustering Features (CFs) to summarize the
stream.

Usage

DSC_BIRCH(
formula = NULL,
threshold,
branching,
maxLeaf,
maxMem = 0,
outlierThreshold = 0.25

)

DSC_BIRCH 17

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

threshold threshold used to check whether a new data point can be absorbed or not.

branching branching factor (maximum amount of child nodes for a non-leaf node) of the
CF-Tree.

maxLeaf maximum number of entries within a leaf node

maxMem memory limitation for the whole CFTree in bytes. Default is 0, indicating no
memory restriction.

outlierThreshold

threshold for identifying outliers when rebuilding the CF-Tree.

Details

A CF in the calanced tree is a tuple (n, LS, SS) which represents a cluster by storing the number of
elements (n), their linear sum (LS) and their squared sum (SS). Each new observation descends the
tree by following its closest CF until a leaf node is reached. It is either merged into its closest leaf-
CF or inserted as a new one. All leaf-CFs form the micro-clusters. Rebuilding the tree is realized
by inserting all leaf-CF nodes into a new tree structure with an increased threshold.

Author(s)

Dennis Assenmacher (<Dennis.Assenmacher@uni-muenster.de>), Matthias Carnein (<Matthias.Carnein@uni-muenster.de>)

References

Zhang T, Ramakrishnan R and Livny M (1996), "BIRCH: An Efficient Data Clustering Method for
Very Large Databases", In Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data. Montreal, Quebec, Canada , pp. 103-114. ACM.

Zhang T, Ramakrishnan R and Livny M (1997), "BIRCH: A new data clustering algorithm and its
applications", Data Mining and Knowledge Discovery. Vol. 1(2), pp. 141-182.

See Also

Other DSC_Micro: DSC_BICO(), DSC_DBSTREAM(), DSC_DStream(), DSC_Micro(), DSC_Sample(),
DSC_Window(), DSC_evoStream()

Examples

stream <- DSD_Gaussians(k = 3, d = 2)

BIRCH <- DSC_BIRCH(threshold = .1, branching = 8, maxLeaf = 20)
update(BIRCH, stream, n = 500)
BIRCH

plot(BIRCH, stream)

18 DSC_DBSCAN

DSC_DBSCAN DBSCAN Macro-clusterer

Description

Macro Clusterer. Implements the DBSCAN algorithm for reclustering micro-clusterings.

Usage

DSC_DBSCAN(
formula = NULL,
eps,
MinPts = 5,
weighted = TRUE,
description = NULL

)

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

eps radius of the eps-neighborhood.

MinPts minimum number of points required in the eps-neighborhood.

weighted logical indicating if a weighted version of DBSCAN should be used.

description optional character string to describe the clustering method.

Details

DBSCAN is a weighted extended version of the implementation in fpc where each micro-cluster
center considered a pseudo point. For weighting we use in the MinPts comparison the sum of
weights of the micro-cluster instead of the number.

DBSCAN first finds core points based on the number of other points in its eps-neighborhood. Then
core points are joined into clusters using reachability (overlapping eps-neighborhoods).

update() and recluster() invisibly return the assignment of the data points to clusters.

Note that this clustering cannot be updated iteratively and every time it is used for (re)clustering,
the old clustering is deleted.

Value

An object of class DSC_DBSCAN (a subclass of DSC, DSC_R, DSC_Macro).

Author(s)

Michael Hahsler

DSC_DBSTREAM 19

References

Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Evangelos Simoudis, Jiawei Han,
Usama M. Fayyad. Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96). AAAI Press. pp. 226-231.

See Also

Other DSC_Macro: DSC_EA(), DSC_Hierarchical(), DSC_Kmeans(), DSC_Macro(), DSC_Reachability()

Examples

3 clusters with 5% noise
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

Use a moving window for "micro-clusters and recluster with DBSCAN (macro-clusters)
cl <- DSC_TwoStage(

micro = DSC_Window(horizon = 100),
macro = DSC_DBSCAN(eps = .05)

)

update(cl, stream, 500)
cl

plot(cl, stream)

DSC_DBSTREAM DBSTREAM Clustering Algorithm

Description

Micro Clusterer with reclustering. Implements a simple density-based stream clustering algorithm
that assigns data points to micro-clusters with a given radius and implements shared-density-based
reclustering.

Usage

DSC_DBSTREAM(
formula = NULL,
r,
lambda = 0.001,
gaptime = 1000L,
Cm = 3,
metric = "Euclidean",
noise_multiplier = 1,
shared_density = FALSE,
alpha = 0.1,
k = 0,

20 DSC_DBSTREAM

minweight = 0
)

get_shared_density(x, use_alpha = TRUE)

change_alpha(x, alpha)

S3 method for class 'DSC_DBSTREAM'
plot(
x,
dsd = NULL,
n = 500,
col_points = NULL,
dim = NULL,
method = "pairs",
type = c("auto", "micro", "macro", "both", "none"),
shared_density = FALSE,
use_alpha = TRUE,
assignment = FALSE,
...

)

DSOutlier_DBSTREAM(
formula = NULL,
r,
lambda = 0.001,
gaptime = 1000L,
Cm = 3,
metric = "Euclidean",
outlier_multiplier = 2

)

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

r The radius of micro-clusters.
lambda The lambda used in the fading function.
gaptime weak micro-clusters (and weak shared density entries) are removed every gaptime

points.
Cm minimum weight for a micro-cluster.
metric metric used to calculate distances.
noise_multiplier, outlier_multiplier

multiplier for radius r to declare noise or outliers.
shared_density Record shared density information. If set to TRUE then shared density is used for

reclustering, otherwise reachability is used (overlapping clusters with less than
r ∗ (1− alpha) distance are clustered together).

DSC_DBSTREAM 21

alpha For shared density: The minimum proportion of shared points between to clus-
ters to warrant combining them (a suitable value for 2D data is .3). For reacha-
bility clustering it is a distance factor.

k The number of macro clusters to be returned if macro is true.

minweight The proportion of the total weight a macro-cluster needs to have not to be noise
(between 0 and 1).

x A DSC_DBSTREAM object to get the shared density information from.

use_alpha only return shared density if it exceeds alpha.

dsd a data stream object.

n number of plots taken from the dsd to plot.

col_points color used for plotting.

dim an integer vector with the dimensions to plot. If NULL then for methods "pairs"
and "pc" all dimensions are used and for "scatter" the first two dimensions are
plotted.

method plot method.

type Plot micro clusters (type="micro"), macro clusters (type="macro"), both mi-
cro and macro clusters (type="both"), outliers(type="outliers"), or every-
thing together (type="all"). type="auto" leaves to the class of DSC to de-
cide.

assignment logical; show assignment area of micro-clusters.

... further arguments are passed on to plot or pairs in graphics.

Details

The DBSTREAM algorithm checks for each new data point in the incoming stream, if it is below
the threshold value of dissimilarity value of any existing micro-clusters, and if so, merges the point
with the micro-cluster. Otherwise, a new micro-cluster is created to accommodate the new data
point.

Although DSC_DBSTREAM is a micro clustering algorithm, macro clusters and weights are avail-
able.

update() invisibly return the assignment of the data points to clusters. The columns are .class
with the index of the strong micro-cluster and .mc_id with the permanent id of the strong micro-
cluster.

plot() for DSC_DBSTREAM has two extra logical parameters called assignment and shared_density
which show the assignment area and the shared density graph, respectively.

predict() can be used to assign new points to clusters. Points are assigned to a micro-cluster if
they are within its assignment area (distance is less then r times noise_multiplier).

DSOutlier_DBSTREAM classifies points as outlier/noise if they that cannot be assigned to a micro-
cluster representing a dense region as a outlier/noise. Parameter outlier_multiplier specifies
how far a point has to be away from a micro-cluster as a multiplyer for the radius r. A larger
value means that outliers have to be farther away from dense regions and thus reduce the chance of
misclassifying a regular point as an outlier.

22 DSC_DBSTREAM

Value

An object of class DSC_DBSTREAM (subclass of DSC, DSC_R, DSC_Micro).

Author(s)

Michael Hahsler and Matthew Bolanos

References

Michael Hahsler and Matthew Bolanos. Clustering data streams based on shared density between
micro-clusters. IEEE Transactions on Knowledge and Data Engineering, 28(6):1449–1461, June
2016

See Also

Other DSC_Micro: DSC_BICO(), DSC_BIRCH(), DSC_DStream(), DSC_Micro(), DSC_Sample(),
DSC_Window(), DSC_evoStream()

Other DSC_TwoStage: DSC_DStream(), DSC_TwoStage(), DSC_evoStream()

Other DSOutlier: DSC_DStream(), DSOutlier()

Examples

set.seed(1000)
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

create clusterer with r = .05
dbstream <- DSC_DBSTREAM(r = .05)
update(dbstream, stream, 500)
dbstream

check micro-clusters
nclusters(dbstream)
head(get_centers(dbstream))
plot(dbstream, stream)

plot micro-clusters with assignment area
plot(dbstream, stream, type = "none", assignment = TRUE)

DBSTREAM with shared density
dbstream <- DSC_DBSTREAM(r = .05, shared_density = TRUE, Cm = 5)
update(dbstream, stream, 500)
dbstream

plot(dbstream, stream)
plot the shared density graph (several options)
plot(dbstream, stream, type = "micro", shared_density = TRUE)
plot(dbstream, stream, type = "none", shared_density = TRUE, assignment = TRUE)

see how micro and macro-clusters relate
each micro-cluster has an entry with the macro-cluster id

DSC_DStream 23

Note: unassigned micro-clusters (noise) have an NA
microToMacro(dbstream)

do some evaluation
evaluate_static(dbstream, stream, measure = "purity")
evaluate_static(dbstream, stream, measure = "cRand", type = "macro")

use DBSTREAM also returns the cluster assignment
later retrieve the cluster assignments for each point)
data("iris")
dbstream <- DSC_DBSTREAM(r = 1)
cl <- update(dbstream, iris[,-5], assignments = TRUE)
dbstream

head(cl)

micro-clusters
plot(iris[,-5], col = cl$.class, pch = cl$.class)

macro-clusters (2 clusters since reachability cannot separate two of the three species)
plot(iris[,-5], col = microToMacro(dbstream, cl$.class))

use DBSTREAM with a formula (cluster all variables but X2)
stream <- DSD_Gaussians(k = 3, d = 4, noise = 0.05)
dbstream <- DSC_DBSTREAM(formula = ~ . - X2, r = .2)

update(dbstream, stream, 500)
get_centers(dbstream)

DSC_DStream D-Stream Data Stream Clustering Algorithm

Description

Micro Clusterer with reclustering. Implements the grid-based D-Stream data stream clustering
algorithm.

Usage

DSC_DStream(
formula = NULL,
gridsize,
lambda = 0.001,
gaptime = 1000L,
Cm = 3,
Cl = 0.8,
attraction = FALSE,
epsilon = 0.3,
Cm2 = Cm,

24 DSC_DStream

k = NULL,
N = 0

)

get_attraction(x, relative = FALSE, grid_type = "dense", dist = FALSE)

S3 method for class 'DSC_DStream'
plot(
x,
dsd = NULL,
n = 500,
type = c("auto", "micro", "macro", "both"),
grid = FALSE,
grid_type = "used",
assignment = FALSE,
...

)

DSOutlier_DStream(
formula = NULL,
gridsize,
lambda = 0.001,
gaptime = 1000L,
Cm = 3,
Cl = 0.8,
outlier_multiplier = 2

)

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

gridsize Size of grid cells.

lambda Fading constant used function to calculate the decay factor 2−lambda. (Note:
in the paper the authors use lamba to denote the decay factor and not the fading
constant!)

gaptime sporadic grids are removed every gaptime number of points.

Cm density threshold used to detect dense grids as a proportion of the average ex-
pected density (Cm > 1). The average density is given by the total weight of the
clustering over N , the number of grid cells.

Cl density threshold to detect sporadic grids (0 > Cl > Cm). Transitional grids have
a density between Cl and Cm.

attraction compute and store information about the attraction between adjacent grids. If
TRUE then attraction is used to create macro-clusters, otherwise macro-clusters
are created by merging adjacent dense grids.

epsilon overlap parameter for attraction as a proportion of gridsize.

DSC_DStream 25

Cm2 threshold on attraction to join two dense grid cells (as a proportion on the aver-
age expected attraction). In the original algorithm Cm2 is equal to Cm.

k alternative to Cm2 (not in the original algorithm). Create k clusters based on
attraction. In case of more than k unconnected components, closer groups of
MCs are joined.

N Fix the number of grid cells used for the calculation of the density thresholds
with Cl and Cm. If N is not given (0) then the algorithm tries to determine N
from the data. Note that this means that N potentially increases over time and
outliers might produce an extremely large value which will lead to a sudden
creation of too many dense micro-clusters. The original paper assumed that N
is known a priori.

x DSC_DStream object to get attraction values from.

relative calculates relative attraction (normalized by the cluster weight).

grid_type the attraction between what grid types should be returned?

dist make attraction symmetric and transform into a distance.

dsd a DSD data stream object.

n number of plots taken from dsd to plot.

type Plot micro clusters (type = "micro"), macro clusters (type = "macro"), both
micro and macro clusters (type = "both"), outliers(type = "outliers"), or ev-
erything together (type = "all"). type = "auto" leaves to the class of DSC to
decide.

grid logical; show the D-Stream grid instead of circles for micro-clusters.

assignment logical; show assignment area of micro-clusters.

... further argument are passed on.
outlier_multiplier

multiplier for assignment grid width to declare outliers.

Details

D-Stream creates an equally spaced grid and estimates the density in each grid cell using the count
of points falling in the cells. Grid cells are classified based on density into dense, transitional and
sporadic cells. The density is faded after every new point by a factor of 2−lambda. Every gaptime
number of points sporadic grid cells are removed.

For reclustering D-Stream (2007 version) merges adjacent dense grids to form macro-clusters and
then assigns adjacent transitional grids to macro-clusters. This behavior is implemented as attraction
= FALSE.

The 2009 version of the algorithm adds the concept of attraction between grids cells. If attraction
= TRUE is used then the algorithm produces macro-clusters based on attraction between dense adja-
cent grids (uses Cm2 which in the original algorithm is equal to Cm).

For many functions (e.g., get_centers(), plot()), D-Stream adds a parameter grid_type with
possible values of "dense", "transitional", "sparse", "all" and "used". This only returns the
selected type of grid cells. "used" includes dense and adjacent transitional cells which are used
in D-Stream for reclustering. For plot() D-Stream also provides extra parameters "grid" and
"grid_type" to show micro-clusters as grid cells (density represented by gray values).

26 DSC_DStream

DSOutlier_DStream classifies points that do not fall into a dense grid cell as outlier/noise. Pa-
rameter outlier_multiplier specifies how far the point needs to be away from a dense cell to be
classified as an outlier by multiplying the grid size.

Note that DSC_DStream currently cannot be saved to disk using save() or saveRDS(). This function-
ality will be added later!

Value

An object of class DSC_DStream (subclass of DSC, DSC_R, DSC_Micro).

Author(s)

Michael Hahsler

References

Yixin Chen and Li Tu. 2007. Density-based clustering for real-time stream data. In Proceedings of
the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’07). ACM, New York, NY, USA, 133-142.

Li Tu and Yixin Chen. 2009. Stream data clustering based on grid density and attraction. ACM
Transactions on Knowledge Discovery from Data, 3(3), Article 12 (July 2009), 27 pages.

See Also

Other DSC_Micro: DSC_BICO(), DSC_BIRCH(), DSC_DBSTREAM(), DSC_Micro(), DSC_Sample(),
DSC_Window(), DSC_evoStream()

Other DSC_TwoStage: DSC_DBSTREAM(), DSC_TwoStage(), DSC_evoStream()

Other DSOutlier: DSC_DBSTREAM(), DSOutlier()

Examples

stream <- DSD_BarsAndGaussians(noise = .05)
plot(stream)

dstream1 <- DSC_DStream(gridsize = 1, Cm = 1.5)
update(dstream1, stream, 1000)
dstream1

micro-clusters (these are "used" grid cells)
nclusters(dstream1)
head(get_centers(dstream1))

plot (DStream provides additional grid visualization)
plot(dstream1, stream)
plot(dstream1, stream, grid = TRUE)

look only at dense grids
nclusters(dstream1, grid_type = "dense")
plot(dstream1, stream, grid = TRUE, grid_type = "dense")

DSC_EA 27

look at transitional and sparse cells
plot(dstream1, stream, grid = TRUE, grid_type = "transitional")
plot(dstream1, stream, grid = TRUE, grid_type = "sparse")

Macro-clusters
standard D-Stream uses reachability
nclusters(dstream1, type = "macro")
get_centers(dstream1, type = "macro")
plot(dstream1, stream, type = "macro")
evaluate_static(dstream1, stream, measure = "crand", type = "macro")

use attraction for reclustering
dstream2 <- DSC_DStream(gridsize = 1, attraction = TRUE, Cm = 1.5)
update(dstream2, stream, 1000)
dstream2

plot(dstream2, stream, grid = TRUE)
evaluate_static(dstream2, stream, measure = "crand", type = "macro")

DSC_EA Reclustering using an Evolutionary Algorithm

Description

Macro Clusterer.

