
XMLUnit Java User’s Guide i

XMLUnit Java User’s Guide

XMLUnit Java User’s Guide ii

COLLABORATORS

TITLE :

XMLUnit Java User’s Guide

ACTION NAME DATE SIGNATURE

WRITTEN BY Tim Bacon and
Stefan Bodewig

September 16, 2013

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

1.0 January 2003 Documentation for XMLUnit Java 1.0 Tim Bacon

1.1 April 2007 Documentation for XMLUnit Java 1.1

1.2 June 2008 Documentation for XMLUnit Java 1.2

1.3 September 2009 Documentation for XMLUnit Java 1.3

1.4 February 2013 Documentation for XMLUnit Java 1.4

1.5 September 2013 Documentation for XMLUnit Java 1.5

XMLUnit Java User’s Guide iii

Contents

1 A Tour of XMLUnit 1

1.1 What is XMLUnit? . 1

1.2 Quick tour . 1

1.3 Glossary . 1

1.4 Configuring XMLUnit . 1

1.5 Writing XML comparison tests . 2

1.6 Comparing XML Transformations . 4

1.7 Validation Tests . 5

1.8 XPath Tests . 6

1.9 Testing by Tree Walking . 7

2 Using XMLUnit 8

2.1 Requirements . 8

2.2 Basic Usage . 8

2.2.1 Comparing Pieces of XML . 9

2.2.2 Validating . 9

2.2.3 XSLT Transformations . 9

2.2.4 XPath Engine . 9

2.2.5 DOM Tree Walking . 9

2.3 Using XMLUnit With JUnit 3.x . 10

2.4 Common Configuration Options . 10

2.4.1 JAXP . 10

2.4.2 EntityResolver . 10

2.4.3 Element Content Whitespace . 10

2.4.4 XSLT Stylesheet Version . 11

2.5 Providing Input to XMLUnit . 11

3 Comparing Pieces of XML 11

3.1 The Difference Engine . 11

3.2 ComparisonController . 12

3.3 DifferenceListener . 16

3.3.1 IgnoreTextAndAttributeValuesDifferenceListener 17

3.4 ElementQualifier . 17

3.4.1 ElementNameQualifier . 18

3.4.2 ElementNameAndAttributeQualifier . 18

3.4.3 ElementNameAndTextQualifier . 19

3.4.4 org.custommonkey.xmlunit.examples.RecursiveElementNameAndTextQualifier 19

XMLUnit Java User’s Guide iv

3.4.5 org.custommonkey.xmlunit.examples.MultiLevelElementNameAndTextQualifier 19

3.5 Diff and DetailedDiff . 20

3.6 MatchTracker . 21

3.7 JUnit 3.x Convenience Methods . 21

3.8 Configuration Options . 22

3.8.1 Whitespace Handling . 22

3.8.2 "Normalizing" Documents . 23

3.8.3 Ignoring Comments . 23

3.8.4 Treating CDATA Sections and Text Nodes Alike . 23

3.8.5 Entity Reference Expansion . 23

3.8.6 Comparison of Unmatched Elements . 23

4 Validating XML Documents 24

4.1 The Validator Class . 24

4.1.1 DTD Validation . 24

4.1.2 XML Schema Validation . 25

4.2 JUnit 3.x Convenience Methods . 26

4.3 Configuration Options . 26

4.4 JAXP 1.3 Validation . 26

5 XPath Tests 27

5.1 XPath Engines . 27

5.2 Using XML Namespaces in XPath Selectors . 28

5.3 JUnit 3.x Convenience Methods . 28

5.4 Configuration Options . 29

6 DOM Tree Walking 29

6.1 DocumentTraversal . 29

6.2 NodeTest . 29

6.3 NodeTester . 30

6.3.1 AbstractNodeTester . 31

6.3.2 CountingNodeTester . 31

6.4 JUnit 3.x Convenience Methods . 31

6.5 Configuration Options . 32

A Changes 32

A.1 Changes from XMLUnit 1.0 to 1.1 . 32

A.1.1 Breaking Changes . 32

A.1.2 New Features . 33

A.1.3 Important Bug Fixes . 33

XMLUnit Java User’s Guide v

A.2 Changes from XMLUnit 1.1 to 1.2 . 33

A.2.1 Breaking Changes . 33

A.2.2 New Features . 34

A.2.3 Important Bug Fixes . 34

A.3 Changes from XMLUnit 1.2 to 1.3 . 34

A.3.1 Breaking Changes . 34

A.3.2 New Features . 34

A.3.3 Important Bug Fixes . 34

A.4 Changes from XMLUnit 1.3 to 1.4 . 35

A.4.1 Breaking Changes . 35

A.4.2 New Features . 35

A.4.3 Important Bug Fixes . 35

A.5 Changes from XMLUnit 1.4 to 1.5 . 35

A.5.1 Breaking Changes . 35

A.5.2 New Features . 35

A.5.3 Important Bug Fixes . 35

XMLUnit Java User’s Guide vi

List of Tables

1 Document level Differences detected by DifferenceEngine . 13

2 Element level Differences detected by DifferenceEngine . 14

3 Attribute level Differences detected by DifferenceEngine . 14

4 Other Differences detected by DifferenceEngine . 15

5 Contents of NodeDetail.getValue() for Differences . 15

XMLUnit Java User’s Guide 1 / 35

1 A Tour of XMLUnit

This first section contains a tour through XMLUnit’s features, the next sections will cover them in more detail.

Note that it has a strong focus on using the XMLTestCase class which is one option to use XMLUnit, but not the only one.
XMLUnit’s features can be fully used without any dependency on JUnit at all.

1.1 What is XMLUnit?

XMLUnit enables JUnit-style assertions to be made about the content and structure of XML1. It is an open source project
hosted at http://xmlunit.sourceforge.net/ that grew out of a need to test a system that generated and received custom XML
messages. The problem that we faced was how to verify that the system generated the correct message from a known set of
inputs. Obviously we could use a DTD or a schema to validate the message output, but this approach wouldn’t allow us to
distinguish between valid XML with correct content (e.g. element <foo>bar</foo>) and valid XML with incorrect content
(e.g. element <foo>baz</foo>). What we really wanted was an assertXMLEqual() method, so we could compare the
message that we expected the system to generate and the message that the system actually generated. And that was the beginning
of XMLUnit.

1.2 Quick tour

XMLUnit provides a single JUnit extension class, XMLTestCase, and a set of supporting classes that allow assertions to be
made about:

• The differences between two pieces of XML (via Diff and DetailedDiff classes)

• The validity of a piece of XML (via Validator class)

• The outcome of transforming a piece of XML using XSLT (via Transform class)

• The evaluation of an XPath expression on a piece of XML (via classes implementing the XpathEngine interface)

• Individual nodes in a piece of XML that are exposed by DOM Traversal (via NodeTest class)

XMLUnit can also treat HTML content, even badly-formed HTML, as valid XML to allow these assertions to be made about
web pages (via the HTMLDocumentBuilder class).

1.3 Glossary

As with many projects some words in XMLUnit have particular meanings so here is a quick overview. A piece of XML is a DOM
Document, a String containing marked-up content, or a Source or Reader that allows access to marked-up content within some
resource. XMLUnit compares the expected control XML to some actual test XML. The comparison can reveal that two pieces of
XML are identical, similar or different. The unit of measurement used by the comparison is a difference, and differences can be
either recoverable or unrecoverable. Two pieces of XML are identical if there are no differences between them, similar if there
are only recoverable differences between them, and different if there are any unrecoverable differences between them.

1.4 Configuring XMLUnit

There are many Java XML parsers available, and XMLUnit should work with any JAXP compliant parser library, such as Xerces-
J 2 from the Apache Software Foundation. To use the XSLT and XPath features of XMLUnit a Trax (the XSLT portion of JAXP)
compliant transformation engine is required, such as Xalan-J3, from the Apache Software Foundation. To configure XMLUnit
to use a specific parser and transformation engine set three System properties before any tests are run, e.g.

1 For more information on JUnit see http://www.junit.org
2 http://xerces.apache.org/
3 http://xalan.apache.org/

http://xmlunit.sourceforge.net/
http://www.junit.org
http://xerces.apache.org/
http://xalan.apache.org/

XMLUnit Java User’s Guide 2 / 35

Example 1.1 Configuring JAXP via System Properties

System.setProperty("javax.xml.parsers.DocumentBuilderFactory",
"org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");

System.setProperty("javax.xml.parsers.SAXParserFactory",
"org.apache.xerces.jaxp.SAXParserFactoryImpl");

System.setProperty("javax.xml.transform.TransformerFactory",
"org.apache.xalan.processor.TransformerFactoryImpl");

You may want to read Section 2.4.1 for more details - in particular if you are using Java 1.4 or later.

Alternatively there are static methods on the XMLUnit class that can be called directly. The advantage of this approach is that
you can specify a different parser class for control and test XML and change the current parser class at any time in your tests,
should you need to make assertions about the compatibility of different parsers.

Example 1.2 Configuring JAXP via XMLUnit class

XMLUnit.setControlParser("org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");
XMLUnit.setTestParser("org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");
XMLUnit.setSAXParserFactory("org.apache.xerces.jaxp.SAXParserFactoryImpl");
XMLUnit.setTransformerFactory("org.apache.xalan.processor.TransformerFactoryImpl");

1.5 Writing XML comparison tests

Let’s say we have two pieces of XML that we wish to compare and assert that they are equal. We could write a simple test class
like this:

Example 1.3 A simple comparison test

public class MyXMLTestCase extends XMLTestCase {
public MyXMLTestCase(String name) {

super(name);
}

public void testForEquality() throws Exception {
String myControlXML = "<msg><uuid>0x00435A8C</uuid></msg>";
String myTestXML = "<msg><localId>2376</localId></msg>";
assertXMLEqual("Comparing test xml to control xml",

myControlXML, myTestXML);
}

}

The assertXMLEqual test will pass if the control and test XML are either similar or identical. Obviously in this case the
pieces of XML are different and the test will fail. The failure message indicates both what the difference is and the XPath
locations of the nodes that were being compared:

Comparing test xml to control xml
[different] Expected element tag name ’uuid’ but was ’localId’ - comparing <uuid...> at / ←↩

msg[1]/uuid[1] to <localId...> at /msg[1]/localId[1]

When comparing pieces of XML, the XMLTestCase actually creates an instance of the Diff class. The Diff class stores
the result of an XML comparison and makes it available through the methods similar() and identical(). The asser
tXMLEqual() method tests the value of Diff.similar() and the assertXMLIdentical() method tests the value of
Diff.identical().

It is easy to create a Diff instance directly without using the XMLTestCase class as below:

XMLUnit Java User’s Guide 3 / 35

Example 1.4 Creating a Diff instance

public void testXMLIdentical()throws Exception {
String myControlXML =

"<struct><int>3</int><boolean>false</boolean></struct>";
String myTestXML =

"<struct><boolean>false</boolean><int>3</int></struct>";
Diff myDiff = new Diff(myControlXML, myTestXML);
assertTrue("XML similar " + myDiff.toString(),

myDiff.similar());
assertTrue("XML identical " + myDiff.toString(),

myDiff.identical());
}

This test fails as two pieces of XML are similar but not identical if their nodes occur in a different sequence. The failure message
reported by JUnit from the call to myDiff.toString() looks like this:

[not identical] Expected sequence of child nodes ’0’ but was ’1’ - comparing <int...> at / ←↩
struct[1]/int[1] to <int...> at /struct[1]/int[1]

For efficiency reasons a Diff stops the comparison process as soon as the first difference is found. To get all the differences
between two pieces of XML an instance of the DetailedDiff class, a subclass of Diff, is required. Note that a Detailed
Diff is constructed using an existing Diff instance.

