
Package ‘tarchetypes’
September 7, 2022

Title Archetypes for Targets

Description Function-oriented Make-like declarative workflows for
Statistics and data science are supported in the 'targets' R package.
As an extension to 'targets', the 'tarchetypes' package provides
convenient user-side functions to make 'targets' easier to use.
By establishing reusable archetypes for common kinds of
targets and pipelines, these functions help express complicated
reproducible workflows concisely and compactly.
The methods in this package were influenced by the 'drake' R package
by Will Landau (2018) <doi:10.21105/joss.00550>.

Version 0.7.1

License MIT + file LICENSE

URL https://docs.ropensci.org/tarchetypes/,

https://github.com/ropensci/tarchetypes

BugReports https://github.com/ropensci/tarchetypes/issues

Depends R (>= 3.5.0)

Imports digest (>= 0.6.25), dplyr (>= 1.0.0), fs (>= 1.4.2), rlang (>=
0.4.7), targets (>= 0.11.0), tibble (>= 3.0.1), tidyselect (>=
1.1.0), utils, vctrs (>= 0.3.4), withr (>= 2.1.2)

Suggests curl (>= 4.3), knitr (>= 1.28), quarto (>= 1.0), rmarkdown
(>= 2.1), testthat (>= 3.0.0), xml2 (>= 1.3.2)

Encoding UTF-8

Language en-US

Config/testthat/edition 3

RoxygenNote 7.2.1

NeedsCompilation no

Author William Michael Landau [aut, cre]
(<https://orcid.org/0000-0003-1878-3253>),

Samantha Oliver [rev] (<https://orcid.org/0000-0001-5668-1165>),
Tristan Mahr [rev] (<https://orcid.org/0000-0002-8890-5116>),
Eli Lilly and Company [cph]

1

https://doi.org/10.21105/joss.00550
https://docs.ropensci.org/tarchetypes/
https://github.com/ropensci/tarchetypes
https://github.com/ropensci/tarchetypes/issues
https://orcid.org/0000-0003-1878-3253
https://orcid.org/0000-0001-5668-1165
https://orcid.org/0000-0002-8890-5116

2 R topics documented:

Maintainer William Michael Landau <will.landau@gmail.com>

Repository CRAN

Date/Publication 2022-09-07 15:40:07 UTC

R topics documented:
tarchetypes-package . 3
tar_age . 3
tar_change . 7
tar_combine . 11
tar_combine_raw . 15
tar_cue_age . 19
tar_cue_age_raw . 21
tar_cue_force . 23
tar_cue_skip . 25
tar_download . 26
tar_eval . 30
tar_eval_raw . 32
tar_files . 33
tar_files_input . 37
tar_files_input_raw . 40
tar_files_raw . 44
tar_file_read . 48
tar_force . 51
tar_formats . 55
tar_group_by . 67
tar_group_count . 71
tar_group_select . 75
tar_group_size . 79
tar_hook_before . 82
tar_hook_inner . 84
tar_hook_outer . 85
tar_knit . 87
tar_knitr_deps . 90
tar_knitr_deps_expr . 91
tar_knit_raw . 92
tar_map . 95
tar_map2_count . 97
tar_map2_count_raw . 101
tar_map2_size . 106
tar_map2_size_raw . 110
tar_map_rep . 115
tar_map_rep_raw . 120
tar_plan . 125
tar_quarto . 126
tar_quarto_files . 130
tar_quarto_raw . 131

tarchetypes-package 3

tar_quarto_rep . 136
tar_quarto_rep_raw . 140
tar_render . 145
tar_render_raw . 149
tar_render_rep . 152
tar_render_rep_raw . 156
tar_rep . 160
tar_rep2 . 164
tar_rep_raw . 169
tar_select_names . 173
tar_select_targets . 174
tar_skip . 175
tar_sub . 179
tar_sub_raw . 180

Index 182

tarchetypes-package targets: Archetypes for Targets

Description

A pipeline toolkit for R, the targets package brings together function-oriented programming and
Make-like declarative pipelines for Statistics and data science. The tarchetypes package provides
convenient helper functions to create specialized targets, making pipelines in targets easier and
cleaner to write and understand.

tar_age Create a target that runs when the last run gets old

Description

tar_age() creates a target that reruns itself when it gets old enough. In other words, the target
reruns periodically at regular intervals of time.

Usage

tar_age(
name,
command,
age,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),

4 tar_age

repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Character of length 1, name of the target.

command R code to run the target and return a value.

age A difftime object of length 1, such as as.difftime(3, units = "days"). If
the target’s output data files are older than age (according to the most recent
time stamp over all the target’s output files) then the target will rerun. On the
other hand, if at least one data file is younger than Sys.time() - age, then the
ordinary invalidation rules apply, and the target may or not rerun. If you want
to force the target to run every 3 days, for example, set age = as.difftime(3,
units = "days").

pattern Language to define branching for a target. For example, in a pipeline with nu-
meric vector targets x and y, tar_target(z, x + y, pattern = map(x, y)) im-
plicitly defines branches of z that each compute x[1] + y[1], x[2] + y[2], and
so on. See the user manual for details.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Logical, whether to rerun the target if the user-specified storage format changed.
The storage format is user-specified through tar_target() or tar_option_set().

repository Logical, whether to rerun the target if the user-specified storage repository changed.
The storage repository is user-specified through tar_target() or tar_option_set().

iteration Logical, whether to rerun the target if the user-specified iteration method changed.
The iteration method is user-specified through tar_target() or tar_option_set().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.

tar_age 5

• "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

6 tar_age

try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue A targets::tar_cue() object. (See the "Cue objects" section for background.)
This cue object should contain any optional secondary invalidation rules, any-
thing except the mode argument. mode will be automatically determined by the
age argument of tar_age().

Details

tar_age() uses the cue from tar_cue_age(), which uses the time stamps from targets::tar_meta()$time.
See the help file of targets::tar_timestamp() for an explanation of how this time stamp is cal-
culated.

Value

A target object. See the "Target objects" section for background.

Dynamic branches at regular time intervals

Time stamps are not recorded for whole dynamic targets, so tar_age() is not a good fit for dy-
namic branching. To invalidate dynamic branches at regular intervals, it is recommended to use
targets::tar_older() in combination with targets::tar_invalidate() right before calling
tar_make(). For example, tar_invalidate(all_of(tar_older(Sys.time - as.difftime(1,
units = "weeks")))) # nolint invalidates all targets more than a week old. Then, the next tar_make()
will rerun those targets.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other cues: tar_cue_age_raw(), tar_cue_age(), tar_cue_force(), tar_cue_skip()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_change 7

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(tarchetypes)
list(
tarchetypes::tar_age(

data,
data.frame(x = seq_len(26)),
age = as.difftime(0.5, units = "secs")

)
)

})
targets::tar_make()
Sys.sleep(0.6)
targets::tar_make()
})
}

tar_change Target that responds to an arbitrary change.

Description

Create a target that responds to a change in an arbitrary value. If the value changes, the target reruns.

Usage

tar_change(
name,
command,
change,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

8 tar_change

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

change R code for the upstream change-inducing target.

tidy_eval Whether to invoke tidy evaluation (e.g. the !! operator from rlang) as soon as
the target is defined (before tar_make()). Applies to arguments command and
change.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_change 9

• "group": dplyr::group_by()-like functionality to branch over subsets of
a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

10 tar_change

but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date. Only applies to the downstream target. The upstream
target always runs.

Details

tar_change() creates a pair of targets, one upstream and one downstream. The upstream target
always runs and returns an auxiliary value. This auxiliary value gets referenced in the downstream
target, which causes the downstream target to rerun if the auxiliary value changes. The behavior is
cancelled if cue is tar_cue(depend = FALSE) or tar_cue(mode = "never").

Because the upstream target always runs, tar_outdated() and tar_visnetwork() will always
show both targets as outdated. However, tar_make() will still skip the downstream one if the
upstream target did not detect a change.

Value

A list of two target objects, one upstream and one downstream. The upstream one triggers the
change, and the downstream one responds to it. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html

tar_combine 11

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other targets with custom invalidation rules: tar_download(), tar_force(), tar_skip()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

list(
tarchetypes::tar_change(x, command = tempfile(), change = tempfile())

)
})
targets::tar_make()
targets::tar_make()
})
}

tar_combine Static aggregation.

Description

Aggregate the results of upstream targets into a new target.

Usage

tar_combine(
name,
...,
command = vctrs::vec_c(!!!.x),
use_names = TRUE,
pattern = NULL,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),

https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

12 tar_combine

resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the new target.

... One or more target objects or list of target objects. Lists can be arbitrarily nested,
as in list().

command R command to aggregate the targets. Must contain !!!.x where the arguments
are to be inserted, where !!! is the unquote splice operator from rlang.

use_names Logical, whether to insert the names of the targets into the command when splic-
ing.

pattern Language to define branching for a target. For example, in a pipeline with nu-
meric vector targets x and y, tar_target(z, x + y, pattern = map(x, y)) im-
plicitly defines branches of z that each compute x[1] + y[1], x[2] + y[2], and
so on. See the user manual for details.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_combine 13

• "group": dplyr::group_by()-like functionality to branch over subsets of
a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

14 tar_combine

but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A new target object to combine the return values from the upstream targets. See the "Target objects"
section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_map2_count_raw(), tar_map2_count(), tar_map2_raw(),
tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(), tar_map_rep(),
tar_map(), tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(),
tar_rep()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_combine_raw 15

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

target1 <- targets::tar_target(x, head(mtcars))
target2 <- targets::tar_target(y, tail(mtcars))
target3 <- tarchetypes::tar_combine(
new_target_name,
target1,
target2,
command = bind_rows(!!!.x)

)
list(target1, target2, target3)

})
targets::tar_manifest()
})
}

tar_combine_raw Static aggregation (raw version).

Description

Like tar_combine() except the name, command, and pattern arguments use standard evaluation.

Usage

tar_combine_raw(
name,
...,
command = expression(vctrs::vec_c(!!!.x)),
use_names = TRUE,
pattern = NULL,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

16 tar_combine_raw

Arguments

name Character, name of the new target.

... One or more target objects or list of target objects. Lists can be arbitrarily nested,
as in list().

command Expression object, R command to aggregate the targets. Must contain !!!.x
where the arguments are to be inserted, where !!! is the unquote splice operator
from rlang.

use_names Logical, whether to insert the names of the targets into the command when splic-
ing.

pattern Similar to the pattern argument of tar_target() except the object must al-
ready be an expression instead of informally quoted code. base::expression()
and base::quote() can produce such objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_combine_raw 17

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

18 tar_combine_raw

tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A new target object to combine the return values from the upstream targets. See the "Target objects"
section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine(), tar_map2_count_raw(), tar_map2_count(), tar_map2_raw(),
tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(), tar_map_rep(),
tar_map(), tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(),
tar_rep()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

target1 <- targets::tar_target(x, head(mtcars))

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_cue_age 19

target2 <- targets::tar_target(y, tail(mtcars))
target3 <- tarchetypes::tar_combine(new_target_name, target1, target2)
list(target1, target2, target3)

})
targets::tar_manifest()
})
}

tar_cue_age Cue to run a target when the last output reaches a certain age

Description

tar_cue_age() creates a cue object to rerun a target if the most recent output data becomes old
enough. The age of the target is determined by targets::tar_timestamp(), and the way the time
stamp is calculated is explained in the Details section of the help file of that function.

Usage

tar_cue_age(
name,
age,
command = TRUE,
depend = TRUE,
format = TRUE,
repository = TRUE,
iteration = TRUE,
file = TRUE

)

Arguments

name Symbol, name of the target.

age A difftime object of length 1, such as as.difftime(3, units = "days"). If
the target’s output data files are older than age (according to the most recent
time stamp over all the target’s output files) then the target will rerun. On the
other hand, if at least one data file is younger than Sys.time() - age, then the
ordinary invalidation rules apply, and the target may or not rerun. If you want
to force the target to run every 3 days, for example, set age = as.difftime(3,
units = "days").

command Logical, whether to rerun the target if command changed since last time.

depend Logical, whether to rerun the target if the value of one of the dependencies
changed.

format Logical, whether to rerun the target if the user-specified storage format changed.
The storage format is user-specified through tar_target() or tar_option_set().

repository Logical, whether to rerun the target if the user-specified storage repository changed.
The storage repository is user-specified through tar_target() or tar_option_set().

20 tar_cue_age

iteration Logical, whether to rerun the target if the user-specified iteration method changed.
The iteration method is user-specified through tar_target() or tar_option_set().

file Logical, whether to rerun the target if the file(s) with the return value changed
or at least one is missing.

Details

tar_cue_age() uses the time stamps from tar_meta()$time. If no time stamp is recorded, the
cue defaults to the ordinary invalidation rules (i.e. mode = "thorough" in targets::tar_cue()).

Value

A cue object. See the "Cue objects" section for background.

Dynamic branches at regular time intervals

Time stamps are not recorded for whole dynamic targets, so tar_age() is not a good fit for dy-
namic branching. To invalidate dynamic branches at regular intervals, it is recommended to use
targets::tar_older() in combination with targets::tar_invalidate() right before calling
tar_make(). For example, tar_invalidate(all_of(tar_older(Sys.time - as.difftime(1,
units = "weeks")))) # nolint invalidates all targets more than a week old. Then, the next tar_make()
will rerun those targets.

Cue objects

A cue object is an object generated by targets::tar_cue(), tarchetypes::tar_cue_force(),
or similar. It is a collection of decision rules that decide when a target is invalidated/outdated
(e.g. when tar_make() or similar reruns the target). You can supply these cue objects to the
tar_target() function or similar. For example, tar_target(x, run_stuff(), cue = tar_cue(mode
= "always")) is a target that always calls run_stuff() during tar_make() and always shows as
invalidated/outdated in tar_outdated(), tar_visnetwork(), and similar functions.

See Also

Other cues: tar_age(), tar_cue_age_raw(), tar_cue_force(), tar_cue_skip()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(tarchetypes)
list(
targets::tar_target(

data,
data.frame(x = seq_len(26)),
cue = tarchetypes::tar_cue_age(

name = data,
age = as.difftime(0.5, units = "secs")

)
)

tar_cue_age_raw 21

)
})
targets::tar_make()
Sys.sleep(0.6)
targets::tar_make()
})
}

tar_cue_age_raw Cue to run a target when the last run reaches a certain age (raw ver-
sion)

Description

tar_cue_age_raw() acts like tar_cue_age() except the name argument is a character string, not
a symbol. tar_cue_age_raw() creates a cue object to rerun a target if the most recent output data
becomes old enough. The age of the target is determined by targets::tar_timestamp(), and the
way the time stamp is calculated is explained in the Details section of the help file of that function.

Usage

tar_cue_age_raw(
name,
age,
command = TRUE,
depend = TRUE,
format = TRUE,
repository = TRUE,
iteration = TRUE,
file = TRUE

)

Arguments

name Character of length 1, name of the target.

age A difftime object of length 1, such as as.difftime(3, units = "days"). If
the target’s output data files are older than age (according to the most recent
time stamp over all the target’s output files) then the target will rerun. On the
other hand, if at least one data file is younger than Sys.time() - age, then the
ordinary invalidation rules apply, and the target may or not rerun. If you want
to force the target to run every 3 days, for example, set age = as.difftime(3,
units = "days").

command Logical, whether to rerun the target if command changed since last time.

depend Logical, whether to rerun the target if the value of one of the dependencies
changed.

format Logical, whether to rerun the target if the user-specified storage format changed.
The storage format is user-specified through tar_target() or tar_option_set().

22 tar_cue_age_raw

repository Logical, whether to rerun the target if the user-specified storage repository changed.
The storage repository is user-specified through tar_target() or tar_option_set().

iteration Logical, whether to rerun the target if the user-specified iteration method changed.
The iteration method is user-specified through tar_target() or tar_option_set().

file Logical, whether to rerun the target if the file(s) with the return value changed
or at least one is missing.

Details

tar_cue_age_raw() uses the time stamps from tar_meta()$time. If no time stamp is recorded,
the cue defaults to the ordinary invalidation rules (i.e. mode = "thorough" in targets::tar_cue()).

Value

A cue object. See the "Cue objects" section for background.

Dynamic branches at regular time intervals

Time stamps are not recorded for whole dynamic targets, so tar_age() is not a good fit for dy-
namic branching. To invalidate dynamic branches at regular intervals, it is recommended to use
targets::tar_older() in combination with targets::tar_invalidate() right before calling
tar_make(). For example, tar_invalidate(all_of(tar_older(Sys.time - as.difftime(1,
units = "weeks")))) # nolint invalidates all targets more than a week old. Then, the next tar_make()
will rerun those targets.