Usage

DSC_EA(
formula = NULL,
k,
generations = 2000,
crossoverRate = 0.8,
mutationRate = 0.001,
populationSize = 100

)

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

k number of macro-clusters

generations number of EA generations performed during reclustering

crossoverRate cross-over rate for the evolutionary algorithm

mutationRate mutation rate for the evolutionary algorithm

populationSize number of solutions that the evolutionary algorithm maintains

28 DSC_EA

Details

Reclustering using an evolutionary algorithm. This approach was designed for evoStream (see
DSC_evoStream) but can also be used for other micro-clustering algorithms.

The evolutionary algorithm uses existing clustering solutions and creates small variations of them
by combining and randomly modifying them. The modified solutions can yield better partitions and
thus can improve the clustering over time. The evolutionary algorithm is incremental, which allows
to improve existing macro-clusters instead of recomputing them every time.

Author(s)

Matthias Carnein <Matthias.Carnein@uni-muenster.de>

References

Carnein M. and Trautmann H. (2018), "evoStream - Evolutionary Stream Clustering Utilizing Idle
Times", Big Data Research.

See Also

Other DSC_Macro: DSC_DBSCAN(), DSC_Hierarchical(), DSC_Kmeans(), DSC_Macro(), DSC_Reachability()

Examples

stream <- DSD_Gaussians(k = 3, d = 2) %>% DSD_Memory(n = 1000)

online algorithm
dbstream <- DSC_DBSTREAM(r = 0.1)

offline algorithm (note: we use a small number of generations
to make this run faster.)
EA <- DSC_EA(k = 3, generations = 100)

create pipeline and insert observations
two <- DSC_TwoStage(dbstream, EA)
update(two, stream, n = 1000)
two

plot result
reset_stream(stream)
plot(two, stream)

if we have time, evaluate additional generations. This can be
called at any time, also between observations.
two$macro$RObj$recluster(100)

plot improved result
reset_stream(stream)
plot(two, stream)

alternatively: do not create twostage but apply directly

DSC_evoStream 29

reset_stream(stream)
update(dbstream, stream, n = 1000)
recluster(EA, dbstream)
reset_stream(stream)
plot(EA, stream)

DSC_evoStream evoStream - Evolutionary Stream Clustering

Description

Micro Clusterer with reclustering. Stream clustering algorithm based on evolutionary optimization.

Usage

DSC_evoStream(
formula = NULL,
r,
lambda = 0.001,
tgap = 100,
k = 2,
crossoverRate = 0.8,
mutationRate = 0.001,
populationSize = 100,
initializeAfter = 2 * k,
incrementalGenerations = 1,
reclusterGenerations = 1000

)

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

r radius threshold for micro-cluster assignment
lambda decay rate
tgap time-interval between outlier detection and clean-up
k number of macro-clusters
crossoverRate cross-over rate for the evolutionary algorithm
mutationRate mutation rate for the evolutionary algorithm
populationSize number of solutions that the evolutionary algorithm maintains
initializeAfter

number of micro-cluster required for the initialization of the evolutionary algo-
rithm.

incrementalGenerations

number of EA generations performed after each observation
reclusterGenerations

number of EA generations performed during reclustering

30 DSC_evoStream

Details

The online component uses a simplified version of DBSTREAM to generate micro-clusters. The
micro-clusters are then incrementally reclustered using an evolutionary algorithm. Evolutionary
algorithms create slight variations by combining and randomly modifying existing solutions. By
iteratively selecting better solutions, an evolutionary pressure is created which improves the clus-
tering over time. Since the evolutionary algorithm is incremental, it is possible to apply it between
observations, e.g. in the idle time of the stream. Whenever there is idle time, we can call the
recluster() function of the reference class to improve the macro-clusters (see example). The
evolutionary algorithm can also be applied as a traditional reclustering step, or a combination of
both. In addition, this implementation also allows to evaluate a fixed number of generations after
each observation.

Author(s)

Matthias Carnein <Matthias.Carnein@uni-muenster.de>

References

Carnein M. and Trautmann H. (2018), "evoStream - Evolutionary Stream Clustering Utilizing Idle
Times", Big Data Research.

See Also

Other DSC_Micro: DSC_BICO(), DSC_BIRCH(), DSC_DBSTREAM(), DSC_DStream(), DSC_Micro(),
DSC_Sample(), DSC_Window()

Other DSC_TwoStage: DSC_DBSTREAM(), DSC_DStream(), DSC_TwoStage()

Examples

stream <- DSD_Gaussians(k = 3, d = 2) %>% DSD_Memory(n = 500)

init evoStream
evoStream <- DSC_evoStream(r = 0.05, k = 3,

incrementalGenerations = 1, reclusterGenerations = 500)

insert observations
update(evoStream, stream, n = 500)

micro clusters
get_centers(evoStream, type = "micro")

micro weights
get_weights(evoStream, type = "micro")

macro clusters
get_centers(evoStream, type = "macro")

macro weights
get_weights(evoStream, type = "macro")

DSC_Hierarchical 31

plot result
reset_stream(stream)
plot(evoStream, stream)

if we have time, then we can evaluate additional generations.
This can be called at any time, also between observations.
by default, 1 generation is evaluated after each observation and
1000 generations during reclustering but we set it here to 500
evoStream$RObj$recluster(500)

plot improved result
reset_stream(stream)
plot(evoStream, stream)

get assignment of micro to macro clusters
microToMacro(evoStream)

DSC_Hierarchical Hierarchical Micro-Cluster Reclusterer

Description

Macro Clusterer. Implementation of hierarchical clustering to recluster a set of micro-clusters.

Usage

DSC_Hierarchical(
formula = NULL,
k = NULL,
h = NULL,
method = "complete",
min_weight = NULL,
description = NULL

)

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

k The number of desired clusters.

h Height where to cut the dendrogram.

method the agglomeration method to be used. This should be (an unambiguous abbre-
viation of) one of "ward", "single", "complete", "average", "mcquitty",
"median" or "centroid".

min_weight micro-clusters with a weight less than this will be ignored for reclustering.

description optional character string to describe the clustering method.

32 DSC_Kmeans

Details

Please refer to hclust() for more details on the behavior of the algorithm.

update() and recluster() invisibly return the assignment of the data points to clusters.

Note that this clustering cannot be updated iteratively and every time it is used for (re)clustering,
the old clustering is deleted.

Value

A list of class DSC, DSC_R, DSC_Macro, and DSC_Hierarchical. The list contains the following
items:

description The name of the algorithm in the DSC object.

RObj The underlying R object.

Author(s)

Michael Hahsler

See Also

Other DSC_Macro: DSC_DBSCAN(), DSC_EA(), DSC_Kmeans(), DSC_Macro(), DSC_Reachability()

Examples

stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

Use a moving window for "micro-clusters and recluster with HC (macro-clusters)
cl <- DSC_TwoStage(

micro = DSC_Window(horizon = 100),
macro = DSC_Hierarchical(h = .1, method = "single")

)

update(cl, stream, 500)
cl

plot(cl, stream)

DSC_Kmeans Kmeans Macro-clusterer

Description

Macro Clusterer. Class implements the k-means algorithm for reclustering a set of micro-clusters.

DSC_Kmeans 33

Usage

DSC_Kmeans(
formula = NULL,
k,
weighted = TRUE,
iter.max = 10,
nstart = 10,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
min_weight = NULL,
description = NULL

)

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

k either the number of clusters, say k, or a set of initial (distinct) cluster centers.
If a number, a random set of (distinct) rows in x is chosen as the initial centers.

weighted use a weighted k-means (algorithm is ignored).

iter.max the maximum number of iterations allowed.

nstart if centers is a number, how many random sets should be chosen?

algorithm character: may be abbreviated.

min_weight micro-clusters with a weight less than this will be ignored for reclustering.

description optional character string to describe the clustering method.

Details

update() and recluster() invisibly return the assignment of the data points to clusters.

Please refer to function stats::kmeans() for more details on the algorithm.

Note that this clustering cannot be updated iteratively and every time it is used for (re)clustering,
the old clustering is deleted.

Value

An object of class DSC_Kmeans (subclass of DSC, DSC_R, DSC_Macro)

Author(s)

Michael Hahsler

See Also

Other DSC_Macro: DSC_DBSCAN(), DSC_EA(), DSC_Hierarchical(), DSC_Macro(), DSC_Reachability()

34 DSC_Macro

Examples

3 clusters with 5% noise
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

Use a moving window for "micro-clusters and recluster with k-means (macro-clusters)
cl <- DSC_TwoStage(

micro = DSC_Window(horizon = 100),
macro = DSC_Kmeans(k = 3)

)

update(cl, stream, 500)
cl

plot(cl, stream)

DSC_Macro Abstract Class for Macro Clusterers (Offline Component)

Description

Abstract class for all DSC Macro Clusterers which recluster micro-clusters offline into final clusters
called macro-clusters.

Usage

DSC_Macro(...)

microToMacro(x, micro = NULL)

Arguments

... further arguments.

x a DSC_Macro object that also contains information about micro-clusters.

micro A vector with micro-cluster ids. If NULL then the assignments for all micro-
clusters in x are returned.

Details

Data stream clustering algorithms typically consists of an online component that creates micro-
clusters (implemented as DSC_Micro) and and offline components which is used to recluster
micro-clusters into final clusters called macro-clusters. The function recluster() is used extract
micro-clusters from a DSC_Micro and create macro-clusters with a DSC_Macro.

Available clustering methods can be found in the See Also section below.

microToMacro() returns the assignment of Micro-cluster IDs to Macro-cluster IDs.

For convenience, a DSC_Micro and DSC_Macro can be combined using DSC_TwoStage.

DSC_Macro cannot be instantiated.

DSC_Micro 35

Value

A vector of the same length as micro with the macro-cluster ids.

Author(s)

Michael Hahsler

See Also

Other DSC_Macro: DSC_DBSCAN(), DSC_EA(), DSC_Hierarchical(), DSC_Kmeans(), DSC_Reachability()

Other DSC: DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), predict(), prune_clusters(), read_saveDSC,
recluster()

DSC_Micro Abstract Class for Micro Clusterers (Online Component)

Description

Abstract class for all clustering methods that can operate online and result in a set of micro-clusters.

Usage

DSC_Micro(...)

Arguments

... further arguments.

Details

Micro-clustering algorithms are data stream mining tasks DST which implement the online com-
ponent of data stream clustering. The clustering is performed sequentially by using update() to
add new points from a data stream to the clustering. The result is a set of micro-clusters that can be
retrieved using get_clusters().

Available clustering methods can be found in the See Also section below.

Many data stream clustering algorithms define both, the online and an offline component to reclus-
ter micro-clusters into larger clusters called macro-clusters. This is implemented here as class
DSC_TwoStage.

DSC_Micro cannot be instantiated.

Author(s)

Michael Hahsler

36 DSC_R

See Also

Other DSC_Micro: DSC_BICO(), DSC_BIRCH(), DSC_DBSTREAM(), DSC_DStream(), DSC_Sample(),
DSC_Window(), DSC_evoStream()

Other DSC: DSC_Macro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), predict(), prune_clusters(), read_saveDSC,
recluster()

Examples

stream <- DSD_BarsAndGaussians(noise = .05)

Use a DStream to create micro-clusters
dstream <- DSC_DStream(gridsize = 1, Cm = 1.5)
update(dstream, stream, 1000)
dstream
nclusters(dstream)
plot(dstream, stream, main = "micro-clusters")

DSC_R Abstract Class for Implementing R-based Clusterers

Description

Abstract class for implementing R-based clusterers.

Usage

DSC_R(...)

S3 method for class 'DSC_R'
update(
object,
dsd,
n = 1L,
verbose = FALSE,
block = 10000L,
assignment = FALSE,
...

)

Arguments

... further arguments.

object a DSC object.

dsd a data stream object.

n number of data points taken from the stream.

DSC_Reachability 37

verbose logical; show progress?
block process blocks of data to improve speed.
assignment logical; return a vector with cluster assignments?

Details

DSC_R cannot be instantiated.

Implementing new Classes
To implement a new clusterer you need to create an S3 class with elements description and RObj.
RObj needs to be a reference class with methods:

• cluster(newdata, ...)

• get_microclusters(...)

• get_microweights(...)

• get_macroclusters(...)

• get_macroweights(...)

• microToMacro(micro, ...)

See DSC for details and parameters.

DSC_R cannot be instantiated.

Author(s)

Michael Hahsler

See Also

Other DSC: DSC_Macro(), DSC_Micro(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), predict(), prune_clusters(), read_saveDSC,
recluster()

DSC_Reachability Reachability Micro-Cluster Reclusterer

Description

Macro Clusterer. Implementation of reachability clustering (based on DBSCAN’s concept of reach-
ability) to recluster a set of micro-clusters.

Usage

DSC_Reachability(
formula = NULL,
epsilon,
min_weight = NULL,
description = NULL

)

38 DSC_Reachability

Arguments

formula NULL to use all features in the stream or a model formula of the form ~ X1 + X2 to
specify the features used for clustering. Only ., + and - are currently supported
in the formula.

epsilon radius of the epsilon-neighborhood.

min_weight micro-clusters with a weight less than this will be ignored for reclustering.

description optional character string to describe the clustering method.

Details

Two micro-clusters are directly reachable if they are within each other’s epsilon-neighborhood (i.e.,
the distance between the centers is less then epsilon). Two micro-clusters are reachable if they are
connected by a chain of pairwise directly reachable micro-clusters. All mutually reachable micro-
clusters are put in the same cluster.

Reachability uses internally DSC_Hierarchical with single link.

update() and recluster() invisibly return the assignment of the data points to clusters.

Note that this clustering cannot be updated iteratively and every time it is used for (re)clustering,
the old clustering is deleted.

Value

An object of class DSC_Reachability. The object contains the following items:

description The name of the algorithm in the DSC object.

RObj The underlying R object.

Author(s)

Michael Hahsler

References

Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Evangelos Simoudis, Jiawei Han,
Usama M. Fayyad. Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (KDD-96). AAAI Press. pp. 226-231.

See Also

Other DSC_Macro: DSC_DBSCAN(), DSC_EA(), DSC_Hierarchical(), DSC_Kmeans(), DSC_Macro()

Examples

#' # 3 clusters with 5% noise
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

Use a moving window for "micro-clusters and recluster with DBSCAN (macro-clusters)
cl <- DSC_TwoStage(

DSC_Sample 39

micro = DSC_Window(horizon = 100),
macro = DSC_Reachability(eps = .05)

)

update(cl, stream, 500)
cl

plot(cl, stream)

DSC_Sample Extract a Fixed-size Sample from a Data Stream

Description

Micro Clusterer. Extracts a sample form a data stream using Reservoir Sampling (DSAggre-
gate_Sample). The sample is stored as a set of micro-clusters to be compatible with other data
DSC stream clustering algorithms.

Usage

DSC_Sample(k = 100, biased = FALSE)

Arguments

k the number of points to be sampled from the stream.

biased if FALSE then a regular (unbiased) reservoir sampling is used. If true then the
sample is biased towards keeping more recent data points (see Details section).

Details

If biased = FALSE then the reservoir sampling algorithm by McLeod and Bellhouse (1983) is used.
This sampling makes sure that each data point has the same chance to be sampled. All sampled
points will have a weight of 1. Note that this might not be ideal for an evolving stream since very
old data points have the same chance to be in the sample as newer points.

If bias = TRUE then sampling prefers newer points using the modified reservoir sampling algorithm
2.1 by Aggarwal (2006). New points are always added. They replace a random point in the reservoir
with a probability of reservoir size over k. This an exponential bias function of 2^{-lambda} with
lambda = 1 / k.

Value

An object of class DSC_Sample (subclass of DSC, DSC_R, DSC_Micro).

Author(s)

Michael Hahsler

40 DSC_Static

References

Vitter, J. S. (1985): Random sampling with a reservoir. ACM Transactions on Mathematical Soft-
ware, 11(1), 37-57.

McLeod, A.I., Bellhouse, D.R. (1983): A Convenient Algorithm for Drawing a Simple Random
Sample. Applied Statistics, 32(2), 182-184.

Aggarwal C. (2006) On Biased Reservoir Sampling in the Presence of Stream Evolution. Interna-
tional Conference on Very Large Databases (VLDB’06). 607-618.

See Also

Other DSC_Micro: DSC_BICO(), DSC_BIRCH(), DSC_DBSTREAM(), DSC_DStream(), DSC_Micro(),
DSC_Window(), DSC_evoStream()

Examples

stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

sample <- DSC_Sample(k = 20)
update(sample, stream, 500)
sample

plot micro-clusters
plot(sample, stream)

recluster the sample with k-means
kmeans <- DSC_Kmeans(k = 3)
recluster(kmeans, sample)
plot(kmeans, stream)

sample from an evolving stream
stream <- DSD_Benchmark(1)
sample <- DSC_Sample(k = 20)
update(sample, stream, 1000)

plot(sample, stream)
Note: the clusters move from left to right and the sample keeps many
outdated points

use a biased sample to keep more recent data points
stream <- DSD_Benchmark(1)
sample <- DSC_Sample(k = 20, biased = TRUE)
update(sample, stream, 1000)
plot(sample, stream)

DSC_Static Create as Static Copy of a Clustering

DSC_Static 41

Description

This representation cannot perform clustering anymore, but it also does not need the supporting
data structures. It only stores the cluster centers and weights.

Usage

DSC_Static(
x,
type = c("auto", "micro", "macro"),
k_largest = NULL,
min_weight = NULL

)

Arguments

x The clustering (a DSD object) to copy or a list with components centers (a data
frame or matrix) and weights (a vector with cluster weights).

type which clustering to copy.

k_largest only copy the k largest (highest weight) clusters.

min_weight only copy clusters with a weight larger or equal to min_weight.