Consider this test that uses a DetailedDiff:

Example 1.5 Using DetailedDiff

public void testAllDifferences() throws Exception {
String myControlXML = "<news><item id=\"1\">War</item>"

+ "<item id=\"2\">Plague</item>"
+ "<item id=\"3\">Famine</item></news>";

String myTestXML = "<news><item id=\"1\">Peace</item>"
+ "<item id=\"2\">Health</item>"
+ "<item id=\"3\">Plenty</item></news>";

DetailedDiff myDiff = new DetailedDiff(new Diff(myControlXML, myTestXML));
List allDifferences = myDiff.getAllDifferences();
assertEquals(myDiff.toString(), 2, allDifferences.size());

}

This test fails with the message below as each of the 3 news items differs between the control and test XML:

[different] Expected text value ’War’ but was ’Peace’ - comparing <item...>War</item> at / ←↩
news[1]/item[1]/text()[1] to <item...>Peace</item> at /news[1]/item[1]/text()[1]

[different] Expected text value ’Plague’ but was ’Health’ - comparing <item...>Plague</item ←↩
> at /news[1]/item[2]/text()[1] to <item...>Health</item> at /news[1]/item[2]/text()[1]

[different] Expected text value ’Famine’ but was ’Plenty’ - comparing <item...>Famine</item ←↩
> at /news[1]/item[3]/text()[1] to <item...>Plenty</item> at /news[1]/item[3]/text()[1]

expected <2> but was <3>

The List returned from the getAllDifferences()method contains Difference instances. These instances describe both
the type4 of difference found between a control node and test node and the NodeDetail of those nodes (including the XPath
location of each node). Difference instances are passed at runtime in notification events to a registered DifferenceList
ener, an interface whose default implementation is provided by the Diff class.

However it is possible to override this default behaviour by implementing the interface in your own class. The IgnoreTextAnd
AttributeValuesDifferenceListener class is an example of how to implement a custom DifferenceListener.

4 A full set of prototype Difference instances - one for each type of difference - is defined using final static fields in the DifferenceConstants
class.

XMLUnit Java User’s Guide 4 / 35

It allows an XML comparison to be made that ignores differences in the values of text and attribute nodes, for example when
comparing a skeleton or outline piece of XML to some generated XML.

The following test illustrates the use of a custom DifferenceListener:

Example 1.6 Using a custom DifferenceListener

public void testCompareToSkeletonXML() throws Exception {
String myControlXML = "<location><street-address>22 any street</street-address>< ←↩

postcode>XY00 99Z</postcode></location>";
String myTestXML = "<location><street-address>20 east cheap</street-address><postcode> ←↩

EC3M 1EB</postcode></location>";
DifferenceListener myDifferenceListener = new ←↩

IgnoreTextAndAttributeValuesDifferenceListener();
Diff myDiff = new Diff(myControlXML, myTestXML);
myDiff.overrideDifferenceListener(myDifferenceListener);
assertTrue("test XML matches control skeleton XML",

myDiff.similar());
}

The DifferenceEngine class generates the events that are passed to a DifferenceListener implementation as two
pieces of XML are compared. Using recursion it navigates through the nodes in the control XML DOM, and determines which
node in the test XML DOM qualifies for comparison to the current control node. The qualifying test node will match the control
node’s node type, as well as the node name and namespace (if defined for the control node).

However when the control node is an Element, it is less straightforward to determine which test Element qualifies for
comparison as the parent node may contain repeated child Elements with the same name and namespace. So for Element
nodes, an instance of the ElementQualifier interface is used determine whether a given test Element node qualifies for
comparison with a control Element node. This separates the decision about whether two Elements should be compared from
the decision about whether those two Elements are considered similar. By default an ElementNameQualifier class is
used that compares the nth child <abc> test element to the nth child <abc> control element, i.e. the sequence of the child
elements in the test XML is important. However this default behaviour can be overridden using an ElementNameAndTextQ
ualifier or ElementNameAndAttributesQualifier.

The test below demonstrates the use of a custom ElementQualifier:

Example 1.7 Using a custom ElementQualifier

public void testRepeatedChildElements() throws Exception {
String myControlXML = "<suite>"

+ "<test status=\"pass\">FirstTestCase</test>"
+ "<test status=\"pass\">SecondTestCase</test></suite>";

String myTestXML = "<suite>"
+ "<test status=\"pass\">SecondTestCase</test>"
+ "<test status=\"pass\">FirstTestCase</test></suite>";

assertXMLNotEqual("Repeated child elements in different sequence order are not equal by ←↩
default",

myControlXML, myTestXML);
Diff myDiff = new Diff(myControlXML, myTestXML);
myDiff.overrideElementQualifier(new ElementNameAndTextQualifier());
assertXMLEqual("But they are equal when an ElementQualifier controls which test element ←↩

is compared with each control element",
myDiff, true);

}

1.6 Comparing XML Transformations

XMLUnit can test XSLT transformations at a high level using the Transform class that wraps an javax.xml.transform.
Transformer instance. Knowing the input XML, input stylesheet and expected output XML we can assert that the output of
the transformation matches the expected output as follows:

XMLUnit Java User’s Guide 5 / 35

Example 1.8 Testing the Result of a Transformation

public void testXSLTransformation() throws Exception {
String myInputXML = "...";
File myStylesheetFile = new File("...");
Transform myTransform = new Transform(myInputXML, myStylesheetFile);
String myExpectedOutputXML = "...";
Diff myDiff = new Diff(myExpectedOutputXML, myTransform);
assertTrue("XSL transformation worked as expected", myDiff.similar());

}

The getResultString() and getResultDocument() methods of the Transform class can be used to access the
result of the XSLT transformation programmatically if required, for example as below:

Example 1.9 Using Transform programmatically

public void testAnotherXSLTransformation() throws Exception {
File myInputXMLFile = new File("...");
File myStylesheetFile = new File("...");
Transform myTransform = new Transform(

new StreamSource(myInputXMLFile),
new StreamSource(myStylesheetFile));

Document myExpectedOutputXML =
XMLUnit.buildDocument(XMLUnit.getControlParser(),

new FileReader("..."));
Diff myDiff = new Diff(myExpectedOutputXML,
myTransform.getResultDocument());
assertTrue("XSL transformation worked as expected", myDiff.similar());

}

1.7 Validation Tests

XML parsers that validate a piece of XML against a DTD are common, however they rely on a DTD reference being present in
the XML, and they can only validate against a single DTD. When writing a system that exchanges XML messages with third
parties there are times when you would like to validate the XML against a DTD that is not available to the recipient of the
message and so cannot be referenced in the message itself. XMLUnit provides a Validator class for this purpose.

Example 1.10 Validating Against a DTD

public void testValidation() throws Exception {
XMLUnit.getTestDocumentBuilderFactory().setValidating(true);
// As the document is parsed it is validated against its referenced DTD
Document myTestDocument = XMLUnit.buildTestDocument("...");
String mySystemId = "...";
String myDTDUrl = new File("...").toURL().toExternalForm();
Validator myValidator = new Validator(myTestDocument, mySystemId,

myDTDUrl);
assertTrue("test document validates against unreferenced DTD",

myValidator.isValid());
}

Starting with XMLUnit 1.1, the Validator class can also validate against one or more XML Schema definitions. See Sec-
tion 4.1.2 for details.

XMLUnit 1.2 introduces a new Validator class that relies on JAXP 1.3’s javax.xml.validation package. This Val-
idator can validate against W3C XML Schema, but may support different Schema languages like RELAX NG if your JAXP
implementation supports it. See Section 4.4 for details.

XMLUnit Java User’s Guide 6 / 35

1.8 XPath Tests

One of the strengths of XML is the ability to programmatically extract specific parts of a document using XPath expressions.
The XMLTestCase class offers a number of XPath related assertion methods, as demonstrated in this test:

Example 1.11 Using XPath Tests

public void testXPaths() throws Exception {
String mySolarSystemXML = "<solar-system>"

+ "<planet name=’Earth’ position=’3’ supportsLife=’yes’/>"
+ "<planet name=’Venus’ position=’4’/></solar-system>";

assertXpathExists("//planet[@name=’Earth’]", mySolarSystemXML);
assertXpathNotExists("//star[@name=’alpha centauri’]",

mySolarSystemXML);
assertXpathsEqual("//planet[@name=’Earth’]",

"//planet[@position=’3’]", mySolarSystemXML);
assertXpathsNotEqual("//planet[@name=’Venus’]",

"//planet[@supportsLife=’yes’]",
mySolarSystemXML);

}

When an XPath expression is evaluated against a piece of XML a NodeList is created that contains the matching Nodes. The
methods in the previous test assertXpathExists, assertXpathNotExists, assertXpathsEqual, and assert
XpathsNotEqual use these NodeLists. However, the contents of a NodeList can be flattened (or String-ified) to a
single value, and XMLUnit also allows assertions to be made about this single value, as in this test5:

Example 1.12 Testing XPath Values

public void testXPathValues() throws Exception {
String myJavaFlavours = "<java-flavours>"

+ "<jvm current=’some platforms’>1.1.x</jvm>"
+ "<jvm current=’no’>1.2.x</jvm>"
+ "<jvm current=’yes’>1.3.x</jvm>"
+ "<jvm current=’yes’ latest=’yes’>1.4.x</jvm></javaflavours>";

assertXpathEvaluatesTo("2", "count(//jvm[@current=’yes’])",
myJavaFlavours);

assertXpathValuesEqual("//jvm[4]/@latest", "//jvm[4]/@current",
myJavaFlavours);

assertXpathValuesNotEqual("//jvm[2]/@current",
"//jvm[3]/@current", myJavaFlavours);

}

XPaths are especially useful where a document is made up largely of known, unchanging content with only a small amount of
changing content created by the system. One of the main areas where constant "boilerplate" markup is combined with system
generated markup is of course in web applications. The power of XPath expressions can make testing web page output quite
trivial, and XMLUnit supplies a means of converting even very badly formed HTML into XML to aid this approach to testing.

The HTMLDocumentBuilder class uses the Swing HTML parser to convert marked-up content to Sax events. The Tole
rantSaxDocumentBuilder class handles the Sax events to build up a DOM document in a tolerant fashion i.e. without
mandating that opened elements are closed. (In a purely XML world this class would have no purpose as there are plenty of Sax
event handlers that can build DOM documents from well formed content). The test below illustrates how the use of these classes:

Example 1.13 Working with non well-formed HTML

public void testXpathsInHTML() throws Exception {
String someBadlyFormedHTML = "<html><title>Ugh</title>"

+ "<body><h1>Heading"
+ "<li id=’1’>Item One<li id=’2’>Item Two";

TolerantSaxDocumentBuilder tolerantSaxDocumentBuilder =

5 Each of the assertXpath...() methods uses an implementation of the XpathEngine interface to evaluate an XPath expression.

XMLUnit Java User’s Guide 7 / 35

new TolerantSaxDocumentBuilder(XMLUnit.getTestParser());
HTMLDocumentBuilder htmlDocumentBuilder =

new HTMLDocumentBuilder(tolerantSaxDocumentBuilder);
Document wellFormedDocument =

htmlDocumentBuilder.parse(someBadlyFormedHTML);
assertXpathEvaluatesTo("Item One", "/html/body//li[@id=’1’]",

wellFormedDocument);
}

One of the key points about using XPaths with HTML content is that extracting values in tests requires the values to be identifi-
able. (This is just another way of saying that testing HTML is easier when it is written to be testable.) In the previous example
id attributes were used to identify the list item values that needed to be testable, however class attributes or span and div tags can
also be used to identify specific content for testing.

1.9 Testing by Tree Walking

The DOM specification allows a Document to optionally implement the DocumentTraversal interface. This interface
allows an application to iterate over the Nodes contained in a Document, or to "walk the DOM tree". The XMLUnit NodeTest
class and NodeTester interface make use of DocumentTraversal to expose individual Nodes in tests: the former handles
the mechanics of iteration, and the latter allows custom test strategies to be implemented. A sample test strategy is supplied by
the CountingNodeTester class that counts the nodes presented to it and compares the actual count to an expected count.
The test below illustrates its use:

Example 1.14 Using CountingNodeTester

public void testCountingNodeTester() throws Exception {
String testXML = "<fibonacci><val>1</val><val>2</val><val>3</val>"

+ "<val>5</val><val>9</val></fibonacci>";
CountingNodeTester countingNodeTester = new CountingNodeTester(4);
assertNodeTestPasses(testXML, countingNodeTester, Node.TEXT_NODE);

}

This test fails as there are 5 text nodes, and JUnit supplies the following message:

Expected node test to pass, but it failed! Counted 5 node(s) but
expected 4

Note that if your DOM implementation does not support the DocumentTraversal interface then XMLUnit will throw an
IllegalArgumentException informing you that you cannot use the NodeTest or NodeTester classes. Unfortunately
even if your DOM implementation does support DocumentTraversal, attributes are not exposed by iteration: however they
can be examined from the Element node that contains them.