Cue objects

A cue object is an object generated by targets::tar_cue(), tarchetypes::tar_cue_force(),
or similar. It is a collection of decision rules that decide when a target is invalidated/outdated
(e.g. when tar_make() or similar reruns the target). You can supply these cue objects to the
tar_target() function or similar. For example, tar_target(x, run_stuff(), cue = tar_cue(mode
= "always")) is a target that always calls run_stuff() during tar_make() and always shows as
invalidated/outdated in tar_outdated(), tar_visnetwork(), and similar functions.

See Also

Other cues: tar_age(), tar_cue_age(), tar_cue_force(), tar_cue_skip()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(tarchetypes)
list(
targets::tar_target(

data,
data.frame(x = seq_len(26)),
cue = tarchetypes::tar_cue_age_raw(

name = "data",

tar_cue_force 23

age = as.difftime(0.5, units = "secs")
)

)
)

})
targets::tar_make()
Sys.sleep(0.6)
targets::tar_make()
})
}

tar_cue_force Cue to force a target to run if a condition is true

Description

tar_cue_force() creates a cue object to force a target to run if an arbitrary condition evaluates to
TRUE. Supply the returned cue object to the cue argument of targets::tar_target() or similar.

Usage

tar_cue_force(
condition,
command = TRUE,
depend = TRUE,
format = TRUE,
repository = TRUE,
iteration = TRUE,
file = TRUE

)

Arguments

condition Logical vector evaluated locally when the target is defined. If any element of
condition is TRUE, the target will definitely rerun when the pipeline runs. Oth-
erwise, the target may or may not rerun, depending on the other invalidation
rules. condition is evaluated when this cue factory is called, so the condition
cannot depend on upstream targets, and it should be quick to calculate.

command Logical, whether to rerun the target if command changed since last time.

depend Logical, whether to rerun the target if the value of one of the dependencies
changed.

format Logical, whether to rerun the target if the user-specified storage format changed.
The storage format is user-specified through tar_target() or tar_option_set().

repository Logical, whether to rerun the target if the user-specified storage repository changed.
The storage repository is user-specified through tar_target() or tar_option_set().

iteration Logical, whether to rerun the target if the user-specified iteration method changed.
The iteration method is user-specified through tar_target() or tar_option_set().

24 tar_cue_force

file Logical, whether to rerun the target if the file(s) with the return value changed
or at least one is missing.

Details

tar_cue_force() and tar_force() operate differently. The former defines a cue object based
on an eagerly evaluated condition, and tar_force() puts the condition in a special upstream target
that always runs. Unlike tar_cue_force(), the condition in tar_force() can depend on upstream
targets, but the drawback is that targets defined with tar_force() will always show up as outdated
in functions like tar_outdated() and tar_visnetwork() even though tar_make() may still skip
the main target if the condition is not met.

Value

A cue object. See the "Cue objects" section for background.

Cue objects

A cue object is an object generated by targets::tar_cue(), tarchetypes::tar_cue_force(),
or similar. It is a collection of decision rules that decide when a target is invalidated/outdated
(e.g. when tar_make() or similar reruns the target). You can supply these cue objects to the
tar_target() function or similar. For example, tar_target(x, run_stuff(), cue = tar_cue(mode
= "always")) is a target that always calls run_stuff() during tar_make() and always shows as
invalidated/outdated in tar_outdated(), tar_visnetwork(), and similar functions.

See Also

Other cues: tar_age(), tar_cue_age_raw(), tar_cue_age(), tar_cue_skip()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(tarchetypes)
list(
targets::tar_target(

data,
data.frame(x = seq_len(26)),
cue = tarchetypes::tar_cue_force(1 > 0)

)
)

})
targets::tar_make()
targets::tar_make()
})
}

tar_cue_skip 25

tar_cue_skip Cue to skip a target if a condition is true

Description

tar_cue_skip() creates a cue object to skip a target if an arbitrary condition evaluates to TRUE. The
target still builds if it was never built before. Supply the returned cue object to the cue argument of
targets::tar_target() or similar.

Usage

tar_cue_skip(
condition,
command = TRUE,
depend = TRUE,
format = TRUE,
repository = TRUE,
iteration = TRUE,
file = TRUE

)

Arguments

condition Logical vector evaluated locally when the target is defined. If any element of
condition is TRUE, the pipeline will skip the target unless the target has never
been built before. If all elements of condition are FALSE, then the target may
or may not rerun, depending on the other invalidation rules. condition is evalu-
ated when this cue factory is called, so the condition cannot depend on upstream
targets, and it should be quick to calculate.

command Logical, whether to rerun the target if command changed since last time.

depend Logical, whether to rerun the target if the value of one of the dependencies
changed.

format Logical, whether to rerun the target if the user-specified storage format changed.
The storage format is user-specified through tar_target() or tar_option_set().

repository Logical, whether to rerun the target if the user-specified storage repository changed.
The storage repository is user-specified through tar_target() or tar_option_set().

iteration Logical, whether to rerun the target if the user-specified iteration method changed.
The iteration method is user-specified through tar_target() or tar_option_set().

file Logical, whether to rerun the target if the file(s) with the return value changed
or at least one is missing.

Value

A cue object. See the "Cue objects" section for background.

26 tar_download

Cue objects

A cue object is an object generated by targets::tar_cue(), tarchetypes::tar_cue_force(),
or similar. It is a collection of decision rules that decide when a target is invalidated/outdated
(e.g. when tar_make() or similar reruns the target). You can supply these cue objects to the
tar_target() function or similar. For example, tar_target(x, run_stuff(), cue = tar_cue(mode
= "always")) is a target that always calls run_stuff() during tar_make() and always shows as
invalidated/outdated in tar_outdated(), tar_visnetwork(), and similar functions.

See Also

Other cues: tar_age(), tar_cue_age_raw(), tar_cue_age(), tar_cue_force()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(tarchetypes)
list(
targets::tar_target(

data,
data.frame(x = seq_len(26)),
cue = tarchetypes::tar_cue_skip(1 > 0)

)
)

})
targets::tar_make()
targets::tar_script({

library(tarchetypes)
list(

targets::tar_target(
data,
data.frame(x = seq_len(25)), # Change the command.
cue = tarchetypes::tar_cue_skip(1 > 0)

)
)

})
targets::tar_make()
targets::tar_make()
})
}

tar_download Target that downloads URLs.

Description

Create a target that downloads file from one or more URLs and automatically reruns when the
remote data changes (according to the ETags or last-modified time stamps).

tar_download 27

Usage

tar_download(
name,
urls,
paths,
method = NULL,
quiet = TRUE,
mode = "w",
cacheOK = TRUE,
extra = NULL,
headers = NULL,
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

urls Character vector of URLs to track and download. Must be known and declared
before the pipeline runs.

paths Character vector of local file paths to download each of the URLs. Must be
known and declared before the pipeline runs.

method Method to be used for downloading files. Current download methods are "internal",
"wininet" (Windows only) "libcurl", "wget" and "curl", and there is a
value "auto": see ‘Details’ and ‘Note’.
The method can also be set through the option "download.file.method": see
options().

quiet If TRUE, suppress status messages (if any), and the progress bar.

28 tar_download

mode character. The mode with which to write the file. Useful values are "w", "wb"
(binary), "a" (append) and "ab". Not used for methods "wget" and "curl".
See also ‘Details’, notably about using "wb" for Windows.

cacheOK logical. Is a server-side cached value acceptable?

extra character vector of additional command-line arguments for the "wget" and "curl"
methods.

headers named character vector of HTTP headers to use in HTTP requests. It is ignored
for non-HTTP URLs. The User-Agent header, coming from the HTTPUserAgent
option (see options) is used as the first header, automatically.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_download 29

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

tar_download() creates a pair of targets, one upstream and one downstream. The upstream target
uses format = "url" (see targets::tar_target()) to track files at one or more URLs, and auto-
matically invalidate the target if the ETags or last-modified time stamps change. The downstream
target depends on the upstream one, downloads the files, and tracks them using format = "file".

Value

A list of two target objects, one upstream and one downstream. The upstream one watches a URL
for changes, and the downstream one downloads it. See the "Target objects" section for background.

30 tar_eval

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other targets with custom invalidation rules: tar_change(), tar_force(), tar_skip()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

list(
tarchetypes::tar_download(

x,
urls = c("https://httpbin.org/etag/test", "https://r-project.org"),
paths = c("downloaded_file_1", "downloaded_file_2")

)
)

})
targets::tar_make()
targets::tar_read(x)
})
}

tar_eval Evaluate multiple expressions created with symbol substitution.

Description

Loop over a grid of values, create an expression object from each one, and then evaluate that ex-
pression. Helps with general metaprogramming.

Usage

tar_eval(expr, values, envir = parent.frame())

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_eval 31

Arguments

expr Starting expression. Values are iteratively substituted in place of symbols in
expr to create each new expression, and then each new expression is evaluated.

values List of values to substitute into expr to create the expressions. All elements of
values must have the same length.

envir Environment in which to evaluate the new expressions.

Value

A list of return values from the generated expression objects. Often, these values are target objects.
See the "Target objects" section for background on target objects specifically.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Metaprogramming utilities: tar_eval_raw(), tar_sub_raw(), tar_sub()

Examples

tar_map() is incompatible with tar_render() because the latter
operates on preexisting tar_target() objects. By contrast,
tar_eval() and tar_sub() iterate over the literal code
farther upstream.
values <- list(

name = lapply(c("name1", "name2"), as.symbol),
file = list("file1.Rmd", "file2.Rmd")

)
tar_sub(list(name, file), values = values)
tar_sub(tar_render(name, file), values = values)
path <- tempfile()
file.create(path)
str(tar_eval(tar_render(name, path), values = values))
So in your _targets.R file, you can define a pipeline like as below.
Just make sure to set a unique name for each target
(which tar_map() does automatically).
values <- list(

name = lapply(c("name1", "name2"), as.symbol),
file = c(path, path)

)

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

32 tar_eval_raw

list(
tar_eval(tar_render(name, file), values = values)

)

tar_eval_raw Evaluate multiple expressions created with symbol substitution (raw
version).

Description

Loop over a grid of values, create an expression object from each one, and then evaluate that expres-
sion. Helps with general metaprogramming. Unlike tar_sub(), which quotes the expr argument,
tar_sub_raw() assumes expr is an expression object.

Usage

tar_eval_raw(expr, values, envir = parent.frame())

Arguments

expr Expression object with the starting expression. Values are iteratively substituted
in place of symbols in expr to create each new expression, and then each ex-
pression is evaluated.

values List of values to substitute into expr to create the expressions. All elements of
values must have the same length.

envir Environment in which to evaluate the new expressions.

Value

A list of return values from evaluating the expression objects. Often, these values are target objects.
See the "Target objects" section for background on target objects specifically.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Metaprogramming utilities: tar_eval(), tar_sub_raw(), tar_sub()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_files 33

Examples

tar_map() is incompatible with tar_render() because the latter
operates on preexisting tar_target() objects. By contrast,
tar_eval_raw() and tar_sub_raw() iterate over code farther upstream.
values <- list(

name = lapply(c("name1", "name2"), as.symbol),
file = c("file1.Rmd", "file2.Rmd")

)
tar_sub_raw(quote(list(name, file)), values = values)
tar_sub_raw(quote(tar_render(name, file)), values = values)
path <- tempfile()
file.create(path)
str(tar_eval_raw(quote(tar_render(name, path)), values = values))
So in your _targets.R file, you can define a pipeline like as below.
Just make sure to set a unique name for each target
(which tar_map() does automatically).
values <- list(

name = lapply(c("name1", "name2"), as.symbol),
file = c(path, path)

)
list(

tar_eval_raw(quote(tar_render(name, file)), values = values)
)

tar_files Dynamic branching over output or input files.

Description

Dynamic branching over output or input files.

Usage

tar_files(
name,
command,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = c("file", "url", "aws_file"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),

34 tar_files

storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1. Must be "file", "url", or "aws_file". See the format
argument of targets::tar_target() for details.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_files 35

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

36 tar_files

then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date. Only applies to the downstream target. The upstream
target always runs.

Details

tar_files() creates a pair of targets, one upstream and one downstream. The upstream tar-
get does some work and returns some file paths, and the downstream target is a pattern that ap-
plies format = "file" or format = "url". (URLs are input-only, they must already exist be-
forehand.) This is the correct way to dynamically iterate over file/url targets. It makes sure any
downstream patterns only rerun some of their branches if the files/urls change. For more infor-
mation, visit https://github.com/ropensci/targets/issues/136 and https://github.com/
ropensci/drake/issues/1302.

Value

A list of two targets, one upstream and one downstream. The upstream one does some work and
returns some file paths, and the downstream target is a pattern that applies format = "file" or
format = "url". See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

https://github.com/ropensci/targets/issues/136
https://github.com/ropensci/drake/issues/1302
https://github.com/ropensci/drake/issues/1302
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html

tar_files_input 37

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Dynamic branching over files: tar_files_input_raw(), tar_files_input(), tar_files_raw()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

Do not use temp files in real projects
or else your targets will always rerun.
paths <- unlist(replicate(2, tempfile()))
file.create(paths)
list(
tarchetypes::tar_files(x, paths)

)
})
targets::tar_make()
targets::tar_read(x)
})
}

tar_files_input Dynamic branching over input files or URLs

Description

Dynamic branching over input files or URLs.

Usage

tar_files_input(
name,
files,
batches = length(files),
format = c("file", "url", "aws_file"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
cue = targets::tar_option_get("cue")

)

https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

38 tar_files_input

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

files Nonempty character vector of known existing input files to track for changes.
batches Positive integer of length 1, number of batches to partition the files. The default

is one file per batch (maximum number of batches) which is simplest to handle
but could cause a lot of overhead and consume a lot of computing resources.
Consider reducing the number of batches below the number of files for heavy
workloads.

format Character, either "file" or "url". See the format argument of targets::tar_target()
for details.

repository Character of length 1, remote repository for target storage. Choices:
• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character, iteration method. Must be a method supported by the iteration
argument of targets::tar_target(). The iteration method for the upstream
target is always "list" in order to support batching.

error Character of length 1, what to do if the target stops and throws an error. Options:
• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_files_input 39

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date. Only applies to the downstream target. The upstream
target always runs.

Details

tar_files_input() is like tar_files() but more convenient when the files in question already
exist and are known in advance. Whereas tar_files() always appears outdated (e.g. with tar_outdated())
because it always needs to check which files it needs to branch over, tar_files_input() will ap-
pear up to date if the files have not changed since last tar_make(). In addition, tar_files_input()
automatically groups input files into batches to reduce overhead and increase the efficiency of par-
allel processing.

tar_files_input() creates a pair of targets, one upstream and one downstream. The upstream
target does some work and returns some file paths, and the downstream target is a pattern that applies
format = "file" or format = "url". This is the correct way to dynamically iterate over file/url
targets. It makes sure any downstream patterns only rerun some of their branches if the files/urls
change. For more information, visit https://github.com/ropensci/targets/issues/136 and
https://github.com/ropensci/drake/issues/1302.

Value

A list of two targets, one upstream and one downstream. The upstream one does some work and
returns some file paths, and the downstream target is a pattern that applies format = "file" or
format = "url". See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described

https://github.com/ropensci/targets/issues/136
https://github.com/ropensci/drake/issues/1302

40 tar_files_input_raw

at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Dynamic branching over files: tar_files_input_raw(), tar_files_raw(), tar_files()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

Do not use temp files in real projects
or else your targets will always rerun.
paths <- unlist(replicate(4, tempfile()))
file.create(paths)
list(
tarchetypes::tar_files_input(

x,
paths,
batches = 2

)
)

})
targets::tar_make()
targets::tar_read(x)
targets::tar_read(x, branches = 1)
})
}

tar_files_input_raw Dynamic branching over input files or URLs (raw version).

Description

Dynamic branching over input files or URLs.

Usage

tar_files_input_raw(
name,
files,
batches = length(files),
format = c("file", "url", "aws_file"),

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_files_input_raw 41

repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

files Nonempty character vector of known existing input files to track for changes.

batches Positive integer of length 1, number of batches to partition the files. The default
is one file per batch (maximum number of batches) which is simplest to handle
but could cause a lot of overhead and consume a lot of computing resources.
Consider reducing the number of batches below the number of files for heavy
workloads.

format Character, either "file" or "url". See the format argument of targets::tar_target()
for details.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

42 tar_files_input_raw

iteration Character, iteration method. Must be a method supported by the iteration
argument of targets::tar_target(). The iteration method for the upstream
target is always "list" in order to support batching.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date. Only applies to the downstream target. The upstream
target always runs.