Value

An object of class DSC_Static (sub class of DSC, DSC_R). The list also contains either DSC_Micro
or DSC_Macro depending on what type of clustering was copied.

Author(s)

Michael Hahsler

See Also

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), predict(), prune_clusters(), read_saveDSC,
recluster()

Examples

stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

dstream <- DSC_DStream(gridsize = 0.05)
update(dstream, stream, 500)
dstream
plot(dstream, stream)

create a static copy of the clustering
static <- DSC_Static(dstream)
static
plot(static, stream)

42 DSC_TwoStage

copy only the 5 largest clusters
static2 <- DSC_Static(dstream, k_largest = 5)
static2
plot(static2, stream)

copy all clusters with a weight of at least .3
static3 <- DSC_Static(dstream, min_weight = .3)
static3
plot(static3, stream)

create a manual clustering
static4 <- DSC_Static(list(

centers = data.frame(X1 = c(1, 2), X2 = c(1, 2)),
weights = c(1, 2)),
type = "macro")

static4
plot(static4)

DSC_TwoStage TwoStage Clustering Process

Description

Combines an online clustering component (DSC_Micro) and an offline reclustering component
(DSC_Macro) into a single process.

Usage

DSC_TwoStage(micro, macro)

Arguments

micro Clustering algorithm used in the online stage (DSC_Micro)

macro Clustering algorithm used for reclustering in the offline stage (DSC_Macro)

Details

update() runs the online micro-clustering stage and only when macro cluster centers/weights are
requested using get_centers() or get_weights(), then the offline stage reclustering is automat-
ically performed.

Available clustering methods can be found in the See Also section below.

Value

An object of class DSC_TwoStage (subclass of DSC, DSC_Macro) which is a named list with ele-
ments:

• description: a description of the clustering algorithms.

DSC_Window 43

• micro: The DSD used for creating micro clusters in the online component.

• macro: The DSD for offline reclustering.

• state: an environment storing state information needed for reclustering.

with the two clusterers. The names are “

Author(s)

Michael Hahsler

See Also

Other DSC_TwoStage: DSC_DBSTREAM(), DSC_DStream(), DSC_evoStream()

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), predict(), prune_clusters(), read_saveDSC,
recluster()

Examples

stream <- DSD_Gaussians(k = 3, d = 2)

Create a clustering process that uses a window for the online stage and
k-means for the offline stage (reclustering)
win_km <- DSC_TwoStage(

micro = DSC_Window(horizon = 100),
macro = DSC_Kmeans(k = 3)
)

win_km

update(win_km, stream, 200)
win_km
win_km$micro
win_km$macro

plot(win_km, stream)
evaluate_static(win_km, stream, assign = "macro")

DSC_Window A sliding window from a Data Stream

Description

Interface for DSO_Window. Represents the points in the sliding window as micro-clusters.

Usage

DSC_Window(horizon = 100, lambda = 0)

44 DSC_Window

Arguments

horizon the window length.

lambda decay factor damped window model. lambda = 0 means no dampening.

Details

If lambda is greater than 0 then the weight uses a damped window model (Zhu and Shasha, 2002).
The weight for points in the window follows 2−lambda∗t where t is the age of the point.

Value

An object of class DSC_Window (subclass of DSC, DSC_R, DSC_Micro).

Author(s)

Michael Hahsler

References

Zhu, Y. and Shasha, D. (2002). StatStream: Statistical Monitoring of Thousands of Data Streams
in Real Time, International Conference of Very Large Data Bases (VLDB’02).

See Also

Other DSC_Micro: DSC_BICO(), DSC_BIRCH(), DSC_DBSTREAM(), DSC_DStream(), DSC_Micro(),
DSC_Sample(), DSC_evoStream()

Examples

stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.05)

window <- DSC_Window(horizon = 100)
window

update(window, stream, 200)
window

plot micro-clusters
plot(window, stream)

animation for a window using a damped window model. The weight decays
with a half-life of 25
Not run:
window <- DSC_Window(horizon = 25, lambda = 1 / 25)
animate_cluster(window, stream, horizon = 1, n = 100, xlim = c(0, 1), ylim = c(0, 1))

End(Not run)

DSD 45

DSD Data Stream Data Generator Base Classes

Description

Abstract base classes for DSD (Data Stream Data Generator).

Usage

DSD(...)

DSD_R(...)

Arguments

... further arguments.

Details

The DSD class cannot be instantiated, but it serves as a abstract base class from which all DSD
objects inherit. Implementations can be found in the See Also section below.

DSD provides common functionality like:

• get_points()

• print()

• plot()

• reset_stream() (if available)

• close_stream() (if needed)

DSD_R inherits form DSD and is the abstract parent class for DSD implemented in R. To create a new
R-based implementation there are only two function that needs to be implemented for a new DSD
subclass called Foo would be:

1. A creator function DSD_Foo(...) and

2. a method get_points.DSD_Foo(x, n = 1L) for that class.

For details see vignette()

Author(s)

Michael Hahsler

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_UniformNoise(), DSD_mlbenchData(), DSD_mlbenchGenerator(), DSF(), animate_data(),
close_stream(), get_points(), plot.DSD(), reset_stream()

46 DSD_BarsAndGaussians

Examples

DSD()

create data stream with three clusters in 3-dimensional space
stream <- DSD_Gaussians(k = 3, d = 3)

get points from stream
get_points(stream, n = 5)

plotting the data (scatter plot matrix, first and third dimension, and first
two principal components)
plot(stream)
plot(stream, dim = c(1, 3))
plot(stream, method = "pca")

DSD_BarsAndGaussians Data Stream Generator for Bars and Gaussians

Description

A data stream generator which creates the shape of two bars and two Gaussians clusters with dif-
ferent density.

Usage

DSD_BarsAndGaussians(angle = NULL, noise = 0)

Arguments

angle rotation in degrees. NULL will produce a random rotation.

noise The amount of noise that should be added to the output.

Value

Returns a DSD_BarsAndGaussians object.

Author(s)

Michael Hahsler

See Also

DSD

Other DSD: DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(), DSD_Memory(), DSD_Mixture(),
DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(), DSD_UniformNoise(), DSD_mlbenchData(),
DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(), get_points(),
plot.DSD(), reset_stream()

DSD_Benchmark 47

Examples

create data stream with three clusters in 2D
stream <- DSD_BarsAndGaussians(noise = 0.1)

get_points(stream, n = 10)
plot(stream)

DSD_Benchmark Data Stream Generator for Dynamic Data Stream Benchmarks

Description

A data stream generator that generates several dynamic streams indented to be benchmarks to com-
pare data stream clustering algorithms. The benchmarks can be used to test if a clustering algorithm
can follow moving clusters, and merging and separating clusters.

Usage

DSD_Benchmark(i = 1)

Arguments

i integer; the number of the benchmark.

Details

Currently available benchmarks are:

• 1: two tight clusters moving across the data space with noise and intersect in the middle.

• 2: two clusters are located in two corners of the data space. A third cluster moves between the
two clusters forth and back.

The benchmarks are created using DSD_MG.

Value

Returns a DSD object.

Author(s)

Michael Hahsler

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(), DSD_Memory(),
DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

48 DSD_Cubes

Examples

stream <- DSD_Benchmark(i = 1)
get_points(stream, n = 5)

Not run:
stream <- DSD_Benchmark(i = 1)
animate_data(stream, n = 10000, horizon = 100, xlim = c(0, 1), ylim = c(0, 1))

stream <- DSD_Benchmark(i = 2)
animate_data(stream, n = 10000, horizon = 100, xlim = c(0, 1), ylim = c(0, 1))

End(Not run)

DSD_Cubes Static Cubes Data Stream Generator

Description

A data stream generator that produces a data stream with static (hyper) cubes filled uniformly with
data points.

Usage

DSD_Cubes(k = 2, d = 2, center, size, p, noise = 0, noise_range)

Arguments

k Determines the number of clusters.

d Determines the number of dimensions.

center A matrix of means for each dimension of each cluster.

size A k times d matrix with the cube dimensions.

p A vector of probabilities that determines the likelihood of generated a data point
from a particular cluster.

noise Noise probability between 0 and 1. Noise is uniformly distributed within noise
range (see below).

noise_range A matrix with d rows and 2 columns. The first column contains the minimum
values and the second column contains the maximum values for noise.

Value

Returns a DSD_Cubes object (subclass of DSD_R, DSD).

Author(s)

Michael Hahsler

DSD_Gaussians 49

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Gaussians(), DSD_MG(), DSD_Memory(),
DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

create data stream with three clusters in 3D
stream <- DSD_Cubes(k = 3, d = 3, noise = 0.05)

get_points(stream, n = 5)

plot(stream)

DSD_Gaussians Mixture of Gaussians Data Stream Generator

Description

A data stream generator that produces a data stream with a mixture of static Gaussians.

Usage

DSD_Gaussians(
k = 3,
d = 2,
p,
mu,
sigma,
variance_limit = c(0.001, 0.002),
separation = 6,
space_limit = c(0, 1),
noise = 0,
noise_limit = space_limit,
noise_separation = 3,
separation_type = c("Euclidean", "Mahalanobis"),
verbose = FALSE

)

Arguments

k Determines the number of clusters.

d Determines the number of dimensions.

p A vector of probabilities that determines the likelihood of generated a data point
from a particular cluster.

50 DSD_Gaussians

mu A matrix of means for each dimension of each cluster.

sigma A list of length k of covariance matrices.

variance_limit Lower and upper limit for the randomly generated variance when creating clus-
ter covariance matrices.

separation Minimum separation distance between clusters (measured in standard deviations
according to separation_type).

space_limit Defines the space bounds. All constructs are generated inside these bounds. For
clusters this means that their centroids must be within these space bounds.

noise Noise probability between 0 and 1. Noise is uniformly distributed within noise
range (see below).

noise_limit A matrix with d rows and 2 columns. The first column contains the minimum
values and the second column contains the maximum values for noise.

noise_separation

Minimum separation distance between cluster centers and noise points (mea-
sured in standard deviations according to separation_type). 0 means separa-
tion is ignored.

separation_type

The type of the separation distance calculation. It can be either Euclidean dis-
tance or Mahalanobis distance.

verbose Report cluster and outlier generation process.

Details

DSD_Gaussians creates a mixture of k static clusters in a d-dimensional space. The cluster cen-
ters mu and the covariance matrices sigma can be supplied or will be randomly generated. The
probability vector p defines for each cluster the probability that the next data point will be chosen
from it (defaults to equal probability). Separation between generated clusters (and outliers; see
below) can be imposed by using Euclidean or Mahalanobis distance, which is controlled by the
separation_type parameter. Separation value then is supplied in the separation parameter. The
generation method is similar to the one suggested by Jain and Dubes (1988).

Noise points which are uniformly chosen from noise_limit can be added.

Outlier points can be added. The outlier spatial positions predefined_outlier_space_positions
and the outlier stream positions predefined_outlier_stream_positions can be supplied or will
be randomly generated. Cluster and outlier separation distance is determined by and outlier_virtual_variance
parameters. The outlier virtual variance defines an empty space around outliers, which separates
them from their surrounding. Unlike noise, outliers are data points of interest for end-users, and the
goal of outlier detectors is to find them in data streams. For more details, read the "Introduction to
stream" vignette.

Value

Returns a object of class DSD_Gaussian (subclass of DSD_R, DSD).

Author(s)

Michael Hahsler

DSD_Gaussians 51

References

Jain and Dubes (1988) Algorithms for clustering data, Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_MG(), DSD_Memory(),
DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

Example 1: create data stream with three clusters in 3-dimensional data space
with 5 times sqrt(variance_limit) separation.
set.seed(1)
stream1 <- DSD_Gaussians(k = 3, d = 3)
stream1

get_points(stream1, n = 5)
plot(stream1, xlim = c(0, 1), ylim = c(0, 1))

Example 2: create data stream with specified cluster positions,
5% noise in a given bounding box and
with different densities (1 to 9 between the two clusters)
stream2 <- DSD_Gaussians(k = 2, d = 2,

mu = rbind(c(-.5, -.5), c(.5, .5)),
p = c(.1, .9),
variance_limit = c(0.02, 0.04),
noise = 0.05,
noise_limit = rbind(c(-1, 1), c(-1, 1)))

get_points(stream2, n = 5)
plot(stream2, xlim = c(-1, 1), ylim = c(-1, 1))

Example 3: create 4 clusters and noise separated by a Mahalanobis
distance. Distance to noise is increased to 6 standard deviations to make them
easier detectable outliers.
stream3 <- DSD_Gaussians(k = 4, d = 2,

separation_type = "Mahalanobis",
space_limit = c(5, 20),
variance_limit = c(1, 2),
noise = 0.05,
noise_limit = c(0, 25),
noise_separation = 6
)

plot(stream3)

52 DSD_Memory

DSD_Memory A Data Stream Interface for Data Stored in Memory

Description

This class provides a data stream interface for data stored in memory as matrix-like objects (includ-
ing data frames). All or a portion of the stored data can be replayed several times.

Usage

DSD_Memory(
x,
n,
k = NA,
outofpoints = c("warn", "ignore", "stop"),
loop = FALSE,
description = NULL

)

Arguments

x A matrix-like object containing the data. If x is a DSD object then a data frame
for n data points from this DSD is created.

n Number of points used if x is a DSD object. If x is a matrix-like object then n is
ignored.

k Optional: The known number of clusters in the data

outofpoints Action taken if less than n data points are available. The default is to return the
available data points with a warning. Other supported actions are:

• warn: return the available points (maybe an empty data.frame) with a warn-
ing.

• ignore: silently return the available points.
• stop: stop with an error.

loop Should the stream start over when it reaches the end?

description character string with a description.

Details

In addition to regular data.frames other matrix-like objects that provide subsetting with the bracket
operator can be used. This includes ffdf (large data.frames stored on disk) from package ff and
big.matrix from bigmemory.

Reading the whole stream By using n = -1 in get_points(), the whole stream is returned.

Value

Returns a DSD_Memory object (subclass of DSD_R, DSD).

DSD_Memory 53

Author(s)

Michael Hahsler

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

Example 1: store 1000 points from a stream
stream <- DSD_Gaussians(k = 3, d = 2)
replayer <- DSD_Memory(stream, k = 3, n = 1000)
replayer
plot(replayer)

creating 2 clusterers of different algorithms
dsc1 <- DSC_DBSTREAM(r = 0.1)
dsc2 <- DSC_DStream(gridsize = 0.1, Cm = 1.5)

clustering the same data in 2 DSC objects
reset_stream(replayer) # resetting the replayer to the first position
update(dsc1, replayer, 500)
reset_stream(replayer)
update(dsc2, replayer, 500)

plot the resulting clusterings
reset_stream(replayer)
plot(dsc1, replayer, main = "DBSTREAM")
reset_stream(replayer)
plot(dsc2, replayer, main = "D-Stream")

Example 2: use a data.frame to create a stream (3rd col. contains the assignment)
df <- data.frame(x = runif(100), y = runif(100),

.class = sample(1:3, 100, replace = TRUE))

add some outliers
out <- runif(100) > .95
df[['.outlier']] <- out
df[['.class']] <- NA
head(df)

stream <- DSD_Memory(df)
stream

reset_stream(stream)
get_points(stream, n = 5)

get the remaining points

54 DSD_MG

rest <- get_points(stream, n = -1)
nrow(rest)

plot all available points with n = -1
reset_stream(stream)
plot(stream, n = -1)

DSD_MG DSD Moving Generator

Description

Creates an evolving DSD that consists of several MGC, each representing a moving cluster.

Usage

DSD_MG(dimension = 2, ..., labels = NULL, description = NULL)

add_cluster(x, c, label = NULL)

get_clusters(x)

remove_cluster(x, i)

S3 method for class 'DSD_MG'
add_cluster(x, c, label = NULL)

Arguments

dimension the dimension of the DSD object

... initial set of MGCs

description An optional string used by print() to describe the data generator.

x A DSD_MG object.

c The cluster that should be added to the DSD_MG object.

label, labels integer representing the cluster label. NA represents noise. If labels are not
specified, then each new cluster gets a new label.

i The index of the cluster that should be removed from the DSD_MG object.

Details

This DSD is able to generate complex datasets that are able to evolve over a period of time. Its
behavior is determined by as set of MGCs, each representing a moving cluster.

Author(s)

Matthew Bolanos

DSD_MG 55

See Also

MGC for types of moving clusters.