While the previous test could have been easily performed using XPath, there are times when Node iteration is more powerful.
In general, this is true when there are programmatic relationships between nodes that can be more easily tested iteratively. The
following test uses a custom NodeTester class to illustrate the potential:

Example 1.15 Using a Custom NodeTester

public void testCustomNodeTester() throws Exception {
String testXML = "<fibonacci><val>1</val><val>2</val><val>3</val>"

+ "<val>5</val><val>9</val></fibonacci>";
NodeTest nodeTest = new NodeTest(testXML);
assertNodeTestPasses(nodeTest, new FibonacciNodeTester(),

new short[] {Node.TEXT_NODE,
Node.ELEMENT_NODE},

true);
}

private class FibonacciNodeTester extends AbstractNodeTester {

XMLUnit Java User’s Guide 8 / 35

private int nextVal = 1, lastVal = 1, priorVal = 0;

public void testText(Text text) throws NodeTestException {
int val = Integer.parseInt(text.getData());
if (nextVal != val) {

throw new NodeTestException("Incorrect value", text);
}
nextVal = val + lastVal;
priorVal = lastVal;
lastVal = val;

}

public void testElement(Element element) throws NodeTestException {
String name = element.getLocalName();
if ("fibonacci".equals(name) || "val".equals(name)) {

return;
}
throw new NodeTestException("Unexpected element", element);

}

public void noMoreNodes(NodeTest nodeTest) throws NodeTestException {
}

}

The test fails because the XML contains the wrong value for the last number in the sequence:

Expected node test to pass, but it failed! Incorrect value [#text: 9]

2 Using XMLUnit

2.1 Requirements

XMLUnit requires a JAXP compliant XML parser virtually everywhere. Several features of XMLUnit also require a JAXP
compliant XSLT transformer. If it is available, a JAXP compliant XPath engine will be used for XPath tests.

To build XMLUnit at least JAXP 1.2 is required, this is the version provided by the Java class library in JDK 1.4. The JAXP 1.3
(i.e. Java5 and above) XPath engine can only be built when JAXP 1.3 is available.

As long as you don’t require support for XML Namespaces or XML Schema, any JAXP 1.1 compliant implementations should
work at runtime. For namespace and schema support you will need a parser that complies to JAXP 1.2 and supports the required
feature. The XML parser shipping with JDK 1.4 (a version of Apache Crimson) for example is compliant to JAXP 1.2 but doesn’t
support Schema validation.

XMLUnit is supposed to build and run on any Java version after 1.3 (at least no new hard JDK 1.4 dependencies have been added
in XMLUnit 1.1), but it has only been tested on JDK 1.4.2 and above.

To build XMLUnit JUnit 3.x (only tested with JUnit 3.8.x) is required. It is not required at runtime unless you intend to use the
XMLTestCase or XMLAssert classes.

2.2 Basic Usage

XMLUnit consists of a few classes all living in the org.custommonkey.xmlunit package. You can use these classes
directly from your code, no matter whether you are writing a unit test or want to use XMLUnit’s features for any other purpose.

This section provides a few hints of where to start if you want to use a certain feature of XMLUnit, more details can be found in
the more specific sections later in this document.

XMLUnit Java User’s Guide 9 / 35

2.2.1 Comparing Pieces of XML

Heart and soul of XMLUnit’s comparison engine is DifferenceEngine but most of the time you will use it indirectly via
the Diff class.

You can influence the engine by providing (custom) implementations for various interfaces and by setting a couple of options on
the XMLUnit class.

More information is available in Section 3.

2.2.2 Validating

All validation happens in the Validator class. The default is to validate against a DTD, but XML Schema validation can be
enabled by an option (see Validator.useXMLSchema).

Several options of the XMLUnit class affect validation.

More information is available in Section 4.

2.2.3 XSLT Transformations

The Transform class provides an easy to use layer on top of JAXP’s transformations. An instance of this class is initialized with
the source document and a stylesheet and the result of the transformation can be retrieved as a String or DOM Document.

The output of Transform can be used as input to comparisons, validations, XPath tests and so on. There is no detailed sections
on transformations since they are really only a different way to create input for the rest of XMLUnit’s machinery. Examples can
be found in Section 1.6.

It is possible to provide a custom javax.xml.transform.URIResolver via the XMLUnit.setURIResolvermethod.

You can access the underlying XSLT transformer via XMLUnit.getTransformerFactory.

2.2.4 XPath Engine

The central piece of XMLUnit’s XPath support is the XpathEngine interface. Currently two implementations of the interface
exist, SimpleXpathEngine and org.custommonkey.xmlunit.jaxp13.Jaxp13XpathEngine.

SimpleXpathEngine is a very basic implementation that uses your XSLT transformer under the covers. This also means it
will expose you to the bugs found in your transformer like the transformer claiming a stylesheet couldn’t be compiled for very
basic XPath expressions. This has been reported to be the case for JDK 1.5.

org.custommonkey.xmlunit.jaxp13.Jaxp13XpathEngine uses JAXP 1.3’s javax.xml.xpath package and
seems to work more reliable, stable and performant than SimpleXpathEngine.

You use the XMLUnit.newXpathEngine method to obtain an instance of the XpathEngine. As of XMLUnit 1.1 this will
try to use JAXP 1.3 if it is available and fall back to SimpleXpathEngine.

Instances of XpathEngine can return the results of XPath queries either as DOM NodeList or plain Strings.

More information is available in Section 5.

2.2.5 DOM Tree Walking

To test pieces of XML by traversing the DOM tree you use the NodeTester class. Each DOM Node will be passed to a
NodeTester implementation you provide. The AbstractNodeTester class is provided as a NullObject Pattern base class
for implementations of your own.

More information is available in Section 6.

XMLUnit Java User’s Guide 10 / 35

2.3 Using XMLUnit With JUnit 3.x

Initially XMLUnit was tightly coupled to JUnit and the recommended approach was to write unit tests by inheriting from the
XMLTestCase class. XMLTestCase provides a pretty long list of assert... methods that may simplify your interaction
with XMLUnit’s internals in many common cases.

The XMLAssert class provides the same set of assert...s as static methods. Use XMLAssert instead of XMLTestCase
for your unit tests if you can’t or don’t want to inherit from XMLTestCase.

All power of XMLUnit is available whether you use XMLTestCase and/or XMLAssert or the underlying API directly. If you
are using JUnit 3.x then using the specific classes may prove to be more convenient.

2.4 Common Configuration Options

2.4.1 JAXP

If you are using a JDK 1.4 or later, your Java class library already contains the required XML parsers and XSLT transformers.
Still you may want to use a different parser/transformer than the one of your JDK - in particular since the versions shipping with
some JDKs are known to contain serious bugs.

As described in Section 1.4 there are two main approaches to choose the XML parser of XSLT transformer: System properties
and setters in the XMLUnit class.

If you use system properties you have the advantage that your choice affects the whole JAXP system, whether it is used inside of
XMLUnit or not. If you are using JDK 1.4 or later you may also want to review the Endorsed Standards Override Mechanism to
use a different parser/transformer than the one shipping with your JDK.

The second option - using the XMLUnit class - allows you to use different parsers for control and test documents, it even allows
you to use different parsers for different test cases, if you really want to stretch it that far. It may also work for JDK 1.4 and
above, even if you don’t override the endorsed standards libraries.

You can access the underlying JAXP parser by XMLUnit.newControlParser, XMLUnit.newTestParser, XMLUnit.
getControlDocumentBuilderFactory, XMLUnit.getTestDocumentBuilderFactory and XMLUnit.getS
AXParserFactory (used by Validator). Note that all these methods return factories or parsers that are namespace aware.

The various build... methods in XMLUnit provide convenience layers for building DOM Documents using the configured
parsers.

You can also set the class name for the XPathFactory to use when using JAXP 1.3 by passing the class name to XMLUnit.
setXPathFactory.

2.4.2 EntityResolver

You can provide a custom org.xml.sax.EntityResolver for the control and test parsers via XMLUnit.setControl
EntityResolver and XMLUnit.setTestEntityResolver. Validator uses the resolver set via setControlEn
tityResolver as well.

2.4.3 Element Content Whitespace

Element content whitespace - also known as ignorable whitespace - is whitespace contained in elements whose content model
doesn’t allow text content. I.e. the newline and space characters between <foo> and <bar> in the following example could
belong into this category.

<foo>
<bar/></foo>

Using XMLUnit.setIgnoreWhitespace it is possible to make the test and control parser ignore this kind of whitespace.

Note that setting this property to true usually doesn’t have any effect since it only works on validating parsers and XMLUnit
doesn’t enable validation by default. It does have an effect when comparing pieces of XML, though, since the same flag is used
for a different purpose as well in that case. See Section 3.8.1 for more details.

http://java.sun.com/j2se/1.4.2/docs/guide/standards/

XMLUnit Java User’s Guide 11 / 35

2.4.4 XSLT Stylesheet Version

Some features of XMLUnit use XSLT stylesheets under the covers, in particular XSLT will be used to strip element content
whitespace or comments as well as by SimpleXpathEngine. These stylesheets only require a XSLT transformer that supports
XSLT 1.0 and will say so in the stylesheet element.

If your XSLT transformer supports XSLT 2.0 or newer it may6 issue a warning for these stylesheets which can be annoying. You
can use XMLUnit.setXSLTVersion to make XMLUnit change the version attribute to a different value. Note that XMLUnit
hasn’t been tested with a value other than "1.0".

2.5 Providing Input to XMLUnit

Most methods in XMLUnit that expect a piece of XML as input provide several overloads that obtain their input from different
sources. The most common options are:

• A DOM Document.

Here you have all control over the document’s creation. Such a Document could as well be the result of an XSLT transfor-
mation via the Transform class.

• A SAX InputSource.

This is the most generic way since InputSource allows you to read from arbitrary InputStreams or Readers. Use an
InputStream wrapped by an InputSource if you want the XML parser to pick up the proper encoding from the XML
declaration.

• A String.

Here a DOM Document is built from the input String using the JAXP parser specified for control or test documents -
depending on whether the input is a control or test piece of XML.

Note that using a String assumes that your XML has already been converted from its XML encoding to a Java String
upfront.

• A Reader.

Here a DOM Document is built from the input Reader using the JAXP parser specified for control or test documents -
depending on whether the input is a control or test piece of XML.

Note that using a Reader is a bad choice if your XML encoding is different from your platform’s default encoding since
Java’s IO system won’t read your XML declaration. It is a good practice to use one of the other overloads rather than the
Reader version to ensure encoding has been dealt with properly.

3 Comparing Pieces of XML

3.1 The Difference Engine

At the center of XMLUnit’s support for comparisons is the DifferenceEngine class. In practice you rarely deal with it
directly but rather use it via instances of Diff or DetailedDiff classes (see Section 3.5).

The DifferenceEngine walks two trees of DOM Nodes, the control and the test tree, and compares the nodes. Whenever it
detects a difference, it sends a message to a configured DifferenceListener (see Section 3.3) and asks a ComparisonC
ontroller (see Section 3.2) whether the current comparison should be halted.

In some cases the order of elements in two pieces of XML may not be significant. If this is true, the DifferenceEngine
needs help to determine which Elements to compare. This is the job of an ElementQualifier (see Section 3.4).

The types of differences DifferenceEngine can detect are enumerated in the DifferenceConstants interface and
represented by instances of the Difference class.

6 The W3C recommendation says it SHOULD.

XMLUnit Java User’s Guide 12 / 35

A Difference can be recoverable; recoverable Differences make the Diff class consider two pieces of XML similar
while non-recoverable Differences render the two pieces different.

The types of Differences that are currently detected are listed in Table 1 to Table 4 (the first two columns refer to the
DifferenceConstants class).

Note that some of the differences listed may be ignored by the DifferenceEngine if certain configuration options have been
specified. See Section 3.8 for details.

DifferenceEngine passes differences found around as instances of the Difference class. In addition to the type of
of difference this class also holds information on the nodes that have been found to be different. The nodes are described by
NodeDetail instances that encapsulate the DOM Node instance as well as the XPath expression that locates the Node inside
the given piece of XML. NodeDetail also contains a "value" that provides more information on the actual values that have
been found to be different, the concrete interpretation depends on the type of difference as can be seen in Table 5.

As said in the first paragraph you won’t deal with DifferenceEngine directly in most cases. In cases where Diff or
DetailedDiff don’t provide what you need you’d create an instance of DifferenceEngine passing a ComparisonCo
ntroller in the constructor and invoke compare with your DOM trees to compare as well as a DifferenceListener
and ElementQualifier. The listener will be called on any differences while the control method is executing.