Details

tar_files_input_raw() is similar to tar_files_input() except the name argument must be a
character string.

tar_files_input_raw() creates a pair of targets, one upstream and one downstream. The up-
stream target does some work and returns some file paths, and the downstream target is a pattern
that applies format = "file" or format = "url". This is the correct way to dynamically iterate
over file/url targets. It makes sure any downstream patterns only rerun some of their branches if the
files/urls change. For more information, visit https://github.com/ropensci/targets/issues/
136 and https://github.com/ropensci/drake/issues/1302.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://github.com/ropensci/targets/issues/136
https://github.com/ropensci/targets/issues/136
https://github.com/ropensci/drake/issues/1302

tar_files_input_raw 43

Value

A list of two targets, one upstream and one downstream. The upstream one does some work and
returns some file paths, and the downstream target is a pattern that applies format = "file" or
format = "url". See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Dynamic branching over files: tar_files_input(), tar_files_raw(), tar_files()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

Do not use temp files in real projects
or else your targets will always rerun.
paths <- unlist(replicate(4, tempfile()))
file.create(paths)
list(
tarchetypes::tar_files_input_raw(

"x",
paths,
batches = 2

)
)

})
targets::tar_make()
targets::tar_read(x)
targets::tar_read(x, branches = 1)
})
}

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

44 tar_files_raw

tar_files_raw Dynamic branching over output or input files (raw version).

Description

Dynamic branching over output or input files.

Usage

tar_files_raw(
name,
command,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = c("file", "url", "aws_file"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

tar_files_raw 45

format Character of length 1. Must be "file", "url", or "aws_file". See the format
argument of targets::tar_target() for details.

repository Character of length 1, remote repository for target storage. Choices:
• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:
• "vector": branching happens with vctrs::vec_slice() and aggregation

happens with vctrs::vec_c().
• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:
• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

46 tar_files_raw

garbage_collection

Logical, whether to run base::gc() just before the target runs.
deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().

If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date. Only applies to the downstream target. The upstream
target always runs.

Details

tar_files_raw() is similar to tar_files() except the name argument must be a character string
and command must be a language object.

tar_files_raw 47

tar_files_raw() creates a pair of targets, one upstream and one downstream. The upstream
target does some work and returns some file paths, and the downstream target is a pattern that
applies format = "file" or format = "url". (URLs are input-only, they must already exist be-
forehand.) This is the correct way to dynamically iterate over file/url targets. It makes sure any
downstream patterns only rerun some of their branches if the files/urls change. For more infor-
mation, visit https://github.com/ropensci/targets/issues/136 and https://github.com/
ropensci/drake/issues/1302.

Value

A list of two targets, one upstream and one downstream. The upstream one does some work and
returns some file paths, and the downstream target is a pattern that applies format = "file" or
format = "url". See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Dynamic branching over files: tar_files_input_raw(), tar_files_input(), tar_files()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

Do not use temp files in real projects
or else your targets will always rerun.
paths <- unlist(replicate(2, tempfile()))
file.create(paths)
command <- as.call(list(`c`, paths))
list(
tarchetypes::tar_files_raw("x", command)

)
})
targets::tar_make()
targets::tar_read(x)
})
}

https://github.com/ropensci/targets/issues/136
https://github.com/ropensci/drake/issues/1302
https://github.com/ropensci/drake/issues/1302
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

48 tar_file_read

tar_file_read Track a file and read the contents.

Description

Create a pair of targets: one to track a file with format = "file", and another to read the file.

Usage

tar_file_read(
name,
command,
read,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code that runs in the format = "file" target and returns the file to be tracked.

read R code to read the file. Must include !!.x where the file path goes: for example,
read = readr::read_csv(file = !!.x, col_types = readr::cols()).

tar_file_read 49

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

50 tar_file_read

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A list of two new target objects to track a file and read the contents. See the "Target objects" section
for background.

tar_force 51

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

tar_file_read(data, get_path(), read_csv(file = !!.x, col_types = cols()))
})
targets::tar_manifest()
})
}

tar_force Target with a custom condition to force execution.

Description

Create a target that always runs if a user-defined condition rule is met.

Usage

tar_force(
name,
command,
force,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

52 tar_force

storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

force R code for the condition that forces a build. If it evaluates to TRUE, then your
work will run during tar_make().

tidy_eval Whether to invoke tidy evaluation (e.g. the !! operator from rlang) as soon as
the target is defined (before tar_make()). Applies to arguments command and
force.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_force 53

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

54 tar_force

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date. Only applies to the downstream target. The upstream
target always runs.

Details

tar_force() creates a target that always runs when a custom condition is met. The implementation
builds on top of tar_change(). Thus, a pair of targets is created: an upstream auxiliary target to
indicate the custom condition and a downstream target that responds to it and does your work.

tar_force() does not actually use tar_cue_force(), and the mechanism is totally different. Be-
cause the upstream target always runs, tar_outdated() and tar_visnetwork() will always show
both targets as outdated. However, tar_make() will still skip the downstream one if the upstream
custom condition is not met.

Value

A list of 2 targets objects: one to indicate whether the custom condition is met, and another to
respond to it and do your actual work. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described

tar_formats 55

at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other targets with custom invalidation rules: tar_change(), tar_download(), tar_skip()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

list(
tarchetypes::tar_force(x, tempfile(), force = 1 > 0)

)
})
targets::tar_make()
targets::tar_make()
})
}

tar_formats Target formats

Description

Target archetypes for specialized storage formats.

Usage

tar_url(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

56 tar_formats

priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_file(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_rds(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_qs(

tar_formats 57

name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_keras(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_torch(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),

58 tar_formats

error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_format_feather(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_parquet(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),

tar_formats 59

cue = targets::tar_option_get("cue")
)

tar_fst(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_fst_dt(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_fst_tbl(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),

60 tar_formats

packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_aws_file(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_aws_rds(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),

tar_formats 61

priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_aws_qs(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_aws_keras(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_aws_torch(

62 tar_formats

name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_format_aws_feather(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_aws_parquet(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),

tar_formats 63

error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_aws_fst(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_aws_fst_dt(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),

64 tar_formats

cue = targets::tar_option_get("cue")
)

tar_aws_fst_tbl(
name,
command,
pattern = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

pattern Language to define branching for a target. For example, in a pipeline with nu-
meric vector targets x and y, tar_target(z, x + y, pattern = map(x, y)) im-
plicitly defines branches of z that each compute x[1] + y[1], x[2] + y[2], and
so on. See the user manual for details.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

tar_formats 65

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

66 tar_formats

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

These functions are shorthand for targets with specialized storage formats. For example, tar_qs(name,
fun()) is equivalent to tar_target(name, fun(), format = "qs"). For details on specialized

tar_group_by 67

storage formats, open the help file of the targets::tar_target() function and read about the
format argument.

Value

A tar_target() object with the eponymous storage format. See the "Target objects" section for
background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script(

list(
tarchetypes::tar_rds(x, 1)

)
)
targets::tar_make()
})
}

tar_group_by Group a data frame target by one or more variables.

Description

Create a target that outputs a grouped data frame with dplyr::group_by() and targets::tar_group().
Downstream dynamic branching targets will iterate over the groups of rows.

Usage

tar_group_by(
name,
command,
...,
tidy_eval = targets::tar_option_get("tidy_eval"),

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

68 tar_group_by

packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

... Symbols, variables in the output data frame to group by.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),

tar_group_by 69

but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

70 tar_group_by

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A target object to generate a grouped data frame to allows downstream dynamic targets to branch
over the groups of rows. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Grouped data frame targets: tar_group_count(), tar_group_select(), tar_group_size()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_group_count 71

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

produce_data <- function() {
expand.grid(var1 = c("a", "b"), var2 = c("c", "d"), rep = c(1, 2, 3))

}
list(

tarchetypes::tar_group_by(data, produce_data(), var1, var2),
tar_target(group, data, pattern = map(data))

)
})
targets::tar_make()
Read the first row group:
targets::tar_read(group, branches = 1)
Read the second row group:
targets::tar_read(group, branches = 2)
})
}

tar_group_count Group the rows of a data frame into a given number groups

Description

Create a target that outputs a grouped data frame for downstream dynamic branching. Set the max-
imum number of groups using count. The number of rows per group varies but is approximately
uniform.

Usage

tar_group_count(
name,
command,
count,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),

72 tar_group_count

cue = targets::tar_option_get("cue")
)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

count Positive integer, maximum number of row groups

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_group_count 73

• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

74 tar_group_count

The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A target object to generate a grouped data frame to allows downstream dynamic targets to branch
over the groups of rows. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Grouped data frame targets: tar_group_by(), tar_group_select(), tar_group_size()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

produce_data <- function() {
expand.grid(var1 = c("a", "b"), var2 = c("c", "d"), rep = c(1, 2, 3))

}
list(

tarchetypes::tar_group_count(data, produce_data(), count = 2),
tar_target(group, data, pattern = map(data))

)
})

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_group_select 75

targets::tar_make()
Read the first row group:
targets::tar_read(group, branches = 1)
Read the second row group:
targets::tar_read(group, branches = 2)
})
}

tar_group_select Group a data frame target with tidyselect semantics.

Description

Create a target that outputs a grouped data frame with dplyr::group_by() and targets::tar_group().
Unlike tar_group_by(), tar_group_select() expects you to select grouping variables using
tidyselect semantics. Downstream dynamic branching targets will iterate over the groups of
rows.

Usage

tar_group_select(
name,
command,
by = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with

76 tar_group_select

a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

by Tidyselect semantics to specify variables to group over. Alternatively, you can
supply a character vector.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_group_select 77

targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.

78 tar_group_select

• "none": the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A target object to generate a grouped data frame to allows downstream dynamic targets to branch
over the groups of rows. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Grouped data frame targets: tar_group_by(), tar_group_count(), tar_group_size()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

produce_data <- function() {
expand.grid(var1 = c("a", "b"), var2 = c("c", "d"), rep = c(1, 2, 3))

}
list(

tarchetypes::tar_group_select(data, produce_data(), starts_with("var")),
tar_target(group, data, pattern = map(data))

)
})
targets::tar_make()
Read the first row group:
targets::tar_read(group, branches = 1)
Read the second row group:
targets::tar_read(group, branches = 2)
})
}

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_group_size 79

tar_group_size Group the rows of a data frame into groups of a given size.

Description

Create a target that outputs a grouped data frame for downstream dynamic branching. Row groups
have the number of rows you supply to size (plus the remainder in a group of its own, if applicable.)
The total number of groups varies.

Usage

tar_group_size(
name,
command,
size,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

size Positive integer, maximum number of rows in each group.

80 tar_group_size

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_group_size 81

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A target object to generate a grouped data frame to allows downstream dynamic targets to branch
over the groups of rows. See the "Target objects" section for background.

82 tar_hook_before

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Grouped data frame targets: tar_group_by(), tar_group_count(), tar_group_select()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

produce_data <- function() {
expand.grid(var1 = c("a", "b"), var2 = c("c", "d"), rep = c(1, 2, 3))

}
list(

tarchetypes::tar_group_size(data, produce_data(), size = 7),
tar_target(group, data, pattern = map(data))

)
})
targets::tar_make()
Read the first row group:
targets::tar_read(group, branches = 1)
Read the second row group:
targets::tar_read(group, branches = 2)
})
}

tar_hook_before Hook to prepend code

Description

Prepend R code to the commands of multiple targets.

Usage

tar_hook_before(targets, hook, names = NULL)

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_hook_before 83

Arguments

targets A list of target objects. The input target list can be arbitrarily nested, but it must
consist entirely of target objects. In addition, the return value is a simple list
where each element is a target object. All hook functions remove the nested
structure of the input target list.

hook R code to insert. When you supply code to this argument, the code is quoted (not
evaluated) so there is no need to wrap it in quote(), expression(), or similar.

names Name of targets in the target list to apply the hook. You can supply symbols, a
character vector, or tidyselect helpers like starts_with(). Targets not included
in names still remain in the target list, but they are not modified because the hook
does not apply to them.

Value

A flattened list of target objects with the hooks applied. Even if the input target list had a nested
structure, the return value is a simple list where each element is a target object. All hook functions
remove the nested structure of the input target list.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other hooks: tar_hook_inner(), tar_hook_outer()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

targets <- list(
Nested target lists work with hooks.
list(

targets::tar_target(x1, task1()),
targets::tar_target(x2, task2(x1))

),
targets::tar_target(x3, task3(x2)),
targets::tar_target(y1, task4(x3))

)
tarchetypes::tar_hook_before(

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

84 tar_hook_inner

targets = targets,
hook = print("Running hook."),
names = starts_with("x")

)
})
targets::tar_manifest(fields = command)
})
}

tar_hook_inner Hook to wrap dependencies

Description

In the command of each target, wrap each mention of each dependency target in an arbitrary R
expression.

Usage

tar_hook_inner(targets, hook, names = NULL, names_wrap = NULL)

Arguments

targets A list of target objects. The input target list can be arbitrarily nested, but it must
consist entirely of target objects. In addition, the return value is a simple list
where each element is a target object. All hook functions remove the nested
structure of the input target list.

hook R code to wrap each target’s command. The hook must contain the special
placeholder symbol .x so tar_hook_inner() knows where to insert the code
to wrap mentions of dependencies. The hook code is quoted (not evaluated) so
there is no need to wrap it in quote(), expression(), or similar.

names Name of targets in the target list to apply the hook. You can supply symbols, a
character vector, or tidyselect helpers like starts_with(). Targets not included
in names still remain in the target list, but they are not modified because the hook
does not apply to them.

names_wrap Names of targets to wrap with the hook where they appear as dependencies in
the commands of other targets. You can supply symbols, a character vector, or
tidyselect helpers like starts_with().

Details

The expression you supply to hook must contain the special placeholder symbol .x so tar_hook_inner()
knows where to insert the original command of the target.

Value

A flattened list of target objects with the hooks applied. Even if the input target list had a nested
structure, the return value is a simple list where each element is a target object. All hook functions
remove the nested structure of the input target list.

tar_hook_outer 85

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other hooks: tar_hook_before(), tar_hook_outer()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

targets <- list(
Nested target lists work with hooks.
list(

targets::tar_target(x1, task1()),
targets::tar_target(x2, task2(x1))

),
targets::tar_target(x3, task3(x2, x1)),
targets::tar_target(y1, task4(x3))

)
tarchetypes::tar_hook_inner(

targets = targets,
hook = fun(.x),
names = starts_with("x")

)
})
targets::tar_manifest(fields = command)
})
}

tar_hook_outer Hook to wrap commands

Description

Wrap the command of each target in an arbitrary R expression.

Usage

tar_hook_outer(targets, hook, names = NULL)

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

86 tar_hook_outer

Arguments

targets A list of target objects. The input target list can be arbitrarily nested, but it must
consist entirely of target objects. In addition, the return value is a simple list
where each element is a target object. All hook functions remove the nested
structure of the input target list.

hook R code to wrap each target’s command. The hook must contain the special
placeholder symbol .x so tar_hook_outer() knows where to insert the original
command of the target. The hook code is quoted (not evaluated) so there is no
need to wrap it in quote(), expression(), or similar.

names Name of targets in the target list to apply the hook. You can supply symbols, a
character vector, or tidyselect helpers like starts_with(). Targets not included
in names still remain in the target list, but they are not modified because the hook
does not apply to them.

Details

The expression you supply to hook must contain the special placeholder symbol .x so tar_hook_outer()
knows where to insert the original command of the target.

Value

A flattened list of target objects with the hooks applied. Even if the input target list had a nested
structure, the return value is a simple list where each element is a target object. All hook functions
remove the nested structure of the input target list.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other hooks: tar_hook_before(), tar_hook_inner()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

targets <- list(
Nested target lists work with hooks.
list(

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_knit 87

targets::tar_target(x1, task1()),
targets::tar_target(x2, task2(x1))

),
targets::tar_target(x3, task3(x2)),
targets::tar_target(y1, task4(x3))

)
tarchetypes::tar_hook_outer(

targets = targets,
hook = postprocess(.x, arg = "value"),
names = starts_with("x")

)
})
targets::tar_manifest(fields = command)
})
}

tar_knit Target with a knitr document.

Description

Shorthand to include knitr document in a targets pipeline.

Usage

tar_knit(
name,
path,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = "main",
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
quiet = TRUE,
...

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,

88 tar_knit

f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character string, file path to the knitr source file. Must have length 1.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_knit 89

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

quiet Boolean; suppress the progress bar and messages?

... Named arguments to knitr::knit(). These arguments are evaluated when the
target actually runs in tar_make(), not when the target is defined.