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_Memory(),
DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

create an empty DSD_MG
stream <- DSD_MG(dim = 2)
stream

add two clusters
c1 <- MGC_Random(density = 50, center = c(50, 50), parameter = 1)
add_cluster(stream, c1)
stream

c2 <- MGC_Noise(density = 1, range = rbind(c(-20, 120), c(-20, 120)))
add_cluster(stream, c2)
stream

get_clusters(stream)
get_points(stream, n = 5)
plot(stream, xlim = c(-20,120), ylim = c(-20, 120))

if (interactive()) {
animate_data(stream, n = 5000, xlim = c(-20, 120), ylim = c(-20, 120))
}

remove cluster 1
remove_cluster(stream, 1)
stream

get_clusters(stream)
plot(stream, xlim = c(-20, 120), ylim = c(-20, 120))

create a more complicated cluster structure (using 2 clusters with the same
label to form an L shape)
stream <- DSD_MG(dim = 2,
MGC_Static(density = 10, center = c(.5, .2), par = c(.4, .2), shape = Shape_Block),
MGC_Static(density = 10, center = c(.6, .5), par = c(.2, .4), shape = Shape_Block),
MGC_Static(density = 5, center = c(.39, .53), par = c(.16, .35), shape = Shape_Block),
MGC_Noise(density = 1, range = rbind(c(0,1), c(0,1))),
labels = c(1, 1, 2, NA)
)

stream

plot(stream, xlim = c(0, 1), ylim = c(0, 1))

simulate the clustering of a splitting cluster

56 DSD_Mixture

c1 <- MGC_Linear(dim = 2, keyframelist = list(
keyframe(time = 1, dens = 20, center = c(0,0), param = 10),
keyframe(time = 50, dens = 10, center = c(50,50), param = 10),
keyframe(time = 100,dens = 10, center = c(50,100),param = 10)

))

Note: Second cluster appearch at time=50
c2 <- MGC_Linear(dim = 2, keyframelist = list(

keyframe(time = 50, dens = 10, center = c(50,50), param = 10),
keyframe(time = 100,dens = 10, center = c(100,50),param = 10)

))

stream <- DSD_MG(dim = 2, c1, c2)
stream

dbstream <- DSC_DBSTREAM(r = 20, lambda = 0.1)
if (interactive()) {
purity <- animate_cluster(dbstream, stream, n = 2500, type = "micro",

xlim = c(-10, 120), ylim = c(-10, 120), measure = "purity", horizon = 100)
}

DSD_Mixture Mixes Data Points from Several Streams into a Single Stream

Description

This generator mixes multiple streams given specified probabilities. The streams have to contain
the same number of dimensions.

Usage

DSD_Mixture(..., prob = NULL)

Arguments

... DSD objects.

prob a numeric vector with the probability for each stream that the next point will be
drawn from that stream.

Value

Returns a DSD_Mixture object.(subclass of DSD_R, DSD).

Author(s)

Michael Hahsler

DSD_mlbenchData 57

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

create data stream with three clusters in 2D
stream1 <- DSD_Gaussians(d = 2, k = 3)
stream2 <- DSD_UniformNoise(d = 2, range = rbind(c(-.5, 1.5), c(-.5, 1.5)))

combinedStream <- DSD_Mixture(stream1, stream2, prob = c(.9, .1))
combinedStream

get_points(combinedStream, n = 20)
plot(combinedStream, n = 200)

DSD_mlbenchData Stream Interface for Data Sets From mlbench

Description

Provides a convenient stream interface for data sets from the mlbench package.

Usage

DSD_mlbenchData(data = NULL, loop = FALSE, random = FALSE, scale = FALSE)

Arguments

data The name of the dataset from mlbench. If missing then a list of all available data
sets is shown and returned.

loop logical; loop or not to loop over the data frame.

random logical; should the data be used a random order?

scale logical; apply scaling to the data?

Details

The DSD_mlbenchData class is designed to be a wrapper class for data from the mlbench package.

All data is held in memory in either data frame or matrix form. It is served as a stream using the
DSD_Memory class. The stream can be reset to position 1 using reset_stream().

Call DSD_mlbenchData with a missing value for data to get a list of all available data sets.

Value

Returns a DSD_mlbenchData object which is also of class DSD_Memory.

58 DSD_mlbenchGenerator

Author(s)

Michael Hahsler and Matthew Bolanos

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_UniformNoise(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

DSD_mlbenchData()

stream <- DSD_mlbenchData("Shuttle")
stream

get_points(stream, n = 5)

plot(stream, n = 100)

DSD_mlbenchGenerator mlbench Data Stream Generator

Description

A data stream generator class that interfaces data generators found in package mlbench.

Usage

DSD_mlbenchGenerator(method, ...)

Arguments

method The name of the mlbench data generator. If missing then a list of all available
generators is shown and returned.

... Parameters for the mlbench data generator.

Details

The DSD_mlbenchGenerator class is designed to be a wrapper class for data created by data gen-
erators in the mlbench library.

Call DSD_mlbenchGenerator with missing method to get a list of available methods.

Value

Returns a DSD_mlbenchGenerator object (subclass of DSD_R, DSD)

DSD_NULL 59

Author(s)

John Forrest

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_UniformNoise(), DSD_mlbenchData(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

DSD_mlbenchGenerator()

stream <- DSD_mlbenchGenerator(method = "cassini")
stream

get_points(stream, n = 5)

plot(stream, n = 500)

DSD_NULL Placeholder for a DSD Stream

Description

Placeholder for a DSD. DSD_NULL does not produce points and creates an error for get_points().

Usage

DSD_NULL()

Value

Returns a DSD_NULL object (subclass of DSD).

Author(s)

Michael Hahsler

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

60 DSD_ReadDB

Examples

nullstream <- DSD_NULL()
nullstream

This will produce an error
Not run:
get_points(nullstream)
End(Not run)

DSD_ReadDB Read a Data Stream from an open DB Query

Description

A DSD class that reads a data stream from an open DB result set from a relational database with
using R’s data base interface (DBI).

Usage

DSD_ReadDB(
result,
k = NA,
outofpoints = c("warn", "ignore", "stop"),
description = NULL

)

S3 method for class 'DSD_ReadDB'
close_stream(dsd, disconnect = TRUE, ...)

Arguments

result An open DBI result set.

k Number of true clusters, if known.

outofpoints Action taken if less than n data points are available. The default is to return the
available data points with a warning. Other supported actions are:

• warn: return the available points (maybe an empty data.frame) with a warn-
ing.

• ignore: silently return the available points.
• stop: stop with an error.

description a character string describing the data.

dsd a stream.

disconnect logical; disconnect from the database?

... further arguments.

DSD_ReadDB 61

Details

This class provides a streaming interface for result sets from a data base with via DBI::DBI. You
need to connect to the data base and submit a SQL query using DBI::dbGetQuery() to obtain a
result set. Make sure that your query only includes the columns that should be included in the
stream (including class and outlier marking columns).

Closing and resetting the stream
Do not forget to clear the result set and disconnect from the data base connection. close_stream()
clears the query result with DBI::dbClearResult() and the disconnects from the database with
DBI::dbDisconnect(). Disconnecting can be prevented by calling close_stream() with disconnect
= FALSE.

reset_stream() is not available for this type of stream.

Additional information
If additional information is available (e.g., class information), then the SQL statement needs to
make sure that the columns have the appropriate name starting with .. See Examples section below.

Value

An object of class DSD_ReadDB (subclass of DSD_R, DSD).

Author(s)

Michael Hahsler

See Also

DBI::dbGetQuery()

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadStream(), DSD_Target(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

create a data base with a table with 3 Gaussians
if(require("RSQLite")) {

library("RSQLite")
con <- dbConnect(RSQLite::SQLite(), ":memory:")

points <- get_points(DSD_Gaussians(k = 3, d = 2), n = 110)
head(points)

dbWriteTable(con, "Gaussians", points)

prepare a query result set. Make sure that the additional information
column starts with .
res <- dbSendQuery(con, "SELECT X1, X2, `.class` AS '.class' FROM Gaussians")
res

62 DSD_ReadStream

create a stream interface to the result set
stream <- DSD_ReadDB(res, k = 3)
stream

get points
get_points(stream, n = 5)

plot(stream, n = 100)

close_stream(stream)
}

DSD_ReadStream Read a Data Stream from a File or a Connection

Description

A DSD class that reads a data stream (text format) from a file or any R connection.

Usage

DSD_ReadStream(
file,
k = NA,
take = NULL,
sep = ",",
header = FALSE,
skip = 0,
col.names = NULL,
colClasses = NA,
outofpoints = c("warn", "ignore", "stop"),
...

)

DSD_ReadCSV(
file,
k = NA,
take = NULL,
sep = ",",
header = FALSE,
skip = 0,
col.names = NULL,
colClasses = NA,
outofpoints = c("warn", "ignore", "stop"),
...

)

DSD_ReadStream 63

S3 method for class 'DSD_ReadStream'
close_stream(dsd, ...)

S3 method for class 'DSD_ReadCSV'
close_stream(dsd, ...)

Arguments

file A file/URL or an open connection.

k Number of true clusters, if known.

take indices of columns to extract from the file.

sep The character string that separates dimensions in data points in the stream.

header Does the first line contain variable names?

skip the number of lines of the data file to skip before beginning to read data.

col.names A vector of optional names for the variables. The default is to use "V" followed
by the column number. Additional information (e.g., class labels) need to have
names starting with ..

colClasses A vector of classes to be assumed for the columns passed on to read.table().

outofpoints Action taken if less than n data points are available. The default is to return the
available data points with a warning. Other supported actions are:

• warn: return the available points (maybe an empty data.frame) with a warn-
ing.

• ignore: silently return the available points.
• stop: stop with an error.

... Further arguments are passed on to read.table(). This can for example be
used for encoding, quotes, etc.

dsd A object of class DSD_ReadCSV.

Details

DSD_ReadStream uses readLines() and read.table() to read data from an R connection line-
by-line and convert it into a data.frame. The connection is responsible for maintaining where the
stream is currently being read from. In general, the connections will consist of files stored on disk
but have many other possibilities (see connection).

The implementation tries to gracefully deal with slightly corrupted data by dropping points with
inconsistent reading and producing a warning. However, this might not always be possible resulting
in an error instead.

Column names
If the file has column headers in the first line, then they can be used by setting header = TRUE.
Alternatively, column names can be set using col.names or a named vector for take. If no column
names are specified then default names will be created.

Columns with names that start with . are considered information columns and are ignored by DSTs.
See get_points() for details.

Other information columns are are used by various functions.

64 DSD_ReadStream

Reading the whole stream By using n = -1 in get_points(), the whole stream is returned.

Resetting and closing a stream
The position in the file can be reset to the beginning or another position using reset_stream().
This fails of the underlying connection is not seekable (see connection).

DSD_ReadStream maintains an open connection to the stream and needs to be closed using close_stream().

DSD_ReadCSV reads a stream from a comma-separated values file.

Value

An object of class DSD_ReadCSV (subclass of DSD_R, DSD).

Author(s)

Michael Hahsler

See Also

readLines(), read.table().

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_Target(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

Example 1: creating data and writing it to disk
stream <- DSD_Gaussians(k = 3, d = 2)
write_stream(stream, "data.txt", n = 100, info = TRUE, header = TRUE)
readLines("data.txt", n = 5)

reading the same data back
stream2 <- DSD_ReadStream("data.txt", header = TRUE)
stream2

get points
get_points(stream2, n = 5)
plot(stream2, n = 20)

clean up
close_stream(stream2)
file.remove("data.txt")

Example 2: Read part of the kddcup1999 data (take only cont. variables)
col 42 is the class variable
file <- system.file("examples", "kddcup10000.data.gz", package = "stream")
stream <- DSD_ReadCSV(gzfile(file),

take = c(1, 5, 6, 8:11, 13:20, 23:41, .class = 42), k = 7)
stream

get_points(stream, 5)

DSD_Target 65

plot 100 points (projected on the first two principal components)
plot(stream, n = 100, method = "pca")

close_stream(stream)

DSD_Target Target Data Stream Generator

Description

A data stream generator that generates a data stream in the shape of a target. It has a single Gaussian
cluster in the center and a ring that surrounds it.

Usage

DSD_Target(
center_sd = 0.05,
center_weight = 0.5,
ring_r = 0.2,
ring_sd = 0.02,
noise = 0

)

Arguments

center_sd standard deviation of center

center_weight proportion of points in center

ring_r average ring radius

ring_sd standard deviation of ring radius

noise proportion of noise

Details

This DSD will produce a singular Gaussian cluster in the center with a ring around it.

Value

Returns a DSD_Target object.

Author(s)

Michael Hahsler

66 DSD_UniformNoise

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_UniformNoise(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

Examples

create data stream with three clusters in 2D
stream <- DSD_Target()

get_points(stream, n = 5)

plot(stream)

DSD_UniformNoise Uniform Noise Data Stream Generator

Description

This generator produces uniform noise in a d-dimensional unit (hyper) cube.

Usage

DSD_UniformNoise(d = 2, range = NULL)

Arguments

d Determines the number of dimensions.

range A matrix with two columns and d rows giving the minimum and maximum for
each dimension. Defaults to the range of [0, 1].

Value

Returns a DSD_UniformNoise object.(subclass of DSD_R, DSD).

Author(s)

Michael Hahsler

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(), close_stream(),
get_points(), plot.DSD(), reset_stream()

DSF 67

Examples

create data stream with three clusters in 2D
stream <- DSD_UniformNoise(d = 2)
get_points(stream, n = 5)
plot(stream, n = 100)

specify a different range for each dimension
stream <- DSD_UniformNoise(d = 3,

range = rbind(c(0, 1), c(0, 10), c(0, 5)))
plot(stream, n = 100)

DSF Data Stream Filter Base Classes

Description

Abstract base classes for all data stream filter (DSF) classes. Data stream filters transform a data
stream (DSD).

Usage

DSF(...)

S3 method for class 'DSF'
reset_stream(dsd, pos = 1)

S3 method for class 'DSF'
close_stream(dsd, ...)

Arguments

... Further arguments.

dsd a stream object of class DSD.

pos position in the stream.

Details

The DSF class cannot be instantiated, but it serve as a base class from which other DSF classes
inherit.

Data stream filters transform a DSD data stream. DSF implementations inherit from DSD and have
the same basic interface.

reset_stream() resets the source stream.

It is convenient to use the pipe (magrittr::%>%) to apply filters to data streams (see Examples
section).

68 DSFP

Methods (by generic)

• reset_stream(DSF): reset the attached stream if reset is supported.

• close_stream(DSF): close the attached stream if close is supported.

Author(s)

Michael Hahsler

See Also

Other DSF: DSF_Convolve(), DSF_Downsample(), DSF_ExponentialMA(), DSF_Func(), DSF_dplyr()

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_UniformNoise(), DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), animate_data(),
close_stream(), get_points(), plot.DSD(), reset_stream()

Examples

DSF()

stream <- DSD_Gaussians(k = 3, d = 2) %>%
DSF_Func(function(x) cbind(x, Xsum = x$X1 + x$X2))

stream

get_points(stream, n = 5)

DSFP Abstract Class for Frequent Pattern Mining Algorithms for Data
Streams

Description

Abstract class for frequent pattern mining algorithms for data streams. Currently, stream does not
implement frequent pattern mining algorithms.

Usage

DSFP(...)

Arguments

... Further arguments.

Author(s)

Michael Hahsler

DSF_Convolve 69

See Also

DST

Examples

DSFP()

DSF_Convolve Apply a Filter to a Data Stream

Description

Applies a filter (i.e., a convolution with a filter kernel) to a data stream.

Usage

DSF_Convolve(
dsd,
dim = NULL,
kernel = NULL,
pre = NULL,
post = NULL,
na.rm = FALSE,
replace = TRUE,
name = NULL

)

filter_MA(width)

filter_Hamming(width)

filter_diff(lag)

filter_Sinc(fc, fs, width = NULL, bw = NULL)

pow2(x)

Arguments

dsd A object of class DSD.

dim columns to which the filter should be applied. Default is all columns.

kernel filter kernel as a numeric vector of weights.

pre, post functions to be applied before and after the convolution.

na.rm logical; should NAs be ignored?

replace logical; should the column be replaced or a column with the convolved column
added?

70 DSF_Convolve

name character; the new column will be name with the old column name + _ + name.

width filter width.

lag an integer indicating which time lag to use.

fc cutoff frequency.

fs sampling frequency.

bw transition bandwidth.

x values to be squared.

Details

A filter kernel is a vector with kernel weights. A few filter are provided.

• filter_MA(width) creates a moving average.

• filter_diff(lag) calculates laged differences. Note that na.rm = TRUE will lead to artifacts
and should not be used.

• filter_Hamming(width) creates a Hamming window.

• filter_Sinc(fc, fs, width, bw) creates a windowed-sinc filter. One of width (filter length)
or bw (transition bandwidth can be used to control the filter roll-off. The relationship is
width = 4/bw. See Chapter 16 in Smith (1997).

pre and post are functions that are called before and after the convolution. For example, to calculate
RMS, you can use pre = pow2 and post = sqrt. pow2() is a convenience function.

Value

An object of class DSF_Convolve (subclass of DSF and DSD).

Author(s)

Michael Hahsler

References

Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, California Tech-
nical Pub; 1st edition (January 1, 1997). ISBN 0966017633, URL: https://www.dspguide.com/

See Also

stats::filter provides non-streaming convolution.

