
The subselect R package

Jorge Cadima, Jorge Orestes Cerdeira, Pedro Duarte Silva, Manuel Minhoto

August 30, 2022

Version 0.12

Abstract

The subselect package addresses the issue of variable selection in different statistical contexts,
among which exploratory data analyses; univariate or multivariate linear models; generalized linear
models; principal components analysis; linear discriminant analysis, canonical correlation analysis.
Selecting variable subsets requires the definition of a numerical criterion which measures the quality
of any given variable subset as a surrogate for the full set of variables. The current version of
the subselect package provides eight different criteria. For each available criterion, the package
provides a function that computes the criterion value of any given subset. More significantly, the
package provides efficient search functions that seek the best subsets of any given size, for a specified
criterion.

Contents

1 Introduction 2
1.1 The variable selection problem . 2
1.2 Measuring the quality of a subset . 2
1.3 Selecting the best subsets . 2
1.4 Installing and loading subselect . 3

2 Criteria for variable selection 3
2.1 Criteria for exploratory data analyses and PCA . 3

2.1.1 The RM coefficient . 4
2.1.2 The GCD coefficient . 6
2.1.3 The RV coefficient . 7

2.2 Criteria for a Multivariate Linear model context . 8
2.2.1 Four criteria . 9
2.2.2 Creating the SSCP matrices . 10
2.2.3 The ccr2

1 (ccr12) coefficient and Roy’s first root statistic 14
2.2.4 The τ2 (tau2) coefficient and Wilk’s Lambda 15
2.2.5 The ξ2 (xi2) coefficient and the Bartlett-Pillai statistic 15
2.2.6 The ζ2 (zeta2) coefficient and the Lawley-Hotelling statistic 16

2.3 Criterion for generalized linear models . 16
2.3.1 A helper function for the GLM context . 17
2.3.2 Function wald.coef and the Wald coefficient 18

1

3 Search algorithms 18
3.1 Common input arguments . 19
3.2 Common output objects . 19
3.3 The eleaps function: an efficient complete search . 20
3.4 The anneal function: a simulated annealing algorithm 25
3.5 The genetic function: a genetic algorithm . 28
3.6 The improve function: a restricted improvement algorithm 31

1 Introduction

1.1 The variable selection problem

Selecting a subset of variables which can be used as a surrogate for a full set of variables, without
major loss of quality, is a problem that arises in numerous contexts.

Multiple linear regression has been the classical statistical setting for variable selection and the
greedy algorithms of backward elimination, forward selection and stepwise selection have long been
used to choose a subset of linear predictors. However, their limitations are well known and more
efficient search algorithms have also been devised, such as Furnival and Wilson’s Leaps and Bounds
Algorithm (reference [6]).

The subselect package addresses the issue of variable selection in different statistical contexts,
among which:

� exploratory data analyses;

� univariate or multivariate linear models;

� generalized linear models;

� principal components analysis;

� linear discriminant analysis;

� canonical correlation analysis.

1.2 Measuring the quality of a subset

Selecting variable subsets requires the definition of a numerical criterion which measures the quality
of any given variable subset. In a univariate multiple linear regression, for example, possible measures
of the quality of a subset of predictors are the coefficient of determination R2, the F statistic in a
goodness-of-fit test, its corresponding p-value or Akaike’s Information Criterion (AIC), to give a few
examples.

The subselect package assumes that all potential variable subsets can be ranked according to a
well-defined numerical criterion that is relevant for the problem at hand, and that the ultimate goal
is to select the best subsets for any given cardinality, i.e., the subsets of any given size which have the
highest criterion values, for a given criterion.

The criteria currently available in the package will be further discussed in Section 2. For each
available criterion, the package provides a function that computes the criterion value of any given
subset. More importantly, the package provides efficient functions to search for the best subsets of
any given size.

1.3 Selecting the best subsets

Identifying the best variable subsets of a given cardinality is – for many criteria – a computation-
ally intensive problem with datasets of even moderate size, as is well known in the standard linear
regression context.

The subselect package has a function (eleaps) implementing Duarte Silva’s adaptations (refer-
ences [4] and [5]) of Furnival and Wilson’s Leaps and Bounds Algorithm [6] for variable selection,

2

using the criteria considered in this package. This function is very fast for datasets with up to ap-
proximately p = 30 variables and is guaranteed to identify the m best subsets of any size k from 1 to
p, with m in the range from 1 to

(
p
k

)
. It is the recommended function for variable selection with small

or moderately-sized data sets and is discussed in subsection 3.3.
For larger data sets (roughly p > 35) the eleaps function is no longer computationally feasible

and alternative search heuristics are needed. The subselect package provides three functions with
different search algorithms:

anneal a simulated annealing-type search algorithm;

genetic a genetic algorithm; and

improve a modified local improvement algorithm.

These algorithms are described in reference [1] and are discussed in Section 3. They perform better
than the greedy-type algorithms, such as the standard stepwise selection algorithms widely used in
linear regression.

All four search functions invoke code written in either C++ (eleaps) or Fortran (anneal, genetic
and improve), to speed up computation times. The search functions are further discussed in Section
3.

1.4 Installing and loading subselect

The subselect package is on CRAN (cran.r-project.org) and can be installed like any other CRAN
package, namely using R’s install.packages facility:

> install.packages(''subselect'')

This vignette assumes that the subselect package has already been installed in the user’s system.
Once installed, subselect must be loaded into an R session:

> library(subselect)

A preliminary view of the available functions and of their purpose can, as usual, be obtained via:

> library(help=subselect)

2 Criteria for variable selection

Currently, the package accepts eight different criteria measuring the quality of any given variable
subset. These criteria can be (simplistically) classified into three groups: (i) criteria that are useful
in an exploratory analysis or principal component analysis of a data set; (ii) criteria that are model-
based and are relevant in contexts that can be framed as a multivariate linear model (multivariate
linear regressions, MANOVAs, linear discriminant analysis, canonical correlation analysis, etc.); and
(iii) criteria that are useful for variable selection in the context of a generalized linear model.

2.1 Criteria for exploratory data analyses and PCA

The three criteria relevant for exploratory data analyses have been previously suggested in the liter-
ature (see references [2] and [1] for a fuller discussion). They can all be framed as matrix correlations
[16] involving an n × p data matrix (where p is the number of variables and n the number of obser-
vations on those variables) and projections of its columns on some subspace of Rn. In the subselect

package, these three criteria are called:

RM The square of this matrix correlation is the proportion of total variance (inertia) that is preserved
if the p variables are orthogonally projected onto the subspace spanned by a given k-variable
subset. Choosing the k-variable subset that maximizes this criterion is therefore akin to what
is done in a Principal Component Analysis, with the difference that the optimal k-dimensional
subspace is chosen only from among the

(
p
k

)
subspaces spanned by k of the p variables. This is

3

the second of McCabe’s four criteria for what he terms principal variables [13]. See Subsection
2.1.1 for more details.

GCD Yanai’s Generalized Coefficient of Determination [16] is a measure of the closeness of two
subspaces that is closely related to the gap metric [7]. More precisely, it is the average of the
squared canonical correlations between two sets of variables spanning each of the subspaces [16].
In this context, these subspaces are the subspace spanned by g Principal Components of the full,
p-variable, data set; and the subspace spanned by a k-variable subset of those p variables. By
default the PCs considered are the first g PCs, and the number of variables and PCs considered
is the same (k = g), but other options can be specified by the user. Maximizing the GCD
corresponds to chosing the k variables that span a subspace that is as close as possible to the
principal subspace spanned by the g principal components that were specified. See Subsection
2.1.2 for more details.

RV Escoufier’s RV-criterion [18] measures the similarity of the n-point configurations defined by the
n rows of two (comparable) data matrices, allowing for translations of the origin, rigid rotations
and global changes of scale. In this case, the two matrices that are compared are the original
data matrix X and the matrix PkX which results from projecting the p columns of X onto
a k-dimensional subspace spanned by k of the p original variables. Maximizing this criterion,
among all k-variable subsets, corresponds to choosing the k variables that span the subspace
which best reproduces the original n-point configuration, allowing for translations of the origin,
rigid rotations and global changes of scale. See Subsection 2.1.3 for more details.

The package functions that compute the values of these indices (described below) all have the
following two input arguments:

mat denotes the covariance or correlation matrix of the full data set;

indices is the vector, matrix or 3-d array of integers giving sets of integers identifying the variables
in the subsets of interest.

The function for the GCD coefficient has an additional argument, described in subsection 2.1.2.

2.1.1 The RM coefficient

Motivation and definition

It is well-known that the first k principal components of an n × p data set are the k linear
combinations of the p original variables which span the subspace that maximizes the proportion of
total variance retained, if the data are orthogonally projected onto that subspace. A similar problem,
but considering only the subspaces that are spanned by k-variable subsets of the p original variables,
can be formulated [2] as follows: determine the k-variable subset which maximizes the square of the
RM coefficient,

RM = corr(X,PkX) =

√
tr(XtPkX)

tr(XtX)
=

√√√√√√√
p∑

i=1

λi(rm)2
i

p∑
j=1

λj

=

√
tr([S2](K)S

−1
K)

tr(S)
, (1)

with corr denoting the matrix correlation; tr the matrix trace; and where

� X is the full (column-centered or possibly standardized) data matrix;

� Pk is the matrix of orthogonal projections on the subspace spanned by a given k-variable subset;

� S = 1
n
XtX is the p× p covariance (or correlation) matrix of the full data set;

� K denotes the index set of the k variables in the variable subset;

� SK is the k× k principal submatrix of matrix S which results from retaining the r↪ows/columns
whose indices belong to K;

4

� [S2](K) is the k×k principal submatrix of S2 obtained by retaining the r↪ows/columns associated
with set K.

� λi stands for the i-th largest eigenvalue of the covariance (or correlation) matrix defined by X;

� rm stands for the multiple correlation between the i-th principal component of the full data set
and the k-variable subset.

The values of the RM coefficient will lie in the interval [0, 1], with larger values indicating a higher
proportion of explained variance. Note that it is not relevant whether sample (co)variances (with
denominator n−1), or even the sums of squares and products matrices, are used instead of matrix S
as defined above: RM is insensitive to multiplication of S by a constant.

The rm.coef function

The subselect package provides the function rm.coef which computes the RM coefficient, given a
positive definite matrix (function argument mat, corresponding to S in the final expression of equation
(1)) and a vector with k indices (function argument indices, corresponding to K in (1)):

> rm.coef(mat,indices)

The rm.coef function uses the final expression in equation (1). In the standard setting, matrix S
is a covariance or correlation matrix for the full data set, but it may be any positive definite matrix,
such as a matrix of non-central second moments.