Details

tar_knit() is an alternative to tar_target() for knitr reports that depend on other targets. The
knitr source should mention dependency targets with tar_load() and tar_read() in the ac-
tive code chunks (which also allows you to knit the report outside the pipeline if the _targets/
data store already exists). (Do not use tar_load_raw() or tar_read_raw() for this.) Then,
tar_knit() defines a special kind of target. It 1. Finds all the tar_load()/tar_read() dependen-
cies in the report and inserts them into the target’s command. This enforces the proper dependency
relationships. (Do not use tar_load_raw() or tar_read_raw() for this.) 2. Sets format = "file"
(see tar_target()) so targets watches the files at the returned paths and reruns the report if those
files change. 3. Configures the target’s command to return both the output report files and the in-
put source file. All these file paths are relative paths so the project stays portable. 4. Forces the
report to run in the user’s current working directory instead of the working directory of the report.
5. Sets convenient default options such as deployment = "main" in the target and quiet = TRUE in
knitr::knit().

Value

A tar_target() object with format = "file". When this target runs, it returns a character vector
of file paths. The first file paths are the output files (returned by knitr::knit()) and the knitr
source file is last. But unlike knitr::knit(), all returned paths are relative paths to ensure porta-
bility (so that the project can be moved from one file system to another without invalidating the
target). See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html

90 tar_knitr_deps

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Literate programming targets: tar_knit_raw(), tar_quarto_raw(), tar_quarto_rep_raw(),
tar_quarto_rep(), tar_quarto(), tar_render_raw(), tar_render_rep_raw(), tar_render_rep(),
tar_render()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

Ordinarily, you should create the report outside
tar_script() and avoid temporary files.
lines <- c(
"---",
"title: report",
"output_format: html_document",
"---",
"",
"```{r}",
"targets::tar_read(data)",
"```"

)
path <- tempfile()
writeLines(lines, path)
list(

targets::tar_target(data, data.frame(x = seq_len(26), y = letters)),
tarchetypes::tar_knit(report, path)

)
})
targets::tar_make()
})
}

tar_knitr_deps List literate programming dependencies.

Description

List the target dependencies of one or more literate programming reports (R Markdown or knitr).

Usage

tar_knitr_deps(path)

https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_knitr_deps_expr 91

Arguments

path Character vector, path to one or more R Markdown or knitr reports.

Value

Character vector of the names of targets that are dependencies of the knitr report.

See Also

Other Literate programming utilities: tar_knitr_deps_expr(), tar_quarto_files()

Examples

lines <- c(
"---",
"title: report",
"output_format: html_document",
"---",
"",
"```{r}",
"targets::tar_load(data1)",
"targets::tar_read(data2)",
"```"

)
report <- tempfile()
writeLines(lines, report)
tar_knitr_deps(report)

tar_knitr_deps_expr Expression with literate programming dependencies.

Description

Construct an expression whose global variable dependencies are the target dependencies of one
or more literate programming reports (R Markdown or knitr). This helps third-party developers
create their own third-party target factories for literate programming targets (similar to tar_knit()
and tar_render()).

Usage

tar_knitr_deps_expr(path)

Arguments

path Character vector, path to one or more R Markdown or knitr reports.

Value

Expression object to name the dependency targets of the knitr report, which will be detected in the
static code analysis of targets.

92 tar_knit_raw

See Also

Other Literate programming utilities: tar_knitr_deps(), tar_quarto_files()

Examples

lines <- c(
"---",
"title: report",
"output_format: html_document",
"---",
"",
"```{r}",
"targets::tar_load(data1)",
"targets::tar_read(data2)",
"```"

)
report <- tempfile()
writeLines(lines, report)
tar_knitr_deps_expr(report)

tar_knit_raw Target with a knitr document (raw version).

Description

Shorthand to include a knitr document in a targets pipeline (raw version)

Usage

tar_knit_raw(
name,
path,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = "main",
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
quiet = TRUE,
knit_arguments = quote(list())

)

tar_knit_raw 93

Arguments

name Character of length 1, name of the target.

path Character string, file path to the knitr source file. Must have length 1.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

94 tar_knit_raw

• "none": the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

quiet Boolean; suppress the progress bar and messages?

knit_arguments Optional language object with a list of named arguments to knitr::knit().
Cannot be an expression object. (Use quote(), not expression().) The reason
for quoting is that these arguments may depend on upstream targets whose val-
ues are not available at the time the target is defined, and because tar_knit_raw()
is the "raw" version of a function, we want to avoid all non-standard evaluation.

Details

tar_knit_raw() is just like tar_knit() except that it uses standard evaluation. The name argu-
ment is a character vector, and the knit_arguments argument is a language object.

Value

A tar_target() object with format = "file". When this target runs, it returns a character vector
of file paths. The first file paths are the output files (returned by knitr::knit()) and the knitr
source file is last. But unlike knitr::knit(), all returned paths are relative paths to ensure porta-
bility (so that the project can be moved from one file system to another without invalidating the
target). See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Literate programming targets: tar_knit(), tar_quarto_raw(), tar_quarto_rep_raw(),
tar_quarto_rep(), tar_quarto(), tar_render_raw(), tar_render_rep_raw(), tar_render_rep(),
tar_render()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

Ordinarily, you should create the report outside

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_map 95

tar_script() and avoid temporary files.
lines <- c(

"---",
"title: report",
"output_format: html_document",
"---",
"",
"```{r}",
"targets::tar_read(data)",
"```"

)
path <- tempfile()
writeLines(lines, path)
list(

targets::tar_target(data, data.frame(x = seq_len(26), y = letters)),
tarchetypes::tar_knit_raw("report", path)

)
})
targets::tar_make()
})
}

tar_map Static branching.

Description

Define multiple new targets based on existing target objects.

Usage

tar_map(values, ..., names = tidyselect::everything(), unlist = FALSE)

Arguments

values Named list or data frame with values to iterate over. The names are the names
of symbols in the commands and pattern statements, and the elements are values
that get substituted in place of those symbols. tar_map() uses these elements to
create new R code, so they should be basic types, symbols, or R expressions. For
objects even a little bit complicated, especially objects with attributes, it is not
obvious how to convert the object into code that generates it. For complicated
objects, consider using quote() when you define values, as shown at https:
//github.com/ropensci/tarchetypes/discussions/105.

... One or more target objects or list of target objects. Lists can be arbitrarily nested,
as in list().

names Subset of names(values) used to generate the suffixes in the names of the new
targets. You can supply symbols, a character vector, or tidyselect helpers like
starts_with().

https://github.com/ropensci/tarchetypes/discussions/105
https://github.com/ropensci/tarchetypes/discussions/105

96 tar_map

unlist Logical, whether to flatten the returned list of targets. If unlist = FALSE, the
list is nested and sub-lists are named and grouped by the original input targets.
If unlist = TRUE, the return value is a flat list of targets named by the new target
names.

Details

tar_map() creates collections of new targets by iterating over a list of arguments and substituting
symbols into commands and pattern statements.

Value

A list of new target objects. If unlist is FALSE, the list is nested and sub-lists are named and
grouped by the original input targets. If unlist = TRUE, the return value is a flat list of targets
named by the new target names. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count_raw(), tar_map2_count(),
tar_map2_raw(), tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(),
tar_map_rep(), tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(),
tar_rep()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

list(
tarchetypes::tar_map(

list(a = c(12, 34), b = c(45, 78)),
targets::tar_target(x, a + b),
targets::tar_target(y, x + a, pattern = map(x))

)
)

})
targets::tar_manifest()
})
}

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_map2_count 97

tar_map2_count Dynamic-within-static branching for data frames (count batching).

Description

Define targets for batched dynamic-within-static branching for data frames, where the user sets the
(maximum) number of batches.

Usage

tar_map2_count(
name,
command1,
command2,
values = NULL,
names = NULL,
batches = 1L,
combine = TRUE,
suffix1 = "1",
suffix2 = "2",
columns1 = tidyselect::everything(),
columns2 = tidyselect::everything(),
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, base name of the targets.

command1 R code to create named arguments to command2. Must return a data frame with
one row per call to command2.

command2 R code to map over the data frame of arguments produced by command1. Must
return a data frame.

98 tar_map2_count

values Named list or data frame with values to iterate over. The names are the names
of symbols in the commands and pattern statements, and the elements are values
that get substituted in place of those symbols. tar_map() uses these elements to
create new R code, so they should be basic types, symbols, or R expressions. For
objects even a little bit complicated, especially objects with attributes, it is not
obvious how to convert the object into code that generates it. For complicated
objects, consider using quote() when you define values, as shown at https:
//github.com/ropensci/tarchetypes/discussions/105.

names Language object with a tidyselect expression to select which columns of values
to use to construct statically branched target names. If NULL, then short names
are automatically generated.

batches Positive integer of length 1, maximum number of batches (dynamic branches
within static branches) of the downstream (command2) targets. Batches are
formed from row groups of the command1 target output.

combine Logical of length 1, whether to statically combine all the results into a single
target downstream.

suffix1 Character of length 1, suffix to apply to the command1 targets to distinguish them
from the command2 targets.

suffix2 Character of length 1, suffix to apply to the command2 targets to distinguish them
from the command1 targets.

columns1 A tidyselect expression to select which columns of values to append to the
output of all targets. Columns already in the target output are not appended.

columns2 A tidyselect expression to select which columns of command1 output to append
to command2 output. Columns already in the target output are not appended.
columns1 takes precedence over columns2.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the output. An efficient data frame for-
mat like "feather" is recommended, but the default is "rds" to avoid incurring
extra package dependencies. See the help file of targets::tar_target() for
details on storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

https://github.com/ropensci/tarchetypes/discussions/105
https://github.com/ropensci/tarchetypes/discussions/105
https://books.ropensci.org/targets/data.html

tar_map2_count 99

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

100 tar_map2_count

then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

Static branching creates one pair of targets for each row in values. In each pair, there is an upstream
non-dynamic target that runs command1 and a downstream dynamic target that runs command2.
command1 produces a data frame of arguments to command2, and command2 dynamically maps over
these arguments in batches.

Value

A list of new target objects. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_map2_count_raw 101

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count_raw(), tar_map2_raw(),
tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(), tar_map_rep(),
tar_map(), tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(),
tar_rep()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

tarchetypes::tar_map2_count(
x,
command1 = tibble::tibble(

arg1 = arg1,
arg2 = seq_len(6)
),
command2 = tibble::tibble(

result = paste(arg1, arg2),
random = sample.int(1e9, size = 1),
length_input = length(arg1)

),
values = tibble::tibble(arg1 = letters[seq_len(2)]),
batches = 3
)

})
targets::tar_make()
targets::tar_read(x)
})
}

tar_map2_count_raw Dynamic-within-static branching for data frames (count batching;
raw version).

Description

Define targets for batched dynamic-within-static branching for data frames, where the user sets the
(maximum) number of batches. Like tar_map2_count() except name is a character string and
command1, command2, names, columns1, and columns2 are all language objects.

Usage

tar_map2_count_raw(
name,
command1,
command2,
values = NULL,

102 tar_map2_count_raw

names = NULL,
batches = 1L,
combine = TRUE,
suffix1 = "1",
suffix2 = "2",
columns1 = quote(tidyselect::everything()),
columns2 = quote(tidyselect::everything()),
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Character of length 1, base name of the targets.

command1 Language object to create named arguments to command2. Must return a data
frame with one row per call to command2.

command2 Language object to map over the data frame of arguments produced by command1.
Must return a data frame.

values Named list or data frame with values to iterate over. The names are the names
of symbols in the commands and pattern statements, and the elements are values
that get substituted in place of those symbols. tar_map() uses these elements to
create new R code, so they should be basic types, symbols, or R expressions. For
objects even a little bit complicated, especially objects with attributes, it is not
obvious how to convert the object into code that generates it. For complicated
objects, consider using quote() when you define values, as shown at https:
//github.com/ropensci/tarchetypes/discussions/105.

names Language object with a tidyselect expression to select which columns of values
to use to construct statically branched target names. If NULL, then short names
are automatically generated.

batches Positive integer of length 1, maximum number of batches (dynamic branches
within static branches) of the downstream (command2) targets. Batches are
formed from row groups of the command1 target output.

combine Logical of length 1, whether to statically combine all the results into a single
target downstream.

https://github.com/ropensci/tarchetypes/discussions/105
https://github.com/ropensci/tarchetypes/discussions/105

tar_map2_count_raw 103

suffix1 Character of length 1, suffix to apply to the command1 targets to distinguish them
from the command2 targets.

suffix2 Character of length 1, suffix to apply to the command2 targets to distinguish them
from the command1 targets.

columns1 Language object, a tidyselect expression to select which columns of values to
append to the output of all targets.

columns2 Language object, a tidyselect expression to select which columns of command1
output to append to command2 output. In case of conflicts, column1 takes prece-
dence.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the output. An efficient data frame for-
mat like "feather" is recommended, but the default is "rds" to avoid incurring
extra package dependencies. See the help file of targets::tar_target() for
details on storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

104 tar_map2_count_raw

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

tar_map2_count_raw 105

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

Static branching creates one pair of targets for each row in values. In each pair, there is an upstream
non-dynamic target that runs command1 and a downstream dynamic target that runs command2.
command1 produces a data frame of arguments to command2, and command2 dynamically maps over
these arguments in batches.

Value

A list of new target objects. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count(), tar_map2_raw(),
tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(), tar_map_rep(),
tar_map(), tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(),
tar_rep()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

tarchetypes::tar_map2_count_raw(
"x",
command1 = quote(

tibble::tibble(
arg1 = arg1,
arg2 = seq_len(6)
)

),

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

106 tar_map2_size

command2 = quote(
tibble::tibble(

result = paste(arg1, arg2),
random = sample.int(1e6, size = 1),
length_input = length(arg1)

)
),
values = tibble::tibble(arg1 = letters[seq_len(2)]),
batches = 3
)

})
targets::tar_make()
targets::tar_read(x)
})
}

tar_map2_size Dynamic-within-static branching for data frames (size batching).

Description

Define targets for batched dynamic-within-static branching for data frames, where the user sets the
(maximum) size of each batch.

Usage

tar_map2_size(
name,
command1,
command2,
values = NULL,
names = NULL,
size = Inf,
combine = TRUE,
suffix1 = "1",
suffix2 = "2",
columns1 = tidyselect::everything(),
columns2 = tidyselect::everything(),
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),

tar_map2_size 107

resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, base name of the targets.

command1 R code to create named arguments to command2. Must return a data frame with
one row per call to command2.

command2 R code to map over the data frame of arguments produced by command1. Must
return a data frame.

values Named list or data frame with values to iterate over. The names are the names
of symbols in the commands and pattern statements, and the elements are values
that get substituted in place of those symbols. tar_map() uses these elements to
create new R code, so they should be basic types, symbols, or R expressions. For
objects even a little bit complicated, especially objects with attributes, it is not
obvious how to convert the object into code that generates it. For complicated
objects, consider using quote() when you define values, as shown at https:
//github.com/ropensci/tarchetypes/discussions/105.

names Language object with a tidyselect expression to select which columns of values
to use to construct statically branched target names. If NULL, then short names
are automatically generated.

size Positive integer of length 1, maximum number of rows in each batch for the
downstream (command2) targets. Batches are formed from row groups of the
command1 target output.

combine Logical of length 1, whether to statically combine all the results into a single
target downstream.

suffix1 Character of length 1, suffix to apply to the command1 targets to distinguish them
from the command2 targets.

suffix2 Character of length 1, suffix to apply to the command2 targets to distinguish them
from the command1 targets.

columns1 A tidyselect expression to select which columns of values to append to the
output of all targets. Columns already in the target output are not appended.

columns2 A tidyselect expression to select which columns of command1 output to append
to command2 output. Columns already in the target output are not appended.
columns1 takes precedence over columns2.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

https://github.com/ropensci/tarchetypes/discussions/105
https://github.com/ropensci/tarchetypes/discussions/105

108 tar_map2_size

format Character of length 1, storage format of the output. An efficient data frame for-
mat like "feather" is recommended, but the default is "rds" to avoid incurring
extra package dependencies. See the help file of targets::tar_target() for
details on storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_map2_size 109

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.

• "none": almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.

• "none": the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

Static branching creates one pair of targets for each row in values. In each pair, there is an upstream
non-dynamic target that runs command1 and a downstream dynamic target that runs command2.
command1 produces a data frame of arguments to command2, and command2 dynamically maps over
these arguments in batches.

Value

A list of new target objects. See the "Target objects" section for background.