Other DSF: DSF_Downsample(), DSF_ExponentialMA(), DSF_Func(), DSF_dplyr(), DSF()

DSF_Convolve 71

Examples

data(presidents)

Example 1: Create a data stream with three copies of president approval ratings.
We will use several convolutions.
stream <- data.frame(

approval_orig = presidents,
approval_MA = presidents,
approval_diff1 = presidents,
.time = time(presidents)) %>%

DSD_Memory()

plot(stream, dim = 1, n = 120, method = "ts")

apply a moving average filter to dimension 1 (using the column name) and diff to dimension 3
filteredStream <- stream %>%

DSF_Convolve(kernel = filter_MA(5), dim = "approval_orig", na.rm = TRUE) %>%
DSF_Convolve(kernel = filter_diff(1), dim = 3)

filteredStream

resetting the filtered stream also resets the original stream
reset_stream(filteredStream)
ps <- get_points(filteredStream, n = 120)
head(ps)

year <- ps[[".time"]]
approval <- remove_info(ps)
matplot(year, approval, type = "l", ylim = c(-20, 100))
legend("topright", colnames(approval), col = 1:3, lty = 1:3, bty = "n")

Example 2: Create a stream with a constant sine wave and apply
a moving average, an RMS envelope and a differences
stream <- DSD_Memory(data.frame(y = sin(seq(0, 2 * pi - (2 * pi / 100) ,

length.out = 100))), loop = TRUE)
plot(stream, n = 200, method = "ts")

filteredStream <- stream %>%
DSF_Convolve(kernel = filter_MA(100), dim = 1,

replace = FALSE, name = "MA") %>%
DSF_Convolve(kernel = filter_MA(100), pre = pow2, post = sqrt, dim = 1,

replace = FALSE, name = "RMS") %>%
DSF_Convolve(kernel = filter_diff(1), dim = 1,

replace = FALSE, name = "diff1")
filteredStream

ps <- get_points(filteredStream, n = 500)
head(ps)

matplot(ps, type = "l")
legend("topright", colnames(ps), col = 1:4, lty = 1:4)

Note that MA and RMS use a window of length 200 and are missing at the

72 DSF_Downsample

beginning of the stream the window is full.

Filters: look at different filters
filter_MA(5)
filter_diff(1)
plot(filter_Hamming(20), type = "h")
plot(filter_Sinc(10, 100, width = 20), type = "h")

DSF_Downsample Downsample a Data Stream

Description

Creates a new stream that reduces the frequency of a given stream by a given factor.

Usage

DSF_Downsample(dsd, factor = 1)

Arguments

dsd The input stream as an DSD object.

factor the downsampling factor.

Value

An object of class DSF_Downsample (subclass of DSF and DSD).

Author(s)

Michael Hahsler

See Also

Other DSF: DSF_Convolve(), DSF_ExponentialMA(), DSF_Func(), DSF_dplyr(), DSF()

Examples

Simple downsampling example
stream <- DSD_Memory(data.frame(rownum = seq(100))) %>% DSF_Downsample(factor = 10)
stream

get_points(stream, n = 2)
get_points(stream, n = 1)
get_points(stream, n = 5)

DSD_Memory supports getting the remaining points using n = -1
get_points(stream, n = -1)

DSF_dplyr 73

Downsample a time series
data(presidents)

stream <- data.frame(
presidents,
.time = time(presidents)) %>%

DSD_Memory()

plot(stream, dim = 1, n = 120, method = "ts")

downsample by taking only every 3rd data point (quarters)
downsampledStream <- stream %>% DSF_Downsample(factor = 3)

reset_stream(downsampledStream)
plot(downsampledStream, dim = 1, n = 40, method = "ts")

DSF_dplyr Apply a dplyr Transformation to a Data Stream

Description

Applies dplyr transformations to a data stream.

Usage

DSF_dplyr(dsd, func = NULL, info = FALSE)

Arguments

dsd A object of class DSD.
func a dplyr expression.
info logical; does the function also receive and modify the info columns?

Details

dplyr needs to be installed and loaded with library(dplyr) before DSF_dplyr can be used.

Since streams are processed one point or block at a time, only dplyr::dplyr operations that work on
individual rows are allowed on streams. Examples are:

• dplyr::select()

• dplyr::mutate()

• dplyr::rename()

• dplyr::transmute()

• dplyr::filter()

Summary functions can be used, but will only be applied to the requested part of the stream of
length n.

DSF_dplyr() calls the function using points %>% <func> and multiple dplyr functions can be
applied by using %>% between them.

74 DSF_ExponentialMA

Value

An object of class DSF_dplyr (subclass of DSF and DSD).

Author(s)

Michael Hahsler

See Also

Other DSF: DSF_Convolve(), DSF_Downsample(), DSF_ExponentialMA(), DSF_Func(), DSF()

Examples

if (require(dplyr)) {

library(dplyr)

stream <- DSD_Gaussians(k = 3, d = 3)
plot(stream, xlim = c(0, 1), ylim = c(0, 1))

1. Select only columns X1 and X2
2. filter points by X1 > .5 (Note that the info columns also need to be filtered!)
3. Add a sum columns

stream2 <- stream %>%
DSF_dplyr(select(X1, X2)) %>%
DSF_dplyr(filter(X1 > .5), info = TRUE) %>%
DSF_dplyr(mutate(Xsum = X1 + X2))

stream2

Note: you get fewer points because of the filter operation.
get_points(stream2, n = 10)
plot(stream2, xlim = c(0, 1), ylim = c(0, 1))

}

DSF_ExponentialMA Exponential Moving Average over a Data Stream

Description

Applies an exponential moving average to components of a data stream.

Usage

DSF_ExponentialMA(dsd, dim = NULL, alpha = 0.5)

DSF_ExponentialMA 75

Arguments

dsd The input stream as an DSD object.

dim columns to which the filter should be applied. Default is all columns.

alpha smoothing coefficient in [0, 1]. Larger means discounting older observations
faster.

Details

The exponential moving average is calculated by:

St = αYt + (1− α) Si−1

with S0 = Y0.

Value

An object of class DSF_ExponentialMA (subclass of DSF and DSD).

Author(s)

Michael Hahsler

See Also

Other DSF: DSF_Convolve(), DSF_Downsample(), DSF_Func(), DSF_dplyr(), DSF()

Examples

Smooth a time series
data(presidents)

stream <- data.frame(
presidents,
.time = time(presidents)) %>%

DSD_Memory()

plot(stream, dim = 1, n = 120, method = "ts", main = "Original")

smoothStream <- stream %>% DSF_ExponentialMA(alpha = .7)
smoothStream

reset_stream(smoothStream)
plot(smoothStream, dim = 1, n = 120, method = "ts", main = "With ExponentialMA(.7)")

76 DSF_Func

DSF_Func Apply a Function to Transformation to a Data Stream

Description

Applies an R function to transform to a data stream.

Usage

DSF_Func(dsd, func = NULL, ..., info = FALSE)

Arguments

dsd A object of class DSD.

func a function that takes a data.frame as the first argument and returns the trans-
formed data.frame.

... further arguments are passed on to the function specified in func.

info logical; does the function also receive and modify the info columns?

Details

The function’s first argument needs to be a data.frame representing points of the data stream. The
function will be called as ps %>% your_function(), where ps is the data.frame with some points
obtained using get_points() on the data stream source.

Value

An object of class DSF_Func (subclass of DSF and DSD).

Author(s)

Michael Hahsler

See Also

Other DSF: DSF_Convolve(), DSF_Downsample(), DSF_ExponentialMA(), DSF_dplyr(), DSF()

Examples

stream <- DSD_Gaussians(k = 3, d = 3)
get_points(stream, n = 5)

Example 1: rename the columns
rename <- function(x, names) {

colnames(x) <- names
x

}

DSF_Scale 77

By default, the info columns starting with . are not affected.
stream2 <- stream %>% DSF_Func(rename, names = c("A", "B", "C"))
stream2
get_points(stream2, n = 5)

Example 2: add a sum columns
stream3 <- stream2 %>% DSF_Func(function(x) {

x$sum = rowSums(x)
x

})
stream3
get_points(stream3, n = 5)

Example 3: Project the stream on its first 2 PCs (using a sample)
pr <- princomp(get_points(stream, n = 100, info = FALSE))
pca_trans <- function(x) predict(pr, x[, c("X1", "X2", "X3")])[, 1:2 , drop = FALSE]
pca_trans(get_points(stream, n = 3, info = FALSE))

stream4 <- stream %>% DSF_Func(pca_trans)
stream4

get_points(stream4, n = 3)
plot(stream4)

Example 4: Change a class labels using info = TRUE. We redefine class 3 as noise (NA)
stream5 <- stream %>% DSF_Func(

function(x) { x[['.class']][x[['.class']] == 3] <- NA; x },
info = TRUE)

stream5

get_points(stream5, n = 5)
plot(stream5)

DSF_Scale Scale a Data Stream

Description

Make an unscaled data stream into a scaled data stream.

Usage

DSF_Scale(dsd, dim = NULL, center = TRUE, scale = TRUE, n = 100)

DSD_ScaleStream(dsd, dim = NULL, center = TRUE, scale = TRUE, n = 100)

Arguments

dsd A object of class DSD that will be scaled.

dim integer vector or names of dimensions that should be scaled? Default is all.

78 DSF_Scale

center, scale logical or a numeric vector of length equal to the number of columns (selected
with dim) used for centering/scaling (see function scale).

n The number of points used by scale_stream() to creating the centering/scaling

Details

If center and scale are not vectors with scaling factors, then scale_stream() estimates the values
for centering and scaling (see scale in base) using n points from the stream and the stream is reset
if reset = TRUE and the DSD object supports resetting.

Value

An object of class DSF_Scale (subclass of DSF and DSD).

Deprecated

DSD_ScaleStream is deprecated. Use DSF_Scale instead.

Author(s)

Michael Hahsler

See Also

scale in base
Other DST: DSAggregate(), DSClassifier(), DSC(), DSOutlier(), DST_Runner(), DST_WriteStream(),
DST(), evaluate, predict(), update()

Examples

stream <- DSD_Gaussians(k = 3, d = 2)

scale with manually calculated scaling factors
points <- get_points(stream, n = 100, info = FALSE)
center <- colMeans(points)
scale <- apply(points, MARGIN = 2, sd)

scaledStream <- stream %>% DSF_Scale(center = center, scale = scale)
colMeans(get_points(scaledStream, n = 100, info = FALSE))
apply(get_points(scaledStream, n = 100, info = FALSE), MARGIN = 2, sd)

let DSF_Scale calculate the scaling factors
scaledStream <- stream %>% DSF_Scale(n = 100)
colMeans(get_points(scaledStream, n = 100, info = FALSE))
apply(get_points(scaledStream, n = 100, info = FALSE), MARGIN = 2, sd)

scale only X2
scaledStream <- stream %>% DSF_Scale(n = 100, dim = "X2")
colMeans(get_points(scaledStream, n = 100, info = FALSE))
apply(get_points(scaledStream, n = 100, info = FALSE), MARGIN = 2, sd)

DSOutlier 79

DSOutlier Abstract Class for Data Stream Outlier Detectors

Description

The abstract class for all data stream outlier detectors. Cannot be instantiated. Some DSC imple-
mentations also implement outlier/noise detection.

Usage

DSOutlier(...)

Arguments

... further arguments.

Details

plot() has an extra logical argument to specify if outliers should be plotted as red crosses.

Author(s)

Michael Hahsler

See Also

Other DST: DSAggregate(), DSClassifier(), DSC(), DSF_Scale(), DST_Runner(), DST_WriteStream(),
DST(), evaluate, predict(), update()

Other DSOutlier: DSC_DBSTREAM(), DSC_DStream()

Examples

DSOutlier()

#' @examples
set.seed(1000)
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.1, noise_separation = 5)

outlier_detector <- DSOutlier_DBSTREAM(r = .05, outlier_multiplier = 2)
update(outlier_detector, stream, 500)
outlier_detector

points <- get_points(stream, 20)
points

Outliers are predicted as class NA
predict(outlier_detector, points)

Plot new points from the stream. Predicted outliers are marked with a red x.

80 DST

plot(outlier_detector, stream)

evaluate_static(outlier_detector, stream, measure =
c("noiseActual", "noisePredicted", "noisePrecision", "outlierJaccard"))

use a different detector
outlier_detector2 <- DSOutlier_DStream(gridsize = .05, Cl = 0.5, outlier_multiplier = 2)
update(outlier_detector2, stream, 500)
plot(outlier_detector2, stream)

evaluate_static(outlier_detector2, stream, measure =
c("noiseActual", "noisePredicted", "noisePrecision", "outlierJaccard"))

DST Conceptual Base Class for All Data Stream Mining Tasks

Description

Conceptual base class for all data stream mining tasks.

Usage

DST(...)

description(x, ...)

S3 method for class 'DST'
description(x, ...)

Arguments

... Further arguments.
x an object of a concrete implementation of a DST.

Details

Base class for data stream mining tasks. Types of DST are

• DSC for data stream clustering.
• DSAggregate to aggregate data streams (e.g., with a sliding window).
• DSFP frequent pattern mining for data stream clustering.
• DSClassifier classification for data streams.
• DSOutlier outlier detection for data streams.

The common interface for all DST classes consists of

• update()

• predict()

and the methods in the Methods Section below.

DST_Multi 81

Methods (by generic)

• description(DST): Get a description of the task as a character string.

Author(s)

Michael Hahsler

See Also

Other DST: DSAggregate(), DSClassifier(), DSC(), DSF_Scale(), DSOutlier(), DST_Runner(),
DST_WriteStream(), evaluate, predict(), update()

Examples

DST()

DST_Multi Apply Multiple Task to the Same Data Stream

Description

Apply multiple task (DST) to the same data stream. The tasks can be accessed as a list as $dsts.

Usage

DST_Multi(dsts)

Arguments

dsts a list of DST objects.

Author(s)

Michael Hahsler

Examples

set.seed(1500)

stream <- DSD_Gaussians(k = 3, d = 2)

define multiple tasks as a list
tasks <- DST_Multi(list(

DSAggregate_Window(horizon = 10),
DSC_DStream(gridsize = 0.1)

))
tasks

update both tasks with the same stream

82 DST_Runner

update(tasks, stream, n = 1000)

inspect the results of the tasks
tasks$dsts[[1]]
get_points(tasks$dsts[[1]])

tasks$dsts[[2]]
plot(tasks$dsts[[2]])

DST_Runner Create a Data Stream Pipeline

Description

Define a complete data stream pipe line consisting of a data stream, filters and a data mining task
using %>%.

Usage

DST_Runner(dsd, dst)

Arguments

dsd A data stream (subclass of DSD) typically provided using a %>% (pipe).

dst A data stream mining task (subclass of DST).

Details

A data stream pipe line consisting of a data stream, filters and a data mining task:

DSD %>% DSF %>% DST

Once the pipeline is defined, it can be run using update() where points are taken from the DSD,
filtered through a sequence of DSFs and then used to update the task DST.

Author(s)

Michael Hahsler

See Also

Other DST: DSAggregate(), DSClassifier(), DSC(), DSF_Scale(), DSOutlier(), DST_WriteStream(),
DST(), evaluate, predict(), update()

DST_WriteStream 83

Examples

set.seed(1500)

Set up a pipeline with a DSD data source, DSF Filters and then a DST task
cluster_pipeline <- DSD_Gaussians(k = 3, d = 2) %>%

DSF_Scale() %>%
DST_Runner(DSC_DBSTREAM(r = .05))

cluster_pipeline

the DSD and DST can be accessed directly
cluster_pipeline$dsd
cluster_pipeline$dst

update the DST using the pipeline
update(cluster_pipeline, n = 1000)

cluster_pipeline$dst
get_centers(cluster_pipeline$dst)
plot(cluster_pipeline$dst)

DST_WriteStream Task to Write a Stream to a File or a Connection

Description

Writes points from a data stream DSD object to a file or a connection.

Usage

DST_WriteStream(file, append = TRUE, ...)

Arguments

file A file name or a R connection to be written to.

append Append the data to an existing file.

... further arguments are passed on to write_stream().

Author(s)

Michael Hahsler

See Also

Other DST: DSAggregate(), DSClassifier(), DSC(), DSF_Scale(), DSOutlier(), DST_Runner(),
DST(), evaluate, predict(), update()

84 evaluate

Examples

set.seed(1500)

stream <- DSD_Gaussians(k = 3, d = 2)
writer <- DST_WriteStream(file = "data.txt", info = TRUE, header = TRUE)

update(writer, stream, n = 2)
readLines("data.txt")
update(writer, stream, n = 3)
readLines("data.txt")

clean up
file.remove("data.txt")

evaluate Evaluate a Data Stream Mining Task

Description

Calculate evaluation measures for a data stream mining task DST using a data stream DSD object.

Usage

evaluate_static(object, dsd, measure, n, ...)

evaluate_stream(object, dsd, measure, n, horizon, ..., verbose = FALSE)

Arguments

object The DST object that the evaluation measure is being requested from.

dsd The DSD object used to create the test data.

measure Evaluation measure(s) to use. If missing then all available measures are re-
turned.

n The number of data points being requested.

... Further arguments.

horizon Evaluation is done using horizon many previous points (see detail section).

verbose Report progress?

Details

We provide two evaluation methods:

• evaluate_static() evaluates the current DST model on new data without updating the
model.

evaluate.DSC 85

• evaluate_stream() evaluates the DST model using prequential error estimation (see Gama,
Sebastiao and Rodrigues; 2013). The data points in the horizon are first used to calculate the
evaluation measure and then they are used for updating the cluster model. A horizon of ‘
means that each point is evaluated and then used to update the model.

The evaluation measures depend on the task.

Value

evaluate returns an object of class stream_eval which is a numeric vector of the values of the
requested measures.

Author(s)

Michael Hahsler

References

Joao Gama, Raquel Sebastiao, Pedro Pereira Rodrigues (2013). On evaluating stream learning
algorithms. Machine Learning, March 2013, Volume 90, Issue 3, pp 317-346.

See Also

Other DST: DSAggregate(), DSClassifier(), DSC(), DSF_Scale(), DSOutlier(), DST_Runner(),
DST_WriteStream(), DST(), predict(), update()

Other evaluation: animate_cluster(), evaluate.DSC

evaluate.DSC Evaluate Stream Clustering

Description

Calculate evaluation measures for micro or macro-clusters from a DSC object given the original
DSD object.