Examples

As an example of the use of the rm.coef function, let us compute the value of the RM coefficient
for the two petal measurements in Fisher’s iris data (variables 3 and 4, respectively, Petal.Length
and Petal.Width; see help(iris) in a standard R session for more information on this data set).
This can be obtained as follows, using rm.coef ’s only two arguments:

> rm.coef(mat=var(iris[,-5]),indices=c(3,4))

[1] 0.9655367

>

The square of this value,

> rm.coef(var(iris[,-5]),c(3,4))^2

[1] 0.9322611

>

gives the proportion of total variability that is preserved if the four morphometric variables were
orthogonally projected onto the subspace spanned by the petal measurements. It is quite often the
case that this value is not very much smaller than the proportion of total variability that is accounted
for by the same number of principal components [2].

If more than one subset of a given cardinality is desired, the indices argument should be given
as a matrix whose rows provide the indices of the variables in each subset. For example, the RM
coefficients for the three-variable subsets of the iris data, given by variables {1, 2, 3} and {1, 2, 4} are
requested by the command:

> rm.coef(var(iris[,-5]), indices=matrix(nrow=2,ncol=3,byrow=TRUE,c(1,2,3,1,2,4)))

[1] 0.9960440 0.9890406

5

The argument indices can also be a three-dimensional array, if subsets of different cardinalities
are desired. In this case, the third dimension of indices is associated with different cardinalities. This
option is especially useful when applying the rm.coef function to the output of the search algorithms
(see Section 3), if more than one cardinality has been requested.

An example for the less frequent case, where the request is built from scratch, is now given. It
computes the value of RM for two 1-variable subsets and two 3-variable subsets:

> subsets <- array(data=c(3,2,0,0,0,0,1,1,2,2,3,4), dim=c(2,3,2))

> colnames(subsets) <- paste("V",1:3,sep="")

> rownames(subsets) <- paste("Solution",1:2)

> dimnames(subsets)[[3]]<-paste("Size",c(1,3))

> subsets

, , Size 1

V1 V2 V3

Solution 1 3 0 0

Solution 2 2 0 0

, , Size 3

V1 V2 V3

Solution 1 1 2 3

Solution 2 1 2 4

> rm.coef(var(iris[,-5]),indices=subsets)

Size 1 Size 3

Solution 1 0.9595974 0.9960440

Solution 2 0.4309721 0.9890406

The output places the values for each cardinality in a different column. Notice how the missing
variable indices for the lower cardinalities are given as zeroes,

2.1.2 The GCD coefficient

Motivation and definition

In the standard setting for the subselect package, given a p-variable data set and a subset of g of
its principal components, the GCD criterion is a measure of similarity between the principal subspace
spanned by the g specified principal components and the subspace spanned by a given k-variable
subset of the original variables [2].

The GCD is the matrix correlation between the matrix Pk of orthogonal projections on the
subspace spanned by a given k-variable subset and the matrix Pg of orthogonal projections on the
subspace spanned by the g given principal components of the full data set [2]:

GCD = corr(Pk,Pg) =
tr(Pk ·Pg)√

k · g
=

1√
kg

∑
i∈G

(rm)2
i = tr([S{G}](K)S

−1
K)/

√
gk, (2)

where

� K, S, SK and (rm)i are all defined as above (subsection 2.1.1);

� G denotes the index set of the g principal components in the PC subset;

� S{G} is the p × p matrix of rank g that results from retaining only the g terms in the spectral
decomposition of S that are associated with the PC indices in the set G;

� [S{G}](K) is the k×k principal submatrix of S{G} that results from retaining only the rows/columns
whose indices are in K.

6

The values of the GCD coefficient are in the interval [0, 1], with larger values indicating greater
similarity between the subspaces.

The gcd.coef function

The gcd.coef function computes the GCD coefficient for a given positive definite matrix (function
argument mat, corresponding to matrix S in the final expression of equation (2)), a given vector of k
variable indices (function argument indices, corresponding to K in (2)), and a given vector of g PC
indices (function argument pcindices, corresponding to G in (2)):

> gcd.coef(mat,indices,pcindices)

If the pcindices argument is not specified, by default it is set to the first k PCs, where k is the
size of the variable subset defined by argument indices.

The value of the GCD is computed using the final expression in equation (2). Matrix S (the input
argument mat) is usually the covariance or correlation matrix for the full p-variable data set, but
there may be other contexts where the final expression in (2) makes sense.

Examples

The value of the GCD coefficient for the first two covariance-matrix PCs in Fisher’s iris data and
the two petal measurements can be obtained as following:

> gcd.coef(var(iris[,-5]),ind=c(3,4),pcind=c(1,2))

[1] 0.4993048

>

The two sepal measurements span a subspace that is much closer to the principal plane:

> gcd.coef(var(iris[,-5]),ind=c(1,2))

[1] 0.9073201

>

As with the RM coefficient the value of the GCD coefficient for multiple subsets can be requested
by providing the argument mat as a matrix (if the subsets are all of the same cardinality) or a three-
dimensional array (for subsets of different cardinalities) (see subsection 2.1.1 for examples). In this
case, however, the PC indices requested via the argument pcindices must use the same vector for
each function call.

2.1.3 The RV coefficient

Motivation and definition

As already stated, Escoufier’s RV-criterion [18] measures the similarity of the n-point configura-
tions defined by the n rows of two (comparable) data matrices, allowing for translations of the origin,
rigid rotations and global changes of scale. The criterion is defined, in this context, as the matrix
correlation between the matrices XXt and PkXXtPk (where X and Pk are defined as above) [1]:

RV = corr(XXt,PkXXtPk) =
1√

tr(S2)
·
√

tr
(

[S2](K) [SK]−1
)2

, (3)

(S, SK and
[
S2
]
(K)

are defined as in section 2.1.1).

Possible values for the RV coefficient lie in the interval [0, 1], with larger values indicating more
similarity between the two n-point configurations.

7

The rv.coef function

The value of the RV coefficient, for a given positive definite matrix (function argument mat,
corresponding to matrix S in the final expression of equation (3)) and a given vector of k variable
indices (function argument indices, corresponding to K in equation (3)), can be computed using the
rv.coef function:

> rv.coef(mat,indices)

Examples

The farm data set (included in this package), has n = 99 individuals, observed in each of p = 62
variables. The RV coefficient reveals that the 99−point configuration of the standardized data in R62

is fairly similar to the configuration that results from the orthogonal projection of those 99 points on
the subspace spanned by variables number 2, 37, 57 and 59:

> data(farm)

> rv.coef(cor(farm),ind=c(2,37,57,59))

[1] 0.8304743

For two different variable subsets of size 4, the argument indices is given as a matrix, whose rows
indicate the variable indices for each subset. For example, the RV-coefficients of the four-variable
subsets {2, 12, 56, 59} and {2, 3, 11, 59}, are requested by the command:

> rv.coef(cor(farm), indices=matrix(nrow=2,ncol=4,byrow=TRUE,c(2,12,56,59,2,3,11,59)))

[1] 0.8315621 0.8295819

2.2 Criteria for a Multivariate Linear model context

Different statistical methods arise within the general framework of a multivariate linear model [9]:

X = AΨΨΨ + U,

where X is an n×p data matrix of original variables, A is a known (n×q) design matrix, ΨΨΨ is a (q×p)
matrix of unknown parameters and U is a (n × p) matrix of error vectors. Particular cases in this
setting include, among others, [Multivariate] Analysis of Variance ([M]ANOVA), Linear Discriminant
Analyis (LDA) and Canonical Correlation Analysis (CCA). Here we will be particularly concerned
with contexts where a selection of subsets of X is warranted, the classical cases being LDA and CCA.

In these statistical methods, variable subsets are often assessed according to their contribution to
the violation of an additional reference hypothesis, H0 : CΨΨΨ = 0, where C is a known coefficient
matrix of rank r [9].

For example, in LDA X is a matrix of n observations, divided by q groups, on p attributes; A
is a matrix of group indicators; and ΨΨΨ is a matrix of group-specific population means. In this case,
the rows of C specify q− 1 contrasts, stating the equality of population means across groups. Hence,
r = min(p, q − 1), and any index of the extent of H0 violations can be interpreted as a measure of
group separation.

In Canonical Correlation Analysis, A = [1n Y] where 1n is a vector of ones, the columns of X
and Y are n observations on two different sets of variables, the reference hypothesis, H0 : C ΨΨΨ =
[0 Iq]

[
ΨΨΨt

0 ΨΨΨt
Y

]t
= 0, states that the two sets are uncorrelated, and r = min (rank(X), rank(Y)).

Indicators for the violation of H0 are measures of linear association between the X and Y variable
sets. We note that in this context only the variables associated with the X group are selected, while
the Y group of variables remains fixed.

When Y = y consists of a single (response) variable this problem becomes the traditional variable
selection problem in Linear Regression, usually modelled as y = [1n X] [β0 βββX]t +εεε. While subselect

can also be used with reasonable results in multivariate regression models Y = [1n X] [β0β0β0 βββX]t + εεε,

8

with Y having more than one column, the symmetric association indices considered in subselect

were not designed to measure the quality of Y predictions. In multivariate prediction problems other
(non-symmetric) measures such as those discussed in Rencher [17] and McQuarrie and Tsai [14] may
be more relevant. In univariate regression all these measures are monotone functions of the traditional
coefficient of determination, which is also the index considered by subselect.

It is well known that, under classical Gaussian assumptions, test statistics for H0 are given by
several increasing functions of the r positive eigenvalues of a product matrix T−1H, with T and H
the total and effect matrices of Sum of Squares and Cross Product (SSCP) deviations associated with
H0, such that

T = H + E,

where matrix E is the matrix of residual SSCP. The former SSCP matrices are given by T = Xt(Ip−
Pω)X and H = Xt(PΩ −Pω)X, where Ip is an identity matrix, PΩ = A(AtA)−At and

Pω = A(AtA)−At −A(AtA)−Ct[C(AtA)−Ct]−C(AtA)−At,

are projection matrices on the spaces spanned by the columns of A (space Ω) and by the linear
combinations of these columns that satisfy the reference hypothesis (space ω). In these formulas Mt

denotes the transpose of matrix M, and M− a generalized inverse. Furthermore, whether or not
the classical assumptions hold, the same eigenvalues can be used to define descriptive indices that
measure an ”effect” characterized by the violation of H0.

2.2.1 Four criteria

In the subselect package four effect-size indices, which are monotone functions of the traditional
test statistics, are used as comparison criteria. These indices are called:

Ccr12 The ccr2
1 index is a function of the traditional Roy first root test statistic [19], λ1, for the

violation of the linear hypothesis of the form H0 : CΨΨΨ = 0. Maximizing this criterion is
equivalent to maximizing Roy’s first root (see Subsection 2.2.3 for more details).