110 tar_map2_size_raw

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count_raw(), tar_map2_count(),
tar_map2_raw(), tar_map2_size_raw(), tar_map2(), tar_map_rep_raw(), tar_map_rep(),
tar_map(), tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(),
tar_rep()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

tarchetypes::tar_map2_size(
x,
command1 = tibble::tibble(

arg1 = arg1,
arg2 = seq_len(6)
),
command2 = tibble::tibble(

result = paste(arg1, arg2),
random = sample.int(1e9, size = 1),
length_input = length(arg1)

),
values = tibble::tibble(arg1 = letters[seq_len(2)]),
size = 2
)

})
targets::tar_make()
targets::tar_read(x)
})
}

tar_map2_size_raw Dynamic-within-static branching for data frames (size batching; raw
version).

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_map2_size_raw 111

Description

Define targets for batched dynamic-within-static branching for data frames, where the user sets
the (maximum) size of each batch. Like tar_map2_size() except name is a character string and
command1, command2, names, columns1, and columns2 are all language objects.

Usage

tar_map2_size_raw(
name,
command1,
command2,
values = NULL,
names = NULL,
size = Inf,
combine = TRUE,
suffix1 = "1",
suffix2 = "2",
columns1 = quote(tidyselect::everything()),
columns2 = quote(tidyselect::everything()),
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Character of length 1, base name of the targets.

command1 Language object to create named arguments to command2. Must return a data
frame with one row per call to command2.

command2 Language object to map over the data frame of arguments produced by command1.
Must return a data frame.

values Named list or data frame with values to iterate over. The names are the names
of symbols in the commands and pattern statements, and the elements are values
that get substituted in place of those symbols. tar_map() uses these elements to
create new R code, so they should be basic types, symbols, or R expressions. For
objects even a little bit complicated, especially objects with attributes, it is not

112 tar_map2_size_raw

obvious how to convert the object into code that generates it. For complicated
objects, consider using quote() when you define values, as shown at https:
//github.com/ropensci/tarchetypes/discussions/105.

names Language object with a tidyselect expression to select which columns of values
to use to construct statically branched target names. If NULL, then short names
are automatically generated.

size Positive integer of length 1, maximum number of rows in each batch for the
downstream (command2) targets. Batches are formed from row groups of the
command1 target output.

combine Logical of length 1, whether to statically combine all the results into a single
target downstream.

suffix1 Character of length 1, suffix to apply to the command1 targets to distinguish them
from the command2 targets.

suffix2 Character of length 1, suffix to apply to the command2 targets to distinguish them
from the command1 targets.

columns1 Language object, a tidyselect expression to select which columns of values to
append to the output of all targets.

columns2 Language object, a tidyselect expression to select which columns of command1
output to append to command2 output. In case of conflicts, column1 takes prece-
dence.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the output. An efficient data frame for-
mat like "feather" is recommended, but the default is "rds" to avoid incurring
extra package dependencies. See the help file of targets::tar_target() for
details on storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

https://github.com/ropensci/tarchetypes/discussions/105
https://github.com/ropensci/tarchetypes/discussions/105
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_map2_size_raw 113

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

114 tar_map2_size_raw

tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

Static branching creates one pair of targets for each row in values. In each pair, there is an upstream
non-dynamic target that runs command1 and a downstream dynamic target that runs command2.
command1 produces a data frame of arguments to command2, and command2 dynamically maps over
these arguments in batches.

Value

A list of new target objects. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count_raw(), tar_map2_count(),
tar_map2_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(), tar_map_rep(), tar_map(),
tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(), tar_rep()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_map_rep 115

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

tarchetypes::tar_map2_size_raw(
"x",
command1 = quote(

tibble::tibble(
arg1 = arg1,
arg2 = seq_len(6)
)

),
command2 = quote(

tibble::tibble(
result = paste(arg1, arg2),
random = sample.int(1e6, size = 1),
length_input = length(arg1)

)
),
values = tibble::tibble(arg1 = letters[seq_len(2)]),
size = 2
)

})
targets::tar_make()
targets::tar_read(x)
})
}

tar_map_rep Dynamic batched replication within static branches for data frames.

Description

Define targets for batched replication within static branches for data frames.

Usage

tar_map_rep(
name,
command,
values = NULL,
names = NULL,
columns = tidyselect::everything(),
batches = 1,
reps = 1,
combine = TRUE,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),

116 tar_map_rep

format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code for a single replicate. Must return a data frame.

values Named list or data frame with values to iterate over. The names are the names
of symbols in the commands and pattern statements, and the elements are values
that get substituted in place of those symbols. tar_map() uses these elements to
create new R code, so they should be basic types, symbols, or R expressions. For
objects even a little bit complicated, especially objects with attributes, it is not
obvious how to convert the object into code that generates it. For complicated
objects, consider using quote() when you define values, as shown at https:
//github.com/ropensci/tarchetypes/discussions/105.

names Language object with a tidyselect expression to select which columns of values
to use to construct statically branched target names. If NULL, then short names
are automatically generated.

columns A tidyselect expression to select which columns of values to append to the
output. Columns already in the target output are not appended.

batches Number of batches. This is also the number of dynamic branches created during
tar_make().

reps Number of replications in each batch. The total number of replications is batches
* reps.

combine Logical of length 1, whether to statically combine all the results into a single
target downstream.

https://github.com/ropensci/tarchetypes/discussions/105
https://github.com/ropensci/tarchetypes/discussions/105

tar_map_rep 117

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the output. An efficient data frame for-
mat like "feather" is recommended, but the default is "rds" to avoid incurring
extra package dependencies. See the help file of targets::tar_target() for
details on storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

118 tar_map_rep

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A list of new target objects. See the "Target objects" section for background.

tar_map_rep 119

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count_raw(), tar_map2_count(),
tar_map2_raw(), tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(),
tar_map(), tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(),
tar_rep()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

Just a sketch of a Bayesian sensitivity analysis of hyperparameters:
assess_hyperparameters <- function(sigma1, sigma2) {
data <- simulate_random_data() # user-defined function
run_model(data, sigma1, sigma2) # user-defined function
Mock output from the model:
posterior_samples <- stats::rnorm(1000, 0, sigma1 + sigma2)
tibble::tibble(

posterior_median = median(posterior_samples),
posterior_quantile_0.025 = quantile(posterior_samples, 0.025),
posterior_quantile_0.975 = quantile(posterior_samples, 0.975)

)
}
hyperparameters <- tibble::tibble(

scenario = c("tight", "medium", "diffuse"),
sigma1 = c(10, 50, 50),
sigma2 = c(10, 5, 10)

)

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

120 tar_map_rep_raw

tarchetypes::tar_map_rep(
sensitivity_analysis,
command = assess_hyperparameters(sigma1, sigma2),
values = hyperparameters,
names = tidyselect::any_of("scenario"),
batches = 2,
reps = 3
)

})
targets::tar_make()
targets::tar_read(sensitivity_analysis)
})
}

tar_map_rep_raw Dynamic batched replication within static branches for data frames
(raw version).

Description

Define targets for batched replication within static branches for data frames (raw version).

This function is like tar_map_rep() except the name argument is a character string and the names
and columns arguments are language objects.

Usage

tar_map_rep_raw(
name,
command,
values = NULL,
names = NULL,
columns = quote(tidyselect::everything()),
batches = 1,
reps = 1,
combine = TRUE,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),

tar_map_rep_raw 121

cue = targets::tar_option_get("cue")
)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command Language object, R code for a single replicate. Must return a data frame.

values Named list or data frame with values to iterate over. The names are the names
of symbols in the commands and pattern statements, and the elements are values
that get substituted in place of those symbols. tar_map() uses these elements to
create new R code, so they should be basic types, symbols, or R expressions. For
objects even a little bit complicated, especially objects with attributes, it is not
obvious how to convert the object into code that generates it. For complicated
objects, consider using quote() when you define values, as shown at https:
//github.com/ropensci/tarchetypes/discussions/105.

names Language object with a tidyselect expression to select which columns of values
to use to construct statically branched target names. If NULL, then short names
are automatically generated.

columns Language object with a tidyselect expression to select which columns of values
to append to the output. Columns already in the target output are not appended.

batches Number of batches. This is also the number of dynamic branches created during
tar_make().

reps Number of replications in each batch. The total number of replications is batches
* reps.

combine Logical of length 1, whether to statically combine all the results into a single
target downstream.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the output. An efficient data frame for-
mat like "feather" is recommended, but the default is "rds" to avoid incurring

https://github.com/ropensci/tarchetypes/discussions/105
https://github.com/ropensci/tarchetypes/discussions/105

122 tar_map_rep_raw

extra package dependencies. See the help file of targets::tar_target() for
details on storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_map_rep_raw 123

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Value

A list of new target objects. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html

124 tar_map_rep_raw

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count_raw(), tar_map2_count(),
tar_map2_raw(), tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep(), tar_map(),
tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(), tar_rep()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

Just a sketch of a Bayesian sensitivity analysis of hyperparameters:
assess_hyperparameters <- function(sigma1, sigma2) {
data <- simulate_random_data() # user-defined function
run_model(data, sigma1, sigma2) # user-defined function
Mock output from the model:
posterior_samples <- stats::rnorm(1000, 0, sigma1 + sigma2)
tibble::tibble(

posterior_median = median(posterior_samples),
posterior_quantile_0.025 = quantile(posterior_samples, 0.025),
posterior_quantile_0.975 = quantile(posterior_samples, 0.975)

)
}
hyperparameters <- tibble::tibble(

scenario = c("tight", "medium", "diffuse"),
sigma1 = c(10, 50, 50),
sigma2 = c(10, 5, 10)

)
tarchetypes::tar_map_rep_raw(

"sensitivity_analysis",
command = quote(assess_hyperparameters(sigma1, sigma2)),
values = hyperparameters,
names = quote(tidyselect::any_of("scenario")),
batches = 2,
reps = 3
)

})

https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_plan 125

targets::tar_make()
targets::tar_read(sensitivity_analysis)
})
}

tar_plan A drake-plan-like pipeline archetype

Description

Simplify target specification in pipelines.

Usage

tar_plan(...)

Arguments

... Named and unnamed targets. All named targets must follow the drake-plan-like
target = command syntax, and all unnamed arguments must be explicit calls to
create target objects, e.g. tar_target(), target archetypes like tar_render(),
or similar.

Details

Allows targets with just targets and commands to be written in the pipeline as target = command
instead of tar_target(target, command). Also supports ordinary target objects if they are un-
named. tar_plan(x = 1, y = 2, tar_target(z, 3), tar_render(r, "r.Rmd")) is equivalent to
list(tar_target(x, 1), tar_target(y, 2), tar_target(z, 3), tar_render(r, "r.Rmd")). #
nolint

Value

A list of tar_target() objects. See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

126 tar_quarto

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(tarchetypes)
tar_plan(
tarchetypes::tar_fst_tbl(data, data.frame(x = seq_len(26))),
means = colMeans(data) # No need for tar_target() for simple cases.

)
})
targets::tar_make()
})
}

tar_quarto Target with a Quarto project.

Description

Shorthand to include a Quarto project in a targets pipeline.

Usage

tar_quarto(
name,
path = ".",
extra_files = character(0),
execute = TRUE,
execute_params = list(),
cache = NULL,
cache_refresh = FALSE,
debug = FALSE,
quiet = TRUE,
pandoc_args = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = "main",
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

tar_quarto 127

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character of length 1, either the single *.qmd source file to be rendered or a
directory containing a Quarto project. Defaults to the working directory of the
targets pipeline. Passed directly to the input argument of quarto::quarto_render().

extra_files Character vector of extra files and directories to track for changes. The target
will be invalidated (rerun on the next tar_make()) if the contents of these files
changes. No need to include anything already in the output of tar_quarto_files(),
the list of file dependencies automatically detected through quarto::quarto_inspect().

execute Whether to execute embedded code chunks.

execute_params Code, cannot be NULL. execute_params evaluates to a named list of parameters
for parameterized Quarto documents. These parameters override the custom
custom elements of the params list in the YAML front-matter of the Quarto
source files. The list is quoted (not evaluated until the target runs) so that up-
stream targets can serve as parameter values.

cache Cache execution output (uses knitr cache and jupyter-cache respectively for Rmd
and Jupyter input files).

cache_refresh Force refresh of execution cache.

debug Leave intermediate files in place after render.

quiet Suppress warning and other messages.

pandoc_args Additional command line options to pass to pandoc.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

128 tar_quarto

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

tar_quarto() is an alternative to tar_target() for Quarto projects and standalone Quarto source
documents that depend on upstream targets. The Quarto R source documents (*.qmd and *.Rmd
files) should mention dependency targets with tar_load() and tar_read() in the active R code
chunks (which also allows you to render the project outside the pipeline if the _targets/ data store
already exists). (Do not use tar_load_raw() or tar_read_raw() for this.) Then, tar_quarto()
defines a special kind of target. It 1. Finds all the tar_load()/tar_read() dependencies in the
R source reports and inserts them into the target’s command. This enforces the proper dependency
relationships. (Do not use tar_load_raw() or tar_read_raw() for this.) 2. Sets format = "file"

tar_quarto 129

(see tar_target()) so targets watches the files at the returned paths and reruns the report if those
files change. 3. Configures the target’s command to return both the output rendered files and the
input dependency files (such as Quarto source documents). All these file paths are relative paths so
the project stays portable. 4. Forces the report to run in the user’s current working directory instead
of the working directory of the report. 5. Sets convenient default options such as deployment =
"main" in the target and quiet = TRUE in quarto::quarto_render().

Value

A target object with format = "file". When this target runs, it returns a character vector of file
paths: the rendered documents, the Quarto source files, and other input and output files. The output
files are determined by the YAML front-matter of standalone Quarto documents and _quarto.yml
in Quarto projects, and you can see these files with tar_quarto_files() (powered by quarto::quarto_inspect()).
All returned paths are relative paths to ensure portability (so that the project can be moved from one
file system to another without invalidating the target). See the "Target objects" section for back-
ground.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Literate programming targets: tar_knit_raw(), tar_knit(), tar_quarto_raw(), tar_quarto_rep_raw(),
tar_quarto_rep(), tar_render_raw(), tar_render_rep_raw(), tar_render_rep(), tar_render()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Unparameterized Quarto document:
lines <- c(

"---",
"title: report.qmd source file",
"output_format: html",
"---",
"Assume these lines are in report.qmd.",
"```{r}",
"targets::tar_read(data)",
"```"

)
writeLines(lines, "report.qmd")

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

130 tar_quarto_files

Include the report in a pipeline as follows.
targets::tar_script({

library(tarchetypes)
list(
tar_target(data, data.frame(x = seq_len(26), y = letters)),
tar_quarto(report, path = "report.qmd")

)
}, ask = FALSE)
Then, run the pipeline as usual.

Parameterized Quarto:
lines <- c(

"---",
"title: 'report.qmd source file with parameters'",
"output_format: html_document",
"params:",
" your_param: \"default value\"",
"---",
"Assume these lines are in report.qmd.",
"```{r}",
"print(params$your_param)",
"```"

)
writeLines(lines, "report.qmd")
Include the report in the pipeline as follows.
unlink("_targets.R") # In tar_dir(), not the user's file space.
targets::tar_script({

library(tarchetypes)
list(
tar_target(data, data.frame(x = seq_len(26), y = letters)),
tar_quarto(

report,
path = "report.qmd",
execute_params = list(your_param = data)

)
)

}, ask = FALSE)
})
Then, run the pipeline as usual.
}

tar_quarto_files Quarto file detection

Description

Detect the important files in a Quarto project.

Usage

tar_quarto_files(path = ".")

tar_quarto_raw 131

Arguments

path Character of length 1, either the file path to a Quarto source document or the
directory path to a Quarto project. Defaults to the Quarto project in the current
working directory.

Details

This function is just a thin wrapper that interprets the output of quarto::quarto_inspect() and
returns what tarchetypes needs to know about the current Quarto project or document.

Value

A named list of important file paths in a Quarto project or document:

• sources: source files with tar_load()/tar_read() target dependencies in R code chunks.

• output: output files that will be generated during quarto::quarto_render().

• input: pre-existing files required to render the project or document, such as _quarto.yml.

See Also

Other Literate programming utilities: tar_knitr_deps_expr(), tar_knitr_deps()

Examples

lines <- c(
"---",
"title: source file",
"---",
"Assume these lines are in report.qmd.",
"```{r}",
"1 + 1",
"```"

)
path <- tempfile(fileext = ".qmd")
writeLines(lines, path)
If Quarto is installed, run:
tar_quarto_files(path)

tar_quarto_raw Target with a Quarto project (raw version).

Description

Shorthand to include a Quarto project or standalone Quarto source document in a targets pipeline.