Example 3.1 Using DifferenceEngine Directly

class MyDifferenceListener implements DifferenceListener {
private boolean calledFlag = false;
public boolean called() { return calledFlag; }

public int differenceFound(Difference difference) {
calledFlag = true;
return RETURN_ACCEPT_DIFFERENCE;

}

public void skippedComparison(Node control, Node test) {
}

}

DifferenceEngine engine = new DifferenceEngine(myComparisonController);
MyDifferenceListener listener = new MyDifferenceListener();
engine.compare(controlNode, testNode, listener,

myElementQualifier);
System.err.println("There have been "

+ (listener.called() ? "" : "no ")
+ "differences.");

3.2 ComparisonController

The ComparisonController’s job is to decide whether a comparison should be halted after a difference has been found. Its
interface is:

/**
* Determine whether a Difference that the listener has been notified of

* should halt further XML comparison. Default behaviour for a Diff

* instance is to halt if the Difference is not recoverable.

* @see Difference#isRecoverable

* @param afterDifference the last Difference passed to <code>differenceFound</code>

* @return true to halt further comparison, false otherwise

*/
boolean haltComparison(Difference afterDifference);

7 Note that the order of attributes is not significant in XML, different parsers may return attributes in a different order even if parsing the same XML
document. There is an option to turn this check off - see Section 3.8 - but it is on by default for backwards compatibility reasons

8 In order for this difference to be detected the parser must have been in validating mode when the piece of XML was parsed and the DTD or XML Schema
must have been available.

XMLUnit Java User’s Guide 13 / 35

ID Constant recoverable Description

HAS_DOCTYPE_DECLAR
ATION_ID

HAS_DOCTYPE_DECLAR
ATION

true
One piece of XML has a
DOCTYPE declaration
while the other one has not.

DOCTYPE_NAME_ID DOCTYPE_NAME false

Both pieces of XML
contain a DOCTYPE
declaration but the
declarations specify
different names for the root
element.

DOCTYPE_PUBLIC_ID
_ID

DOCTYPE_PUBLIC_ID false

Both pieces of XML
contain a DOCTYPE
declaration but the
declarations specify
different PUBLIC
identifiers.

DOCTYPE_SYSTEM_ID
_ID

DOCTYPE_SYSTEM_ID true

Both pieces of XML
contain a DOCTYPE
declaration but the
declarations specify
different SYSTEM
identifiers.

NODE_TYPE_ID NODE_TYPE false

The test piece of XML
contains a different type of
node than was expected.
This type of difference will
also occur if either the root
control or test Node is
null while the other is not.

NAMESPACE_PREFIX
_ID

NAMESPACE_PREFIX true

Two nodes use different
prefixes for the same XML
Namespace URI in the two
pieces of XML.

NAMESPACE_URI_ID NAMESPACE_URI false

Two nodes in the two pieces
of XML share the same
local name but use different
XML Namespace URIs.

SCHEMA_LOCATION_ID SCHEMA_LOCATION true

Two nodes have different
values for the
schemaLocation
attribute of the
XMLSchema-Instance
namespace. The attribute
could be present on only
one of the two nodes.

NO_NAMESPACE_SCHEM
A_LOCATION_ID

NO_NAMESPACE_SCHEM
A_LOCATION

true

Two nodes have different
values for the noNamespa
ceSchemaLocation
attribute of the
XMLSchema-Instance
namespace. The attribute
could be present on only
one of the two nodes.

Table 1: Document level Differences detected by DifferenceEngine

XMLUnit Java User’s Guide 14 / 35

ID Constant recoverable Description

ELEMENT_TAG_NAME
_ID

ELEMENT_TAG_NAME false
The two pieces of XML
contain elements with
different tag names.

ELEMENT_NUM_ATTRIB
UTES_ID

ELEMENT_NUM_ATTRIB
UTES

false

The two pieces of XML
contain a common element,
but the number of attributes
on the element is different.

HAS_CHILD_NODES_ID HAS_CHILD_NODES false

An element in one piece of
XML has child nodes while
the corresponding one in
the other has not.

CHILD_NODELIST_LEN
GTH_ID

CHILD_NODELIST_LEN
GTH

false
Two elements in the two
pieces of XML differ by
their number of child nodes.

CHILD_NODELIST_SEQ
UENCE_ID

CHILD_NODELIST_SEQ
UENCE

true

Two elements in the two
pieces of XML contain the
same child nodes but in a
different order.

CHILD_NODE_NOT_FOU
ND_ID

CHILD_NODE_NOT_FO
UND

false

A child node in one piece of
XML couldn’t be matched
against any other node of
the other piece.

ATTR_SEQUENCE_ID ATTR_SEQUENCE true
The attributes on an element
appear in different order7 in
the two pieces of XML.

Table 2: Element level Differences detected by DifferenceEngine

ID Constant recoverable Description

ATTR_VALUE_EXPLICI
TLY_SPECIFIED_ID

ATTR_VALUE_EXPLICI
TLY_SPECIFIED

true

An attribute that has a
default value according to
the content model of the
element in question has
been specified explicitly in
one piece of XML but not
in the other.8

ATTR_NAME_NOT_FOUN
D_ID

ATTR_NAME_NOT_FO
UND

false
One piece of XML contains
an attribute on an element
that is missing in the other.

ATTR_VALUE_ID ATTR_VALUE false
The value of an element’s
attribute is different in the
two pieces of XML.

Table 3: Attribute level Differences detected by DifferenceEngine

XMLUnit Java User’s Guide 15 / 35

ID Constant recoverable Description

COMMENT_VALUE_ID COMMENT_VALUE false
The content of two
comments is different in the
two pieces of XML.

PROCESSING_INSTRUC
TION_TARGET_ID

PROCESSING_INSTRUC
TION_TARGET

false

The target of two
processing instructions is
different in the two pieces
of XML.

PROCESSING_INSTRUC
TION_DATA_ID

PROCESSING_INSTRUC
TION_DATA

false
The data of two processing
instructions is different in
the two pieces of XML.

CDATA_VALUE_ID CDATA_VALUE false
The content of two CDATA
sections is different in the
two pieces of XML.

TEXT_VALUE_ID TEXT_VALUE false
The value of two texts is
different in the two pieces
of XML.

Table 4: Other Differences detected by DifferenceEngine

Difference.getId() NodeDetail.getValue()

HAS_DOCTYPE_DECLARATION_ID
"not null" if the document has a DOCTYPE
declaration, "null" otherwise.

DOCTYPE_NAME_ID The name of the root element.
DOCTYPE_PUBLIC_ID The PUBLIC identifier.
DOCTYPE_SYSTEM_ID The SYSTEM identifier.

NODE_TYPE_ID

If one node was absent: "not null" if the node exists,
"null" otherwise. If the node types differ the value will
be a string-ified version of org.w3c.dom.Node.
getNodeType().

NAMESPACE_PREFIX_ID The Namespace prefix.
NAMESPACE_URI_ID The Namespace URI.

SCHEMA_LOCATION_ID
The attribute’s value or "[attribute absent]" if it has not
been specified.

NO_NAMESPACE_SCHEMA_LOCATION_ID
The attribute’s value or "[attribute absent]" if it has not
been specified.

ELEMENT_TAG_NAME_ID The tag name with any Namespace information stripped.
ELEMENT_NUM_ATTRIBUTES_ID The number of attributes present turned into a String.

HAS_CHILD_NODES_ID
"true" if the element has child nodes, "false"
otherwise.

CHILD_NODELIST_LENGTH_ID The number of child nodes present turned into a String.

CHILD_NODELIST_SEQUENCE_ID
The sequence number of this child node turned into a
String.

CHILD_NODE_NOT_FOUND_ID The name of the unmatched node or null.
ATTR_SEQUENCE_ID The attribute’s name.

ATTR_VALUE_EXPLICITLY_SPECIFIED_ID
"true" if the attribute has been specified, "false"
otherwise.

ATTR_NAME_NOT_FOUND_ID The attribute’s name or null.
ATTR_VALUE_ID The attribute’s value.

COMMENT_VALUE_ID The actual comment.
PROCESSING_INSTRUCTION_TARGET_ID The processing instruction’s target.
PROCESSING_INSTRUCTION_DATA_ID The processing instruction’s data.

CDATA_VALUE_ID The content of the CDATA section.
TEXT_VALUE_ID The actual text.

Table 5: Contents of NodeDetail.getValue() for Differences

XMLUnit Java User’s Guide 16 / 35

Whenever a difference has been detected by the DifferenceEngine the haltComparison method will be called immedi-
ately after the DifferenceListener has been informed of the difference. This is true no matter what type of Difference
has been found or which value the DifferenceListener has returned.

The only implementations of ComparisonController that ship with XMLUnit are Diff and DetailedDiff, see Sec-
tion 3.5 for details about them.

A ComparisonController that halted the comparison on any non-recoverable difference could be implemented as:

Example 3.2 A Simple ComparisonController

public class HaltOnNonRecoverable implements ComparisonController {
public boolean haltComparison(Difference afterDifference) {

return !afterDifference.isRecoverable();
}

}

3.3 DifferenceListener

DifferenceListener contains two callback methods that are invoked by the DifferenceEngine when differences are
detected:

/**
* Receive notification that 2 nodes are different.

* @param difference a Difference instance as defined in {@link

* DifferenceConstants DifferenceConstants} describing the cause

* of the difference and containing the detail of the nodes that

* differ

* @return int one of the RETURN_... constants describing how this

* difference was interpreted

*/
int differenceFound(Difference difference);

/**
* Receive notification that a comparison between 2 nodes has been skipped

* because the node types are not comparable by the DifferenceEngine

* @param control the control node being compared

* @param test the test node being compared

* @see DifferenceEngine

*/
void skippedComparison(Node control, Node test);

differenceFound is invoked by DifferenceEngine as soon as a difference has been detected. The return value of that
method is completely ignored by DifferenceEngine, it becomes important when used together with Diff, though (see
Section 3.5). The return value should be one of the four constants defined in the the DifferenceListener interface:

/**
* Standard return value for the <code>differenceFound</code> method.

* Indicates that the <code>Difference</code> is interpreted as defined

* in {@link DifferenceConstants DifferenceConstants}.

*/
int RETURN_ACCEPT_DIFFERENCE;
/**
* Override return value for the <code>differenceFound</code> method.

* Indicates that the nodes identified as being different should be

* interpreted as being identical.

*/
int RETURN_IGNORE_DIFFERENCE_NODES_IDENTICAL;
/**
* Override return value for the <code>differenceFound</code> method.

XMLUnit Java User’s Guide 17 / 35

* Indicates that the nodes identified as being different should be

* interpreted as being similar.

*/
int RETURN_IGNORE_DIFFERENCE_NODES_SIMILAR;
/**
* Override return value for the <code>differenceFound</code> method.

* Indicates that the nodes identified as being similar should be

* interpreted as being different.

*/
int RETURN_UPGRADE_DIFFERENCE_NODES_DIFFERENT = 3;

The skippedComparisonmethod is invoked if the DifferenceEngine encounters two Nodes it cannot compare. Before
invoking skippedComparison DifferenceEngine will have invoked differenceFound with a Difference of
type NODE_TYPE.

A custom DifferenceListener that ignored any DOCTYPE related differences could be written as:

Example 3.3 A DifferenceListener that Ignores DOCTYPE Differences
public class IgnoreDoctype implements DifferenceListener {

private static final int[] IGNORE = new int[] {
DifferenceConstants.HAS_DOCTYPE_DECLARATION_ID,
DifferenceConstants.DOCTYPE_NAME_ID,
DifferenceConstants.DOCTYPE_PUBLIC_ID_ID,
DifferenceConstants.DOCTYPE_SYSTEM_ID_ID

};

static {
Arrays.sort(IGNORE);

}

public int differenceFound(Difference difference) {
return Arrays.binarySearch(IGNORE, difference.getId()) >= 0

? RETURN_IGNORE_DIFFERENCE_NODES_IDENTICAL
: RETURN_ACCEPT_DIFFERENCE;

}

public void skippedComparison(Node control, Node test) {
}

}

Apart from Diff and DetailedDiff XMLUnit ships with an additional implementation of DifferenceListener.

3.3.1 IgnoreTextAndAttributeValuesDifferenceListener

IgnoreTextAndAttributeValuesDifferenceListener doesn’t do anything in skippedComparison. It "down-
grades" Differences of type ATTR_VALUE, ATTR_VALUE_EXPLICITLY_SPECIFIED and TEXT_VALUE to recover-
able differences.