Tau2 The τ2 index is a function of the traditional Wilks’ Lambda statistic [20]. Maximizing this
criterion is equivalent to minimizing Wilks’ Lambda (see Subsection 2.2.4).

Xi2 The ξ2 coefficient is a function of the Bartlett-Pillai trace test statistic [15] Maximizing this
criterion is equivalent to maximizing the Bartlett-Pillai statistic (see Subsection 2.2.5).

Zeta2 The index ζ2 is a function of the traditional Lawley-Hotelling trace test statistic [12] [8]. Max-
imizing this criterion is equivalent to maximizing the Lawley-Hotelling statistic (see Subsection
2.2.6).

Cramer and Nicewander [3] introduced these indices in the context of CCA, and Huberty [9]
discusses their use in the context of LDA and MANOVA. In all four cases, the indices are defined
so that their values lie between 0 and 1, and the larger the index value, the better the variable subset
as a surrogate for the full data set. In the specific case of a multiple linear regression (with a
single response variable), all four indices are equal to the standard coefficient of determination, R2.
However, in multivariate problems with r > 1 the indices differ because they place different emphasis
on canonical directions associated with the effect under study. In particular, ccr2

1 only considers the
first canonical direction, ξ2 weights all r directions in a balanced way, and τ2, ζ2 are intermediate
indices that emphasize the main directions (see reference [4] for further details).

The four package functions that compute the values of these indices are called *.coef, where the
asterisk denotes the above criterion name. These functions have six input arguments:

mat denotes the Total SSCP matrix T;

H denotes the effects SSCP matrix of relevance for the particular case at hand (see subsection 2.2.2
for more details);

r denotes the rank of the H matrix (except in degenerate cases - see the help files for each *.coef

function);

9

indices is the vector, matrix or 3-d array of integers that identify the variables in the subsets of
interest;

tolval and tolsym are parameters used to check for ill-conditioning of the matrix mat, and the sym-
metry of matrices mat and H (see the help files for more details).

2.2.2 Creating the SSCP matrices

The relevant Sum of Squares and Cross-Products Effect matrix H is specific to each context in which
model-based variable selection arises. Computing these matrices can sometimes be time-consuming
and the direct application of the formulas described in the previous subsection can lead to large
rounding errors. The subselect package provides helper functions which, for standard contexts, cre-
ate both the SSCP Effects matrix H and the SSCP Total matrix T, using sound numerical procedures
based on singular value decompositions, as well as computing the presumed rank r of H.

The output from these functions can be used as input for both the functions that compute the
model-based criteria of quality for a given variable subset (discussed in the subsections below) and
for the search functions that seek the best subsets of variables for a given data set (see Section 3).

For the multivariate linear model context, subselect provides three such helper functions. For
all three functions, the output is a list of four objects:

mat is the relevant Total SSCP matrix T divided by n − 1 (where n is the number of rows in the
data matrix);

H is the relevant Effect SSCP matrix divided by n− 1;

r is the rank of matrix H;

call is the function call which generated the output.

The fact that mat and T are not defined as the standard SSCP matrices, but rather divided by
n− 1 is of no consequence, since multiplying T and H by a common scalar does not affect the criteria
values.

The three helper functions currently available for the multivariate linear model context are the
following:

The lmHmat function for linear regression and CCA

The function lmHmat creates the necessary SSCP matrices for a linear regression or canonical
correlation analysis context. In a (possibly multivariate response) linear regression context, it is
assumed that the response variables are fixed and a subset of the predictor variables is being assessed.
In a canonical correlation analysis context, it is assumed that one of the two groups of variables is
fixed, and it is a subset of the second group of variables that is being assessed (variable selection in
both groups will currently have to be done via a 2-step approach). This function takes by default the
following arguments:

x is a matrix containing the full set of predictor variables, in the regression context, or the group of
variables in which a variable subset is to be chosen in the CCA context.

y is a matrix or vector containing the set of fixed response variables, in the regression context, or the
set of fixed variables in the CCA context.

There is an S3 method for arguments x and y of class data.frame, as well as methods for classes
formula and lm, that replace the input arguments by:

formula a standard linear model formula y ∼ x1+x2+... defining the model relation between response
and predictor variables (in the regression context) or fixed and assessed variables in the CCA
context.

data a data frame from which variables specified in formula are preferentially to be taken.

or

fitdlmmodel an object of class lm, as produced by R’s lm function.

10

In this context, the output object mat is the covariance matrix Tx of the x variables; object H is the
covariance matrix Hx|y of the projections of the x variables on the space spanned by the y variables;
and r is the expected rank of the H matrix which, under the assumption of linear independence,
equals the minimum between the number of variables in the x and y sets (the true rank of H can be
different if the linear independence condition fails). See the lmHmat help file for more information.

Example. An example of the use of the helper function lmHmat involves the iris data set. The
goal is to study the (univariate response) multiple linear regression of variable Sepal.Length (the first
variable in the iris data frame) on the three remaining predictors.

> lmHmat(x=iris[,2:4], y=iris[,1])

$mat

Sepal.Width Petal.Length Petal.Width

Sepal.Width 0.1899794 -0.3296564 -0.1216394

Petal.Length -0.3296564 3.1162779 1.2956094

Petal.Width -0.1216394 1.2956094 0.5810063

$H

Sepal.Width Petal.Length Petal.Width

Sepal.Width 0.00262602 -0.07886075 -0.03194931

Petal.Length -0.07886075 2.36822983 0.95945448

Petal.Width -0.03194931 0.95945448 0.38870928

$r

[1] 1

$call

lmHmat.data.frame(x = iris[, 2:4], y = iris[, 1])

The ldaHmat function for linear discriminant analysis

This function takes by default the following arguments:

x is a matrix containing the discriminating variables, from which a subset is being considered.

grouping is a factor specifying the class to which each observation belongs.

There are S3 methods for

� class data.frame input argument x;

� input object of class formula.

With these methods, the input arguments for ldaHmat can be given as:

formula a formula of the form grouping ∼ x1+x2+... where the x variables denote the discriminating
variables.

data a data frame from which variables specified in formula are preferentially to be taken.

In this context, the output objects mat and H are the standard total (T) and between-group
(H) SSCP matrices of Fisher’s linear discriminant analysis; and output object r is the rank of the
between-group matrix H, which equals the minimum between the number of discriminators and the
number of groups minus one (although the true rank of H can be different, if the discriminators are
linearly dependent).

11

Examples A simple example of the use of function ldaHmat again involves the iris data set. We
seek to discriminate the three iris species, using the four morphometric variables as discriminators.

> ldaHmat(x=iris[,1:4], grouping=iris$Species)

$mat

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 102.168333 -6.322667 189.8730 76.92433

Sepal.Width -6.322667 28.306933 -49.1188 -18.12427

Petal.Length 189.873000 -49.118800 464.3254 193.04580

Petal.Width 76.924333 -18.124267 193.0458 86.56993

$H

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 63.21213 -19.95267 165.2484 71.27933

Sepal.Width -19.95267 11.34493 -57.2396 -22.93267

Petal.Length 165.24840 -57.23960 437.1028 186.77400

Petal.Width 71.27933 -22.93267 186.7740 80.41333

$r

[1] 2

$call

ldaHmat.data.frame(x = iris[, 1:4], grouping = iris$Species)

In the same example, the function could have been invoked as:

> attach(iris)

> ldaHmat(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width)

$mat

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 102.168333 -6.322667 189.8730 76.92433

Sepal.Width -6.322667 28.306933 -49.1188 -18.12427

Petal.Length 189.873000 -49.118800 464.3254 193.04580

Petal.Width 76.924333 -18.124267 193.0458 86.56993

$H

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 63.21213 -19.95267 165.2484 71.27933

Sepal.Width -19.95267 11.34493 -57.2396 -22.93267

Petal.Length 165.24840 -57.23960 437.1028 186.77400

Petal.Width 71.27933 -22.93267 186.7740 80.41333

$r

[1] 2

$call

ldaHmat.formula(formula = Species ~ Sepal.Length + Sepal.Width +

Petal.Length + Petal.Width)

> detach(iris)

The glhHmat function for a general linear hypthesis context

The function glhHmat creates the appropriate SSCP matrices for any problem that can be de-
scribed as an instance of the general multivariate linear model X = AΨΨΨ + U, with a reference

12

hypothesis H0 : CΨΨΨ = 0, where ΨΨΨ is a matrix of unknown parameters and C is a known rank-r
coefficient matrix. By default, this function takes the following arguments:

x is a matrix containing the response variables.

A is a design matrix specifying a linear model in which X is the response.

C is a matrix or vector containing the coefficients of the reference hypothesis.

There is an S3 method for input of class data.frame in which x and A are defined as data frames.
A further method accepts input of class formula, with input arguments:

formula a formula of the form X ∼ A1 +A2 + ...+Ap where the terms of the right hand side specify
the relevant columns of the design matrix.

C a matrix or vector containing the coefficients of the reference hypothesis.

data a data frame from which variables specified in formula are preferentially to be taken.

In this context, the T and H matrix have the generic form given at the beginning of this subsection
and r is the rank of H, which equals the rank of C (the true rank of H can be different from r if the
X variables are linearly dependent).

Example. The following example creates the Total and Effects SSCP matrices, T and H, for an
analysis of the data set crabs in the MASS package. This data set records physical measurements
on 200 specimens of Leptograpsus variegatus crabs observed on the shores of Western Australia. The
crabs are classified by two factors, both with two levels each: sex and sp (crab species, as defined
by its colour: blue or orange). The measurement variables include the carapace length (CL), the
carapace width (CW), the size of the frontal lobe (FL) and the rear width (RW). We assume that there
is an interest in comparing the subsets of these variables measured in their original and logarithmic
scales. In particular, we assume that it is wished to create the T and H matrices associated with
an analysis of the effect of the sp factor after controlling for sex. Only the formula, C and data

arguments are explicitly given in this function call.

> library(MASS)

> data(crabs)

> lFL <- log(crabs$FL) ; lRW <- log(crabs$RW); lCL <- log(crabs$CL); lCW <- log(crabs$CW)

> C <- matrix(0.,nrow=2,ncol=4)

> C[1,3] = C[2,4] = 1.