Usage

S3 method for class 'DSC'
evaluate_static(
object,
dsd,
measure,
n = 100,
type = c("auto", "micro", "macro"),
assign = "micro",
assignmentMethod = c("auto", "model", "nn"),
excludeNoise = FALSE,
callbacks = list(),

86 evaluate.DSC

...
)

S3 method for class 'DSC'
evaluate_stream(
object,
dsd,
measure,
n = 1000,
horizon = 100,
type = c("auto", "micro", "macro"),
assign = "micro",
assignmentMethod = c("auto", "model", "nn"),
excludeNoise = FALSE,
callbacks = NULL,
...,
verbose = FALSE

)

Arguments

object The DSC object that the evaluation measure is being requested from.

dsd The DSD object that holds the initial training data for the DSC.

measure Evaluation measure(s) to use. If missing then all available measures are re-
turned.

n The number of data points being requested.

type Use micro- or macro-clusters for evaluation. Auto used the class of DSC to
decide.

assign Assign points to micro or macro-clusters?
assignmentMethod

How are points assigned to clusters for evaluation (see predict())?

excludeNoise logical; Should noise points in the data stream be excluded from the calculation?

callbacks A named list of functions to calculate custom evaluation measures.

... Unused arguments are ignored.

horizon Evaluation is done using horizon many previous points (see detail section).

verbose logical; Report progress?

Details

For evaluation, each data point is assigned to its nearest cluster using Euclidean distance to the
cluster centers. Then for each cluster the majority class is determined. Based on the majority class
several evaluation measures can be computed.

We provide two evaluation methods:

• evaluate_static() evaluates the current static clustering using new data without updating
the model.

evaluate.DSC 87

• evaluate_stream() evaluates the clustering process using prequential error estimation (see
Gama, Sebastiao and Rodrigues; 2013). The current model is first applied to the data points
in the horizon to calculate the evaluation measures. Then, the cluster model is updated with
the points.

Evaluation Measures
Many evaluation measures are available using code from other packages including cluster::silhouette(),
clue:: cl_agreement(), and fpc::cluster.stats().

The following information items are available:

• "numPoints" number of points used for evaluation.

• "numMicroClusters" number of micro-clusters

• "numMacroClusters" number of macro-clusters

• "numClasses" number of classes

The following noise-related/outlier items are available:

• "noisePredicted" Number data points predicted as noise

• "noiseActual" Number of data points which are actually noise

• "noisePrecision" Precision of the predicting noise (i.e., number of correctly predicted noise
points over the total number of points predicted as noise)

• "outlierJaccard" - A variant of the Jaccard index used to assess outlier detection accuracy
(see Krleza et al (2020)). Outlier Jaccard index is calculated as TP / (TP + FP + UNDETECTED).

The following internal evaluation measures are available:

• "SSQ" within cluster sum of squares. Assigns each point to its nearest center from the cluster-
ing and calculates the sum of squares. Noise points in the data stream are always ignored.

• "silhouette" average silhouette width. Actual noise points which stay unassigned by the
clustering algorithm are ignored; regular points that are unassigned by the clustering algorithm
form their own noise cluster) (cluster)

• "average.between" average distance between clusters (fpc)

• "average.within" average distance within clusters (fpc)

• "max.diameter" maximum cluster diameter (fpc)

• "min.separation" minimum cluster separation (fpc)

• "ave.within.cluster.ss" a generalization of the within clusters sum of squares (half the
sum of the within cluster squared dissimilarities divided by the cluster size) (fpc)

• "g2" Goodman and Kruskal’s Gamma coefficient (fpc)

• "pearsongamma" correlation between distances and a 0-1-vector where 0 means same cluster,
1 means different clusters (fpc)

• "dunn" Dunn index (minimum separation / maximum diameter) (fpc)

• "dunn2" minimum average dissimilarity between two cluster / maximum average within clus-
ter dissimilarity (fpc)

• "entropy" entropy of the distribution of cluster memberships (fpc)

88 evaluate.DSC

• "wb.ratio" average.within/average.between (fpc)

The following external evaluation measures are available:

• "precision", "recall", "F1" F1. A true positive (TP) decision assigns two points in the
same true cluster also to the same cluster, a true negative (TN) decision assigns two points
from two different true clusters to two different clusters. A false positive (FP) decision assigns
two points from the same true cluster to two different clusters. A false negative (FN) decision
assigns two points from the same true cluster to different clusters.
precision = TP / (TP + FP)

recall = TP / (TP + FN)

The F1 measure is the harmonic mean of precision and recall.

• "purity" Average purity of clusters. The purity of each cluster is the proportion of the points
of the majority true group assigned to it (see Cao et al. (2006)).

• "classPurity" (of real clusters; see Wan et al (2009)).

• "fpr" false positive rate.

• "Euclidean" Euclidean dissimilarity of the memberships (see Dimitriadou, Weingessel and
Hornik (2002)) (clue)

• "Manhattan" Manhattan dissimilarity of the memberships (clue)

• "Rand" Rand index (see Rand (1971)) (clue)

• "cRand" Adjusted Rand index (see Hubert and Arabie (1985)) (clue)

• "NMI" Normalized Mutual Information (see Strehl and Ghosh (2002)) (clue)

• "KP" Katz-Powell index (see Katz and Powell (1953)) (clue)

• "angle" maximal cosine of the angle between the agreements (clue) - "diag" maximal co-
classification rate (clue)

• "FM" Fowlkes and Mallows’s index (see Fowlkes and Mallows (1983)) (clue)

• "Jaccard" Jaccard index (clue)

• "PS" Prediction Strength (see Tibshirani and Walter (2005)) (clue) %

• "corrected.rand" corrected Rand index (fpc)

• "vi" variation of information (VI) index (fpc)

Many measures are the average over all clusters. For example, purity is the average purity over all
clusters.

For DSC_Micro objects, data points are assigned to micro-clusters and then each micro-cluster is
evaluated. For DSC_Macro objects, data points by default (assign = "micro") also assigned to
micro-clusters, but these assignments are translated to macro-clusters. The evaluation is here done
for macro-clusters. This is important when macro-clustering is done with algorithms which do
not create spherical clusters (e.g, hierarchical clustering with single-linkage or DBSCAN) and this
assignment to the macro-clusters directly (i.e., their center) does not make sense.

Using type and assign, the user can select how to assign data points and ad what level (micro or
macro) to evaluate.

evaluate_cluster() is used to evaluate an evolving data stream using the method described by
Wan et al. (2009). Of the n data points horizon many points are clustered and then the evaluation

evaluate.DSC 89

measure is calculated on the same data points. The idea is to find out if the clustering algorithm was
able to adapt to the changing stream.

Custom Evaluation Measures

The parameter callbacks can be supplied with a named list with functions with the signature
function(actual, predict, points, centers, dsc) as elements. See the Examples sections
for details.

Value

evaluate returns an object of class stream_eval which is a numeric vector of the values of the
requested measures and two attributes, "type" and "assign", to see at what level the evaluation
was done.

Author(s)

Michael Hahsler, Matthew Bolanos, John Forrest, and Dalibor Krleža

References

Joao Gama, Raquel Sebastiao, Pedro Pereira Rodrigues (2013). On evaluating stream learning
algorithms. Machine Learning, March 2013, Volume 90, Issue 3, pp 317-346.

F. Cao, M. Ester, W. Qian, A. Zhou (2006). Density-Based Clustering over an Evolving Data Stream
with Noise. Proceeding of the 2006 SIAM Conference on Data Mining, 326-337.

E. Dimitriadou, A. Weingessel and K. Hornik (2002). A combination scheme for fuzzy clustering.
International Journal of Pattern Recognition and Artificial Intelligence, 16, 901-912.

E. B. Fowlkes and C. L. Mallows (1983). A method for comparing two hierarchical clusterings.
Journal of the American Statistical Association, 78, 553-569.

L. Hubert and P. Arabie (1985). Comparing partitions. Journal of Classification, 2, 193-218.

W. M. Rand (1971). Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association, 66, 846-850.

L. Katz and J. H. Powell (1953). A proposed index of the conformity of one sociometric measure-
ment to another. Psychometrika, 18, 249-256.

A. Strehl and J. Ghosh (2002). Cluster ensembles - A knowledge reuse framework for combining
multiple partitions. Journal of Machine Learning Research, 3, 583-617.

R. Tibshirani and G. Walter (2005). Cluster validation by Prediction Strength. Journal of Compu-
tational and Graphical Statistics, 14/3, 511-528.

L Wan, W.K. Ng, X.H. Dang, P.S. Yu and K. Zhang (2009). Density-Based Clustering of Data
Streams at Multiple Resolutions, ACM Transactions on Knowledge Discovery from Data, 3(3).

D. Krleža, B. Vrdoljak, and M. Brčić (2020). Statistical Hierarchical Clustering Algorithm for
Outlier Detection in Evolving Data Streams, Springer Machine Learning.

90 evaluate.DSC

See Also

cluster::silhouette(), clue:: cl_agreement(), and fpc::cluster.stats().

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
get_assignment(), plot.DSC(), predict(), prune_clusters(), read_saveDSC, recluster()

Other evaluation: animate_cluster(), evaluate

Examples

Example 1: Static Evaluation
set.seed(0)
stream <- DSD_Gaussians(k = 3, d = 2)

dstream <- DSC_DStream(gridsize = 0.05, Cm = 1.5)
update(dstream, stream, 500)
plot(dstream, stream)

Evaluate the micro-clusters in the clustering
Note: we use here only n = 100 points for evaluation to speed up execution
evaluate_static(dstream, stream, n = 100)

evaluate_static(dstream, stream,
measure = c("numMicro", "numMacro", "purity", "crand", "SSQ"),
n = 100)

DStream also provides macro clusters. Evaluate macro clusters with type = "macro"
Note that SSQ and cRand increase.
plot(dstream, stream, type = "macro")
evaluate_static(dstream, stream, type = "macro",

measure = c("numMicro", "numMacro", "purity", "crand", "SSQ"),
n = 100)

Points are by default assigned to micro clusters using the method
specified for the clustering algorithm.
However, points can also be assigned to the closest macro-cluster using
assign = "macro".
evaluate_static(dstream, stream, type = "macro", assign = "macro",

measure = c("numMicro", "numMacro", "purity", "crand", "SSQ"),
n = 100)

Example 2: Evaluate with Noise/Outliers
stream <- DSD_Gaussians(k = 3, d = 2, noise = .05)
dstream <- DSC_DStream(gridsize = 0.05, Cm = 1.5)
update(dstream, stream, 500)

For cRand, noise is its own group, for SSQ, actual noise is always
excluded.
plot(dstream, stream, 500)
evaluate_static(dstream, stream, n = 100,

measure = c("numPoints", "noisePredicted", "noiseActual",
"noisePrecision", "outlierJaccard", "cRand", "SSQ"))

get_assignment 91

Note that if noise is excluded, the number of used points is reduced.
evaluate_static(dstream, stream, n = 100,

measure = c("numPoints", "noisePredicted", "noiseActual",
"noisePrecision", "outlierJaccard", "cRand", "SSQ"), excludeNoise = TRUE)

Example 3: Evaluate an evolving data stream
stream <- DSD_Benchmark(1)
dstream <- DSC_DStream(gridsize = 0.05, lambda = 0.1)

evaluate_stream(dstream, stream, type = "macro", assign = "micro",
measure = c("numMicro", "numMacro", "purity", "cRand"),
n = 600, horizon = 100)

if (interactive()){
animate the clustering process
reset_stream(stream)
dstream <- DSC_DStream(gridsize = 0.05, lambda = 0.1)
animate_cluster(dstream, stream, horizon = 100, n = 5000,

measure = "cRand", type = "macro", assign = "micro",
plot.args = list(type = "both", xlim = c(0,1), ylim = c(0,1)))

}

Example 4: Add a custom measure as a callback
callbacks <- list(

noisePercentage = function(actual, predict, points, centers, dsc) {
sum(actual == 0L) / length(actual)

},
noiseFN = function(actual, predict, points, centers, dsc) {

sum(actual == 0L & predict != 0L)
},
noiseFP = function(actual, predict, points, centers, dsc) {

sum(actual != 0L & predict == 0L)
}

)

stream <- DSD_Gaussians(k = 3, d = 2, noise = .2)
dstream <- DSC_DStream(gridsize = 0.05, Cm = 1.5)
update(dstream, stream, 500)

evaluate_static(dstream, stream,
measure = c("numPoints", "noiseActual", "noisePredicted",

"noisePercentage", "noiseFN", "noiseFP"),
callbacks = callbacks, n = 100)

evaluate_static(dstream, stream, callbacks = callbacks)

get_assignment Assignment Data Points to Clusters deprecated

92 get_assignment

Description

Deprecation Notice: use predict() for a more general interface to apply a data stream model to
new data. get_assignment() is deprecated.

Usage

get_assignment(
dsc,
points,
type = c("auto", "micro", "macro"),
method = "auto",
...

)

S3 method for class 'DSC'
get_assignment(
dsc,
points,
type = c("auto", "micro", "macro"),
method = c("auto", "nn", "model"),
...

)

Arguments

dsc The DSC object with the clusters for assignment.
points The points to be assigned as a data.frame.
type Use micro- or macro-clusters in DSC for assignment.
method assignment method

• "model" uses the assignment method of the underlying algorithm (unas-
signed points return NA). Not all algorithms implement this option.

• "nn" performs nearest neighbor assignment using Euclidean distance.
• "auto" uses the model assignment method. If this method is not imple-

mented/available then method "nn" is used instead.
... Additional arguments are passed on.

Details

Get the assignment of data points to clusters in a DSC using the model’s assignment rules or nearest
neighbor assignment. The clustering is not modified.

Each data point is assigned either using the original model’s assignment rule or Euclidean nearest
neighbor assignment. If the user specifies the model’s assignment strategy, but is not available, then
nearest neighbor assignment is used and a warning is produced.

Value

A vector containing the assignment of each point. NA means that a data point was not assigned to a
cluster.

get_points 93

Author(s)

Michael Hahsler

See Also

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, plot.DSC(), predict(), prune_clusters(), read_saveDSC, recluster()

Examples

stream <- DSD_Gaussians(k = 3, d = 2, noise = .05)

dbstream <- DSC_DBSTREAM(r = .1)
update(dbstream, stream, n = 100)

find the assignment for the next 100 points to
micro-clusters in dsc. This uses the model's assignment function
points <- get_points(stream, n = 100)
a <- predict(dbstream, points)
head(a)

show the MC assignment areas. Assigned points as blue circles and
the unassigned points as red dots
plot(dbstream, stream, assignment = TRUE, type = "none")
points(points[!is.na(a[, ".class"]),], col = "blue")
points(points[is.na(a[, ".class"]),], col = "red", pch = 20)

use nearest neighbor assignment instead
a <- predict(dbstream, points, method = "nn")
head(a)

get_points Get Points from a Data Stream Generator

Description

Gets points from a DSD object.

Usage

get_points(x, ...)

S3 method for class 'DSD'
get_points(x, n = 1L, info = TRUE, ...)

remove_info(points)

94 get_points

Arguments

x A DSD object.

... Additional parameters to pass to the get_points() implementations.

n integer; request up to n points from the stream. n = -1 returns all remaining
points from limited streams.

info return additional columns with information about the data point (e.g., a known
cluster assignment).

points a data.frame with points.

Details

Each DSD object has a unique way for creating/returning data points, but they all are called through
the generic function, get_points(). This is done by using the S3 class system. See the man page
for the specific DSD class on the semantics for each implementation of get_points().

Additional Point Information

Additional point information (e.g., known cluster/class assignment, noise status) can be requested
with info = TRUE. This information is returned as additional columns. The column names start with
. and are ignored by DST implementations. remove_info() is a convenience function to remove
the information columns. Examples are

• .id for point IDs

• .class for known cluster/class labels used for plotting and evaluation

• .time a time stamp for the point (can be in seconds or an index for ordering)

Resetting a Stream

Many streams can be reset using reset_stream().

Value

Returns a data.frame with (up to) n rows and as many columns as x produces.

Author(s)

Michael Hahsler

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_UniformNoise(), DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(),
close_stream(), plot.DSD(), reset_stream()

MGC 95

Examples

stream <- DSD_Gaussians()
points <- get_points(stream, n = 5)
points

remove_info(points)

MGC Moving Generator Cluster

Description

Creates an evolving cluster for use as a component of a DSD_MG data stream.

Usage

MGC(...)

MGC_Function(density, center, parameter, shape = Shape_Gaussian)

MGC_Linear(dimension = 2, keyframelist = NULL, shape = Shape_Gaussian)

keyframe(time, density, center, parameter, reset = FALSE)

add_keyframe(x, time, density, center, parameter, reset = FALSE)

get_keyframes(x)

remove_keyframe(x, time)

MGC_Noise(density, range)

MGC_Random(density, center, parameter, randomness = 1, shape = Shape_Gaussian)

Shape_Gaussian(center, parameter)

Shape_Block(center, parameter)

MGC_Static(density = 1, center, parameter, shape = Shape_Gaussian)

Arguments

... Further arguments.

density The density of the cluster. For ‘MGC_Function, this attribute is a function and
defines the density of a cluster (i.e., how many points it creates) at each given
timestamp.