This means if instances of IgnoreTextAndAttributeValuesDifferenceListener are used together with Diff
then two pieces of XML will be considered similar if they have the same basic structure. They are not considered identical,
though.

Note that the list of ignored differences doesn’t cover all textual differences. You should configure XMLUnit to ignore comments
and whitespace and to consider CDATA sections and text nodes to be the same (see Section 3.8) in order to cover COMMENT_V
ALUE and CDATA_VALUE as well.

3.4 ElementQualifier

When DifferenceEngine encounters a list of DOM Elements as children of another Element it will ask the configured
ElementQualifierwhich Element of the control piece of XML should be compared to which of the test piece. Its contract

XMLUnit Java User’s Guide 18 / 35

is:

/**
* Determine whether two elements are comparable

* @param control an Element from the control XML NodeList

* @param test an Element from the test XML NodeList

* @return true if the elements are comparable, false otherwise

*/
boolean qualifyForComparison(Element control, Element test);

For any given Element in the control piece of XML DifferenceEngine will cycle through the corresponding list of
Elements in the test piece of XML until qualifyForComparison has returned true or the test document is exhausted.

When using DifferenceEngine or Diff it is completely legal to set the ElementQualifier to null. In this case any
kind of Node is compared to the test Node that appears at the same position in the sequence.

Example 3.4 Example Nodes for ElementQualifier (the comments are not part of the example)

<!-- control piece of XML -->
<parent>

<child1/> <!-- control node 1 -->
<child2/> <!-- control node 2 -->
<child2 foo="bar">xyzzy</child2> <!-- control node 3 -->
<child2 foo="baz"/> <!-- control node 4 -->

</parent>

<!-- test piece of XML -->
<parent>

<child2 foo="baz"/> <!-- test node 1 -->
<child1/> <!-- test node 2 -->
<child2>xyzzy</child2> <!-- test node 3 -->
<child2 foo="bar"/> <!-- test node 4 -->

</parent>

Taking Example 3.4 without any ElementQualifier DifferenceEngine will compare control node n to test node n
for n between 1 and 4. In many cases this is exactly what is desired, but sometimes <a><c/> should be similar to
<a><c/> because the order of elements doesn’t matter - this is when you’d use a different ElementQualifier.
XMLUnit ships with several implementations.

3.4.1 ElementNameQualifier

Only Elements with the same name - and Namespace URI if present - qualify.

In Example 3.4 this means control node 1 will be compared to test node 2. Then control node 2 will be compared to test node 3
because DifferenceEngine will start to search for the matching test Element at the second test node, the same sequence
number the control node is at. Control node 3 is compared to test node 3 as well and control node 4 to test node 4.

3.4.2 ElementNameAndAttributeQualifier

Only Elements with the same name - and Namespace URI if present - as well as the same values for all attributes given in
ElementNameAndAttributeQualifier’s constructor qualify.

Let’s say "foo" has been passed to ElementNameAndAttributeQualifier’s constructor when looking at Example 3.4.
This again means control node 1 will be compared to test node 2 since they do have the same name and no value at all for attribute
"foo". Then control node 2 will be compared to test node 3 - again, no value for "foo". Control node 3 is compared to test
node 4 as they have the same value "bar". Finally control node 4 is compared to test node 1; here DifferenceEngine
searches from the beginning of the test node list after test node 4 didn’t match.

There are three constructors in ElementNameAndAttributeQualifier. The no-arg constructor creates an instance that
compares all attributes while the others will compare a single attribute or a given subset of all attributes.

XMLUnit Java User’s Guide 19 / 35

3.4.3 ElementNameAndTextQualifier

Only Elements with the same name - and Namespace URI if present - as well as the same text content nested into them qualify.

In Example 3.4 this means control node 1 will be compared to test node 2 since they both don’t have any nested text at all. Then
control node 2 will be compared to test node 4. Control node 3 is compared to test node 3 since they have the same nested text
and control node 4 to test node 4.

3.4.4 org.custommonkey.xmlunit.examples.RecursiveElementNameAndTextQualifier

All ElementQualifiers seen so far only looked at the Elements themselves and not at the structure nested into them
at a deeper level. A frequent user question has been which ElementQualifier should be used if the pieces of XML in
Example 3.5 should be considered similar.

Example 3.5 Example for RecursiveElementNameAndTextQualifier (the comments are not part of the example)

<!-- control -->
<table>

<tr> <!-- control row 1 -->
<td>foo</td>

</tr>
<tr> <!-- control row 2 -->
<td>bar</td>

</tr>
</table>

<!-- test -->
<table>

<tr> <!-- test row 1 -->
<td>bar</td>

</tr>
<tr> <!-- test row 2 -->
<td>foo</td>

</tr>
</table>

At first glance ElementNameAndTextQualifier should work but it doesn’t. When DifferenceEngine processed the
children of table it would compare control row 1 to test row 1 since both tr elements have the same name and both have no
textual content at all.

What is needed in this case is an ElementQualifier that looks at the element’s name, as well as the name of the first child
element and the text nested into that first child element. This is what RecursiveElementNameAndTextQualifier does.

RecursiveElementNameAndTextQualifier ignores whitespace between the elements leading up to the nested text.

3.4.5 org.custommonkey.xmlunit.examples.MultiLevelElementNameAndTextQualifier

MultiLevelElementNameAndTextQualifier has in a way been the predecessor of Section 3.4.4. It also matches
element names and those of nested child elements until it finds matches, but unlike RecursiveElementNameAndTextQua
lifier, you must tell MultiLevelElementNameAndTextQualifier at which nesting level it should expect the nested
text.

MultiLevelElementNameAndTextQualifier’s constructor expects a single argument which is the nesting level of the
expected text. If you use an argument of 1, MultiLevelElementNameAndTextQualifier is identical to ElementNa
meAndTextQualifier. In Example 3.5 a value of 2 would be needed.

By default MultiLevelElementNameAndTextQualifier will not ignore whitespace between the elements leading up
to the nested text. If your piece of XML contains this sort of whitespace (like Example 3.5 which contains a newline and several
space characters between <tr> and <td>) you can either instruct XMLUnit to ignore whitespace completely (see Section 3.8.1)

XMLUnit Java User’s Guide 20 / 35

or use the two-arg constructor of MultiLevelElementNameAndTextQualifier introduced with XMLUnit 1.2 and set
the ignoreEmptyTexts argument to true.

In general RecursiveElementNameAndTextQualifier requires less knowledge upfront and its whitespace-handling is
more intuitive.

3.5 Diff and DetailedDiff

Diff and DetailedDiff provide simplified access to DifferenceEngine by implementing the ComparisonContr
oller and DifferenceListener interfaces themselves. They cover the two most common use cases for comparing two
pieces of XML: checking whether the pieces are different (this is what Diff does) and finding all differences between them (this
is what DetailedDiff does).

DetailedDiff is a subclass of Diff and can only be constructed by creating a Diff instance first.

The major difference between them is their implementation of the ComparisonController interface: DetailedDiff
will never stop the comparison since it wants to collect all differences. Diff in turn will halt the comparison as soon as the first
Difference is found that is not recoverable. In addition DetailedDiff collects all Differences in a list and provides
access to it.

By default Diff will consider two pieces of XML as identical if no differences have been found at all, similar if all differences
that have been found have been recoverable (see Table 1 to Table 4) and different as soon as any non-recoverable difference has
been found.

It is possible to specify a DifferenceListener to Diff using the overrideDifferenceListener method. In
this case each Difference will be evaluated by the passed in DifferenceListener. By returning RETURN_IGNOR
E_DIFFERENCE_NODES_IDENTICAL the custom listener can make Diff ignore the difference completely. Likewise any
Difference for which the custom listener returns RETURN_IGNORE_DIFFERENCE_NODES_SIMILAR will be treated as
if the Difference was recoverable.

There are several overloads of the Diff constructor that allow you to specify your piece of XML in many ways. There are
overloads that accept additional DifferenceEngine and ElementQualifier arguments. Passing in a DifferenceEn
gine of your own is the only way to use a ComparisonController other than Diff.

Note that Diff and DetailedDiff use ElementNameQualifier as their default ElementQualifier. This is differ-
ent from DifferenceEngine which defaults to no ElementQualifier at all.

To use a custom ElementQualifier you can also use the overrideElementQualifier method. Use this with an
argument of null to unset the default ElementQualifier as well.

To compare two pieces of XML you’d create a Diff instance from those two pieces and invoke identical to check that there
have been no differences at all and similar to check that any difference, if any, has been recoverable. If the pieces are identical
they are also similar. Likewise if they are not similar they can’t be identical either.

Example 3.6 Comparing Two Pieces of XML Using Diff

Diff d = new Diff("<a><c/>", "<a><c/>");
assertFalse(d.identical()); // CHILD_NODELIST_SEQUENCE Difference
assertTrue(d.similar());

The result of the comparison is cached in Diff, repeated invocations of identical or similarwill not reevaluate the pieces
of XML.

DetailedDiff provides only a single constructor that expects a Diff as argument. Don’t use DetailedDiff if all you
need to know is whether two pieces of XML are identical/similar - use Diff directly since its short-cut ComparisonContro
ller implementation will save time in this case.

XMLUnit Java User’s Guide 21 / 35

Example 3.7 Finding All Differences Using DetailedDiff

Diff d = new Diff("<a><c/>", "<a><c/>");
DetailedDiff dd = new DetailedDiff(d);
dd.overrideElementQualifier(null);
assertFalse(dd.similar());
List l = dd.getAllDifferences();
assertEquals(2, l.size()); // expected but was <c/> and vice versa

3.6 MatchTracker

Sometimes you might be interested in any sort of comparison result and want to get notified of successful matches as well. Maybe
you want to provide feedback on the amount of differences and similarities between two documents, for example.

The interface MatchTracker can be implemented to get notified on each and every successful match, note that there may be
a lot more comparisons going on than you might expect and that your callback gets notified a lot.

Example 3.8 The MatchTracker interface

package org.custommonkey.xmlunit;

/**
* Listener for callbacks from a {@link DifferenceEngine#compare

* DifferenceEngine comparison} that is notified on each and every

* comparision that resulted in a match.

*/
public interface MatchTracker {

/**
* Receive notification that 2 match.

* @param match a Difference instance as defined in {@link

* DifferenceConstants DifferenceConstants} describing the test

* that matched and containing the detail of the nodes that have

* been compared

*/
void matchFound(Difference difference);

}

Despite its name the Difference instance passed into the matchFoundmethod really describes a match and not a difference.
You can expect that the getValue method on both the control and the test NodeDetail will be equal.

DifferenceEngine provides a constructor overload that allows you to pass in a MatchTracker instance and also provides
a setMatchTracker method. Diff and DetailedDiff provide overrideMatchTracker methods that fill the same
purpose.

Note that your MatchTracker won’t receive any callbacks once the configured ComparisonController has decided that
DifferenceEngine should halt the comparison.

3.7 JUnit 3.x Convenience Methods

XMLAssert and XMLTestCase contain quite a few overloads of methods for comparing two pieces of XML.

The method’s names use the word Equal to mean the same as similar in the Diff class (or throughout this guide). So
assertXMLEqual will assert that only recoverable differences have been encountered where assertXMLNotEqual asserts
that some differences have been non-recoverable. assertXMLIdentical asserts that there haven’t been any differences at
all while assertXMLNotIdentical asserts that there have been differences (recoverable or not).

XMLUnit Java User’s Guide 22 / 35

Most of the overloads of assertXMLEqual just provide different means to specify the pieces of XML as Strings, InputS
ources, Readers9 or Documents. For each method there is a version that takes an additional err argument which is used to
create the message if the assertion fails.

If you don’t need any control over the ElementQualifier or DifferenceListener used by Diff these methods will
save some boilerplate code. If CONTROL and TEST are pieces of XML represented as one of the supported inputs then

Diff d = new Diff(CONTROL, TEST);
assertTrue("expected pieces to be similar, " + d.toString(),

d.similar());

and

assertXMLEqual("expected pieces to be similar", CONTROL, TEST);

are equivalent.

If you need more control over the Diff instance there is a version of assertXMLEqual (and assertXMLIdentical)
that accepts a Diff instance as its argument as well as a boolean indicating whether you expect the Diff to be similar
(identical) or not.

XMLTestCase contains a couple of compareXML methods that really are only shortcuts to Diff’s constructors.