132 tar_quarto_raw

Usage

tar_quarto_raw(
name,
path = ".",
extra_files = character(0),
execute = TRUE,
execute_params = NULL,
cache = NULL,
cache_refresh = FALSE,
debug = FALSE,
quiet = TRUE,
pandoc_args = NULL,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = "main",
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Character of length 1, name of the target. A target name must be a valid name
for a symbol in R, and it must not start with a dot. Subsequent targets can refer to
this name symbolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character of length 1, either the single *.qmd source file to be rendered or a
directory containing a Quarto project. Defaults to the working directory of the
targets pipeline. Passed directly to the input argument of quarto::quarto_render().

extra_files Character vector of extra files and directories to track for changes. The target
will be invalidated (rerun on the next tar_make()) if the contents of these files
changes. No need to include anything already in the output of tar_quarto_files(),
the list of file dependencies automatically detected through quarto::quarto_inspect().

execute Whether to execute embedded code chunks.

execute_params A non-expression language object (use quote(), not expression()) that eval-
uates to a named list of parameters for parameterized Quarto documents. These

tar_quarto_raw 133

parameters override the custom custom elements of the params list in the YAML
front-matter of the Quarto source files. The list is quoted (not evaluated until the
target runs) so that upstream targets can serve as parameter values.

cache Cache execution output (uses knitr cache and jupyter-cache respectively for Rmd
and Jupyter input files).

cache_refresh Force refresh of execution cache.

debug Leave intermediate files in place after render.

quiet Suppress warning and other messages.

pandoc_args Additional command line options to pass to pandoc.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

134 tar_quarto_raw

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

tar_quarto_raw() is just like tar_quarto() except that it uses standard evaluation for the name
and execute_params arguments (instead of quoting them).

Value

A target object with format = "file". When this target runs, it returns a sorted character vector of
all the important file paths: the rendered documents, the Quarto source files, and other input and
output files. The output files are determined by the YAML front-matter of standalone Quarto docu-
ments and _quarto.yml in Quarto projects, and you can see these files with tar_quarto_files()
(powered by quarto::quarto_inspect()). All returned paths are relative paths to ensure porta-
bility (so that the project can be moved from one file system to another without invalidating the
target). See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Literate programming targets: tar_knit_raw(), tar_knit(), tar_quarto_rep_raw(), tar_quarto_rep(),
tar_quarto(), tar_render_raw(), tar_render_rep_raw(), tar_render_rep(), tar_render()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Unparameterized Quarto document:
lines <- c(

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_quarto_raw 135

"---",
"title: report.qmd source file",
"output_format: html",
"---",
"Assume these lines are in report.qmd.",
"```{r}",
"targets::tar_read(data)",
"```"

)
In tar_dir(), not part of the user's file space:
writeLines(lines, "report.qmd")
Include the report in a pipeline as follows.
targets::tar_script({

library(tarchetypes)
list(
tar_target(data, data.frame(x = seq_len(26), y = letters)),
tar_quarto_raw("report", path = "report.qmd")

)
}, ask = FALSE)
Then, run the pipeline as usual.

Parameterized Quarto:
lines <- c(

"---",
"title: 'report.qmd source file with parameters'",
"output_format: html_document",
"params:",
" your_param: \"default value\"",
"---",
"Assume these lines are in report.qmd.",
"```{r}",
"print(params$your_param)",
"```"

)
In tar_dir(), not part of the user's file space:
writeLines(lines, "report.qmd")
Include the report in the pipeline as follows.
targets::tar_script({

library(tarchetypes)
list(
tar_target(data, data.frame(x = seq_len(26), y = letters)),
tar_quarto_raw(

"report",
path = "report.qmd",
execute_params = quote(list(your_param = data))

)
)

}, ask = FALSE)
Then, run the pipeline as usual.
})
}

136 tar_quarto_rep

tar_quarto_rep Parameterized Quarto with dynamic branching.

Description

Targets to render a parameterized Quarto document with multiple sets of parameters.

Usage

tar_quarto_rep(
name,
path,
execute_params = data.frame(),
batches = NULL,
extra_files = character(0),
execute = TRUE,
cache = NULL,
cache_refresh = FALSE,
debug = FALSE,
quiet = TRUE,
pandoc_args = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even

tar_quarto_rep 137

dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character string, file path to the Quarto source file. Must have length 1.

execute_params Code to generate a data frame or tibble with one row per rendered report and
one column per Quarto parameter. You may also include an output_file col-
umn to specify the path of each rendered report. If included, the output_file
column must be a character vector with one and only one output file for each row
of parameters. If an output_file column is not included, then the output files
are automatically determined using the parameters, and the default file format is
determined by the YAML front-matter of the Quarto source document. Only the
first file format is used, the others are not generated. Quarto parameters must
not be named tar_group or output_file. This execute_params argument is
converted into the command for a target that supplies the Quarto parameters.

batches Number of batches to group the Quarto files. For a large number of reports,
increase the number of batches to decrease target-level overhead. Defaults to
the number of reports to render (1 report per batch).

extra_files Character vector of extra files that targets should track for changes. If the
content of one of these files changes, then the report will rerun over all the
parameters on the next tar_make(). These files are extra files, and they do not
include the Quarto source document or rendered output document, which are
already tracked for changes. Examples include bibliographies, style sheets, and
supporting image files.

execute Whether to execute embedded code chunks.

cache Cache execution output (uses knitr cache and jupyter-cache respectively for Rmd
and Jupyter input files).

cache_refresh Force refresh of execution cache.

debug Leave intermediate files in place after render.

quiet Suppress warning and other messages.

pandoc_args Additional command line options to pass to pandoc.

tidy_eval Logical of length 1, whether to use tidy evaluation to resolve execute_params.
Similar to the tidy_eval argument of targets::tar_target().

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().

138 tar_quarto_rep

• "group": dplyr::group_by()-like functionality to branch over subsets of
a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_quarto_rep 139

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

tar_quarto_rep() is an alternative to tar_target() for a parameterized Quarto document that
depends on other targets. Parameters must be given as a data frame with one row per rendered
report and one column per parameter. An optional output_file column may be included to set the
output file path of each rendered report. (See the execute_params argument for details.)

The Quarto source should mention other dependency targets tar_load() and tar_read() in the
active code chunks (which also allows you to render the report outside the pipeline if the _targets/
data store already exists and appropriate defaults are specified for the parameters). (Do not use
tar_load_raw() or tar_read_raw() for this.) Then, tar_quarto() defines a special kind of tar-
get. It 1. Finds all the tar_load()/tar_read() dependencies in the report and inserts them into the
target’s command. This enforces the proper dependency relationships. (Do not use tar_load_raw()
or tar_read_raw() for this.) 2. Sets format = "file" (see tar_target()) so targets watches
the files at the returned paths and reruns the report if those files change. 3. Configures the target’s
command to return the output report files: the rendered document, the source file, and file paths
mentioned in files. All these file paths are relative paths so the project stays portable. 4. Forces
the report to run in the user’s current working directory instead of the working directory of the
report. 5. Sets convenient default options such as deployment = "main" in the target and quiet =
TRUE in quarto::quarto_render().

Value

A list of target objects to render the Quarto reports. Changes to the parameters, source file, de-
pendencies, etc. will cause the appropriate targets to rerun during tar_make(). See the "Target
objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Literate programming targets: tar_knit_raw(), tar_knit(), tar_quarto_raw(), tar_quarto_rep_raw(),
tar_quarto(), tar_render_raw(), tar_render_rep_raw(), tar_render_rep(), tar_render()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

140 tar_quarto_rep_raw

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Parameterized Quarto:
lines <- c(

"---",
"title: 'report.qmd file'",
"output_format: html_document",
"params:",
" par: \"default value\"",
"---",
"Assume these lines are in a file called report.qmd.",
"```{r}",
"print(params$par)",
"```"

)
writeLines(lines, "report.qmd") # In tar_dir(), not the user's file space.
The following pipeline will run the report for each row of params.
targets::tar_script({

library(tarchetypes)
list(
tar_quarto_rep(

report,
path = "report.qmd",
execute_params = tibble::tibble(par = c(1, 2))

)
)

}, ask = FALSE)
Then, run the targets pipeline as usual.
})
}

tar_quarto_rep_raw Parameterized Quarto with dynamic branching (raw version).

Description

Targets to render a parameterized Quarto document with multiple sets of parameters (raw version).
Same as tar_quarto_rep() except name is a character string, params is an expression object, and
extra arguments to quarto::quarto_render() are passed through the args argument instead of
....

Usage

tar_quarto_rep_raw(
name,
path,
execute_params = expression(NULL),
batches = NULL,
extra_files = character(0),
execute = TRUE,

tar_quarto_rep_raw 141

cache = NULL,
cache_refresh = FALSE,
debug = FALSE,
quiet = TRUE,
pandoc_args = NULL,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character string, file path to the Quarto source file. Must have length 1.

execute_params Expression object with code to generate a data frame or tibble with one row
per rendered report and one column per Quarto parameter. You may also in-
clude an output_file column to specify the path of each rendered report. If
included, the output_file column must be a character vector with one and
only one output file for each row of parameters. If an output_file column is
not included, then the output files are automatically determined using the pa-
rameters, and the default file format is determined by the YAML front-matter of
the Quarto source document. Only the first file format is used, the others are not
generated. Quarto parameters must not be named tar_group or output_file.
This execute_params argument is converted into the command for a target that
supplies the Quarto parameters.

batches Number of batches to group the Quarto files. For a large number of reports,
increase the number of batches to decrease target-level overhead. Defaults to
the number of reports to render (1 report per batch).

142 tar_quarto_rep_raw

extra_files Character vector of extra files that targets should track for changes. If the
content of one of these files changes, then the report will rerun over all the
parameters on the next tar_make(). These files are extra files, and they do not
include the Quarto source document or rendered output document, which are
already tracked for changes. Examples include bibliographies, style sheets, and
supporting image files.

execute Whether to execute embedded code chunks.

cache Cache execution output (uses knitr cache and jupyter-cache respectively for Rmd
and Jupyter input files).

cache_refresh Force refresh of execution cache.

debug Leave intermediate files in place after render.

quiet Suppress warning and other messages.

pandoc_args Additional command line options to pass to pandoc.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, format argument to tar_target() to store the data frame
of Quarto parameters.

iteration Character of length 1, iteration argument to tar_target() for the Quarto
documents. Does not apply to the target with Quarto parameters (whose iteration
is always "group").

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_quarto_rep_raw 143

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

tar_quarto_rep_raw() is an alternative to tar_target_raw() for parameterized Quarto reports
that depend on other targets. Parameters must be given as a data frame with one row per rendered
report and one column per parameter. An optional output_file column may be included to set the
output file path of each rendered report. (See the execute_params argument for details.)

The Quarto source should mention other dependency targets tar_load() and tar_read() in the
active code chunks (which also allows you to render the report outside the pipeline if the _targets/
data store already exists and appropriate defaults are specified for the parameters). (Do not use
tar_load_raw() or tar_read_raw() for this.) Then, tar_quarto() defines a special kind of tar-
get. It 1. Finds all the tar_load()/tar_read() dependencies in the report and inserts them into the
target’s command. This enforces the proper dependency relationships. (Do not use tar_load_raw()
or tar_read_raw() for this.) 2. Sets format = "file" (see tar_target()) so targets watches
the files at the returned paths and reruns the report if those files change. 3. Configures the target’s
command to return the output report files: the rendered document, the source file, and then the
*_files/ directory if it exists. All these file paths are relative paths so the project stays portable. 4.
Forces the report to run in the user’s current working directory instead of the working directory of
the report. 5. Sets convenient default options such as deployment = "main" in the target and quiet
= TRUE in quarto::quarto_render().

Value

A list of target objects to render the Quarto reports. Changes to the parameters, source file, de-
pendencies, etc. will cause the appropriate targets to rerun during tar_make(). See the "Target
objects" section for background.

144 tar_quarto_rep_raw

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Literate programming targets: tar_knit_raw(), tar_knit(), tar_quarto_raw(), tar_quarto_rep(),
tar_quarto(), tar_render_raw(), tar_render_rep_raw(), tar_render_rep(), tar_render()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Parameterized Quarto:
lines <- c(

"---",
"title: 'report.qmd source file'",
"output_format: html_document",
"params:",
" par: \"default value\"",
"---",
"Assume these lines are in a file called report.qmd.",
"```{r}",
"print(params$par)",
"```"

)
writeLines(lines, "report.qmd") # In tar_dir(), not the user's file space.
The following pipeline will run the report for each row of params.
targets::tar_script({

library(tarchetypes)
list(
tar_quarto_rep_raw(

"report",
path = "report.qmd",
execute_params = quote(tibble::tibble(par = c(1, 2)))

)
)

}, ask = FALSE)
Then, run the targets pipeline as usual.
})
}

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_render 145

tar_render Target with an R Markdown document.

Description

Shorthand to include an R Markdown document in a targets pipeline.

Usage

tar_render(
name,
path,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = "main",
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
quiet = TRUE,
...

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character string, file path to the R Markdown source file. Must have length 1.
tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.

If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

146 tar_render

library Character vector of library paths to try when loading packages.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

quiet An option to suppress printing during rendering from knitr, pandoc command
line and others. To only suppress printing of the last "Output created: " message,
you can set rmarkdown.render.message to FALSE

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_render 147

... Named arguments to rmarkdown::render(). These arguments are evaluated
when the target actually runs in tar_make(), not when the target is defined. That
means, for example, you can use upstream targets as parameters of parameter-
ized R Markdown reports. tar_render(your_target, "your_report.Rmd",
params = list(your_param = your_target)) # nolint will run rmarkdown::render("your_report.Rmd",
params = list(your_param = your_target)). # nolint For parameterized re-
ports, it is recommended to supply a distinct output_file argument to each
tar_render() call and set useful defaults for parameters in the R Markdown
source. See the examples section for a demonstration.

Details

tar_render() is an alternative to tar_target() for R Markdown reports that depend on other tar-
gets. The R Markdown source should mention dependency targets with tar_load() and tar_read()
in the active code chunks (which also allows you to render the report outside the pipeline if the
_targets/ data store already exists). (Do not use tar_load_raw() or tar_read_raw() for this.)
Then, tar_render() defines a special kind of target. It 1. Finds all the tar_load()/tar_read()
dependencies in the report and inserts them into the target’s command. This enforces the proper de-
pendency relationships. (Do not use tar_load_raw() or tar_read_raw() for this.) 2. Sets format
= "file" (see tar_target()) so targets watches the files at the returned paths and reruns the re-
port if those files change. 3. Configures the target’s command to return both the output report files
and the input source file. All these file paths are relative paths so the project stays portable. 4.
Forces the report to run in the user’s current working directory instead of the working directory of
the report. 5. Sets convenient default options such as deployment = "main" in the target and quiet
= TRUE in rmarkdown::render().

Value

A target object with format = "file". When this target runs, it returns a character vector of file
paths: the rendered document, the source file, and then the *_files/ directory if it exists. Unlike
rmarkdown::render(), all returned paths are relative paths to ensure portability (so that the project
can be moved from one file system to another without invalidating the target). See the "Target
objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

148 tar_render

See Also

Other Literate programming targets: tar_knit_raw(), tar_knit(), tar_quarto_raw(), tar_quarto_rep_raw(),
tar_quarto_rep(), tar_quarto(), tar_render_raw(), tar_render_rep_raw(), tar_render_rep()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Unparameterized R Markdown:
lines <- c(

"---",
"title: report.Rmd source file",
"output_format: html_document",
"---",
"Assume these lines are in report.Rmd.",
"```{r}",
"targets::tar_read(data)",
"```"

)
Include the report in a pipeline as follows.
targets::tar_script({

library(tarchetypes)
list(

tar_target(data, data.frame(x = seq_len(26), y = letters)),
tar_render(report, "report.Rmd")

)
}, ask = FALSE)
Then, run the targets pipeline as usual.

Parameterized R Markdown:
lines <- c(

"---",
"title: 'report.Rmd source file with parameters'",
"output_format: html_document",
"params:",
" your_param: \"default value\"",
"---",
"Assume these lines are in report.Rmd.",
"```{r}",
"print(params$your_param)",
"```"

)
Include the report in the pipeline as follows.
targets::tar_script({

library(tarchetypes)
list(

tar_target(data, data.frame(x = seq_len(26), y = letters)),
tar_render(report, "report.Rmd", params = list(your_param = data))

)
}, ask = FALSE)
})
Then, run the targets pipeline as usual.

tar_render_raw 149

}

tar_render_raw Target with an R Markdown document (raw version).