> C

[,1] [,2] [,3] [,4]

[1,] 0 0 1 0

[2,] 0 0 0 1

> Hmat5 <- glhHmat(cbind(FL,RW,CL,CW,lFL,lRW,lCL,lCW) ~ sp*sex,C=C,data=crabs)

> Hmat5

$mat

FL RW CL CW lFL lRW lCL

FL 1964.8964 1375.92420 4221.6722 4765.1928 131.977728 113.906076 138.315643

RW 1375.9242 1186.41150 2922.6779 3354.5236 93.560559 96.961292 97.428477

CL 4221.6722 2922.67790 9246.8527 10401.3878 285.023931 243.479136 303.358489

CW 4765.1928 3354.52360 10401.3878 11755.2667 322.144623 279.160241 341.776779

lFL 131.9777 93.56056 285.0239 322.1446 9.088336 7.905989 9.556135

lRW 113.9061 96.96129 243.4791 279.1602 7.905989 8.094783 8.273439

lCL 138.3156 97.42848 303.3585 341.7768 9.556135 8.273439 10.183194

lCW 137.6258 98.38041 300.6960 340.1509 9.503886 8.338091 10.097091

lCW

FL 137.625801

RW 98.380414

13

CL 300.696018

CW 340.150874

lFL 9.503886

lRW 8.338091

lCL 10.097091

lCW 10.050426

$H

FL RW CL CW lFL lRW

FL 85.205200 45.784800 176.247600 209.231400 5.7967443 3.45859277

RW 45.784800 170.046900 18.769500 74.965800 3.0238356 12.80782993

CL 176.247600 18.769500 404.216100 452.356800 12.0381364 1.43745463

CW 209.231400 74.965800 452.356800 523.442500 14.2580360 5.67260253

lFL 5.796744 3.023836 12.038136 14.258036 0.3944254 0.22844463

lRW 3.458593 12.807830 1.437455 5.672603 0.2284446 0.96467943

lCL 5.865986 1.190274 13.158093 14.909948 0.4003070 0.09041999

lCW 6.004088 2.653921 12.718332 14.891177 0.4088329 0.20062548

lCL lCW

FL 5.86598627 6.0040883

RW 1.19027431 2.6539211

CL 13.15809339 12.7183319

CW 14.90994753 14.8911765

lFL 0.40030704 0.4088329

lRW 0.09041999 0.2006255

lCL 0.43030750 0.4210740

lCW 0.42107404 0.4253378

$r

[1] 2

$call

glhHmat.formula(formula = cbind(FL, RW, CL, CW, lFL, lRW, lCL,

lCW) ~ sp * sex, C = C, data = crabs)

2.2.3 The ccr21 (ccr12) coefficient and Roy’s first root statistic

Motivation and definition

The ccr2
1 coefficient is an increasing function of Roy’s first root test statistic for the reference

hypothesis in the standard multivariate linear model. Roy’s first root is the largest eigenvalue of
HE−1, where H is the Effect matrix and E is the Error (residual) matrix. The index ccr2

1 is related
to Roy’s first root λ1 by:

ccr2
1 =

λ1

1 + λ1
.

The ccr12.coef function

The subselect package provides the function ccr12.coef which computes the ccr2
1 coefficient, given

the variance or total SSCP matrix for the full data set, mat, the effects SSCP matrix H, the expected
rank of the H matrix, r, and a vector indices with the indices of the variable subset that is being
considered. These arguments may be defined with the helper functions described in Subsection 2.2.2.
A standard function call looks like:

> ccr12.coef(mat, H, r, indices)

For further arguments and options, see the function help page.

14

Example

The following example in the use of function ccr12.coef in the context of a (univariate response)
Multiple Linear Regression uses the Cars93 data set from the MASS library. Variable 5 (average price)
is regressed on 13 other variables. The goal is to compare subsets of these 13 variables according to
their ability to predict car prices. The helper function lmHmat creates the relevant input to test the
value of the ccr2

1 criterion for the subset of the fourth, fifth, tenth and eleventh predictors.

> library(MASS)

> data(Cars93)

> CarsHmat <- lmHmat(x=Cars93[c(7:8,12:15,17:22,25)],y=Cars93[5])

> ccr12.coef(mat=CarsHmat$mat, H=CarsHmat$H, r=CarsHmat$r, indices=c(4,5,10,11))

[1] 0.7143794

2.2.4 The τ2 (tau2) coefficient and Wilk’s Lambda

Motivation and definition

The Tau squared index τ2 is a decreasing function of the standard Wilk’s Lambda statistic for
the multivariate linear model and its reference hypothesis. The Wilk’s lambda statistic (Λ) is given
by:

Λ =
det(E)

det(T)
,

where E is the Error (residual) SSCP matrix and T is the Total SSCP matrix. The index τ2 is related
to the Wilk’s Lambda statistic by:

τ2 = 1− Λ1/r,

where r is the rank of the Effect SSCP matrix H.

The tau2.coef function

Function tau2.coef is similar to its counterpart ccr12.coef described in the previous Subsection.
A standard function call looks like:

> tau2.coef(mat, H, r, indices)

Example

A very simple example of the use of the τ2 criterion with the Linear Discriminant Analysis example
for the iris data set, using all four morphometric variables to discriminate the three species. The
subset consisting of variables 1 and 3 is then considered as a surrogate for all four variables.

> irisHmat <- ldaHmat(iris[1:4],iris$Species)

> tau2.coef(irisHmat$mat,H=irisHmat$H,r=irisHmat$r,c(1,3))

[1] 0.8003044

2.2.5 The ξ2 (xi2) coefficient and the Bartlett-Pillai statistic

Motivation and definition

The Xi squared index is an increasing function of the traditional Bartllet-Pillai trace test statistic.
The Bartlett-Pillai trace P is given by: P = tr(HT−1) where H is the Effects SSCP matrix and T
is the Total SSCP matrix. The Xi squared index ξ2 is related to the Bartllet-Pillai trace by:

ξ2 =
P

r
,

where r is the rank of H.

15

The xi2.coef function

Function xi2.coef is similar to the previous criterion functions described in this Section. A standard
function call looks like:

> xi2.coef(mat, H, r, indices)

Example

The same example considered in Subsection 2.2.4, only this time using the ξ2 index of τ2.

> irisHmat <- ldaHmat(iris[1:4],iris$Species)

> xi2.coef(irisHmat$mat,H=irisHmat$H,r=irisHmat$r,c(1,3))

[1] 0.4942503

2.2.6 The ζ2 (zeta2) coefficient and the Lawley-Hotelling statistic

Motivation and definition

The Zeta squared index ζ2 is an increasing function of the traditional Lawley-Hotelling trace test
statistic. The Lawley-Hotelling trace is given by V = tr(HE−1) where H is the Effect SSCP matrix
and E is the Error SSCP matrix. The index ζ2 is related to the Lawley-Hotelling trace by:

ζ2 =
V

V + r
,

where r is the rank of H.

The zeta2.coef function

Again, function zeta2.coef has arguments similar to those of the other related functions in this
Section. A standard function call looks like:

> zeta2.coef(mat, H, r, indices)

Example

Again, the same example as in the previous two subsections:

> irisHmat <- ldaHmat(iris[1:4],iris$Species)

> zeta2.coef(irisHmat$mat,H=irisHmat$H,r=irisHmat$r,c(1,3))

[1] 0.9211501

2.3 Criterion for generalized linear models

Motivation and definition

Variable selection in the context of generalized linear models is typically based on the minimiza-
tion of statistics that test the significance of the excluded variables. In particular, the likelihood ratio,
Wald and Rao statistics, or some monotone function of those statistics, are often proposed as com-
parison criteria for variable subsets of the same dimensionality. All these statistics are asympotically
equivalent and, given suitable assumptions, can be converted into information criteria, such as the
AIC, which also compare subsets of different dimensionalities (see references [10] and [11] for further
details).

Among these criteria, Wald’s statistic has some computational advantages because it can always
be derived from the same maximum likelihood and Fisher information estimates (concerning the full

16

model). In particular, let Wall be the value of the Wald statistic testing the significance of the full
covariate vector, b and F be the coefficient and Fisher information estimates, and H be an auxiliary
rank-one matrix given by H = FbbtF. It follows that the value of Wald’s statistic for the excluded
variables (Wexc) in a given subset is given by Wexc = Wall− tr(F−1

indicesHindices), where Findices and
Hindices are the portions of the F and H matrices associated with the selected variables.

The subselect package provides a function wald.coef that computes the value of Wald’s statis-
tic, testing the significance of the excluded variables, in the context of variable subset selection in
generalized linear models (see Subsection 2.3.2 for more details).

2.3.1 A helper function for the GLM context

As with the multivariate linear model context, creating the Fisher Information matrix and the auxil-
iary matrix H described above may be time-consuming. The subselect package provides the helper
function glmHmat which accepts a glm object (fitdglmmodel) to retrieve an estimate of Fisher’s
Information. (F) matrix together with an auxiliary rank-one positive-definite matrix (H), such that
the positive eigenvalue of F−1H equals the value of Wald’s statistic for testing the global significance
of the fitted model. These matrices may be used as input to the function that computes the Wald
criterion, as well as to the variable selection search routines described in Section 3.

As an example of the use of this helper function, in the context of binary response logistic regression
models, consider the last 100 observations of the iris data set (retaining only observations for the
versicolor and virginica species). Assume that the goal is to judge subsets of the four morphometric
variables (petal and sepal lengths and widths), in models with the binary response variable given
by an indicator variable of the two remaining species. The helper function glmHmat will produce
the Fisher Information matrix (output object mat), the auxiliary H function (output object H), the
function call, and set the rank of output object H to 1, as follows:

> iris2sp <- iris[iris$Species != "setosa",]

> modelfit <- glm(Species ~ Sepal.Length + Sepal.Width + Petal.Length +

+ Petal.Width, data=iris2sp, family=binomial)

> Hmat <- glmHmat(modelfit)

> Hmat

$mat

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 0.28340358 0.03263437 0.09552821 -0.01779067

Sepal.Width 0.03263437 0.13941541 0.01086596 0.04759284

Petal.Length 0.09552821 0.01086596 0.08847655 -0.01853044

Petal.Width -0.01779067 0.04759284 -0.01853044 0.03258730

attr(,"FisherI")

[1] TRUE

$H

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 0.11643732 0.013349227 -0.063924853 -0.050181400

Sepal.Width 0.01334923 0.001530453 -0.007328813 -0.005753163

Petal.Length -0.06392485 -0.007328813 0.035095164 0.027549918

Petal.Width -0.05018140 -0.005753163 0.027549918 0.021626854

$r

[1] 1

$call

glmHmat.glm(fitdglmmodel = modelfit)

17

2.3.2 Function wald.coef and the Wald coefficient

The function wald.coef computes the value (Wexc) of the Wald statistic, as described above. The
function takes as input arguments:

mat An estimate of Fisher’s information matrix F for the full model variable-coefficient estimates;

H A matrix product of the form H = FbbtF where b is a vector of variable-coefficient estimates;

indices a numerical vector, matrix or 3-d array of integers giving the indices of the variables in the
subset. If a matrix is specified, each row is taken to represent a different k -variable subset. If a
3-d array is given, it is assumed that the third dimension corresponds to different cardinalities.

tolval and tolsym are parameters used in checks for ill-conditioning and positive-definiteness of the
Fisher Information and the auxiliary (H) matrices (see the wald.coef help file for further
details).

