Package 'zonebuilder’

July 13, 2021
Title Create and Explore Geographic Zoning Systems
Version 0.0.2
Description Functions, documentation and example data to help divide geographic space into discrete polygons (zones).
The functions are motivated by research into the merits of different zoning systems doi:10.1068/a090169. A flexible 'ClockBoard' zoning system is provided, which breaks-up space by concentric rings and radial lines emanating from a central point.
By default, the diameter of the rings grow according the triangular number sequence doi:10.1080/26375451.2019.1598687 with the first 4 'doughnuts' (or 'annuli') measuring 1, 3, 6, and 10 km wide.
These annuli are subdivided into equal segments (12 by default), creating the visual impression of a dartboard. Zones are labelled according to distance to the centre and angular distance from North, creating a simple geographic zoning and labelling system useful for visualising geographic phenomena with a clearly demarcated central location such as cities.
License GPL-3
BugReports https://github.com/zonebuilders/zonebuilder/issues
Depends R (>= 2.10)
Imports sf, RColorBrewer, graphics, grDevices
Suggests knitr, rmarkdown, tmap, tmaptools, pct, dplyr, lwgeom, leaflet, covr, bookdown
VignetteBuilder knitr
URL https://github.com/zonebuilders/zonebuilder, https://zonebuilders.github.io/zonebuilder/

Encoding UTF-8

LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Robin Lovelace [aut, cre] (https://orcid.org/0000-0001-5679-6536),
Martijn Tennekes [aut]

Maintainer Robin Lovelace rob00x@gmail.com
Repository CRAN
Date/Publication 2021-07-12 22:30:02 UTC

R topics documented:

london_area 2
zb_100_triangular_numbers 3
zb_color 3
zb_doughnut 4
zb_lines 5
zb_plot 5
zb_quadrat 6
zb_segment 7
zb_view 8
zb_zone 8
Index 11
london_area Region representing London in projected coordinate system

Description

'london_a()' and 'london_c()' return the city boundaries and centre point of London, respectively.

Usage

london_a()
london_c ()

Note

'london_a()' returns a projected version of 'Ind' in 'spDataLarge'. See the 'data-raw' folder in the package's repo to reproduce these datasets The 'lonlat' versions of the data have coordinates in units of degrees.

Examples

plot(london_a(), reset = FALSE)
plot(london_c(), add = TRUE)

Description

The first 100 in the sequence of [triangular numbers](https://en.wikipedia.org/wiki/Triangular_number)

Note

See the 'data-raw' folder in the package's repo to reproduce these datasets

```
zb_color Generate colors for zones
```


Description

This function generates colors for zones.

Usage

```
zb_color(z, palette = c("rings", "hcl", "dartboard"))
```


Arguments

z

palette Palette type, one of "hcl" (a palette based on the HCL color space), "rings" (a palette which colors the rings using the YlOrBr color brewer palette), "dar tboard" (a palette which resembles a dartboard)

Value

A vector of colors

Examples

```
z = zb_zone(london_c(), london_a())
zb_color(z)
plot(z[, "circle_id"], col = zb_color(z))
```

```
zb_doughnut Make doughnuts
```


Description

Make doughnuts

Usage

```
zb_doughnut(
        x = NULL,
    area \(=\) NULL,
    n_circles = NA,
    distance \(=1\),
    distance_growth = 1
    )
```


Arguments

x
area
n_circles
distance

Centre point. Should be an sf or sfc object containing one point, or a name of a city (which is looked up with OSM geocoding).
(optional) Area. Should be an sf or sfc object containing one (multi) polygon
Number of rings including the central circle. By default 5, unless area is specified (then it is set automatically to fill the area).

Distance The distances between the circles. For the center circle, it is the distance between the center and the circle. If only one number is specified, distance_growth determines the increment at which the distances grow for the outer circles.
distance_growth
The rate at which the distances between the circles grow. Only applicable when distance is one number and $n_{\text {_circles }}>1$. See also distance.

Value

An 'sf' data frame

Examples

```
zb_plot(zb_doughnut(london_c(), london_a()))
```


Description

Create lines radiating at equal angles from a point

Usage

zb_lines(point, n, starting_angle = 45, distance = 1e+05)

Arguments

point	Center point
n	Number of lines
starting_angle	Starting angle
distance	Distance

Value

Objects of class 'sfc' containing linestring geometries

Examples

```
point = sf::st_centroid(london_a())
\(\mathrm{n}=4\)
l = zb_lines(point, n)
plot(1)
```

zb_plot Plot zones \quad

Description

This function opens a static map of the zones

Usage

```
zb_plot
    z,
    palette = c("rings", "hcl", "dartboard"),
    title = NULL,
    text_size = c(0.3, 1),
    zone_label_thres = 0.002
    )
```


Arguments

z	An 'sf' object containing zones covering the region
palette	Palette type, one of "hcl" (a palette based on the HCL color space), "rings" (a palette which colors the rings using the YlOrBr color brewer palette), "dartboard" (a palette which resembles a dartboard)
title	Plot title
text_size	Vector of two numeric values that determine the relative text sizes. The first determines the smallest text size and the second one the largest text size. The largest text size is used for the outermost circle, and the smallest for the central circle in case there are 9 or more circles. If there are less circles, the relative text size is larger (see source code for exact method)
zone_label_thres	

This number determines in which zones labels are printed, namely each zone for which the relative area size is larger than 'zone_label_thres'.