Description

Shorthand to include an R Markdown document in a targets pipeline (raw version)

Usage

tar_render_raw(
name,
path,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
error = targets::tar_option_get("error"),
deployment = "main",
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
quiet = TRUE,
render_arguments = quote(list())

)

Arguments

name Character of length 1, name of the target.

path Character string, file path to the R Markdown source file. Must have length 1.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

150 tar_render_raw

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

quiet An option to suppress printing during rendering from knitr, pandoc command
line and others. To only suppress printing of the last "Output created: " message,
you can set rmarkdown.render.message to FALSE

render_arguments

Optional language object with a list of named arguments to rmarkdown::render().
Cannot be an expression object. (Use quote(), not expression().) The reason
for quoting is that these arguments may depend on upstream targets whose val-
ues are not available at the time the target is defined, and because tar_render_raw()
is the "raw" version of a function, we want to avoid all non-standard evaluation.

Details

tar_render_raw() is just like tar_render() except that it uses standard evaluation. The name
argument is a character vector, and the render_arguments argument is a language object.

Value

A target object with format = "file". When this target runs, it returns a character vector of file
paths: the rendered document, the source file, and then the *_files/ directory if it exists. Unlike
rmarkdown::render(), all returned paths are relative paths to ensure portability (so that the project
can be moved from one file system to another without invalidating the target). See the "Target
objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html

tar_render_raw 151

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Literate programming targets: tar_knit_raw(), tar_knit(), tar_quarto_raw(), tar_quarto_rep_raw(),
tar_quarto_rep(), tar_quarto(), tar_render_rep_raw(), tar_render_rep(), tar_render()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Unparameterized R Markdown report:
lines <- c(

"---",
"title: 'report.Rmd source file'",
"output_format: html_document",
"---",
"Assume these lines are in report.Rmd.",
"```{r}",
"targets::tar_read(data)",
"```"

)
Include the report in the pipeline as follows:
targets::tar_script({

library(tarchetypes)
list(
tar_target(data, data.frame(x = seq_len(26), y = letters)),
tar_render_raw("report", "report.Rmd")

)
}, ask = FALSE)
Then, run the targets pipeline as usual.

Parameterized R Markdown:
lines <- c(

"---",
"title: 'report.Rmd source file with parameters.'",
"output_format: html_document",
"params:",
" your_param: \"default value\"",
"---",
"Assume these lines are in report.Rmd.",
"```{r}",
"print(params$your_param)",
"```"

)
Include this parameterized report in the pipeline as follows.
targets::tar_script({

library(tarchetypes)
list(

https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

152 tar_render_rep

tar_target(data, data.frame(x = seq_len(26), y = letters)),
tar_render_raw(

"report",
"report.Rmd",
render_arguments = quote(list(params = list(your_param = data)))

)
)

}, ask = FALSE)
Then, run the targets pipeline as usual.
})
}

tar_render_rep Parameterized R Markdown with dynamic branching.

Description

Targets to render a parameterized R Markdown report with multiple sets of parameters.

Usage

tar_render_rep(
name,
path,
params = data.frame(),
batches = NULL,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
quiet = TRUE,
...

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends

tar_render_rep 153

on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character string, file path to the R Markdown source file. Must have length 1.

params Code to generate a data frame or tibble with one row per rendered report and
one column per R Markdown parameter. You may also include an output_file
column to specify the path of each rendered report. This params argument is
converted into the command for a target that supplies the R Markdown parame-
ters.

batches Number of batches to group the R Markdown files. For a large number of re-
ports, increase the number of batches to decrease target-level overhead. Defaults
to the number of reports to render (1 report per batch).

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

154 tar_render_rep

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

quiet An option to suppress printing during rendering from knitr, pandoc command
line and others. To only suppress printing of the last "Output created: " message,
you can set rmarkdown.render.message to FALSE

... Other named arguments to rmarkdown::render(). Unlike tar_render(), these
arguments are evaluated when the target is defined, not when it is run. (The only
reason to delay evaluation in tar_render() was to handle R Markdown param-
eters, and tar_render_rep() handles them differently.)

Details

tar_render_rep() is an alternative to tar_target() for parameterized R Markdown reports that
depend on other targets. Parameters must be given as a data frame with one row per rendered re-
port and one column per parameter. An optional output_file column may be included to set the

tar_render_rep 155

output file path of each rendered report. The R Markdown source should mention other depen-
dency targets tar_load() and tar_read() in the active code chunks (which also allows you to
render the report outside the pipeline if the _targets/ data store already exists and appropriate de-
faults are specified for the parameters). (Do not use tar_load_raw() or tar_read_raw() for this.)
Then, tar_render() defines a special kind of target. It 1. Finds all the tar_load()/tar_read()
dependencies in the report and inserts them into the target’s command. This enforces the proper
dependency relationships. (Do not use tar_load_raw() or tar_read_raw() for this.) 2. Sets
format = "file" (see tar_target()) so targets watches the files at the returned paths and re-
runs the report if those files change. 3. Configures the target’s command to return the output report
files: the rendered document, the source file, and then the *_files/ directory if it exists. All these
file paths are relative paths so the project stays portable. 4. Forces the report to run in the user’s
current working directory instead of the working directory of the report. 5. Sets convenient default
options such as deployment = "main" in the target and quiet = TRUE in rmarkdown::render().

Value

A list of target objects to render the R Markdown reports. Changes to the parameters, source file,
dependencies, etc. will cause the appropriate targets to rerun during tar_make(). See the "Target
objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Literate programming targets: tar_knit_raw(), tar_knit(), tar_quarto_raw(), tar_quarto_rep_raw(),
tar_quarto_rep(), tar_quarto(), tar_render_raw(), tar_render_rep_raw(), tar_render()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Parameterized R Markdown:
lines <- c(

"---",
"title: 'report.Rmd file'",
"output_format: html_document",
"params:",
" par: \"default value\"",
"---",
"Assume these lines are in a file called report.Rmd.",

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

156 tar_render_rep_raw

"```{r}",
"print(params$par)",
"```"

)
The following pipeline will run the report for each row of params.
targets::tar_script({

library(tarchetypes)
list(

tar_render_rep(
report,
"report.Rmd",
params = tibble::tibble(par = c(1, 2))

)
)

}, ask = FALSE)
Then, run the targets pipeline as usual.
})
}

tar_render_rep_raw Parameterized R Markdown with dynamic branching (raw version).

Description

Targets to render a parameterized R Markdown report with multiple sets of parameters (raw ver-
sion). Same as tar_render_rep() except name is a character string, params is an expression ob-
ject, and extra arguments to rmarkdown::render() are passed through the args argument instead
of

Usage

tar_render_rep_raw(
name,
path,
params = expression(NULL),
batches = NULL,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),

tar_render_rep_raw 157

quiet = TRUE,
args = list()

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

path Character string, file path to the R Markdown source file. Must have length 1.

params Expression object with code to generate a data frame or tibble with one row
per rendered report and one column per R Markdown parameter. You may also
include an output_file column to specify the path of each rendered report. R
Markdown parameters must not be named tar_group or output_file. This
params argument is converted into the command for a target that supplies the R
Markdown parameters.

batches Number of batches to group the R Markdown files. For a large number of re-
ports, increase the number of batches to decrease target-level overhead. Defaults
to the number of reports to render (1 report per batch).

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, format argument to tar_target() to store the data frame
of R Markdown parameters.

iteration Character of length 1, iteration argument to tar_target() for the R Mark-
down documents. Does not apply to the target with R Markdown parameters
(whose iteration is always "group").

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

158 tar_render_rep_raw

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

quiet An option to suppress printing during rendering from knitr, pandoc command
line and others. To only suppress printing of the last "Output created: " message,
you can set rmarkdown.render.message to FALSE

args Named list of other arguments to rmarkdown::render(). Must not include
params or output_file. Evaluated when the target is defined.

Details

tar_render_rep_raw() is an alternative to tar_target_raw() for parameterized R Markdown
reports that depend on other targets. Parameters must be given as a data frame with one row per
rendered report and one column per parameter. An optional output_file column may be included
to set the output file path of each rendered report. The R Markdown source should mention other de-
pendency targets tar_load() and tar_read() in the active code chunks (which also allows you to

tar_render_rep_raw 159

render the report outside the pipeline if the _targets/ data store already exists and appropriate de-
faults are specified for the parameters). (Do not use tar_load_raw() or tar_read_raw() for this.)
Then, tar_render() defines a special kind of target. It 1. Finds all the tar_load()/tar_read()
dependencies in the report and inserts them into the target’s command. This enforces the proper
dependency relationships. (Do not use tar_load_raw() or tar_read_raw() for this.) 2. Sets
format = "file" (see tar_target()) so targets watches the files at the returned paths and re-
runs the report if those files change. 3. Configures the target’s command to return the output report
files: the rendered document, the source file, and then the *_files/ directory if it exists. All these
file paths are relative paths so the project stays portable. 4. Forces the report to run in the user’s
current working directory instead of the working directory of the report. 5. Sets convenient default
options such as deployment = "main" in the target and quiet = TRUE in rmarkdown::render().

Value

A list of target objects to render the R Markdown reports. Changes to the parameters, source file,
dependencies, etc. will cause the appropriate targets to rerun during tar_make(). See the "Target
objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Literate programming targets: tar_knit_raw(), tar_knit(), tar_quarto_raw(), tar_quarto_rep_raw(),
tar_quarto_rep(), tar_quarto(), tar_render_raw(), tar_render_rep(), tar_render()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Parameterized R Markdown:
lines <- c(

"---",
"title: 'report.Rmd source file'",
"output_format: html_document",
"params:",
" par: \"default value\"",
"---",
"Assume these lines are in a file called report.Rmd.",
"```{r}",
"print(params$par)",

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

160 tar_rep

"```"
)
The following pipeline will run the report for each row of params.
targets::tar_script({

library(tarchetypes)
list(

tar_render_rep_raw(
"report",
"report.Rmd",
params = quote(tibble::tibble(par = c(1, 2)))

)
)

}, ask = FALSE)
Then, run the targets pipeline as usual.
})
}

tar_rep Batched replication with dynamic branching.

Description

Batching is important for optimizing the efficiency of heavily dynamically-branched workflows:
https://books.ropensci.org/targets/dynamic.html#batching. tar_rep() replicates a com-
mand in strategically sized batches.

Usage

tar_rep(
name,
command,
batches = 1,
reps = 1,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

https://books.ropensci.org/targets/dynamic.html#batching

tar_rep 161

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run multiple times. Must return a list or data frame because tar_rep()
will try to append new elements/columns tar_batch and tar_rep to the output
to denote the batch and rep-within-batch IDs, respectively.

batches Number of batches. This is also the number of dynamic branches created during
tar_make().

reps Number of replications in each batch. The total number of replications is batches
* reps.

tidy_eval Whether to invoke tidy evaluation (e.g. the !! operator from rlang) as soon as
the target is defined (before tar_make()). Applies to the command argument.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

162 tar_rep

• "vector": branching happens with vectors::vec_slice() and aggrega-
tion happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
In the case of list iteration, tar_read(your_target) will return a list of
lists, where the outer list has one element per batch and each inner list
has one element per rep within batch. To un-batch this nested list, call
tar_read(your_target, recursive = FALSE).

• "group": dplyr::group_by()-like functionality to branch over subsets of
a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_rep 163

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

tar_rep() and tar_rep_raw() each create two targets: an upstream local stem with an integer
vector of batch ids, and a downstream pattern that maps over the batch ids. (Thus, each batch is a
branch.) Each batch/branch replicates the command a certain number of times. If the command re-
turns a list or data frame, then the targets from tar_rep() will try to append new elements/columns
tar_batch and tar_rep to the output to denote the batch and rep-within-batch IDs, respectively.

Both batches and reps within each batch are aggregated according to the method you specify in the
iteration argument. If "list", reps and batches are aggregated with list(). If "vector", then
vctrs::vec_c(). If "group", then vctrs::vec_rbind().

Value

A list of two targets, one upstream and one downstream. The upstream target returns a numeric
index of batch ids, and the downstream one dynamically maps over the batch ids to run the command
multiple times. If the command returns a list or data frame, then the targets from tar_rep() will
try to append new elements/columns tar_batch and tar_rep to the output to denote the batch and
rep-within-batch IDs, respectively. See the "Target objects" section for background.

164 tar_rep2

tar_read(your_target) (on the downstream target with the actual work) will return a list of lists,
where the outer list has one element per batch and each inner list has one element per rep within
batch. To un-batch this nested list, call tar_read(your_target, recursive = FALSE).

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count_raw(), tar_map2_count(),
tar_map2_raw(), tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(),
tar_map_rep(), tar_map(), tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(),
tar_rep_raw()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

list(
tarchetypes::tar_rep(

x,
data.frame(x = sample.int(1e4, 2)),
batches = 2,
reps = 3

)
)

})
targets::tar_make()
targets::tar_read(x)
})
}

tar_rep2 Dynamic batched computation downstream of tar_rep()

Description

Batching is important for optimizing the efficiency of heavily dynamically-branched workflows:
https://books.ropensci.org/targets/dynamic.html#batching. tar_rep2() uses dynamic
branching to iterate over the batches and reps of existing upstream targets.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/
https://books.ropensci.org/targets/dynamic.html#batching

tar_rep2 165

Usage

tar_rep2(
name,
command,
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.

... Symbols to name one or more upstream batched targets created by tar_rep().
If you supply more than one such target, all those targets must have the same
number of batches and reps per batch. And they must all return either data
frames or lists. List targets must use iteration = "list" in tar_rep().

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

166 tar_rep2

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_rep2 167

it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

168 tar_rep2

Value

A new target object to perform batched computation. See the "Target objects" section for back-
ground.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count_raw(), tar_map2_count(),
tar_map2_raw(), tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(),
tar_map_rep(), tar_map(), tar_rep2_raw(), tar_rep_map_raw(), tar_rep_map(), tar_rep_raw(),
tar_rep()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

list(
tarchetypes::tar_rep(

data1,
data.frame(value = rnorm(1)),
batches = 2,
reps = 3

),
tarchetypes::tar_rep(

data2,
list(value = rnorm(1)),
batches = 2, reps = 3,
iteration = "list" # List iteration is important for batched lists.

),
tarchetypes::tar_rep2(

aggregate,
data.frame(value = data1$value + data2$value),
data1,
data2

)
)

})
targets::tar_make()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_rep_raw 169

targets::tar_read(aggregate)
})
}

tar_rep_raw Batched replication with dynamic branching (raw version).

Description

Batching is important for optimizing the efficiency of heavily dynamically-branched workflows:
https://books.ropensci.org/targets/dynamic.html#batching. tar_rep_raw() is just like
tar_rep() except the name is a character string and the command is a language object.

Usage

tar_rep_raw(
name,
command,
batches = 1,
reps = 1,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Character of length 1, name of the target. A target name must be a valid name
for a symbol in R, and it must not start with a dot. Subsequent targets can refer to
this name symbolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even

https://books.ropensci.org/targets/dynamic.html#batching

170 tar_rep_raw

dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command Expression object with code to run multiple times. Must return a list or data
frame when evaluated.

batches Number of batches. This is also the number of dynamic branches created during
tar_make().

reps Number of replications in each batch. The total number of replications is batches
* reps.

tidy_eval Whether to invoke tidy evaluation (e.g. the !! operator from rlang) as soon as
the target is defined (before tar_make()). Applies to the command argument.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Optional storage format for the target’s return value. With the exception of
format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_rep_raw 171

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

172 tar_rep_raw

The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

tar_rep_raw() creates two targets: an upstream local stem with an integer vector of batch ids,
and a downstream pattern that maps over the batch ids. (Thus, each batch is a branch.) Each
batch/branch replicates the command a certain number of times.

Both batches and reps within each batch are aggregated according to the method you specify in the
iteration argument. If "list", reps and batches are aggregated with list(). If "vector", then
vctrs::vec_c(). If "group", then vctrs::vec_rbind().

Value

A list of two target objects, one upstream and one downstream. The upstream one does some work
and returns some file paths, and the downstream target is a pattern that applies format = "file".
See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other branching: tar_combine_raw(), tar_combine(), tar_map2_count_raw(), tar_map2_count(),
tar_map2_raw(), tar_map2_size_raw(), tar_map2_size(), tar_map2(), tar_map_rep_raw(),
tar_map_rep(), tar_map(), tar_rep2_raw(), tar_rep2(), tar_rep_map_raw(), tar_rep_map(),
tar_rep()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_select_names 173

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

list(
tarchetypes::tar_rep_raw(

"x",
expression(data.frame(x = sample.int(1e4, 2))),
batches = 2,
reps = 3

)
)

})
targets::tar_make(callr_function = NULL)
targets::tar_read(x)
})
}

tar_select_names Select target names from a target list

Description

Select the names of targets from a target list.

