#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Python package for feature in MLlib.
"""
from __future__ import absolute_import
import sys
import warnings
import random
import binascii
if sys.version >= '3':
basestring = str
unicode = str
from py4j.protocol import Py4JJavaError
from pyspark import since
from pyspark.rdd import RDD, ignore_unicode_prefix
from pyspark.mllib.common import callMLlibFunc, JavaModelWrapper
from pyspark.mllib.linalg import (
Vector, Vectors, DenseVector, SparseVector, _convert_to_vector)
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.util import JavaLoader, JavaSaveable
__all__ = ['Normalizer', 'StandardScalerModel', 'StandardScaler',
'HashingTF', 'IDFModel', 'IDF', 'Word2Vec', 'Word2VecModel',
'ChiSqSelector', 'ChiSqSelectorModel', 'ElementwiseProduct']
class VectorTransformer(object):
"""
.. note:: DeveloperApi
Base class for transformation of a vector or RDD of vector
"""
def transform(self, vector):
"""
Applies transformation on a vector.
:param vector: vector to be transformed.
"""
raise NotImplementedError
[docs]class Normalizer(VectorTransformer):
"""
.. note:: Experimental
Normalizes samples individually to unit L\ :sup:`p`\ norm
For any 1 <= `p` < float('inf'), normalizes samples using
sum(abs(vector) :sup:`p`) :sup:`(1/p)` as norm.
For `p` = float('inf'), max(abs(vector)) will be used as norm for
normalization.
:param p: Normalization in L^p^ space, p = 2 by default.
>>> v = Vectors.dense(range(3))
>>> nor = Normalizer(1)
>>> nor.transform(v)
DenseVector([0.0, 0.3333, 0.6667])
>>> rdd = sc.parallelize([v])
>>> nor.transform(rdd).collect()
[DenseVector([0.0, 0.3333, 0.6667])]
>>> nor2 = Normalizer(float("inf"))
>>> nor2.transform(v)
DenseVector([0.0, 0.5, 1.0])
.. versionadded:: 1.2.0
"""
def __init__(self, p=2.0):
assert p >= 1.0, "p should be greater than 1.0"
self.p = float(p)
@since('1.2.0')
class JavaVectorTransformer(JavaModelWrapper, VectorTransformer):
"""
Wrapper for the model in JVM
"""
def transform(self, vector):
"""
Applies transformation on a vector or an RDD[Vector].
Note: In Python, transform cannot currently be used within
an RDD transformation or action.
Call transform directly on the RDD instead.
:param vector: Vector or RDD of Vector to be transformed.
"""
if isinstance(vector, RDD):
vector = vector.map(_convert_to_vector)
else:
vector = _convert_to_vector(vector)
return self.call("transform", vector)
[docs]class StandardScalerModel(JavaVectorTransformer):
"""
.. note:: Experimental
Represents a StandardScaler model that can transform vectors.
.. versionadded:: 1.2.0
"""
@since('1.2.0')
@since('1.4.0')
[docs] def setWithMean(self, withMean):
"""
Setter of the boolean which decides
whether it uses mean or not
"""
self.call("setWithMean", withMean)
return self
@since('1.4.0')
[docs] def setWithStd(self, withStd):
"""
Setter of the boolean which decides
whether it uses std or not
"""
self.call("setWithStd", withStd)
return self
[docs]class StandardScaler(object):
"""
.. note:: Experimental
Standardizes features by removing the mean and scaling to unit
variance using column summary statistics on the samples in the
training set.
:param withMean: False by default. Centers the data with mean
before scaling. It will build a dense output, so this
does not work on sparse input and will raise an
exception.
:param withStd: True by default. Scales the data to unit
standard deviation.