The values of arguments mat and H can be created using the glmHmat helper function, described
in subsection 2.3.1.

Example

An example of variable selection in the context of binary response regression models can be given
using the same crabs data set from the MASS package that was already discussed in subsection 2.2.2.
The logarithms and original physical measurements of the Leptograpsus variegatus crabs considered
in the MASS crabs data set are used to fit a logistic model where each crab’s sex forms the response
variable. The quality of the variable subset made up by the first, sixth and seventh predictor variables
is measured via the Wald coefficent.

> library(MASS)

> lFL <- log(crabs$FL)

> lRW <- log(crabs$RW)

> lCL <- log(crabs$CL)

> lCW <- log(crabs$CW)

> logrfit <- glm(sex ~ FL + RW + CL + CW + lFL + lRW + lCL + lCW,data=crabs,family=binomial)

> lHmat <- glmHmat(logrfit)

> wald.coef(lHmat$mat,lHmat$H,indices=c(1,6,7),tolsym=1E-06)

[1] 2.286739

It should be stressed that, contrary to the criteria considered in the previous problems, Wexc is
not bounded above by 1 and Wexc is a decreasing function of subset quality.

3 Search algorithms

Given any data set for which the variable selection problem is relevant and a criterion that measures
how well any given variable subset approximates the full data set, the problem of finding the best
k-variable subsets for that criterion arises naturally. Such problems are computationally intensive
for the criteria considered in this package. A complete search, among all k-variable subsets is a task
which quickly becomes unfeasible even for moderately-sized data sets unless k is very small, or very
large, when compared with p.

It may happen that a criterion has special properties which render enumeration methods possi-
ble for some moderate-sized data sets. Furnival and Wilson’s [6] Leaps and bounds algorithm did
this in the context of subset selection in Linear Regression, and package co-author Duarte Silva (see
references [4] and [5]) has discussed the application of this algorithm to various methods of Multi-
variate Statistics. The package function eleaps implements these algorithms for the criteria discussed
above, using C++ code (see Section 3.3). This function is very fast for small or moderately sized
datasets (with roughly p < 30 variables). For larger data sets (roughly p > 35 variables) it becomes
computationally unfeasible and alternative search heuristics become necessary.

18

Traditional heuristics for the variable selection problem in the context of linear regression, such
as the backward elimination, forward selection or stepwise selection algorithms belong to a general
class of algorithms called greedy. Their limitations are well-known. The search algorithms considered
in this package do not fall in this category. They are of three types: a simulated annealing algorithm
(implemented by the anneal function and discussed in section 3.4); a genetic algorithm (function
genetic, discussed in section 3.5) and a modified local search algorithm (function improve, discussed
in section 3.6). These algorithms were discussed in [1]. The three corresponding package functions
use Fortran code for computational efficiency.

3.1 Common input arguments

The four search functions described above share several input arguments. These are:

mat a covariance/correlation, information or sums of squares and products matrix of the variables
from which the k-subset is to be selected (equivalent to the homonymous argument in the criteria
functions discussed in Section 2).

kmin the cardinality of the smallest subset that is sought.

kmax the cardinality of the largest subset that is sought.

exclude a vector of variables (referenced by their row/column numbers in matrix mat) that are to be
forcibly excluded from the subsets considered.

include a vector of variables (referenced by their row/column numbers in matrix mat) that are to be
forcibly included in the subsets considered.

criterion A character variable, indicating which criterion is to be used in judging the quality of the
subsets. These are discussed in Section 2. The default criterion is rm for exploratory and PCA
analysis, tau2 in the multivariate linear model context, and Wald for generalized linear models.

pcindices (for the GCD criterion only) is a vector of ranks of Principal Components that are to
be used for comparison with the k-variable subsets. The default value is the character string
first_k, which associates PCs 1 to k to each cardinality k requested by the user.

H Effect description matrix. Not used with the RM, RV or GCD criteria, hence the NULL default
value.

r Rank of the effects matrix, H. Not used with the RM, RV or GCD criteria.

tolval a parameter to fine-tune the approach to ill-conditioned mat arguments (see the search function
help files for more details).

tolsym a parameter to fine-tune the approach to non-symmetric mat and H arguments (see the search
function help files for more details).

Each search function has additional specific input arguments that are discussed in the subsequent
sections and in the appropriate help files.

3.2 Common output objects

The four search functions have a common output structure: a list with five components:

subsets An m× kmax× length(kmin : kmax) 3-dimensional array, where m is the number of differ-
ent solutions that are to be produced for each cardinality (see the subsequent subsections for
details). For each cardinality (dimension 3) and each solution (dimension 1) the list of variables
(referenced by their row/column numbers in matrix mat) in the subset is given (dimension 2).
For cardinalities smaller than kmax, the extra final positions are set to zero. These output ob-
jects can be directly passed to the *.coef functions discussed in Section 2, in order to compute
the performance of these subsets with criteria other than the one used to select them;

values An m × length(kmin : kmax) matrix, giving for each cardinality (columns), the criterion
values of the best m (rows) subsets selected according to the chosen criterion;

19

bestvalues A length(kmin : kmax) vector giving the overall best values of the criterion for each
cardinality;

bestsets A length(kmin : kmax) × kmax matrix, giving, for each cardinality (rows), the variables
(referenced by their row/column numbers in matrix mat) in the best k-variable subset (can also
be fed to the *.coef functions).

call The function call which generated the output.

3.3 The eleaps function: an efficient complete search

For each cardinality k (with k ranging from kmin to kmax), eleaps (”Extended Leaps and Bounds”)
performs a branch and bound search for the best nsol-variable subsets (nsol being a user-specified
function argument), according to a specified criterion. The function eleaps implements Duarte Silva’s
adaptation for various multivariate analysis contexts (references [4] and [5]) of Furnival and Wilson’s
Leaps and Bounds Algorithm (reference [6]) for variable selection in Regression Analysis. If the search
is not completed within a user defined time limit (input argument timelimit), eleaps exits with a
warning message, returning the best (but not necessarly optimal) solutions found in the partial search
performed.

In order to improve computation times, the bulk of computations are carried out by C++ routines.
Further details about the Algorithm can be found in references [4] and [5] and in the comments to
the C++ code (in the package’s src directory). A discussion of the criteria considered can be found
in Section 2 above. The function checks for ill-conditioning of the input matrix (see the eleaps help
file for details).

Examples

For illustration of use, we now consider five examples.

Example 1 deals with a small data set provided in the standard distributions of R. The swiss data
set is a 6-variable data set with Swiss fertility and socioeconomic indicators (1888). Subsets of
variables of all cardinalities are sought, since the eleaps function sets, by default, kmin to 1
and kmax to one less than the number of columns in the input argument mat. The function call
requests the best three subsets of each cardinality, using the RM criterion (subsection 2.1.1).

> data(swiss)

> eleaps(cor(swiss),nsol=3, criterion="RM")

$subsets

, , Card.1

Var.1 Var.2 Var.3 Var.4 Var.5

Solution 1 3 0 0 0 0

Solution 2 1 0 0 0 0

Solution 3 4 0 0 0 0

, , Card.2

Var.1 Var.2 Var.3 Var.4 Var.5

Solution 1 3 6 0 0 0

Solution 2 4 5 0 0 0

Solution 3 1 2 0 0 0

, , Card.3

Var.1 Var.2 Var.3 Var.4 Var.5

Solution 1 4 5 6 0 0

20

Solution 2 1 2 5 0 0

Solution 3 3 4 6 0 0

, , Card.4

Var.1 Var.2 Var.3 Var.4 Var.5

Solution 1 2 4 5 6 0

Solution 2 1 2 5 6 0

Solution 3 1 4 5 6 0

, , Card.5

Var.1 Var.2 Var.3 Var.4 Var.5

Solution 1 1 2 3 5 6

Solution 2 1 2 4 5 6

Solution 3 2 3 4 5 6

$values

card.1 card.2 card.3 card.4 card.5

Solution 1 0.6729689 0.8016409 0.9043760 0.9510757 0.9804629

Solution 2 0.6286185 0.7982296 0.8791856 0.9506434 0.9776338

Solution 3 0.6286130 0.7945390 0.8777509 0.9395708 0.9752551

$bestvalues

Card.1 Card.2 Card.3 Card.4 Card.5

0.6729689 0.8016409 0.9043760 0.9510757 0.9804629

$bestsets

Var.1 Var.2 Var.3 Var.4 Var.5

Card.1 3 0 0 0 0

Card.2 3 6 0 0 0

Card.3 4 5 6 0 0

Card.4 2 4 5 6 0

Card.5 1 2 3 5 6

$call

eleaps(mat = cor(swiss), nsol = 3, criterion = "RM")

In this example, it is not necessary to explicitly specify the criterion RM, since it is the default
criterion for any function call which does not explicitly set the r input argument (except in a
GLM context - see Section 2.3).

Example 2 illustrates the use of the include and exclude arguments that are common to all the
search functions provided by the package subselect. Here, we request only 2- and 3- dimensional
subsets that exclude variable number 6 and include variable number 1. For each cardinality, three
solutions are requested (argument nsol). The criterion requested is the GCD (see subsection
2.1.2) and the subspace used to gauge our solutions is the principal subspace spanned by the
first three principal components of the full data set (argument pcindices). Our solutions will be
the 2- and 3-variable subsets that span subspaces that are closest to this 3-d principal subspace.