96 MGC

center A list that defines the center of the cluster. The list should have a length equal
to the dimensionality. For MGC_Function, this list consists of functions that
define the movement of the cluster. For MGC_Random, this attribute defines the
beginning location for the MGC before it begins moving.

parameter Parameters for the shape. For the default shape Shape_Gaussian the parameter
is the standard deviation, one per dimension. If a single value is specified then
it is recycled for all dimensions.

shape A function creating the shape of the cluster. It gets passed on the parameters
argument from above. Available functions are Shape_Gaussian (the parameters
are a vector containing standard deviations) and Shape_Block (parameters are
the dimensions of the uniform block).

dimension Dimensionality of the data stream.

keyframelist a list of keyframes to initialize the MGC_Linear object with.

time The time stamp the keyframe should be located or which keyframe should be
removed.

reset Should the cluster reset to the first keyframe (time 0) after this keyframe is fin-
ished?

x An object of class MGC_Linear.

range The area in which the noise should appear.

randomness The maximum amount the cluster will move during one time step.

Details

An MGC describes a single cluster for use as a component in a DSD_MG. Different MGCs allow
the user to express different cluster behaviors within a single data stream. Static, (i.e., not moving)
clusters are defined as:

• MGC_Static cluster positions are fixed

• MGC_Noise allows to add random noise.

Moving (evolving) clusters are defined as:

• MGC_Linear creates an evolving cluster for a who’s behavior is determined by keyframes.
Several keyframe functions are provided to create, add and remove keyframes. See Examples
section for details.

• MGC_Function allows to specify density, center, and parameter as a function of time.

• MGC_Random allows for a creation of a cluster that follows a random walk.

Cluster shapes can be specified using the functions:

• Shape_Gaussian

• Shape_Block

New shapes can be defined as a function with parameters center and parameter that return a single
new point. Here is an example:

Shape_Gaussian <- function(center, parameter)
rnorm(length(center), mean = center, sd = parameter)

MGC 97

Author(s)

Matthew Bolanos

See Also

DSD_MG for details on how to use an MGC within a DSD.

Examples

MGC()

Two static clusters (Gaussian with sd of .1 and a Block with width .4)
with added noise
stream <- DSD_MG(dim = 2,

MGC_Static(den = .45, center = c(1, 0), par = .1, shape = Shape_Gaussian),
MGC_Static(den = .45, center = c(2, 0), par = .4, shape = Shape_Block),
MGC_Noise(den = .1, range = rbind(c(0, 3), c(-1,1)))

)
stream

plot(stream)

Example of several MGC_Randoms which define clusters that randomly move.
stream <- DSD_MG(dim = 2,

MGC_Random(den = 100, center=c(1, 0), par = .1, rand = .2),
MGC_Random(den = 100, center=c(2, 0), par = .4, shape = Shape_Block, rand = .2)

)

Not run:
animate_data(stream, 2500, xlim = c(0,3), ylim = c(-1,1), horizon = 100)

End(Not run)

Example of several MGC_Functions

a block-shaped cluster moving from bottom-left to top-right increasing size
c1 <- MGC_Function(

density = function(t){ 100 },
parameter = function(t){ 1 * t },
center = function(t) c(t, t),
shape = Shape_Block
)

a cluster moving in a circle (default shape is Gaussian)
c2 <- MGC_Function(

density = function(t){ 25 },
parameter = function(t){ 5 },
center= function(t) c(sin(t / 10) * 50 + 50, cos(t / 10) * 50 + 50)

)

stream <- DSD_MG(dim = 2, c1, c2)

98 plot.DSC

adding noise after the stream was created
add_cluster(stream, MGC_Noise(den = 10, range = rbind(c(-20, 120), c(-20, 120))))

stream

Not run:
animate_data(stream, 10000, xlim = c(-20, 120), ylim = c(-20, 120), horizon = 100)

End(Not run)

Example of several MGC_Linear: A single cluster splits at time 50 into two.
Note that c2 starts at time = 50!
stream <- DSD_MG(dim = 2)
c1 <- MGC_Linear(dim = 2)
add_keyframe(c1, time = 1, dens = 50, par = 5, center = c(0, 0))
add_keyframe(c1, time = 50, dens = 50, par = 5, center = c(50, 50))
add_keyframe(c1, time = 100,dens = 50, par = 5, center = c(50, 100))
add_cluster(stream, c1)

c2 <- MGC_Linear(dim = 2, shape = Shape_Block)
add_keyframe(c2, time = 50, dens = 25, par = c(10, 10), center = c(50, 50))
add_keyframe(c2, time = 100,dens = 25, par = c(30, 30), center = c(100, 50))
add_cluster(stream, c2)

Not run:
animate_data(stream, 5000, xlim = c(0, 100), ylim = c(0, 100), horiz = 100)

End(Not run)

two fixed and a moving cluster
stream <- DSD_MG(dim = 2,

MGC_Static(dens = 1, par = .1, center = c(0, 0)),
MGC_Static(dens = 1, par = .1, center = c(1, 1)),
MGC_Linear(dim = 2, list(
keyframe(time = 0, dens = 1, par = .1, center = c(0, 0)),
keyframe(time = 1000, dens = 1, par = .1, center = c(1, 1)),
keyframe(time = 2000, dens = 1, par = .1, center = c(0, 0), reset = TRUE)

)))

noise <- MGC_Noise(dens = .1, range = rbind(c(-.2, 1.2), c(-.2, 1.2)))
add_cluster(stream, noise)

Not run:
animate_data(stream, n = 2000 * 3.1, xlim = c(-.2, 1.2), ylim = c(-.2, 1.2), horiz = 200)

End(Not run)

plot.DSC Plot Results of a Data Stream Clustering

plot.DSC 99

Description

Method to plot the result of data stream data clustering. To plot DSD see plot.DSD().

Usage

S3 method for class 'DSC'
plot(
x,
dsd = NULL,
n = 500,
col_points = NULL,
col_clusters = c("red", "blue", "green"),
weights = TRUE,
scale = c(1, 5),
cex = 1,
pch = NULL,
method = c("pairs", "scatter", "pca"),
dim = NULL,
type = c("auto", "micro", "macro", "both", "none"),
assignment = FALSE,
transform = NULL,
...

)

Arguments

x the DSC object to be plotted.

dsd a DSD object to plot the data in the background.

n number of plots taken from dsd to plot.
col_points, col_clusters

colors used for plotting.

weights if TRUE then the cluster weight is used for symbol size. Alternatively, a vector
with the size of the symbols for micro- and macro-clusters can be supplied.

scale range for the symbol sizes used.

cex size factor for symbols.

pch symbol type for points.

method method used for plotting: "pairs" (pairs plot), "scatter" (scatter plot), "pca"
(plot first 2 principal components).

dim an integer vector with the dimensions to plot. If NULL then for methods pairs
and "pca" all dimensions are used and for "scatter" the first two dimensions
are plotted.

type Plot micro clusters (type = "micro"), macro clusters (type = "macro"), both
micro and macro clusters (type = "both").

assignment logical; show assignment area of micro-clusters.

transform a function that maps data stream points onto a 2-D plane for plotting.

100 plot.DSC

... further arguments are passed on to graphics::plot.default() or graphics::pairs().
graphics.

Author(s)

Michael Hahsler

See Also

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), predict(), prune_clusters(), read_saveDSC, recluster()

Other plot: animate_cluster(), animate_data(), plot.DSD()

Examples

stream <- DSD_Gaussians(k = 3, d = 3, noise = 0.05)

Example 1: Plot data
plot(stream)

Example 2: Plot a clustering
dstream <- DSC_DStream(gridsize = 0.1)
update(dstream, stream, 500)
dstream
plot(dstream, stream)

plot micro or macro-clusters only
plot(dstream, stream, type = "micro")
plot(dstream, stream, type = "macro")

plot projected on the first two principal components
and on dimensions 2 and 3
plot(dstream, stream, method = "pca")
plot(dstream, stream, dim = c(2, 3))

D-Stream has a special implementation to show assignment areas
plot(dstream, stream, assignment = TRUE)

Example 4: Use a custom transformation for plotting.
We fit PCA using 100 points and create a transformation
function to project the stream to the first two PCs.
pr <- princomp(get_points(stream, n = 100, info = FALSE))
trans <- function(x) predict(pr, x)[, 1:2 , drop = FALSE]

trans(get_points(stream, n = 3))

plot(dstream, stream, transform = trans)

plot.DSD 101

plot.DSD Plot Data Stream Data

Description

Method to plot data stream data. To plot DSC see plot.DSC().

Usage

S3 method for class 'DSD'
plot(
x,
n = 500,
col = NULL,
pch = NULL,
...,
method = c("pairs", "scatter", "pca", "ts"),
dim = NULL,
alpha = 0.6,
transform = NULL

)

Arguments

x the DSD object to be plotted.

n number of plots taken from x to plot.

col colors used for points.

pch symbol type.

... further arguments are passed on to graphics::plot.default() or graphics::pairs().

method method used for plotting: "pairs" (pairs plot), "scatter" (scatter plot), "pca"
(plot first 2 principal components), or "ts" (time series).

dim an integer vector with the dimensions to plot. If NULL then for methods pairs
and "pca" all dimensions are used and for "scatter" the first two dimensions
are plotted.

alpha alpha shading used to plot the points.

transform a function that maps data stream points onto a 2-D plane for plotting.

Author(s)

Michael Hahsler

102 predict

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_UniformNoise(), DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(),
close_stream(), get_points(), reset_stream()

Other plot: animate_cluster(), animate_data(), plot.DSC()

Examples

stream <- DSD_Gaussians(k=3, d=3)

plot data
plot(stream, n = 500)
plot(stream, method = "pca", n = 500)
plot(stream, method = "scatter", dim = c(1, 3), n = 500)

create and plot micro-clusters
dstream <- DSC_DStream(gridsize = 0.1)
update(dstream, stream, 500)
plot(dstream)

plot with data, projected on the first two principal components
and dimensions 2 and 3
plot(dstream, stream)
plot(dstream, stream, method = "pca")
plot(dstream, stream, dim = c(2, 3))

plot micro and macro-clusters
plot(dstream, stream, type = "both")

plot a time series using the AirPassenger data with the total monthly
passengers from 1949 to 1960) a as a stream
AirPassengers
stream <- DSD_Memory(data.frame(

.time = time(AirPassengers),
passengers = AirPassengers))

get_points(stream, n = 10)
plot(stream, n = 100, method = "ts")

predict Make a Prediction for a Data Stream Mining Task

Description

predict() for data stream mining tasks DST.

predict 103

Usage

S3 method for class 'DST'
predict(object, newdata, ...)

S3 method for class 'DSC'
predict(
object,
newdata,
type = c("auto", "micro", "macro"),
method = "auto",
...

)

Arguments

object The DST object.

newdata The points to make predictions for as a data.frame.

... Additional arguments are passed on.

type Use micro- or macro-clusters in DSC for assignment.

method assignment method

• "model" uses the assignment method of the underlying algorithm (unas-
signed points return NA). Not all algorithms implement this option.

• "nn" performs nearest neighbor assignment using Euclidean distance.
• "auto" uses the model assignment method. If this method is not imple-

mented/available then method "nn" is used instead.

Value

A data.frame with columns containing the predictions. The columns depend on the type of the data
stream mining task.

Author(s)

Michael Hahsler

See Also

Other DST: DSAggregate(), DSClassifier(), DSC(), DSF_Scale(), DSOutlier(), DST_Runner(),
DST_WriteStream(), DST(), evaluate, update()

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), prune_clusters(), read_saveDSC, recluster()

Examples

set.seed(1500)
stream <- DSD_Gaussians(k = 3, d = 2, noise = .1)

104 prune_clusters

dbstream <- DSC_DBSTREAM(r = .1)
update(dbstream, stream, n = 100)
plot(dbstream, stream, type = "both")

find the assignment for the next 100 points to
micro-clusters in dsc. This uses the model's assignment function
points <- get_points(stream, n = 10)
points

pr <- predict(dbstream, points, type = "macro")
pr

Note that the clusters are labeled in arbitrary order. Check the
agreement.
agreement(pr[,".class"], points[,".class"])

prune_clusters Prune Clusters from a Clustering

Description

Creates a (static) copy of a clustering where a fraction of the weight or the number of clusters with
the lowest weights were pruned.

Usage

prune_clusters(dsc, threshold = 0.05, weight = TRUE)

Arguments

dsc The DSC object to be pruned.

threshold The numeric vector of probabilities for the quantile.

weight should a fraction of the total weight in the clustering be pruned? Otherwise a
fraction of clusters is pruned.

Value

Returns an object of class DSC_Static.

Author(s)

Michael Hahsler

See Also

DSC_Static

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), predict(), read_saveDSC, recluster()

read_saveDSC 105

Examples

3 clusters with 10% noise
stream <- DSD_Gaussians(k=3, noise=0.1)

dbstream <- DSC_DBSTREAM(r=0.1)
update(dbstream, stream, 500)
dbstream
plot(dbstream, stream)

prune lightest micro-clusters for 20% of the weight of the clustering
static <- prune_clusters(dbstream, threshold=0.2)
static
plot(static, stream)

read_saveDSC Save and Read DSC Objects

Description

Save and Read DSC objects safely (serializes the underlying data structure). This also works for
streamMOA DSC objects.

Usage

saveDSC(object, file, ...)

readDSC(file)

Arguments

object a DSC object.

file filename.

... further arguments.

Author(s)

Michael Hahsler

See Also

saveRDS and readRDS.

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), predict(), prune_clusters(), recluster()

106 recluster

Examples

stream <- DSD_Gaussians(k = 3, noise = 0.05)

create clusterer with r = 0.05
dbstream1 <- DSC_DBSTREAM(r = .05)
update(dbstream1, stream, 1000)
dbstream1

saveDSC(dbstream1, file="dbstream.Rds")

dbstream2 <- readDSC("dbstream.Rds")
dbstream2

cleanup
unlink("dbstream.Rds")

recluster Re-clustering micro-clusters

Description

Use an *offline macro clustering algorithm to recluster micro-clusters into a final clusters.

Usage

recluster(macro, micro, type = "auto", ...)

S3 method for class 'DSC_Macro'
recluster(macro, micro, type = "auto", ...)

Arguments

macro an empty DSC_Macro.

micro an updated DSC_Micro with micro-clusters.

type controls which clustering is used from micro. Typically auto.

... additional arguments passed on.

Details

Takes centers and weights of the micro-clusters and applies the macro clustering algorithm.

See DSC_TwoStage for a convenient combination of micro and macro clustering.

Value

The object macro is altered in place and contains the clustering.

reset_stream 107

Author(s)

Michael Hahsler

See Also

Other DSC: DSC_Macro(), DSC_Micro(), DSC_R(), DSC_Static(), DSC_TwoStage(), DSC(), animate_cluster(),
evaluate.DSC, get_assignment(), plot.DSC(), predict(), prune_clusters(), read_saveDSC

Examples

set.seed(0)
create a data stream and a micro-clustering
stream <- DSD_Gaussians(k = 3, d = 3)

sample can be seen as a simple online clusterer where the sample points
are the micro clusters.
sample <- DSC_Sample(k = 50)
update(sample, stream, 500)
sample

recluster using k-means
kmeans <- DSC_Kmeans(k = 3)
recluster(kmeans, sample)

plot clustering
plot(kmeans, stream, type = "both", main = "Macro-clusters (Sampling + k-means)")

reset_stream Reset a Data Stream to its Beginning

Description

Resets the position in a DSD object to the beginning or, if available, any other position in the stream.

Usage

reset_stream(dsd, pos = 1)

Arguments

dsd An object of class a subclass of DSD which implements a reset function.

pos Position in the stream (the beginning of the stream is position 1).

108 reset_stream

Details

Resets the counter of the stream object. For example, for DSD_Memory, the counter stored in
the environment variable is moved back to 1. For DSD_ReadCSV objects, this is done by calling
seek() on the underlying connection.

reset_stream() is implemented for:

• DSD

• DSD_MG

• DSD_Memory

• DSD_ReadStream

• DSF

• DSF_Convolve

Author(s)

Michael Hahsler

See Also

Other DSD: DSD_BarsAndGaussians(), DSD_Benchmark(), DSD_Cubes(), DSD_Gaussians(), DSD_MG(),
DSD_Memory(), DSD_Mixture(), DSD_NULL(), DSD_ReadDB(), DSD_ReadStream(), DSD_Target(),
DSD_UniformNoise(), DSD_mlbenchData(), DSD_mlbenchGenerator(), DSD(), DSF(), animate_data(),
close_stream(), get_points(), plot.DSD()

Examples

initializing the objects
stream <- DSD_Gaussians()
replayer <- DSD_Memory(stream, 100)
replayer

p <- get_points(replayer, 50)
replayer

reset replayer to the beginning of the stream
reset_stream(replayer)
replayer

set replayer to position 21
reset_stream(replayer, pos = 21)
replayer

update 109

update Update a Data Stream Mining Task Model with Points from a Stream

Description

update() for data stream mining tasks DST.

Usage

S3 method for class 'DST'
update(object, dsd, n = 1L, ...)

Arguments

object The DST object.

dsd A DSD object with the data stream.

n number of points from dsd to use for the update. Some DSD dsd accept n = -1
to update with all remaining points in the stream.

... Additional arguments are passed on.

Value

NULL or a data.frame n rows containing update information for each data point.