There is no way to use DifferenceEngine or DetailedDiff directly via the convenience methods.

3.8 Configuration Options

Unless you are using Document or DOMSource overrides when specifying your pieces of XML, XMLUnit will use the
configured XML parsers (see Section 2.4.1) and EntityResolvers (see Section 2.4.2). There are configuration options
to use different settings for the control and test pieces of XML.

In addition some of the other configuration settings may lead to XMLUnit using the configured XSLT transformer (see Sec-
tion 2.4.1) under the covers.

3.8.1 Whitespace Handling

Two different configuration options affect how XMLUnit treats whitespace in comparisons:

• Element Content Whitespace (see Section 2.4.3)

If XMLUnit has been configured to ignore element content whitespace it will trim any text nodes found by the parser. This
means that there won’t appear to be any textual content in element <foo> for the following example. If you don’t set
XMLUnit.setIgnoreWhitespace there would be textual content consisting of a new line character.

<foo>
</foo>

At the same time the following two <foo> elements will be considered identical if the option has been enabled, though.

<foo>bar</foo>
<foo> bar </foo>

When this option is set to true, Diff will use the XSLT transformer under the covers.

• "Normalizing" Whitespace If you set XMLUnit.setNormalizeWhitespace to true then XMLUnit will replace any kind
of whitespace found in character content with a SPACE character and collapse consecutive whitespace characters to a single
SPACE. It will also trim the resulting character content on both ends.

The following two <foo> elements will be considered identical if the option has been set:

9 See Section 2.5 for some advice on choosing your input format.

XMLUnit Java User’s Guide 23 / 35

<foo>bar baz</foo>
<foo> bar

baz</foo>

Note that this is not related to "normalizing" the document as a whole (see Section 3.8.2).

3.8.2 "Normalizing" Documents

"Normalize" in this context corresponds to the normalize method in DOM’s Document class. It is the process of merging
adjacent Text nodes and is not related to "normalizing whitespace" as described in the previous section.

Usually you don’t need to care about this option since the XML parser is required to normalize the Document when creating
it. The only reason you may want to change the option via XMLUnit.setNormalize is that your Document instances have
not been created by an XML parser but rather been put together in memory using the DOM API directly.

3.8.3 Ignoring Comments

Using XMLUnit.setIgnoreComments you can make XMLUnit’s difference engine ignore comments completely.

When this option is set to true, Diff will use the XSLT transformer under the covers.

3.8.4 Treating CDATA Sections and Text Nodes Alike

It is not always necessary to know whether a text has been put into a CDATA section or not. Using XMLUnit.setIgnoreDi
ffBetweenTextAndCDATA you can make XMLUnit consider the following two pieces of XML identical:

<foo><bar></foo>

<foo><![CDATA[<bar>]]></foo>

3.8.5 Entity Reference Expansion

Normally the XML parser will expand character references to their Unicode equivalents but for more complex entity definitions
the parser may expand them or not. Using XMLUnit.setExpandEntityReferences you can control the parser’s setting.

3.8.6 Comparison of Unmatched Elements

When XMLUnit cannot match a control Element to a test Element (the configured ElementQualifier - see Section 3.4 - doesn’t
return true for any of the test Elements) it will try to compare it against the first unmatched test Element (if there is one). Starting
with XMLUnit 1.3 one can use XMLUnit.setCompareUnmatched to disable this behavior and generate CHILD_NODE_N
OT_FOUND differences instead.

If the control document is

<root>
<a/>

</root>

and the test document is

<root>

</root>

the default setting will create a single ELEMENT_TAG_NAME Difference ("expected a but found b"). Setting XMLUnit.set
CompareUnmatched to false will create two Differences of type CHILD_NODE_NOT_FOUND (one for "a" and one for "b")
instead.

XMLUnit Java User’s Guide 24 / 35

4 Validating XML Documents

4.1 The Validator Class

The Validator class encapsulates XMLUnit’s validation support. It will use the SAXParser configured in XMLUnit (see
Section 2.4.1).

The piece of XML to validate is specified in the constructor. The constructors using more than a single argument are only relevant
if you want to validate against a DTD and need to provide the location of the DTD itself - for details see the next section.

By default, Validator will validate against a DTD, but it is possible to validate against a (or multiple) Schema(s) as well.
Schema validation requires an XML parser that supports it, of course.

4.1.1 DTD Validation

Validating against a DTD is straight forward if the piece of XML contains a DOCTYPE declaration with a SYSTEM identifier that
can be resolved at validation time. Simply create a Validator object using one of the single argument constructors.

Example 4.1 Validating Against the DTD Defined in DOCTYPE

InputSource is = new InputSource(new FileInputStream(myXmlDocument));
Validator v = new Validator(is);
boolean isValid = v.isValid();

If the piece of XML doesn’t contain any DOCTYPE declaration at all or it contains a DOCTYPE but you want to validate against
a different DTD, you’d use one of the three argument versions of Validator’s constructors. In this case the publicId
argument becomes the PUBLIC and systemId the SYSTEM identifier of the DOCTYPE that is implicitly added to the piece of
XML. Any existing DOCTYPE will be removed. The systemId should be a URL that can be resolved by your parser.

Example 4.2 Validating a Piece of XML that doesn’t Contain a DOCTYPE

InputSource is = new InputSource(new FileInputStream(myXmlDocument));
Validator v = new Validator(is,

(new File(myDTD)).toURI().toURL().toString(),
myPublicId);

boolean isValid = v.isValid();

If the piece of XML already has the correct DOCTYPE declaration but the declaration either doesn’t specify a SYSTEM identifier
at all or you want the SYSTEM identifier to resolve to a different location you have two options:

• Use one of the two argument constructors and specify the alternative URL as systemId.

Example 4.3 Validating Against a Local DTD

InputSource is = new InputSource(new FileInputStream(myXmlDocument));
Validator v = new Validator(is,

(new File(myDTD)).toURI().toURL().toString());
boolean isValid = v.isValid();

• Use a custom EntityResolver via XMLUnit.setControlEntityResolver together with one of the single argu-
ment constructor overloads of Validator.

This approach would allow you to use an OASIS catalog10 in conjunction with the Apache XML Resolver library11 to resolve
the DTD location as well as the location of any other entity in your piece of XML, for example.

10 http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
11 http://xml.apache.org/commons/components/resolver/index.html

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://xml.apache.org/commons/components/resolver/index.html

XMLUnit Java User’s Guide 25 / 35

Example 4.4 Validating Against a DTD Using Apache’s XML Resolver and an XML Catalog

InputSource is = new InputSource(new FileInputStream(myXmlDocument));
XMLUnit.setControlEntityResolver(new CatalogResolver());
Validator v = new Validator(is);
boolean isValid = v.isValid();

#CatalogManager.properties

verbosity=1
relative-catalogs=yes
catalogs=/some/path/to/catalog
prefer=public
static-catalog=yes
catalog-class-name=org.apache.xml.resolver.Resolver

<!-- catalog file -->

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
<public publicId="-//Some//DTD V 1.1//EN"

uri="mydtd.dtd"/>
</catalog>

4.1.2 XML Schema Validation

In order to validate against the XML Schema language Schema validation has to be enabled via the useXMLSchema method of
Validator.

By default the parser will try to resolve the location of Schema definition files via a schemaLocation attribute if it is present
in the piece of XML or it will try to open the Schema’s URI as an URL and read from it.

The setJAXP12SchemaSource method of Validator allows you to override this behavior as long as the parser supports
the http://java.sun.com/xml/jaxp/properties/schemaSource property in the way described in "JAXP 1.2
Approved CHANGES"12.

setJAXP12SchemaSource’s argument can be one of

• A String which contains an URI.

• An InputStream the Schema can be read from.

• An InputSource the Schema can be read from.

• A File the Schema can be read from.

• An array containing any of the above.

If the property has been set using a String, the Validator class will provide its systemId as specified in the constructor
when asked to resolve it. You must only use the single argument constructors if you want to avoid this behavior. If no systemId
has been specified, the configured EntityResolver may still be used.

Example 4.5 Validating Against a Local XML Schema

InputSource is = new InputSource(new FileInputStream(myXmlDocument));
Validator v = new Validator(is);
v.useXMLSchema(true);
v.setJAXP12SchemaSource(new File(myXmlSchemaFile));
boolean isValid = v.isValid();

12 http://java.sun.com/webservices/jaxp/change-requests-11.html

http://java.sun.com/webservices/jaxp/change-requests-11.html

XMLUnit Java User’s Guide 26 / 35

4.2 JUnit 3.x Convenience Methods

Both XMLAssert and XMLTestCase provide an assertXMLValid(Validator) method that will fail if Validator’s
isValid method returns false.

In addition several overloads of the assertXMLValid method are provided that directly correspond to similar overloads of
Validator’s constructor. These overloads don’t support XML Schema validation at all.

Validator itself provides an assertIsValid method that will throw an AssertionFailedError if validation fails.

Neither method provides any control over the message of the AssertionFailedError in case of a failure.

4.3 Configuration Options

• Validator uses a SAX parser created by the configured SAX parser factory (see Section 2.4.1).

• It will use the "control" EntityResolver if one has been specified (see Section 2.4.2).

• The location of a DTD can be specified via Validator’s systemId constructor argument or a custom EntityResolver (see
Section 4.1.1).

• XML Schema validation is enabled via Validator.useXMLSchema(true).

• The location(s) of XML Schema document(s) can be specified via Validator.setJAXP12SchemaSource (see Sec-
tion 4.1.2).

4.4 JAXP 1.3 Validation

JAXP 1.3 - shipping with Java5 or better and available as a separate product for earlier Java VMs - introduces a new package
javax.xml.validation designed for validations of snippets of XML against different schema languages. Any compliant
implementation must support the W3C XML Schema language, but other languages like RELAX NG or Schematron may be
supported as well.

The class org.custommonkey.xmlunit.jaxp13.Validator can be used to validate a piece of XML against a schema
definition but also to validate the schema definition itself. By default Validator will assume your definition uses the W3C
XML Schema language, but it provides a constructor that can be used to specify a different language via an URL supported by
the SchemaFactory class. Alternatively you can specify the schema factory itself.

The schema definition itself can be given via Source elements, just like the pieces of XML to validate are specified as Source
as well.

The following example uses org.custommonkey.xmlunit.jaxp13.Validator to perform the same type of validation
shown in Example 4.5.

Example 4.6 Validating Against a Local XML Schema

Validator v = new Validator();
v.addSchemaSource(new StreamSource(new File(myXmlSchemaFile)));
StreamSource is = new StreamSource(new File(myXmlDocument));
boolean isValid = v.isInstanceValid(is);

Validating a schema definition is shown in the next example.

Example 4.7 Validating an XML Schema Definition

Validator v = new Validator();
v.addSchemaSource(new StreamSource(new File(myXmlSchemaFile)));
boolean isValid = v.isSchemaValid();

There is no explicit JUnit 3 support for org.custommonkey.xmlunit.jaxp13.Validator.

https://jaxp-sources.dev.java.net/nonav/docs/api/
http://www.relaxng.org/
http://www.schematron.com/

XMLUnit Java User’s Guide 27 / 35

5 XPath Tests

5.1 XPath Engines

Central to XMLUnit’s XPath support is the XpathEngine interface which consists of only three methods:

/**
* Execute the specified xpath syntax <code>select</code> expression

* on the specified document and return the list of nodes (could have

* length zero) that match

* @param select

* @param document

* @return list of matching nodes

*/
NodeList getMatchingNodes(String select, Document document)

throws XpathException;

/**
* Evaluate the result of executing the specified XPath syntax

* <code>select</code> expression on the specified document

* @param select

* @param document

* @return evaluated result

*/
String evaluate(String select, Document document)

throws XpathException;

/**
* Establish a namespace context.

*/
void setNamespaceContext(NamespaceContext ctx);

The first two methods expect an XPath expression that selects content from the DOM document that is the second argument. The
result of the selection can be either a DOM NodeList or a String. The later form tries to flatten the result, the value is said
to be "String-ified".

The third method is part of XMLUnit’s support for XML Namespaces in XPath expressions. See Section 5.2 for more details.

There are two implementations of the interface, org.custommonkey.xmlunit.SimpleXpathEngine and org.cus
tommonkey.xmlunit.jaxp13.Jaxp13XpathEngine. The first implementation is the only one available in XMLUnit
1.0 and uses the configured JAXP XSLT transformer. The second is new to XMLUnit 1.1 and only available if JAXP 1.3 or later
is supported, which should be the case for Java 5 and later.