> data(swiss)

> swiss.gcd <- eleaps(cor(swiss),kmin=2,kmax=3,exclude=6,include=1,nsol=3,criterion="gcd",pcindices=1:3)

> swiss.gcd

$subsets

, , Card.2

21

Var.1 Var.2 Var.3

Solution 1 1 5 0

Solution 2 1 4 0

Solution 3 1 2 0

, , Card.3

Var.1 Var.2 Var.3

Solution 1 1 4 5

Solution 2 1 2 5

Solution 3 1 3 5

$values

card.2 card.3

Solution 1 0.7124687 0.7930632

Solution 2 0.6281922 0.7920334

Solution 3 0.5934854 0.7381808

$bestvalues

Card.2 Card.3

0.7124687 0.7930632

$bestsets

Var.1 Var.2 Var.3

Card.2 1 5 0

Card.3 1 4 5

$call

eleaps(mat = cor(swiss), kmin = 2, kmax = 3, nsol = 3, exclude = 6,

include = 1, criterion = "gcd", pcindices = 1:3)

The output of this function call can be used as input for a function call requesting the values of
the chosen solutions under a different criterion. For example, the values of the RM coefficient
for the above solutions are given by:

> rm.coef(mat=cor(swiss), indices=swiss.gcd$subsets)

Card.2 Card.3

Solution 1 0.7476013 0.8686515

Solution 2 0.7585398 0.8791856

Solution 3 0.7945390 0.8554279

Example 3 involves a Linear Discriminant Analysis example with a very small data set, which has
already been discussed in subsection 2.2.4. We consider the Iris data and three groups, defined
by species (setosa, versicolor and virginica). The goal is to select the 2- and 3-variable subsets
that are optimal for the linear discrimination (as measured by the ccr12 criterion, i.e., by Roy’s
first root statistic).

> irisHmat <- ldaHmat(iris[1:4],iris$Species)

> eleaps(irisHmat$mat,kmin=2,kmax=3,H=irisHmat$H,r=irisHmat$r,crit="ccr12")

$subsets

, , Card.2

Var.1 Var.2 Var.3

Solution 1 1 3 0

22

, , Card.3

Var.1 Var.2 Var.3

Solution 1 2 3 4

$values

card.2 card.3

Solution 1 0.9589055 0.9678971

$bestvalues

Card.2 Card.3

0.9589055 0.9678971

$bestsets

Var.1 Var.2 Var.3

Card.2 1 3 0

Card.3 2 3 4

$call

eleaps(mat = irisHmat$mat, kmin = 2, kmax = 3, criterion = "ccr12",

H = irisHmat$H, r = irisHmat$r)

Example 4 involves the MASS package Cars93 data set that was already discussed in subsection
2.2.3. The context here is a Canonical Correlation Analysis. Two groups of variables within
the Cars93 data set are compared: the X group (variables 7,8, 12 to 15, 17 to 22 and 25) and
the Y group (variables 4 and 6). The latter variables are respectively the car prices for a basic
(Min.Price) and premium (Max.Price) version, of the car models. The goal is to select 4- to 6-
variable subsets of the 13-variable X group that are optimal in terms of preserving the canonical
correlations, according to the zeta2 criterion (Warning: the Y group with the 2-price variables
is kept intact; subset selection is carried out in the X group only). The tolsym parameter is
used to relax the symmetry requirements on the effect matrix H which, for numerical reasons,
is slightly asymmetric. Since corresponding off-diagonal entries of matrix H are different, but
by less than tolsym, H is replaced by its symmetric part: (H + Ht)/2.

> library(MASS)

> data(Cars93)

> Cars93.xgroup <- Cars93[,c(7:8,12:15,17:22,25)]

> CarsHmat <- lmHmat(Cars93.xgroup,Cars93[,c(4,6)])

> colnames(Cars93[,c(4,6)])

[1] "Min.Price" "Max.Price"

> colnames(Cars93.xgroup)

[1] "MPG.city" "MPG.highway" "EngineSize"

[4] "Horsepower" "RPM" "Rev.per.mile"

[7] "Fuel.tank.capacity" "Passengers" "Length"

[10] "Wheelbase" "Width" "Turn.circle"

[13] "Weight"

> #colnames(CarsHmat$mat)

> Cars.eleaps <- eleaps(CarsHmat$mat, kmin=4, kmax=6, H=CarsHmat$H, r=CarsHmat$r, crit="zeta2", tolsym=1e-9)

> Cars.eleaps$bestvalues

Card.4 Card.5 Card.6

0.5792692 0.5981441 0.6116096

23

> Cars.eleaps$bestsets

Var.1 Var.2 Var.3 Var.4 Var.5 Var.6

Card.4 4 5 10 11 0 0

Card.5 4 5 9 10 11 0

Card.6 4 5 9 10 11 12

Example 5. A final example involves the use of the eleaps function for variable selection in the
context of a generalized linear model, more precisely, of a logistic regression model. We consider
the last 100 observations of the iris data set (versicolor and virginica species) and seek the best
variable subsets for the model with the indicator variable for the other two species as the binary
response variable.

> iris2sp <- iris[iris$Species != "setosa",]

> logrfit <- glm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,iris2sp,family=binomial)

> Hmat <- glmHmat(logrfit)

> eleaps(Hmat$mat, H=Hmat$H, r=Hmat$r, criterion="Wald", nsol=3)

$subsets

, , Card.1

Var.1 Var.2 Var.3

Solution 1 4 0 0

Solution 2 1 0 0

Solution 3 3 0 0

, , Card.2

Var.1 Var.2 Var.3

Solution 1 1 3 0

Solution 2 3 4 0

Solution 3 2 4 0

, , Card.3

Var.1 Var.2 Var.3

Solution 1 2 3 4

Solution 2 1 3 4

Solution 3 1 2 3

$values

card.1 card.2 card.3

Solution 1 4.894554 3.522885 1.060121

Solution 2 5.147360 3.952538 2.224335

Solution 3 5.161553 3.972410 3.522879

$bestvalues

Card.1 Card.2 Card.3

4.894554 3.522885 1.060121

$bestsets

Var.1 Var.2 Var.3

Card.1 4 0 0

Card.2 1 3 0

Card.3 2 3 4

24

$call

eleaps(mat = Hmat$mat, nsol = 3, criterion = "Wald", H = Hmat$H,

r = Hmat$r)

It should be stressed that, unlike other criteria in the subselect package, the Wald criterion is
not bounded above by 1 and is a decreasing function of subset quality, so that the 3-variable
subsets do, in fact, perform better than their smaller-sized counterparts.

3.4 The anneal function: a simulated annealing algorithm

Given a full data set, the anneal function uses a Simulated Annealing algorithm to seek a k-variable
subset which is optimal, as a surrogate for the full set, with respect to a given criterion. The algorithm
is described in detail in [1].

In brief, for each of the solutions requested by the user (via the nsol function argument), an initial
k-variable subset (for k ranging from kmin to kmax) of a full set of p variables is randomly selected and
passed on to a Simulated Annealing algorithm. The algorithm then selects a random subset in the
neighbourhood of the current subset (neighbourhood of a subset S being defined as the family of all
k-variable subsets which differ from S by a single variable), and decides whether to replace the current
subset according to the Simulated Annealing rule, i.e., either (i) always, if the alternative subset’s

criterion value is larger; or (ii) with probability exp
ac−cc

t if the alternative subset’s criterion value
(ac) is smaller than that of the current solution (cc), where t (the temperature parameter) decreases
throughout the iterations of the algorithm. For each cardinality k, the stopping criterion for the
algorithm is the number of iterations, which is controlled by the user (function argument niter).
Also controlled by the user are the initial temperature (argument temp), the rate of geometric cooling
of the temperature (argument cooling) and the frequency with which the temperature is cooled, as
measured by argument coolfreq, the number of iterations after which the temperature is multiplied
by 1-cooling.

Optionally, the best k-variable subset produced by the simulated annealing algorithm may be
used as input in a restricted local search algorithm, for possible further improvement (this option is
controlled by the logical argument improvement which, by default, is TRUE). The user may force vari-
ables to be included and/or excluded from the k-variable subsets (arguments include and exclude),
and may specify initial solutions (argument initialsol).

Computational effort
For each cardinality k, the total number of calls to the procedure which computes the criterion values
is nsol×niter+1. These calls are the dominant computational effort in each iteration of the algorithm.
In order to improve computation times, the bulk of computations is carried out by a Fortran routine.
Further details about the Simulated Annealing algorithm can be found in reference [1] and in the
comments to the Fortran code (in the src subdirectory for this package).

The force argument
For datasets with a very large number of variables (currently p > 400), it is necessary to set the
force argument to TRUE for the function to run, but this may cause a session crash if there is not
enough memory available. The function checks for ill-conditioning of the input matrix (see details in
the anneal help file).

Reproducible solutions
The anneal algorithm is a random algorithm, so that solutions are, in general, different each time the
algorithm is run. For reproducible solutions, the logical argument setseed should be set to TRUE
during a session and left as TRUE in subsequent function calls where it is wished to reproduce the
results.

Uniqueness of solutions
The requested nsol solutions are not necessarily different solutions. The nsol solutions are computed

25

separately, so that (unlike what happens with the eleaps function), the same variable subset may
appear more than once among the nsol solutions.

Examples
Four examples of usage of the anneal function are now given.

Example 1 is a very simple example, with a small data set with very few iterations of the algorithm,
using the RM criterion (although for a data set of this size it is best to use the eleaps complete
search, described in section 3.3).

> data(swiss)

> anneal(cor(swiss),kmin=2,kmax=3,nsol=4,niter=10,criterion="RM")

$subsets

, , Card.2

Var.1 Var.2 Var.3

Solution 1 4 5 0

Solution 2 4 5 0

Solution 3 4 5 0

Solution 4 3 6 0

, , Card.3

Var.1 Var.2 Var.3

Solution 1 1 2 6

Solution 2 1 2 6

Solution 3 4 5 6

Solution 4 4 5 6

$values

card.2 card.3

Solution 1 0.7982296 0.8734927

Solution 2 0.7982296 0.8734927

Solution 3 0.7982296 0.9043760

Solution 4 0.8016409 0.9043760

$bestvalues

Card.2 Card.3

0.8016409 0.9043760

$bestsets

Var.1 Var.2 Var.3

Card.2 3 6 0

Card.3 4 5 6

$call

anneal(mat = cor(swiss), kmin = 2, kmax = 3, nsol = 4, niter = 10,

criterion = "RM")

Example 2 uses the 62-variable farm data set, included in this package (see help(farm) for details).

> data(farm)

> anneal(cor(farm), kmin=6, nsol=5, criterion="rv")

$subsets

, , Card.6

26

Var.1 Var.2 Var.3 Var.4 Var.5 Var.6

Solution 1 10 11 14 40 44 45

Solution 2 10 14 40 44 45 58

Solution 3 5 14 36 45 56 59

Solution 4 2 37 40 45 56 59

Solution 5 2 10 11 37 40 45

$values

card.6

Solution 1 0.8648286

Solution 2 0.8646167

Solution 3 0.8616109

Solution 4 0.8647939

Solution 5 0.8640601

$bestvalues

Card.6

0.8648286

$bestsets

Var.1 Var.2 Var.3 Var.4 Var.5 Var.6

Card.6 10 11 14 40 44 45

$call

anneal(mat = cor(farm), kmin = 6, nsol = 5, criterion = "rv")

Since the kmax argument was not specified, the anneal function by default assigns it the same
value as kmin. Notice that there may be repeated subsets among the 5 solutions produced by
the function call.