Value

A static plot created using R's base 'graphics' package

Examples

```
zb_plot(zb_zone(london_c()))
```

```
zb_quadrat Divide a region into quadrats
```


Description

Divide a region into quadrats

Usage

```
zb_quadrat(x, ncol, nrow = NULL, intersection = TRUE)
```


Arguments

x	x
ncol	ncol
nrow	nrow
intersection	intersection

Value

An sf object

Examples

```
x = london_a()
c = sf::st_centroid(london_a())
plot(zb_quadrat(x, ncol = 2), col = 2:5)
plot(c, add = TRUE, col = "white")
plot(zb_quadrat(x, ncol = 3))
plot(zb_quadrat(x, ncol = 4))
plot(zb_quadrat(x, ncol = 4, intersection = FALSE))
```

zb_segment Make segments

Description

Make segments

Usage

zb_segment (x = NULL, area = NULL, n_segments = 12, distance = NA)

Arguments

x
area (optional) Area. Should be an sf or sfc object containing one (multi) polygon (optional) Number of segments. The number of segments. Either one number which determines the number of segments applied to all circles, or a vector with a number for each circle (which should be a multiple of 4, see also the argument labeling). By default, the central circle is not segmented (see the argument segment_center).
distance Distance The distances between the circles. For the center circle, it is the distance between the center and the circle. If only one number is specified, distance_growth determines the increment at which the distances grow for the outer circles.

Value
An 'sf' data frame

Examples

```
zb_plot(zb_segment(london_c(), london_a()))
```

```
zb_view View zones
```


Description

This function opens an interactive map of the zones

Usage

zb_view(z, alpha = 0.4, palette = c("rings", "hcl", "dartboard"), title = NULL)

Arguments

z	An 'sf' object containing zones covering the region
alpha	Alpha transparency, number between 0 (fully transparent) and 1 (not transpar- ent)
palette	Palette type, one of "hcl" (a palette based on the HCL color space), "rings" (a palette which colors the rings using the YlOrBr color brewer palette), "dartboard" (a palette which resembles a dartboard)
title	The title of the plot

Value

An interactive map created with 'tmap'

Examples

```
z = zb_zone(london_c(), london_a())
zb_view(z, palette = "rings")
```

zb_zone Generate zones covering a region of interest

Description

This function first divides geographic space into [annuli](https://en.wikipedia.org/wiki/Annulus_(mathematics)) (concentric 2d rings or 'doughnuts') and then subdivides each annulus into a number of segments.

Usage

```
zb_zone(
    \(x=\) NULL,
    area \(=\) NULL,
    n_circles = NA,
    n_segments = 12,
    distance \(=1\),
    distance_growth = 1,
    labeling = NA,
    starting_angle = NA,
    segment_center = FALSE,
    intersection = TRUE,
    city \(=\) NULL
)
```


Arguments

$x \quad$ Centre point. Should be an sf or sfc object containing one point, or a name of a city (which is looked up with OSM geocoding).
area (optional) Area. Should be an sf or sfc object containing one (multi) polygon
n_circles Number of rings including the central circle. By default 5, unless area is specified (then it is set automatically to fill the area).
n_segments (optional) Number of segments. The number of segments. Either one number which determines the number of segments applied to all circles, or a vector with a number for each circle (which should be a multiple of 4 , see also the argument labeling). By default, the central circle is not segmented (see the argument segment_center).
distance Distance The distances between the circles. For the center circle, it is the distance between the center and the circle. If only one number is specified, distance_growth determines the increment at which the distances grow for the outer circles.
distance_growth
The rate at which the distances between the circles grow. Only applicable when distance is one number and n_{-}circles >1. See also distance.
labeling The labeling of the zones. Either "clock" which uses the clock ananolgy (i.e. hours 1 to 12) or "NESW" which uses the cardinal directions $\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}$. If the number of segments is 12 , the clock labeling is used, and otherwise NESW. Note that the number of segments should be a multiple of four. If, for instance the number of segments is 8 , than the segments are labeled $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{E} 1, \mathrm{E} 2, \mathrm{~S} 1$, S2, W1, and W2.
starting_angle The angle of the first of the radii that create the segments (degrees). By default, it is either 15 when $n_{\text {_ }}$ segments is 12 (i.e. the ClockBoard setting) and -45 otherwise.
segment_center Should the central circle be divided into segments? 'FALSE' by default.
intersection Should the zones be intersected with the area? TRUE by default.
city (optional) Name of the city. If specified, it adds a column 'city' to the returned 'sf' object.

Details

By default 12 segments are used for each annuli, resulting in a zoning system that can be used to refer to segments in [clock position](https://en.wikipedia.org/wiki/Clock_position), with 12 representing North, 3 representing East, 6 Sounth and 9 Western segments.

Value

An 'sf' object containing zones covering the region

Examples

```
# default settings
z = zb_zone(london_c(), london_a())
zb_plot(z)
if (require(tmap)) {
    zb_view(z)
    z = zb_zone("Berlin")
    zb_view(z)
}
# variations
zb_plot(zb_zone(london_c(), london_a(), n_circles = 2))
zb_plot(zb_zone(london_c(), london_a(), n_circles = 4, distance = 2, distance_growth = 0))
zb_plot(zb_zone(london_c(), london_a(), n_circles = 3, n_segments = c(1,4,8)))
```


Index

```
* datasets
    london_area, 2
    zb_100_triangular_numbers, 3
london_a (london_area), 2
london_area, 2
london_area_lonlat (london_area), 2
london_c (london_area), 2
london_cent (london_area), 2
london_cent_lonlat (london_area), 2
sf, 4, 7, }
sfc, 4, 7, }
zb_100_triangular_numbers, 3
zb_color,3
zb_doughnut,4
zb_lines,5
zb_plot,5
zb_quadrat,6
zb_segment,7
zb_view, 8
zb_zone, 8
```