XpathException is an Exception that will be thrown for invalid XPath expressions or other problems with the underlying
XPath engine. It will typically wrap a javax.xml.xpath.XPathExpressionException in the Jaxp13XpathEng
ine case or a javax.xml.transform.TransformerException when SimpleXpathEngine is used.

The XMLUnit.newXpathEngine method will first try to create an instance of Jaxp13XpathEngine and fall back to
SimpleXpathEngine if JAXP 1.3 is not supported.

One example of using the XPath support is included inside it org.custommonkey.xmlunit.examples package. It asserts
that the string-ified form of an XPath selection matches a regular expression. The code needed for this is:

Example 5.1 Matching an XPath Selection Against a Regular Expression

XpathEngine engine = XMLUnit.newXpathEngine();
String value = engine.evaluate(xpath, doc);
Assert.assertTrue(message, value.matches(regex));

XMLUnit Java User’s Guide 28 / 35

5.2 Using XML Namespaces in XPath Selectors

Starting with XMLUnit 1.1 XML Namespaces are supported for XPath queries.

The NamespaceContext interface provides a mapping from prefix to namespace URI and is used by the XPath engine. XPath
selections then use the mapping’s prefixes where needed. Note that a prefix used in the document under test and a prefix given as
part of the NamespaceContext are not related at all; the context only applies to the XPath expression, the prefix used in the
document is ignored completely.

Right now XMLUnit provides only a single implementation of the NamespaceContext interface: SimpleNamespaceC
ontext. This implementation expects a java.util.Map as its constructor argument. The Map must contain (String)
prefixes as keys and (String) namespace URIs as values.

Note there is nothing like a default namespace in XPath selectors. If you are using namespaces in your XPath, all namespaces
need a prefix (of length greater than zero). This is independent of the prefixes used in your document.

The following example is taken from XMLUnit’s own tests. It demonstrates that the namespace prefix of the document under
test is irrelevant and shows how to set up the namespace context.

Example 5.2 Using Namespaces in XPath Tests

String testDoc = "<t:test xmlns:t=\"urn:foo\"><t:bar/></t:test>";
Document d = XMLUnit.buildControlDocument(testDoc);
HashMap m = new HashMap();
m.put("foo", "urn:foo");

NamespaceContext ctx = new SimpleNamespaceContext(m);
XpathEngine engine = XMLUnit.newXpathEngine();
engine.setNamespaceContext(ctx);

NodeList l = engine.getMatchingNodes("//foo:bar", d);
assertEquals(1, l.getLength());
assertEquals(Node.ELEMENT_NODE, l.item(0).getNodeType());

It is possible to set a global NamespaceContext, see Section 5.4 for details.

5.3 JUnit 3.x Convenience Methods

XMLTestCase and XMLAssert provide several overloads for the following common types of assertions:

• Two XPath expression should return the same DOM NodeList as result: assertXpathsEqual. There are methods
that use two different expressions on the same document and others that compare expressions selecting from two different
documents.

The NodeLists are wrapped into a surrogate root XML element and the resulting DOM Documents are compared using
Diff.similar().

• The opposite of the above, the expressions should yield different results: assertXpathsNotEqual.

• Two XPath expression should return the same "String-ified" result: assertXpathValuesEqual. There are methods
that use two different expressions on the same document and others that compare expressions selecting from two different
documents.

• The opposite of the above, the expressions should yield different results: assertXpathValuesNotEqual.

• The XPath expression should return an expected value when "String-ified": assertXpathEvaluatesTo.

• The NodeList selected by an XPath expression is not empty: assertXpathExists.

• The NodeList selected by an XPath expression is empty: assertXpathNotExists.

Neither method provides any control over the message of the AssertionFailedError in case of a failure.

XMLUnit Java User’s Guide 29 / 35

5.4 Configuration Options

When using XpathEngine directly you are responsible for creating the DOM document yourself. If you use the convenience
methods of XMLTestCase or XMLAssert you have several options to specify the input; XMLUnit will use the control or test
parser that has been configured (see Section 2.4.1) to create a DOM document from the given piece of XML in that case - using
the configured EntityResolver(s) (see Section 2.4.2) if any.

If JAXP 1.3 is not available, SimpleXpathEngine will use the configured JAXP XSLT transformer (see Section 2.4.1) under
the covers.

When using JAXP 1.3 you can chose the actual XPathFactory implementation using XMLUnit.setXPathFactory.

It is possible to establish a global NamespaceContext with the help of the XMLUnit.setXpathNamespaceContext
method. Any XpathEngine created by XMLUnit.newXpathEngine will automatically use the given context. Note that
the JUnit 3 convenience methods use XMLUnit.newXpathEngine implicitly and will thus use the configured Namespace
Context.

6 DOM Tree Walking

Sometimes it is easier to test a piece of XML’s validity by traversing the whole document node by node and test each node
individually. Maybe there is no control XML to validate against or the expected value of an element’s content has to be calculated.
There may be several reasons.

XMLUnit supports this approach of testing via the NodeTest class. In order to use it, you need a DOM implementation
that generates Document instances that implement the optional org.w3c.traversal.DocumentTraversal interface,
which is not part of JAXP’s standardized DOM support.

6.1 DocumentTraversal

As of the release of XMLUnit 1.1 the Document instances created by most parsers implement DocumentTraversal, this
includes but is not limited to Apache Xerces, the parser shipping with Sun’s JDK 5 and later or GNU JAXP. One notable exception
is Apache Crimson, which also means the parser shipping with Sun’s JDK 1.4 does not support traversal; you need to specify a
different parser when using JDK 1.4 (see Section 2.4.1).

You can test whether your XML parser supports DocumentTraversal by invoking org.w3c.dom.DOMImplementat
ion’s hasFeature method with the feature "Traversal".

6.2 NodeTest

The NodeTest is instantiated with a piece of XML to traverse. It offers two performTest methods:

/**
* Does this NodeTest pass using the specified NodeTester instance?

* @param tester

* @param singleNodeType note <code>Node.ATTRIBUTE_NODE</code> is not

* exposed by the DocumentTraversal node iterator unless the root node

* is itself an attribute - so a NodeTester that needs to test attributes

* should obtain those attributes from <code>Node.ELEMENT_NODE</code>

* nodes

* @exception NodeTestException if test fails

*/
public void performTest(NodeTester tester, short singleNodeType);

/**
* Does this NodeTest pass using the specified NodeTester instance?

* @param tester

* @param nodeTypes note <code>Node.ATTRIBUTE_NODE</code> is not

* exposed by the DocumentTraversal node iterator unless the root node

XMLUnit Java User’s Guide 30 / 35

* is itself an attribute - so a NodeTester that needs to test attributes

* should obtain those attributes from <code>Node.ELEMENT_NODE</code>

* nodes instead

* @exception NodeTestException if test fails

*/
public void performTest(NodeTester tester, short[] nodeTypes);

NodeTester is the class testing each node and is described in the next section.

The second argument limits the tests on DOM Nodes of (a) specific type(s). Node types are specified via the static fields of
the Node class. Any Node of a type not specified as the second argument to performTest will be ignored.

Unfortunately XML attributes are not exposed as Nodes during traversal. If you need access to attributes you must add Node.
ELEMENT_NODE to the second argument of performTest and access the attributes from their parent Element.

Example 6.1 Accessing Attributes in a NodeTest

...
NodeTest nt = new NodeTest(myXML);
NodeTester tester = new MyNodeTester();
nt.performTest(tester, Node.ELEMENT_NODE);
...

class MyNodeTester implements NodeTester {
public void testNode(Node aNode, NodeTest test) {

Element anElement = (Element) aNode;
Attr attributeToTest = anElement.getAttributeNode(ATTRIBUTE_NAME);
...

}
...

}

Any entities that appear as part of the Document are expanded before the traversal starts.

6.3 NodeTester

Implementations of the NodeTester interface are responsible for the actual test:

/**
* Validate a single Node

* @param aNode

* @param forTest

* @exception NodeTestException if the node fails the test

*/
void testNode(Node aNode, NodeTest forTest) throws NodeTestException ;

/**
* Validate that the Nodes passed one-by-one to the <code>testNode</code>

* method were all the Nodes expected.

* @param forTest

* @exception NodeTestException if this instance was expecting more nodes

*/
void noMoreNodes(NodeTest forTest) throws NodeTestException ;

NodeTest invokes testNode for each Node as soon as it is reached on the traversal. This means NodeTester "sees" the
Nodes in the same order they appear within the tree.

noMoreNodes is invoked when the traversal is finished. It will also be invoked if the tree didn’t contain any matched Nodes at
all.

XMLUnit Java User’s Guide 31 / 35

Implementations of NodeTester are expected to throw a NodeTestException if the current not doesn’t match the test’s
expectations or more nodes have been expected when noMoreNodes is called.

XMLUnit ships with two implementations of NodeTest that are described in the following to sections.

6.3.1 AbstractNodeTester

AbstractNodeTester implements testNode by testing the passed in Node for its type and delegating to one of the more
specific test... Methods it adds. By default the new test... methods all throw a NodeTestException because of an
unexpected Node.

It further implements noMoreNodes with an empty method - i.e. it does nothing.

If you are only testing for specific types of Node it may be more convenient to subclass AbstractNodeTester. For example
Example 6.1 could be re-written as:

Example 6.2 Accessing Attributes in a NodeTest - AbstractNodeTester version

...
NodeTest nt = new NodeTest(myXML);
NodeTester tester = new AbstractNodeTester() {

public void testElement(Element element) throws NodeTestException {
Attr attributeToTest = element.getAttributeNode(ATTRIBUTE_NAME);
...

}
};
nt.performTest(tester, Node.ELEMENT_NODE);
...

Note that even though AbstractNodeTester contains a testAttribute method it will never be called by default and
you still need to access attributes via their parent elements.

Note also that the root of the test is the document’s root element, so any Nodes preceding the document’s root Element won’t
be visited either. For this reason the testDocumentType, testEntity and testNotation methods are probably never
called either.

Finally, all entity references have been expanded before the traversal started. EntityReferences will have been replaced by
their replacement text if it is available, which means testEntityReference will not be called for them either. Instead the
replacement text will show up as (part of) a Text node or as Element node, depending on the entity’s definition.

6.3.2 CountingNodeTester

org.custommonkey.xmlunit.examples.CountingNodeTester is a simple example NodeTester that asserts
that a given number of Nodes have been traversed. It will throw a NodeTestException when noMoreNodes is called
before the expected number of Nodes has been visited or the actual number of nodes exceeded the expected count.

6.4 JUnit 3.x Convenience Methods

XMLAssert and XMLTestCase contain overloads of assertNodeTestPasses methods.

The most general form of it expects you to create a NodeTest instance yourself and lets you specify whether you expect the
test to fail or to pass.

The other two overloads create a NodeTest instance from either String or a SAX InputSource and are specialized for
the case where you are only interested in a single Node type and expect the test to pass.

Neither method provides any control over the message of the AssertionFailedError in case of a failure.

XMLUnit Java User’s Guide 32 / 35

6.5 Configuration Options

The only configurable option for NodeTest is the XML parser used if the piece of XML is not specified as a Document or
DocumentTraversal. NodeTest will use the "control" parser that has been configured - see Section 2.4.1 for details.

It will also use the EntityResolver configured for the control parser if one has been set - see Section 2.4.2.

A Changes

A.1 Changes from XMLUnit 1.0 to 1.1

XMLUnit 1.1’s main focus was to add two features that have been asked for repeatedly:

• Support for XML Namespaces in XPath processing

• Support for XML Schema validation.

In addition some JAXP features that have been added after the release of XMLUnit 1.0 are now supported - most notably XPath
support - and all reported bugs and feature requests have been addressed.

A.1.1 Breaking Changes

• XMLTestCase is now abstract. You probably have never created instances of this class without subclassing it, but if you did,
your code will now break. You will most likely want to look at the XMLAssert class.

• All methods that have been deprecated in XMLUnit 1.0 have been removed.

• All methods that had been declared to throw TransformerConfigurationException or ParserConfiguratio
nException now no longer declare it. Exceptions of these types cannot be recovered from anyway, so XMLUnit will now
wrap them in a org.custommonkey.xmlunit.exceptions.ConfigurationException which is an unchecked
exception.