Example 3 involves subset selection in the context of a (univariate) Multiple Linear Regression. The
data set cystfibr, included in the ISwR package, contains lung function data for cystic fibrosis
patients (7-23 years old). The data consists of 25 observations on 10 variables. The objective is to
predict the variable pemax (maximum expiratory pressure) from relevant patient characteristics.
A best subset of linear predictors is sought, using the tau2 criterion which, in the case of a
univariate linear regression, is just the standard Coefficient of Determination, R2.

> library(ISwR)

> cystfibrHmat <- lmHmat(pemax ~ age+sex+height+weight+bmp+fev1+rv+frc+tlc, data=cystfibr)

> colnames(cystfibrHmat$mat)

[1] "age" "sex" "height" "weight" "bmp" "fev1" "rv" "frc"

[9] "tlc"

> cystfibr.tau2 <- anneal(cystfibrHmat$mat, kmin=4, kmax=6, H=cystfibrHmat$H, r=cystfibrHmat$r, crit="tau2")

> cystfibr.tau2$bestvalues

Card.4 Card.5 Card.6

0.6141043 0.6214494 0.6266394

> cystfibr.tau2$bestsets

Var.1 Var.2 Var.3 Var.4 Var.5 Var.6

Card.4 4 5 6 7 0 0

Card.5 4 5 6 7 9 0

Card.6 1 3 4 5 6 7

27

The algorithm underlying the anneal function is a random algorithm, whose solutions are not
necessarily reproducible. It may happen that the solutions for different cardinalities are not
nested. This illustrates that the algorithm can produce different results from the standard
greedy algorithms, such as forward selection or backward elimination.

That the value of the τ2 coefficient in the context of a univariate linear regression is the coefficient
of determination can be confirmed via R’s standard lm function:

> summary(lm(pemax ~ weight+bmp+fev1+rv, data=cystfibr))$r.squared

[1] 0.6141043

The other three multivariate linear hypothesis criteria discussed in Section 2.2 also give the
value of R2 in a univariate multiple regression, as is illustrated by the following command,
which requests the value of the ξ2 criterion for the above solutions.

> xi2.coef(mat=cystfibrHmat$mat, indices=cystfibr.tau2$bestsets, H=cystfibrHmat$H, r=cystfibrHmat$r)

Card.4 Card.5 Card.6

0.6141043 0.6214494 0.6266394

Example 4 considers variable selection in the context of a logistic regression model. We consider the
last 100 observations of the iris data set (that is, the observations for the versicolor and virginica
species) and seek the best 1- to 3-variable subsets for the logistic regression that uses the four
morphometric variables to model the probability of each of these two species.

> data(iris)

> iris2sp <- iris[iris$Species != "setosa",]

> logrfit <- glm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,iris2sp,family=binomial)

> Hmat <- glmHmat(logrfit)

> iris2p.Wald <- anneal(Hmat$mat,1,3,H=Hmat$H,r=1,nsol=5,criterion="Wald")

> iris2p.Wald$bestsets

Var.1 Var.2 Var.3

Card.1 4 0 0

Card.2 1 3 0

Card.3 2 3 4

> iris2p.Wald$bestvalues

Card.1 Card.2 Card.3

4.894554 3.522885 1.060121

3.5 The genetic function: a genetic algorithm

Given a full data set, a Genetic Algorithm algorithm seeks a k-variable subset which is optimal, as a
surrogate for the full set, with respect to a given criterion. The algorithm is described in detail in [1].

In brief, for each cardinality k (with k ranging from the function arguments kmin to kmax), an
initial population of k-variable subsets is randomly selected from a full set of p variables. The size of
this initial population is specified by the function argument popsize (popsize=100 by default). In
each iteration, popsize/2 couples are formed from among the population and each couple generates
a child (a new k-variable subset) which inherits properties of its parents (specifically, it inherits all
variables common to both parents and a random selection of variables in the symmetric difference
of its parents’ genetic makeup). Each offspring may optionally undergo a mutation in the form of
a local improvement algorithm (see subsection 3.6), with a user-specified probability. Whether or
not mutations occur is controlled by the logical variable mutate (which is FALSE by default), and
the respective probability is given by the argument mutprob. The parents and offspring are ranked
according to their criterion value, and the best popsize of these k-subsets will make up the next
generation, which is used as the current population in the subsequent iteration.

The stopping rule for the algorithm is the number of generations, which is specified by the function
argument nger.

28

Optionally, the best k -variable subset produced by the Genetic Algorithm may be passed as input
to a restricted local improvement algorithm, for possible further improvement (see subsection 3.6).

The user may force variables to be included and/or excluded from the k -subsets (function argu-
ments include and exclude), and may specify an initial population (function argument initialpop).

The function checks for ill-conditioning of the input matrix (see the genetic help file for details).

Genetic diversity
For this algorithm to run, it needs genetic diversity in the population (i.e., a large number of different
variables in the variable subsets that are being considered). This means that the function will not run
on data sets with a small number of variables, p. In an attempt to ensure this genetic diversity, the
function has an optional argument maxclone, which is an integer variable specifying the maximum
number of identical replicates (clones) of individuals (variable subsets) that is acceptable in the
population. However, even maxclone=0 does not guarantee that there are no repetitions: only the
offspring of couples are tested for clones. If any such clones are rejected, they are replaced by a
k-variable subset chosen at random, without any further clone tests.

Computational effort
For each cardinality k, the total number of calls to the procedure which computes the criterion values
is popsize + nger × popsize/2. These calls are the dominant computational effort in each iteration
of the algorithm. In order to improve computation times, the bulk of computations are carried out
by a Fortran routine. Further details about the Genetic Algorithm can be found in [1] and in the
comments to the Fortran code (in the src subdirectory for this package).

The force argument
For datasets with a very large number of variables (currently p > 400), it is necessary to set the force

argument to TRUE for the function to run, but this may cause a session crash if there is not enough
memory available.

Reproducible solutions
The genetic algorithm is a random algorithm, so that solutions are, in general, different each time
the algorithm is run. For reproducible solutions, the logical argument setseed should be set to TRUE
during a session and left as TRUE in subsequent function calls where it is wished to reproduce the
results.

Uniqueness of solutions
The requested nsol solutions are not necessarily different solutions. The nsol solutions are computed
separately, so that (unlike what happens with the eleaps function), the same variable subset may
appear more than once among the nsol solutions.

Examples
Two examples of use of the genetic function are now given:

Example 1. Consider the 62-variable Portuguese farm dataset, already discussed in subsection 2.1.3
(page 7). We seek a 10-variable subset which spans a subspace as close as possible to the first
10-d principal subspace, so that criterion GCD (subsection 2.1.2) is relevant. By default, in the
genetic function (as in the anneal and improve function, but unlike the eleaps function), the
default value of kmax is set equal to the value of kmin, and so does not need to be specified in
this case.

> farm.gcd <- genetic(cor(farm), kmin=10, crit="gcd")

> farm.gcd$bestsets

Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 Var.7 Var.8 Var.9 Var.10

Card.10 11 14 30 31 38 39 40 44 46 59

> farm.gcd$bestvalues

29

Card.10

0.7933452

Since the argument popsize was not specified, the default population size (100) was used. As
stated above, not all 100 solutions are necessarily different. To select only the different solutions
R’s function unique may be used:

> unique(farm.gcd$subsets)

, , Card.10

Var.1 Var.2 Var.3 Var.4 Var.5 Var.6 Var.7 Var.8 Var.9 Var.10

Solution 1 11 30 31 37 38 39 40 44 46 59

Solution 7 28 30 31 37 38 39 40 44 46 59

Solution 13 11 29 30 31 37 38 39 40 44 59

Solution 19 11 31 37 38 39 40 44 46 47 59

Solution 25 28 29 30 31 37 38 39 40 44 59

Solution 31 11 25 30 31 37 39 40 44 46 58

Solution 37 11 29 31 37 38 39 40 44 47 59

Solution 43 28 31 37 38 39 40 44 46 47 59

Solution 49 30 31 37 38 39 40 44 46 57 59

Solution 55 10 25 30 31 37 39 40 44 46 57

Solution 59 25 28 30 31 37 38 39 40 44 46

Solution 65 28 29 31 37 38 39 40 44 47 59

Solution 71 29 30 31 37 38 39 40 44 57 59

Solution 77 31 37 38 39 40 44 46 47 57 59

Solution 83 11 25 31 37 39 40 44 46 47 58

Solution 89 25 28 29 30 31 37 38 39 40 44

Solution 95 11 25 29 30 31 37 39 40 44 58

Solution 101 10 25 31 37 39 40 44 46 47 57

Solution 104 10 25 28 30 31 37 39 40 44 46

Solution 107 10 25 29 30 31 37 39 40 44 57

Solution 113 11 25 30 31 37 38 39 40 44 46

Solution 119 25 28 31 37 38 39 40 44 46 47

If more than just a few different solutions are desired, it may be possible to increase the diversity
of solutions by using the maxclone argument. The following example compares the number of
different solutions obtained using the default value of maxclone=5 and a user-specified value
maxclone=0. Since the subsets output object is a 3-d array, unique also produces a 3-d object,
whose first dimension gives the number of different solutions.