Usage

tar_select_names(targets, ...)

Arguments

targets A list of target objects as described in the "Target objects" section. It does not
matter how nested the list is as long as the only leaf nodes are targets.

... One or more comma-separated tidyselect expressions, e.g. starts_with("prefix").
Just like ... in dplyr::select().

Value

A character vector of target names.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html

174 tar_select_targets

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other target selection: tar_select_targets()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets <- list(

list(
targets::tar_target(x, 1),
targets::tar_target(y1, 2)

),
targets::tar_target(y2, 3),
targets::tar_target(z, 4)

)
tar_select_names(targets, starts_with("y"), contains("z"))
})
}

tar_select_targets Select target objects from a target list

Description

Select target objects from a target list.

Usage

tar_select_targets(targets, ...)

Arguments

targets A list of target objects as described in the "Target objects" section. It does not
matter how nested the list is as long as the only leaf nodes are targets.

... One or more comma-separated tidyselect expressions, e.g. starts_with("prefix").
Just like ... in dplyr::select().

Value

A list of target objects. See the "Target objects" section of this help file.

https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_skip 175

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other target selection: tar_select_names()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets <- list(

list(
targets::tar_target(x, 1),
targets::tar_target(y1, 2)

),
targets::tar_target(y2, 3),
targets::tar_target(z, 4)

)
tar_select_targets(targets, starts_with("y"), contains("z"))
})
}

tar_skip Target with a custom cancellation condition.

Description

Create a target that cancels itself if a user-defined decision rule is met.

Usage

tar_skip(
name,
command,
skip,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

176 tar_skip

repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run set.seed() on the result to locally recreate the target’s initial RNG state.

command R code to run the target.
skip R code for the skipping condition. If it evaluates to TRUE during tar_make(),

the target will cancel itself.
tidy_eval Whether to invoke tidy evaluation (e.g. the !! operator from rlang) as soon as

the target is defined (before tar_make()). Applies to arguments command and
skip.

packages Character vector of packages to load right before the target builds or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.
format Optional storage format for the target’s return value. With the exception of

format = "file", each target gets a file in _targets/objects, and each format
is a different way to save and load this file. See the "Storage formats" section
for a detailed list of possible data storage formats.

repository Character of length 1, remote repository for target storage. Choices:
• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

https://books.ropensci.org/targets/data.html

tar_skip 177

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

iteration Character of length 1, name of the iteration mode of the target. Choices:

• "vector": branching happens with vctrs::vec_slice() and aggregation
happens with vctrs::vec_c().

• "list", branching happens with [[]] and aggregation happens with list().
• "group": dplyr::group_by()-like functionality to branch over subsets of

a data frame. The target’s return value must be a data frame with a special
tar_group column of consecutive integers from 1 through the number of
groups. Each integer designates a group, and a branch is created for each
collection of rows in a group. See the tar_group() function to see how
you can create the special tar_group column with dplyr::group_by().

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

• "null": The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent", the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient", the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent" means
it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
If "worker", the target builds on a parallel worker. If "main", the target builds
on the host machine / process managing the pipeline.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed
first when multiple competing targets are ready simultaneously. Targets with
priorities closer to 1 get built earlier (and polled earlier in tar_make_future()).

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

178 tar_skip

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s return value is sent back to the host machine and
saved/uploaded locally.

• "worker": the worker saves/uploads the value.
• "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none", then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dy-
namic files (format = "file") it is the responsibility of the user to write to
tar_path() from inside the target. An example target could look some-
thing like tar_target(x, saveRDS("value", tar_path(create_dir = TRUE));
"ignored", storage = "none")‘.
The distinguishing feature of storage = "none" (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none" is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target builds.

• "worker": the worker loads the targets dependencies.
• "none": the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

Details

tar_skip() creates a target that cancels itself whenever a custom condition is met. The mecha-
nism of cancellation is targets::tar_cancel(your_condition), which allows skipping to hap-
pen even if the target does not exist yet. This behavior differs from tar_cue(mode = "never"),
which still runs if the target does not exist.

Value

A target object with targets::tar_cancel(your_condition) inserted into the command. See
the "Target objects" section for background.

tar_sub 179

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other targets with custom invalidation rules: tar_change(), tar_download(), tar_force()

Examples

if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

list(
tarchetypes::tar_skip(x, command = "value", skip = 1 > 0)

)
})
targets::tar_make()
})
}

tar_sub Create multiple expressions with symbol substitution.

Description

Loop over a grid of values and create an expression object from each one. Helps with general
metaprogramming.

Usage

tar_sub(expr, values)

Arguments

expr Starting expression. Values are iteratively substituted in place of symbols in
expr to create each new expression.

values List of values to substitute into expr to create the expressions. All elements of
values must have the same length.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

180 tar_sub_raw

Value

A list of expression objects. Often, these expression objects evaluate to target objects (but not
necessarily). See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Metaprogramming utilities: tar_eval_raw(), tar_eval(), tar_sub_raw()

Examples

tar_map() is incompatible with tar_render() because the latter
operates on preexisting tar_target() objects. By contrast,
tar_eval() and tar_sub() iterate over code farther upstream.
values <- list(

name = lapply(c("name1", "name2"), as.symbol),
file = list("file1.Rmd", "file2.Rmd")

)
tar_sub(tar_render(name, file), values = values)

tar_sub_raw Create multiple expressions with symbol substitution (raw version).

Description

Loop over a grid of values and create an expression object from each one. Helps with general
metaprogramming. Unlike tar_sub(), which quotes the expr argument, tar_sub_raw() assumes
expr is an expression object.

Usage

tar_sub_raw(expr, values)

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_sub_raw 181

Arguments

expr Expression object with the starting expression. Values are iteratively substituted
in place of symbols in expr to create each new expression.

values List of values to substitute into expr to create the expressions. All elements of
values must have the same length.

Value

A list of expression objects. Often, these expression objects evaluate to target objects (but not
necessarily). See the "Target objects" section for background.

Target objects

Most tarchetypes functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other Metaprogramming utilities: tar_eval_raw(), tar_eval(), tar_sub()

Examples

tar_map() is incompatible with tar_render() because the latter
operates on preexisting tar_target() objects. By contrast,
tar_eval_raw() and tar_sub_raw() iterate over code farther upstream.
values <- list(

name = lapply(c("name1", "name2"), as.symbol),
file = c("file1.Rmd", "file2.Rmd")

)
tar_sub_raw(quote(tar_render(name, file)), values = values)

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

Index

∗ Dynamic branching over files
tar_files, 33
tar_files_input, 37
tar_files_input_raw, 40
tar_files_raw, 44

∗ Formats
tar_formats, 55

∗ Grouped data frame targets
tar_group_by, 67
tar_group_count, 71
tar_group_select, 75
tar_group_size, 79

∗ Literate programming targets
tar_knit, 87
tar_knit_raw, 92
tar_quarto, 126
tar_quarto_raw, 131
tar_quarto_rep, 136
tar_quarto_rep_raw, 140
tar_render, 145
tar_render_raw, 149
tar_render_rep, 152
tar_render_rep_raw, 156

∗ Literate programming utilities
tar_knitr_deps, 90
tar_knitr_deps_expr, 91
tar_quarto_files, 130

∗ Metaprogramming utilities
tar_eval, 30
tar_eval_raw, 32
tar_sub, 179
tar_sub_raw, 180

∗ Pipeline factories
tar_plan, 125

∗ Simple files
tar_file_read, 48

∗ branching
tar_combine, 11
tar_combine_raw, 15

tar_map, 95
tar_map2_count, 97
tar_map2_count_raw, 101
tar_map2_size, 106
tar_map2_size_raw, 110
tar_map_rep, 115
tar_map_rep_raw, 120
tar_rep, 160
tar_rep2, 164
tar_rep_raw, 169

∗ cues
tar_age, 3
tar_cue_age, 19
tar_cue_age_raw, 21
tar_cue_force, 23
tar_cue_skip, 25

∗ hooks
tar_hook_before, 82
tar_hook_inner, 84
tar_hook_outer, 85

∗ target selection
tar_select_names, 173
tar_select_targets, 174

∗ targets with custom invalidation rules
tar_change, 7
tar_download, 26
tar_force, 51
tar_skip, 175

options, 27, 28

starts_with(), 83, 84, 86, 95

tar_age, 3, 20, 22, 24, 26
tar_aws_file (tar_formats), 55
tar_aws_fst (tar_formats), 55
tar_aws_fst_dt (tar_formats), 55
tar_aws_fst_tbl (tar_formats), 55
tar_aws_keras (tar_formats), 55
tar_aws_parquet (tar_formats), 55

182

INDEX 183

tar_aws_qs (tar_formats), 55
tar_aws_rds (tar_formats), 55
tar_aws_torch (tar_formats), 55
tar_change, 7, 30, 55, 179
tar_change(), 54
tar_combine, 11, 18, 96, 101, 105, 110, 114,

119, 124, 164, 168, 172
tar_combine(), 15
tar_combine_raw, 14, 15, 96, 101, 105, 110,

114, 119, 124, 164, 168, 172
tar_cue_age, 6, 19, 22, 24, 26
tar_cue_age(), 6
tar_cue_age_raw, 6, 20, 21, 24, 26
tar_cue_force, 6, 20, 22, 23, 26
tar_cue_force(), 54
tar_cue_skip, 6, 20, 22, 24, 25
tar_download, 11, 26, 55, 179
tar_eval, 30, 32, 180, 181
tar_eval_raw, 31, 32, 180, 181
tar_file (tar_formats), 55
tar_file_read, 48
tar_files, 33, 40, 43, 47
tar_files(), 46
tar_files_input, 37, 37, 43, 47
tar_files_input(), 42
tar_files_input_raw, 37, 40, 40, 47
tar_files_raw, 37, 40, 43, 44
tar_force, 11, 30, 51, 179
tar_force(), 24
tar_format_aws_feather (tar_formats), 55
tar_format_feather (tar_formats), 55
tar_formats, 55
tar_fst (tar_formats), 55
tar_fst_dt (tar_formats), 55
tar_fst_tbl (tar_formats), 55
tar_group(), 9, 13, 16, 28, 35, 45, 53, 65,

138, 153, 162, 166, 170, 177
tar_group_by, 67, 74, 78, 82
tar_group_count, 70, 71, 78, 82
tar_group_select, 70, 74, 75, 82
tar_group_size, 70, 74, 78, 79
tar_hook_before, 82, 85, 86
tar_hook_inner, 83, 84, 86
tar_hook_outer, 83, 85, 85
tar_keras (tar_formats), 55
tar_knit, 87, 94, 129, 134, 139, 144, 148,

151, 155, 159
tar_knit(), 91

tar_knit_raw, 90, 92, 129, 134, 139, 144,
148, 151, 155, 159

tar_knitr_deps, 90, 92, 131
tar_knitr_deps_expr, 91, 91, 131
tar_make_clustermq(), 5, 6, 9, 10, 13, 14,

17, 18, 28, 29, 35, 36, 46, 50, 53, 54,
66, 69, 70, 73, 74, 77, 81, 88, 89, 93,
99, 100, 104, 108, 109, 113, 114,
118, 122, 123, 128, 133, 134, 138,
143, 146, 149, 150, 154, 158, 162,
163, 167, 171, 172, 177, 178

tar_make_future(), 5, 6, 9, 10, 13, 14, 17,
18, 28, 29, 35, 36, 39, 42, 46, 50, 53,
54, 66, 69, 70, 73, 74, 77, 81, 88, 89,
93, 99, 100, 104, 108, 109, 113, 114,
118, 122, 123, 128, 133, 134, 138,
143, 146, 149, 150, 154, 158, 162,
163, 167, 171, 172, 177, 178

tar_map, 14, 18, 95, 101, 105, 110, 114, 119,
124, 164, 168, 172

tar_map(), 95, 98, 102, 107, 111, 116, 121
tar_map2, 14, 18, 96, 101, 105, 110, 114, 119,

124, 164, 168, 172
tar_map2_count, 14, 18, 96, 97, 105, 110,

114, 119, 124, 164, 168, 172
tar_map2_count_raw, 14, 18, 96, 101, 101,

110, 114, 119, 124, 164, 168, 172
tar_map2_raw, 14, 18, 96, 101, 105, 110, 114,

119, 124, 164, 168, 172
tar_map2_size, 14, 18, 96, 101, 105, 106,

114, 119, 124, 164, 168, 172
tar_map2_size_raw, 14, 18, 96, 101, 105,

110, 110, 119, 124, 164, 168, 172
tar_map_rep, 14, 18, 96, 101, 105, 110, 114,

115, 124, 164, 168, 172
tar_map_rep(), 120
tar_map_rep_raw, 14, 18, 96, 101, 105, 110,

114, 119, 120, 164, 168, 172
tar_option_set(), 4, 19–23, 25
tar_parquet (tar_formats), 55
tar_path(), 5, 10, 14, 18, 29, 36, 46, 50, 54,

66, 70, 73, 77, 81, 100, 104, 109,
114, 118, 123, 163, 167, 171, 178

tar_plan, 125
tar_qs (tar_formats), 55
tar_quarto, 90, 94, 126, 134, 139, 144, 148,

151, 155, 159
tar_quarto(), 134

184 INDEX

tar_quarto_files, 91, 92, 130
tar_quarto_files(), 127, 129, 132, 134
tar_quarto_raw, 90, 94, 129, 131, 139, 144,

148, 151, 155, 159
tar_quarto_rep, 90, 94, 129, 134, 136, 144,

148, 151, 155, 159
tar_quarto_rep_raw, 90, 94, 129, 134, 139,

140, 148, 151, 155, 159
tar_rds (tar_formats), 55
tar_render, 90, 94, 129, 134, 139, 144, 145,

151, 155, 159
tar_render(), 91, 125, 154
tar_render_raw, 90, 94, 129, 134, 139, 144,

148, 149, 155, 159
tar_render_rep, 90, 94, 129, 134, 139, 144,

148, 151, 152, 159
tar_render_rep_raw, 90, 94, 129, 134, 139,

144, 148, 151, 155, 156
tar_rep, 14, 18, 96, 101, 105, 110, 114, 119,

124, 160, 168, 172
tar_rep(), 160, 164, 165, 169
tar_rep2, 14, 18, 96, 101, 105, 110, 114, 119,

124, 164, 164, 172
tar_rep2(), 164
tar_rep2_raw, 14, 18, 96, 101, 105, 110, 114,

119, 124, 164, 168, 172
tar_rep_map, 14, 18, 96, 101, 105, 110, 114,

119, 124, 164, 168, 172
tar_rep_map_raw, 14, 18, 96, 101, 105, 110,

114, 119, 124, 164, 168, 172
tar_rep_raw, 14, 18, 96, 101, 105, 110, 114,

119, 124, 164, 168, 169
tar_rep_raw(), 169
tar_resources_aws(), 8, 12, 16, 34, 38, 41,

45, 49, 52, 65, 68, 72, 76, 80, 98,
103, 108, 112, 117, 122, 161, 166,
170, 176

tar_select_names, 173, 175
tar_select_targets, 174, 174
tar_skip, 11, 30, 55, 175
tar_sub, 31, 32, 179, 181
tar_sub(), 32, 180
tar_sub_raw, 31, 32, 180, 180
tar_target(), 4, 16, 19–23, 25
tar_torch (tar_formats), 55
tar_url (tar_formats), 55
tarchetypes-package, 3

	tarchetypes-package
	tar_age
	tar_change
	tar_combine
	tar_combine_raw
	tar_cue_age
	tar_cue_age_raw
	tar_cue_force
	tar_cue_skip
	tar_download
	tar_eval
	tar_eval_raw
	tar_files
	tar_files_input
	tar_files_input_raw
	tar_files_raw
	tar_file_read
	tar_force
	tar_formats
	tar_group_by
	tar_group_count
	tar_group_select
	tar_group_size
	tar_hook_before
	tar_hook_inner
	tar_hook_outer
	tar_knit
	tar_knitr_deps
	tar_knitr_deps_expr
	tar_knit_raw
	tar_map
	tar_map2_count
	tar_map2_count_raw
	tar_map2_size
	tar_map2_size_raw
	tar_map_rep
	tar_map_rep_raw
	tar_plan
	tar_quarto
	tar_quarto_files
	tar_quarto_raw
	tar_quarto_rep
	tar_quarto_rep_raw
	tar_render
	tar_render_raw
	tar_render_rep
	tar_render_rep_raw
	tar_rep
	tar_rep2
	tar_rep_raw
	tar_select_names
	tar_select_targets
	tar_skip
	tar_sub
	tar_sub_raw
	Index