This change doesn’t have a big impact on your tests, but if you tried to catch these exceptions they will now bypass your catch
blocks.

• A new type of Difference (CHILD_NODE_NOT_FOUND_ID) has been added. It will be raised for the excess children if
the control element has more child nodes than the test element - or vice versa.

Prior to XMLUnit 1.1 a Difference of either ELEMENT_TAG_NAME_ID or NODE_TYPE_ID would have been raised if
the control element had more children. The excess children were compared to the very first child node of the test element.
Excess children of the test element were not reported at all.

• The schemaLocation and noNamespaceSchemaLocation attributes of the XMLSchema-Instance Namespace are
now treated in a different way from "normal" attributes. They will be flagged as new kinds of Difference that is recoverable.

This means that two pieces of XML that were different in XMLUnit 1.0 because they differed in one of the two attributes will
be similar in XMLUnit 1.1.

• When comparing two elements that differ on attributes the comparison is now symmetric.

In XMLUnit 1.0 if an attribute was present on the test but not the control element this wasn’t flagged as a Difference; in
XMLUnit 1.1 it is.

In most practical cases this doesn’t cause any problems since the two elements either have a different number of attributes or
there are attributes in the control element that are missing in the test element - so the pieces of XML have been flagged as
different before as well. If you are using DetailedDiff this change may lead to more detected Differences, though.

XMLUnit Java User’s Guide 33 / 35

A.1.2 New Features

• XMLUnit 1.0 shipped with rudimentary support for XML Schema validation (it worked with Apache Xerces-J but no other
parsers). XMLUnit 1.1 supports Schema validation for any JAXP compliant XML parser (that supports Schema itself). You
can also tell XMLUnit where to look for the XML Schema definitions. See Section 4.1.2 for details.

• XPath support has undergone significant changes, see Section 5 for more details. In particular XMLUnit will now use javax.
xml.xpath if it is available (which also helps to avoid the buggy XSLTC version that is the default transformer engine in
Java 5) and supports XML namespaces.

• Several new configuration options have been added, see Section 3.8.

– Treat CDATA sections and Texts alike. Issue 1262148.
– Ignore differences in Text whitespace. Issue 754812.
– Ignore comments completely. Issue 707255.
– Ignore the order of attributes.

• It is now possible to provide a custom org.xml.sax.EntityResolver for control and test parsers.

• It is now possible to provide a custom javax.xml.transform.URIResolver for transformations.

• New overloads have been added that allow org.xml.sax.InputSource to be used as a "piece of XML" in many classes.

• Validator will now use the custom EntityResolverconfigured for the "control" parser as a fallback.

• A new package org.custommonkey.xmlunit.examples has been added that showcases some of XMLUnit’s abilities.
It currently contains two classes:

1. MultiLevelElementNameAndTextQualifier see Section 3.4.5 for a description.
2. XPathRegexAssert that provides a JUnit 3.x like assertXPathMatches method to verify that the string-ified

value of an XPath match matches a given regular expression (requires JDK 1.4 or above).

A.1.3 Important Bug Fixes

• ElementNameAndAttributeQualifier would throw an NullPointerException if the control piece of XML
contained attributes that were missing in the test piece of XML. Issue 952920.

• XMLTestCase.assertXMLNotEqual(String, Reader, Reader) delegated to assertXMLEqual instead of
assertXMLNotEqual internally, negating the assertion’s logic. Issue 956372.

• XMLTestCase.assertXMLIdentical(Diff, boolean) delegated to assertXMLEqual, weakening the asser-
tion.

• Under certain circumstances the reported XPath expressions for nodes that showed differences were wrong. XMLUnit could
lose the root element or erroneously append an extra attribute name. Issues 1047364 and 1027863.

• TolerantSaxParser’s logic in characters was broken and could cause StringIndexOutOfBoundsExcept
ions. Issue 1150234.

A.2 Changes from XMLUnit 1.1 to 1.2

A.2.1 Breaking Changes

• If XMLUnit detects that it cannot match a certain node (i.e. it encounters a CHILD_NODE_NOT_FOUND kind of difference)
the XPath for the "missing" node will be null. It used to be some random XPath of a different node.

• XMLUnit.setIgnoreDiffBetweenTextAndCDATA now also sets DocumentBuilderFactory.setCoalesc
ing. This has been done so that whitespace differences can be resolved according to the corresponding flags even in the
presence of CDATA sections. Issue 1903923.

• Two protected methods in SimpleXPathEngine (which you shouldn’t extend anyway) have added XpathException to their
throws list.

http://sourceforge.net/tracker/index.php?func=detail&aid=1262148&group_id=23187&atid=377768
http://sourceforge.net/tracker/index.php?func=detail&aid=754812&group_id=23187&atid=377771
http://sourceforge.net/tracker/index.php?func=detail&aid=707255&group_id=23187&atid=377770
http://sourceforge.net/tracker/index.php?func=detail&aid=952920&group_id=23187&atid=377768
http://sourceforge.net/tracker/index.php?func=detail&aid=956372&group_id=23187&atid=377768
http://sourceforge.net/tracker/index.php?func=detail&aid=1047364&group_id=23187&atid=377768
http://sourceforge.net/tracker/index.php?func=detail&aid=1027863&group_id=23187&atid=377770
http://sourceforge.net/tracker/index.php?func=detail&aid=1150234&group_id=23187&atid=377768

XMLUnit Java User’s Guide 34 / 35

A.2.2 New Features

• The SAXParserFactory used by Validator can now be configured completely. Issue 1903928.

• A new class org.custommonkey.xmlunit.jaxp13.Validator can be used to validate schema definitions and
schema instances using the javax.xml.validation package of JAXP 1.3. Depending on your JAXP implementation
this may allow you to validate documents against schema definitions written in RELAX NG or other schema languages in
addition to W3C XML Schema. See Section 4.4 for details.

• DifferenceListener can now "upgrade" recoverable differences to non-recoverable by returning RETURN_UPGRADE_
DIFFERENCE_NODES_DIFFERENT in the differenceFound method. Issue 1854284.

• A new callback interface MatchTracker is now notified on successful matches of Nodes. For more details see Section 3.6.
Issue 1860491.

• It is now possible to have more control over whether the parser expand entity references or not by using XMLUnit.setExp
andEntityReferences, see Section 3.8.5. Issue 1877458.

• New examples have been added:

– RecursiveElementNameAndTextQualifier - a more flexible ElementQualifier that fills the same need as
MultiLevelElementNameAndTextQualifier See Section 3.4.4 for more details.

– CaseInsensitiveDifferenceListener a - DifferenceListener that ignores case when comparing texts.

– FloatingPointTolerantDifferenceListener a - DifferenceListener that tries to parse texts as floating
point numbers and compares them using a configurable tolerance.

A.2.3 Important Bug Fixes

• If XMLUnit couldn’t match nodes (i.e. it encountered a CHILD_NODE_NOT_FOUND kind of difference), the XPath expres-
sions of the node details have been random. Issue 1860681.

A.3 Changes from XMLUnit 1.2 to 1.3

A.3.1 Breaking Changes

A.3.2 New Features

• If XMLUnit doesn’t find a matching Element for a control Element, it will match it against the first unmatched test Element (if
there is one) instead of creating a CHILD_NODE_NOT_FOUND Difference. There now is a new configuration option compar
eUnmatched in the XMLUnit class that can be used to turn off this behavior - as a result two CHILD_NODE_NOT_FOUND
Differences (one for the unmatched control Element and one for an unmatched test Element) will be created instead of a single
Difference comparing the two likely unrelated nodes. See Section 3.8.6. Issue 2758280.

A.3.3 Important Bug Fixes

• If XMLUnit couldn’t match attributes (i.e. it encountered a ATTR_NAME_NOT_FOUND_ID kind of difference), the XPath
expressions of the node details have been random. Issue 2386807.

• In some cases XMLUnit matched test nodes to multiple control nodes and then created a "missing child" difference for remain-
ing test nodes even though they would have been valid targets for control node matches as well. Issue 2807167.

https://sourceforge.net/tracker/index.php?func=detail&aid=1854284&group_id=23187&atid=377771
https://sourceforge.net/tracker/index.php?func=detail&aid=1860491&group_id=23187&atid=377771
https://sourceforge.net/tracker/index.php?func=detail&aid=1860681&group_id=23187&atid=377768
https://sourceforge.net/tracker/?func=detail&aid=2758280&group_id=23187&atid=377768
https://sourceforge.net/tracker/index.php?func=detail&aid=2386807&group_id=23187&atid=377768
https://sourceforge.net/tracker/?func=detail&aid=2807167&group_id=23187&atid=377768

XMLUnit Java User’s Guide 35 / 35

A.4 Changes from XMLUnit 1.3 to 1.4

A.4.1 Breaking Changes

A.4.2 New Features

• xsi:type attributes now have their value interpreted as a QName and will compare as identical if their namespace URI and local
names match even if they use different prefixes. Issue 3602981

A.4.3 Important Bug Fixes

• XMLTestCase’s and XMLAssert’s assertXpathsEqual methods threw an exception when at least one XPath matched
an attribute. Issue 377768.

• FloatingPointTolerantDifferenceListener expected numbers to differ by less than the given tolerance rather
than "less or equal" than as the docs said. Issue 3593368

A.5 Changes from XMLUnit 1.4 to 1.5

A.5.1 Breaking Changes

• If one node in the comparison has children while the other one has not, XMLUnit 1.5 will signal a CHILD_NODELIST_LEN
GTH difference and CHILD_NODE_NOT_FOUND differences for each child node of the node that has children in addition to a
HAS_CHILD_NODES difference. Issue 60

A.5.2 New Features

•

A.5.3 Important Bug Fixes

• RecursiveElementNameAndTextQualifier had some indices reversed leading to wrong results in some cases. Issue
62

https://sourceforge.net/tracker/?func=detail&aid=3602981&group_id=23187&atid=377771
https://sourceforge.net/tracker/?func=detail&aid=3290264&group_id=23187&atid=377768

	A Tour of XMLUnit
	What is XMLUnit?
	Quick tour
	Glossary
	Configuring XMLUnit
	Writing XML comparison tests
	Comparing XML Transformations
	Validation Tests
	XPath Tests
	Testing by Tree Walking

	Using XMLUnit
	Requirements
	Basic Usage
	Comparing Pieces of XML
	Validating
	XSLT Transformations
	XPath Engine
	DOM Tree Walking

	Using XMLUnit With JUnit 3.x
	Common Configuration Options
	JAXP
	EntityResolver
	Element Content Whitespace
	XSLT Stylesheet Version

	Providing Input to XMLUnit

	Comparing Pieces of XML
	The Difference Engine
	ComparisonController
	DifferenceListener
	IgnoreTextAndAttributeValuesDifferenceListener

	ElementQualifier
	ElementNameQualifier
	ElementNameAndAttributeQualifier
	ElementNameAndTextQualifier
	org.custommonkey.xmlunit.examples.RecursiveElementNameAndTextQualifier
	org.custommonkey.xmlunit.examples.MultiLevelElementNameAndTextQualifier

	Diff and DetailedDiff
	MatchTracker
	JUnit 3.x Convenience Methods
	Configuration Options
	Whitespace Handling
	"Normalizing" Documents
	Ignoring Comments
	Treating CDATA Sections and Text Nodes Alike
	Entity Reference Expansion
	Comparison of Unmatched Elements

	Validating XML Documents
	The Validator Class
	DTD Validation
	XML Schema Validation

	JUnit 3.x Convenience Methods
	Configuration Options
	JAXP 1.3 Validation

	XPath Tests
	XPath Engines
	Using XML Namespaces in XPath Selectors
	JUnit 3.x Convenience Methods
	Configuration Options

	DOM Tree Walking
	DocumentTraversal
	NodeTest
	NodeTester
	AbstractNodeTester
	CountingNodeTester

	JUnit 3.x Convenience Methods
	Configuration Options

	Changes
	Changes from XMLUnit 1.0 to 1.1
	Breaking Changes
	New Features
	Important Bug Fixes

	Changes from XMLUnit 1.1 to 1.2
	Breaking Changes
	New Features
	Important Bug Fixes

	Changes from XMLUnit 1.2 to 1.3
	Breaking Changes
	New Features
	Important Bug Fixes

	Changes from XMLUnit 1.3 to 1.4
	Breaking Changes
	New Features
	Important Bug Fixes

	Changes from XMLUnit 1.4 to 1.5
	Breaking Changes
	New Features
	Important Bug Fixes