> dim(unique(genetic(cor(farm), kmin=10, crit="gcd")$subsets))

[1] 23 10 1

> dim(unique(genetic(cor(farm), kmin=10, maxclone=0, crit="gcd")$subsets))

[1] 124 10 1

Example 2. We consider subset selection in the context of a Canonical Correlation Analysis. The data
set in this example is the same as in Example 1 above. Two groups of variables within the
farm data set are compared: the X group (all variables except the first four) and the Y group
(variables 1 to 4). The goal is to select 4- to 6-variable subsets of the 58-variable X group that
are optimal in terms of preserving the canonical correlations, according to the zeta2 criterion.
(Warning: the 4-variable Y group is kept intact; subset selection is carried out in the X group
only). As can be seen from the results, even a four-variable X subgroup essentially reproduces
the canonical correlations with the Y group of variables

> data(farm)

> farm.xgroup <- farm[,-c(1,2,3,4)]

> farmHmat <- lmHmat(farm.xgroup,farm[,1:4])

> colnames(farmHmat$mat)

30

[1] "R46" "R59" "R65" "R72" "R79" "R86" "R91" "R104" "R110" "R111"

[11] "R113" "R114" "R115" "R116" "R117" "R118" "R119" "R121" "R122" "R123"

[21] "R124" "R125" "R126" "R127" "R129" "R132" "R135" "R137" "R140" "R142"

[31] "R144" "R145" "R146" "R151" "R152" "R158" "R159" "R160" "R164" "R166"

[41] "R168" "R174" "R176" "R178" "R209" "R211" "R214" "R215" "R233" "R237"

[51] "R245" "R250" "R252" "R256" "R258" "R263" "R270" "R271"

> farm.gen <- genetic(farmHmat$mat, kmin=4, kmax=6, H=farmHmat$H, r=farmHmat$r,crit="zeta2", maxclone=0, popsize=150)

> farm.gen$bestvalues

Card.4 Card.5 Card.6

0.9165989 0.9262310 0.9342642

> farm.gen$bestsets

Var.1 Var.2 Var.3 Var.4 Var.5 Var.6

Card.4 1 39 40 51 0 0

Card.5 1 24 33 39 40 0

Card.6 1 33 39 40 41 52

WARNING: The column numbers given by the last command are relative only to the X group of
variables, and so must be read off the list of variable names produced by the colnames command above
(which are the same as those that would be printed out by the command colnames(farm.xgroup)).

3.6 The improve function: a restricted improvement algorithm

The function improve implements a Restricted Local Improvement search for an optimal k-variable
subset. Given a set of variables, the algorithm seeks a k-variable subset which is optimal, as a
surrogate for the whole set, with respect to a given criterion.

In brief, for each solution requested by the user (the number of which is set by the nsol function
argument), an initial k-variable subset (for k ranging from argument kmin to argument kmax) of a
full set of p variables is randomly selected and the variables not belonging to this subset are placed
in a queue. The possibility of replacing a variable in the current k-subset with a variable from the
queue is then explored. More precisely, a variable is selected, removed from the queue, and the k
values of the criterion which would result from swapping this selected variable with each variable in
the current subset are computed. If the best of these values improves the current criterion value, the
current subset is updated accordingly. In this case, the variable which leaves the subset is added to
the queue, but only if it has not previously been in the queue (i.e., no variable can enter the queue
twice). The algorithm proceeds until the queue is emptied (see reference [1] for more details).

The user may force variables to be included and/or excluded (arguments include and exclude)
from the k-variable subsets, and may specify initial solutions (using the initialsol argument).

The function checks for ill-conditioning of the input matrix (see the improve help function for
more details).

Computational effort
For each cardinality k, the total number of calls to the procedure which computes the criterion values
is O(nsol×k×p). These calls are the dominant computational effort in each iteration of the algorithm.
In order to improve computation times, the bulk of computations are carried out in a Fortran routine.
Further details about the algorithm can be found in Reference [1] and in the comments to the Fortran
code (in the src subdirectory for this package).

The force argument
For datasets with a very large number of variables (currently p > 400), it is necessary to set the force

argument to TRUE for the function to run, but this may cause a session crash if there is not enough
memory available.

31

Reproducible solutions
As with the anneal and genetic algorithm, so too the improve algorithm is a random algorithm.
Solutions are, in general, different each time the algorithm is run. For reproducible solutions, the
logical argument setseed should be set to TRUE during a session and left as TRUE in subsequent
function calls where it is wished to reproduce the results.

Uniqueness of solutions
The requested nsol solutions are not necessarily different solutions. The nsol solutions are computed
separately, so that (unlike what happens with the eleaps function), the same variable subset may
appear more than once among the nsol solutions.

Examples
Two examples of use of the improve function are now given:

Example 1. A very simple example, using the standardized swiss data set from R’s general distribu-
tion (see help(swiss) for more information on this data set, which was also used in the first
example of Section 3.3). The purpose is to determine the best 2-variable set, so that orthogo-
nally projecting the 47-point (standardized) configuration on the subspace spanned by those two
variables would provide a configuration as similar as possible (allowing for rigid rotations, trans-
lation of the origin and global changes of scale) to the original 47-point configuration defined
by all six (standardized) variables in the data set. Two different requests are made, the first
without any restrictions, while the second forces the inclusion of variable 1, and the exclusion
of variable 6, from the selected subsets.

> swiss.imp1 <- improve(mat=cor(swiss),kmin=2,kmax=3,nsol=4,criterion="GCD")

> swiss.imp2 <- improve(cor(swiss),2,3,nsol=4,criterion="GCD",include=c(1),exclude=6)

> swiss.imp1$bestvalues

Card.2 Card.3

0.8487026 0.9253720

> swiss.imp1$bestsets

Var.1 Var.2 Var.3

Card.2 3 6 0

Card.3 4 5 6

> swiss.imp2$bestvalues

Card.2 Card.3

0.7092591 0.7930632

> swiss.imp2$bestsets

Var.1 Var.2 Var.3

Card.2 1 2 0

Card.3 1 4 5

Example 2. A second very simple example in a Linear Discriminant Analysis setting. Here we consider
the same situation as in the example for the discussion of the ldaHmat fundtion, in subsection
2.2.2. The goal is to select the 2- and 3-variable subsets that are optimal for the linear discrim-
ination of the three iris species in Fisher’s iris data (as measured by the ccr12 criterion).

> data(iris)

> irisHmat <- ldaHmat(iris[1:4],iris$Species)

> improve(irisHmat$mat,kmin=2,kmax=3,H=irisHmat$H,r=irisHmat$r,crit="ccr12")

$subsets

, , Card.2

Var.1 Var.2 Var.3

32

Solution 1 1 3 0

, , Card.3

Var.1 Var.2 Var.3

Solution 1 2 3 4

$values

card.2 card.3

Solution 1 0.9589055 0.9678971

$bestvalues

Card.2 Card.3

0.9589055 0.9678971

$bestsets

Var.1 Var.2 Var.3

Card.2 1 3 0

Card.3 2 3 4

$call

improve(mat = irisHmat$mat, kmin = 2, kmax = 3, criterion = "ccr12",

H = irisHmat$H, r = irisHmat$r)

Example 3 is a more involved example, for a MANOVA context. It follows up on the example used
when introducing the glhHmat function, in subsection 2.2.2. More precisely, in this data set 200
crabs are classified by two factors, sex and sp, with two levels each. There are also measurement
variables, in both their original and logarithmic scales. The goal is to detect the variables that
are prominent in an analysis of the effect of the sp factor after controlling for sex. the initial
commands in this example were already discussed in subsection 2.2.2.

> library(MASS)

> data(crabs)

> lFL <- log(crabs$FL) ; lRW <- log(crabs$RW); lCL <- log(crabs$CL); lCW <- log(crabs$CW)

> C <- matrix(0.,nrow=2,ncol=4)

> C[1,3] = C[2,4] = 1.

> C

[,1] [,2] [,3] [,4]

[1,] 0 0 1 0

[2,] 0 0 0 1

> Hmat5 <- glhHmat(cbind(FL,RW,CL,CW,lFL,lRW,lCL,lCW) ~ sp*sex,C=C,data=crabs)

> improve(mat=Hmat5$mat, kmin=4, nsol=3, H=Hmat5$H, r=Hmat5$r, crit="xi2",tolsym=1e-06)

$subsets

, , Card.4

Var.1 Var.2 Var.3 Var.4

Solution 1 2 3 6 8

Solution 2 2 3 6 8

Solution 3 2 3 6 8

$values

card.4

33

Solution 1 0.484664

Solution 2 0.484664

Solution 3 0.484664

$bestvalues

Card.4

0.484664

$bestsets

Var.1 Var.2 Var.3 Var.4

Card.4 2 3 6 8

$call

improve(mat = Hmat5$mat, kmin = 4, nsol = 3, criterion = "xi2",

H = Hmat5$H, r = Hmat5$r, tolsym = 1e-06)

References

[1] J. Cadima, J.Orestes Cerdeira, and M. Minhoto. Computational aspects of algorithms for variable
selection in the context of principal components. Computational Statistics and Data Analysis,
47:225–236, 2004.

[2] J. Cadima and I.T. Jolliffe. Variable selection and the interpretation of principal subspaces.
Journal of Agricultural, Biological and Environmental Statistics, 6:62–79, 2001.

[3] E.M. Cramer and Nicewander W.A. Some symmetric invariant measures of multivariate associ-
ation. Psychometrika, 44:43–54, 1979.

[4] A.P. Duarte Silva. Efficient variable screening for multivariate analysis. Journal of Multivariate
Analysis, 76:35–62, 2001.

[5] A.P. Duarte Silva. Discarding variables in a principal component analysis: algorithms for all-
subsets comparisons. Computational Statistics, 17:251–271, 2002.

[6] G.M. Furnival and R.W. Wilson. Regressions by leaps and bounds. Technometrics, 16:499–511,
1974.

[7] G. Golub and C. Van Loan. Matrix Computations. Baltimore: John Hopkins University Press,
1996.

[8] H. Hotelling. A generalised t-test and measure of multivariate dispersion. In Proceedings Second
Berkeley Symp. Math. Stat. Prob., volume 1, pages 23–41, 1951.

[9] C.J. Huberty. Applied Discriminant Analysis. Wiley, New York NY, 1994.

[10] J. Lawless and K. Singhal. Efficient screening of nonnormal regression models. Biometrics,
34:318–327, 1978.

[11] J. Lawless and K. Singhal. Ismod: An all-subsets regression program for generalized models
i. statistical and computational background. Computer Methods and Programs in Biomedicine,
24:117–124, 1987.

[12] D.N. Lawley. A generalisation of fisher’s z-test. Biometrika, 30:180–187, 1938.

[13] G.P. McCabe. Principal variables. Technometrics, 26:137–144, 1984.

[14] A.D. McQuarrie and C.L. Tsai. Regression and Time Series Model Selection. World Scientific,
Singapure, 1998.

[15] K.C.S. Pillai. Some new test criteria in multivariate analysis. The Annals of Mathematical
Statistics, 26:117–121, 1955.

[16] J.O. Ramsay, J. ten Berge, and G.P.H. Styan. Matrix correlation. Psychometrika, 49:403–423,
1984.

34

[17] A.C. Rencher. Methods of Multivariate Analysis. Wiley, New York NY, 1995.

[18] P. Robert and Y. Escoufier. A unifying tool for linear multivariate statistical methods: the
rv-coefficient. Applied Statistics, 25(3):257–265, 1976.

[19] S.N. Roy. p-statistics, or some generalizations in analysis of variance appropriate to multivariate
problems. Sankhya, 4:381–396, 1939.

[20] S.S. Wilks. Certain generalizations of the analysis of variance. Biometrika, 39:471–494, 1932.

35