Author(s)

Michael Hahsler

See Also

Other DST: DSAggregate(), DSClassifier(), DSC(), DSF_Scale(), DSOutlier(), DST_Runner(),
DST_WriteStream(), DST(), evaluate, predict()

Examples

set.seed(1500)
stream <- DSD_Gaussians(k = 3, d = 2, noise = .1)

dbstream <- DSC_DBSTREAM(r = .1)
assignment <- update(dbstream, stream, n = 100, assignment = TRUE)
plot(dbstream, stream, type = "both")

DBSTREAM returns cluster assignments (see DSC_DBSTREAM).
head(assignment)

110 write_stream

write_stream Write a Data Stream to a File

Description

Writes points from a data stream DSD object to a file or a connection.

Usage

write_stream(
dsd,
file,
n = 100,
block = 100000L,
info = FALSE,
append = FALSE,
sep = ",",
header = FALSE,
row.names = FALSE,
close = TRUE,
...

)

Arguments

dsd The DSD object that will generate the data points for output.

file A file name or a R connection to be written to.

n The number of data points to be written.

block Write stream in blocks to improve file I/O speed.

info Save the class/cluster labels and other information columns with the data.

append Append the data to an existing file. If FALSE, then the file will be overwritten.

sep The character that will separate attributes in a data point.

header A flag that determines if column names will be output (equivalent to col.names
in write.table()).

row.names A flag that determines if row names will be output.

close close stream after writing.

... Additional parameters that are passed to write.table().

Value

There is no value returned from this operation.

Author(s)

Michael Hahsler

write_stream 111

See Also

write.table

Examples

creating data and writing it to disk
stream <- DSD_Gaussians(k = 3, d = 5)
write_stream(stream, file="data.txt", n = 10, header = TRUE, info = TRUE)

readLines("data.txt")

clean up
file.remove("data.txt")

Index

∗ DSAggregate
DSAggregate, 8
DSAggregate_Sample, 9
DSAggregate_Window, 11

∗ DSC_Macro
DSC_DBSCAN, 18
DSC_EA, 27
DSC_Hierarchical, 31
DSC_Kmeans, 32
DSC_Macro, 34
DSC_Reachability, 37

∗ DSC_Micro
DSC_BICO, 15
DSC_BIRCH, 16
DSC_DBSTREAM, 19
DSC_DStream, 23
DSC_evoStream, 29
DSC_Micro, 35
DSC_Sample, 39
DSC_Window, 43

∗ DSC_TwoStage
DSC_DBSTREAM, 19
DSC_DStream, 23
DSC_evoStream, 29
DSC_TwoStage, 42

∗ DSC
animate_cluster, 5
DSC, 12
DSC_Macro, 34
DSC_Micro, 35
DSC_R, 36
DSC_Static, 40
DSC_TwoStage, 42
evaluate.DSC, 85
get_assignment, 91
plot.DSC, 98
predict, 102
prune_clusters, 104
read_saveDSC, 105

recluster, 106
∗ DSD

animate_data, 6
close_stream, 7
DSD, 45
DSD_BarsAndGaussians, 46
DSD_Benchmark, 47
DSD_Cubes, 48
DSD_Gaussians, 49
DSD_Memory, 52
DSD_MG, 54
DSD_Mixture, 56
DSD_mlbenchData, 57
DSD_mlbenchGenerator, 58
DSD_NULL, 59
DSD_ReadDB, 60
DSD_ReadStream, 62
DSD_Target, 65
DSD_UniformNoise, 66
DSF, 67
get_points, 93
plot.DSD, 101
reset_stream, 107

∗ DSF
DSF, 67
DSF_Convolve, 69
DSF_Downsample, 72
DSF_dplyr, 73
DSF_ExponentialMA, 74
DSF_Func, 76

∗ DSOutlier
DSC_DBSTREAM, 19
DSC_DStream, 23
DSOutlier, 79

∗ DST
DSAggregate, 8
DSC, 12
DSClassifier, 14
DSF_Scale, 77

112

INDEX 113

DSOutlier, 79
DST, 80
DST_Runner, 82
DST_WriteStream, 83
evaluate, 84
predict, 102
update, 109

∗ evaluation
animate_cluster, 5
evaluate, 84
evaluate.DSC, 85

∗ plot
animate_cluster, 5
animate_data, 6
plot.DSC, 98
plot.DSD, 101

add_cluster (DSD_MG), 54
add_keyframe (MGC), 95
agreement, 4
animate (animate_data), 6
animate_cluster, 5, 7, 13, 35–37, 41, 43, 85,

90, 93, 100, 102–105, 107
animate_data, 6, 6, 8, 45–47, 49, 51, 53, 55,

57–59, 61, 64, 66, 68, 94, 100, 102,
108

animation (animate_data), 6
animation::ani.replay(), 6, 7

BICO (DSC_BICO), 15
bico (DSC_BICO), 15
BIRCH (DSC_BIRCH), 16
birch (DSC_BIRCH), 16

change_alpha (DSC_DBSTREAM), 19
close_stream, 7, 7, 45–47, 49, 51, 53, 55,

57–59, 61, 64, 66, 68, 94, 102, 108
close_stream(), 45, 64
close_stream.DSD_ReadCSV

(DSD_ReadStream), 62
close_stream.DSD_ReadDB (DSD_ReadDB), 60
close_stream.DSD_ReadStream

(DSD_ReadStream), 62
close_stream.DSF (DSF), 67
clue::cl_agreement(), 4
cluster::silhouette(), 87, 90
connection, 63, 64

D-Stream (DSC_DStream), 23

d-stream (DSC_DStream), 23
data.frame, 94
DBI::dbClearResult(), 61
DBI::dbDisconnect(), 61
DBI::dbGetQuery(), 61
DBI::DBI, 61
DBSCAN (DSC_DBSCAN), 18
dbscan (DSC_DBSCAN), 18
DBSTREAM, 30
DBSTREAM (DSC_DBSTREAM), 19
dbstream (DSC_DBSTREAM), 19
deprecated, 91
description (DST), 80
dplyr::dplyr, 73
dplyr::filter(), 73
dplyr::mutate(), 73
dplyr::rename(), 73
dplyr::select(), 73
dplyr::transmute(), 73
DSAggregate, 8, 10, 11, 13, 15, 78–83, 85,

103, 109
DSAggregate_Sample, 9, 9, 11, 39
DSAggregate_Window, 9, 10, 11
DSC, 5, 6, 9, 12, 15, 18, 22, 26, 32, 33, 35–37,

39, 41–44, 78–83, 85, 86, 90, 92, 93,
99–101, 103–105, 107, 109

DSC_BICO, 15, 17, 22, 26, 30, 36, 40, 44
DSC_BIRCH, 16, 16, 22, 26, 30, 36, 40, 44
DSC_DBSCAN, 18, 28, 32, 33, 35, 38
DSC_DBSTREAM, 16, 17, 19, 26, 30, 36, 40, 43,

44, 79
DSC_DStream, 16, 17, 22, 23, 30, 36, 40, 43,

44, 79
DSC_EA, 19, 27, 32, 33, 35, 38
DSC_evoStream, 16, 17, 22, 26, 28, 29, 36, 40,

43, 44
DSC_Hierarchical, 19, 28, 31, 33, 35, 38
DSC_Kmeans, 19, 28, 32, 32, 35, 38
DSC_Macro, 6, 13, 18, 19, 28, 32, 33, 34,

36–38, 41–43, 88, 90, 93, 100,
103–107

DSC_Micro, 6, 13, 16, 17, 22, 26, 30, 34, 35,
35, 37, 39–44, 88, 90, 93, 100,
103–107

DSC_R, 6, 13, 18, 22, 26, 32, 33, 35, 36, 36, 37,
39, 41, 43, 44, 90, 93, 100, 103–105,
107

DSC_Reachability, 19, 28, 32, 33, 35, 37

114 INDEX

DSC_Sample, 16, 17, 22, 26, 30, 36, 39, 44
DSC_Static, 6, 13, 35–37, 40, 43, 90, 93, 100,

103–105, 107
DSC_TwoStage, 6, 13, 22, 26, 30, 34–37, 41,

42, 90, 93, 100, 103–107
DSC_Window, 16, 17, 22, 26, 30, 36, 40, 43
DSClassifier, 9, 13, 14, 78–83, 85, 103, 109
DSD, 5, 7–9, 25, 43, 45, 46–53, 55–59, 61, 64,

66–70, 72–78, 82, 84–86, 93, 94, 97,
99, 101, 102, 107–109

DSD_BarsAndGaussians, 7, 8, 45, 46, 47, 49,
51, 53, 55, 57–59, 61, 64, 66, 68, 94,
102, 108

DSD_Benchmark, 7, 8, 45, 46, 47, 49, 51, 53,
55, 57–59, 61, 64, 66, 68, 94, 102,
108

DSD_Cubes, 7, 8, 45–47, 48, 51, 53, 55, 57–59,
61, 64, 66, 68, 94, 102, 108

DSD_Gaussians, 7, 8, 45–47, 49, 49, 53, 55,
57–59, 61, 64, 66, 68, 94, 102, 108

DSD_Memory, 7, 8, 45–47, 49, 51, 52, 55,
57–59, 61, 64, 66, 68, 94, 102, 108

DSD_MG, 7, 8, 45–47, 49, 51, 53, 54, 57–59, 61,
64, 66, 68, 94–97, 102, 108

DSD_Mixture, 7, 8, 45–47, 49, 51, 53, 55, 56,
58, 59, 61, 64, 66, 68, 94, 102, 108

DSD_mlbenchData, 7, 8, 45–47, 49, 51, 53, 55,
57, 57, 59, 61, 64, 66, 68, 94, 102,
108

DSD_mlbenchGenerator, 7, 8, 45–47, 49, 51,
53, 55, 57, 58, 58, 59, 61, 64, 66, 68,
94, 102, 108

DSD_NULL, 7, 8, 45–47, 49, 51, 53, 55, 57–59,
59, 61, 64, 66, 68, 94, 102, 108

DSD_R, 48, 50, 52, 56, 58, 61, 64
DSD_R (DSD), 45
DSD_ReadCSV, 8, 108
DSD_ReadCSV (DSD_ReadStream), 62
DSD_ReadDB, 7, 8, 45–47, 49, 51, 53, 55,

57–59, 60, 64, 66, 68, 94, 102, 108
DSD_ReadStream, 7, 8, 45–47, 49, 51, 53, 55,

57–59, 61, 62, 66, 68, 94, 102, 108
DSD_ScaleStream (DSF_Scale), 77
DSD_Target, 7, 8, 45–47, 49, 51, 53, 55,

57–59, 61, 64, 65, 66, 68, 94, 102,
108

DSD_UniformNoise, 7, 8, 45–47, 49, 51, 53,
55, 57–59, 61, 64, 66, 66, 68, 94,

102, 108
DSF, 7, 8, 45–47, 49, 51, 53, 55, 57–59, 61, 64,

66, 67, 70, 72, 74–76, 78, 94, 102,
108

DSF_Convolve, 68, 69, 72, 74–76, 108
DSF_Downsample, 68, 70, 72, 74–76
DSF_dplyr, 68, 70, 72, 73, 75, 76
DSF_ExponentialMA, 68, 70, 72, 74, 74, 76
DSF_Func, 68, 70, 72, 74, 75, 76
DSF_Scale, 9, 13, 15, 77, 79, 81–83, 85, 103,

109
DSFP, 68, 80
DSOutlier, 9, 13, 15, 22, 26, 78, 79, 80–83,

85, 103, 109
DSOutlier_DBSTREAM (DSC_DBSTREAM), 19
DSOutlier_DStream (DSC_DStream), 23
DST, 9, 13, 15, 35, 69, 78–80, 80, 81–85, 94,

102, 103, 109
DST_Multi, 81
DST_Runner, 9, 13, 15, 78, 79, 81, 82, 83, 85,

103, 109
DST_WriteStream, 9, 13, 15, 78, 79, 81, 82,

83, 85, 103, 109
dstream (DSC_DStream), 23

evaluate, 6, 9, 13, 15, 78, 79, 81–83, 84, 90,
103, 109

evaluate.DSC, 6, 13, 35–37, 41, 43, 85, 85,
93, 100, 103–105, 107

evaluate_static (evaluate), 84
evaluate_static.DSC (evaluate.DSC), 85
evaluate_stream (evaluate), 84
evaluate_stream(), 5
evaluate_stream.DSC (evaluate.DSC), 85

filter_diff (DSF_Convolve), 69
filter_Hamming (DSF_Convolve), 69
filter_MA (DSF_Convolve), 69
filter_Sinc (DSF_Convolve), 69
formula, 15, 17, 18, 20, 24, 27, 29, 31, 33, 38
fpc::cluster.stats(), 87, 90

get_assignment, 6, 13, 35–37, 41, 43, 90, 91,
100, 103–105, 107

get_attraction (DSC_DStream), 23
get_centers (DSC), 12
get_centers(), 25, 42
get_clusters (DSD_MG), 54
get_clusters(), 35

INDEX 115

get_copy (DSC), 12
get_keyframes (MGC), 95
get_macroclusters (DSC), 12
get_macroweights (DSC), 12
get_microclusters (DSC), 12
get_microweights (DSC), 12
get_points, 7, 8, 45–47, 49, 51, 53, 55,

57–59, 61, 64, 66, 68, 93, 102, 108
get_points(), 9, 45, 59, 63, 76
get_points.DSAggregate (DSAggregate), 8
get_shared_density (DSC_DBSTREAM), 19
get_weights (DSC), 12
get_weights(), 9, 42
get_weights.DSAggregate (DSAggregate), 8
graphics::pairs(), 100, 101
graphics::plot.default(), 100, 101

hclust(), 32

keyframe (MGC), 95

magrittr::%>%, 67
MGC, 54, 55, 95, 96
MGC_Function (MGC), 95
MGC_Linear (MGC), 95
MGC_Noise (MGC), 95
MGC_Random (MGC), 95
MGC_Static (MGC), 95
microToMacro (DSC_Macro), 34
microToMacro(), 34

nclusters (DSC), 12

plot (plot.DSD), 101
plot(), 25, 45, 79
plot.DSC, 6, 7, 13, 35–37, 41, 43, 90, 93, 98,

102–105, 107
plot.DSC(), 13, 101
plot.DSC_DBSTREAM (DSC_DBSTREAM), 19
plot.DSC_DStream (DSC_DStream), 23
plot.DSD, 6–8, 45–47, 49, 51, 53, 55, 57–59,

61, 64, 66, 68, 94, 100, 101, 108
plot.DSD(), 99
pow2 (DSF_Convolve), 69
predict, 6, 9, 13, 15, 35–37, 41, 43, 78, 79,

81–83, 85, 90, 93, 100, 102, 104,
105, 107, 109

predict(), 13, 21, 80, 86, 92
prune_clusters, 6, 13, 35–37, 41, 43, 90, 93,

100, 103, 104, 105, 107

read.table(), 63, 64
read_saveDSC, 6, 13, 35–37, 41, 43, 90, 93,

100, 103, 104, 105, 107
readDSC (read_saveDSC), 105
readDSC(), 13
readLines(), 63, 64
readRDS, 105
recluster, 6, 13, 35–37, 41, 43, 90, 93, 100,

103–105, 106
recluster(), 18, 30, 32–34, 38
remove_cluster (DSD_MG), 54
remove_info (get_points), 93
remove_keyframe (MGC), 95
reset_stream, 7, 8, 45–47, 49, 51, 53, 55,

57–59, 61, 64, 66, 68, 94, 102, 107
reset_stream(), 45, 57, 61, 64, 94
reset_stream.DSF (DSF), 67

saveDSC (read_saveDSC), 105
saveDSC(), 13
saveRDS, 105
scale, 78
seek(), 108
Shape_Block (MGC), 95
Shape_Gaussian (MGC), 95
stats::filter, 70
stats::kmeans(), 33
stream-package, 3

update, 9, 13, 15, 78, 79, 81–83, 85, 103, 109
update(), 13, 18, 21, 32, 33, 35, 38, 80, 82
update.DSAggregate (DSAggregate), 8
update.DSC_R (DSC_R), 36

write.table, 111
write.table(), 110
write_stream, 110
write_stream(), 83

	stream-package
	agreement
	animate_cluster
	animate_data
	close_stream
	DSAggregate
	DSAggregate_Sample
	DSAggregate_Window
	DSC
	DSClassifier
	DSC_BICO
	DSC_BIRCH
	DSC_DBSCAN
	DSC_DBSTREAM
	DSC_DStream
	DSC_EA
	DSC_evoStream
	DSC_Hierarchical
	DSC_Kmeans
	DSC_Macro
	DSC_Micro
	DSC_R
	DSC_Reachability
	DSC_Sample
	DSC_Static
	DSC_TwoStage
	DSC_Window
	DSD
	DSD_BarsAndGaussians
	DSD_Benchmark
	DSD_Cubes
	DSD_Gaussians
	DSD_Memory
	DSD_MG
	DSD_Mixture
	DSD_mlbenchData
	DSD_mlbenchGenerator
	DSD_NULL
	DSD_ReadDB
	DSD_ReadStream
	DSD_Target
	DSD_UniformNoise
	DSF
	DSFP
	DSF_Convolve
	DSF_Downsample
	DSF_dplyr
	DSF_ExponentialMA
	DSF_Func
	DSF_Scale
	DSOutlier
	DST
	DST_Multi
	DST_Runner
	DST_WriteStream
	evaluate
	evaluate.DSC
	get_assignment
	get_points
	MGC
	plot.DSC
	plot.DSD
	predict
	prune_clusters
	read_saveDSC
	recluster
	reset_stream
	update
	write_stream
	Index