>>> vs = [Vectors.dense([-2.0, 2.3, 0]), Vectors.dense([3.8, 0.0, 1.9])]
>>> dataset = sc.parallelize(vs)
>>> standardizer = StandardScaler(True, True)
>>> model = standardizer.fit(dataset)
>>> result = model.transform(dataset)
>>> for r in result.collect(): r
DenseVector([-0.7071, 0.7071, -0.7071])
DenseVector([0.7071, -0.7071, 0.7071])
.. versionadded:: 1.2.0
"""
def __init__(self, withMean=False, withStd=True):
if not (withMean or withStd):
warnings.warn("Both withMean and withStd are false. The model does nothing.")
self.withMean = withMean
self.withStd = withStd
@since('1.2.0')
[docs] def fit(self, dataset):
"""
Computes the mean and variance and stores as a model to be used
for later scaling.
:param dataset: The data used to compute the mean and variance
to build the transformation model.
:return: a StandardScalarModel
"""
dataset = dataset.map(_convert_to_vector)
jmodel = callMLlibFunc("fitStandardScaler", self.withMean, self.withStd, dataset)
return StandardScalerModel(jmodel)
[docs]class ChiSqSelectorModel(JavaVectorTransformer):
"""
.. note:: Experimental
Represents a Chi Squared selector model.
.. versionadded:: 1.4.0
"""
@since('1.4.0')
[docs]class ChiSqSelector(object):
"""
.. note:: Experimental
Creates a ChiSquared feature selector.
:param numTopFeatures: number of features that selector will select.
>>> data = [
... LabeledPoint(0.0, SparseVector(3, {0: 8.0, 1: 7.0})),
... LabeledPoint(1.0, SparseVector(3, {1: 9.0, 2: 6.0})),
... LabeledPoint(1.0, [0.0, 9.0, 8.0]),
... LabeledPoint(2.0, [8.0, 9.0, 5.0])
... ]
>>> model = ChiSqSelector(1).fit(sc.parallelize(data))
>>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0}))
SparseVector(1, {0: 6.0})
>>> model.transform(DenseVector([8.0, 9.0, 5.0]))
DenseVector([5.0])
.. versionadded:: 1.4.0
"""
def __init__(self, numTopFeatures):
self.numTopFeatures = int(numTopFeatures)
@since('1.4.0')
[docs] def fit(self, data):
"""
Returns a ChiSquared feature selector.
:param data: an `RDD[LabeledPoint]` containing the labeled dataset
with categorical features. Real-valued features will be
treated as categorical for each distinct value.
Apply feature discretizer before using this function.
"""
jmodel = callMLlibFunc("fitChiSqSelector", self.numTopFeatures, data)
return ChiSqSelectorModel(jmodel)
class PCAModel(JavaVectorTransformer):
"""
Model fitted by [[PCA]] that can project vectors to a low-dimensional space using PCA.
.. versionadded:: 1.5.0
"""
class PCA(object):
"""
A feature transformer that projects vectors to a low-dimensional space using PCA.
>>> data = [Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),
... Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),
... Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0])]
>>> model = PCA(2).fit(sc.parallelize(data))
>>> pcArray = model.transform(Vectors.sparse(5, [(1, 1.0), (3, 7.0)])).toArray()
>>> pcArray[0]
1.648...
>>> pcArray[1]
-4.013...
.. versionadded:: 1.5.0
"""
def __init__(self, k):
"""
:param k: number of principal components.
"""
self.k = int(k)
@since('1.5.0')
def fit(self, data):
"""
Computes a [[PCAModel]] that contains the principal components of the input vectors.
:param data: source vectors
"""
jmodel = callMLlibFunc("fitPCA", self.k, data)
return PCAModel(jmodel)
[docs]class HashingTF(object):
"""
.. note:: Experimental
Maps a sequence of terms to their term frequencies using the hashing
trick.
Note: the terms must be hashable (can not be dict/set/list...).
:param numFeatures: number of features (default: 2^20)
>>> htf = HashingTF(100)
>>> doc = "a a b b c d".split(" ")
>>> htf.transform(doc)
SparseVector(100, {...})
.. versionadded:: 1.2.0
"""
def __init__(self, numFeatures=1 << 20):
self.numFeatures = numFeatures
@since('1.2.0')
[docs] def indexOf(self, term):
""" Returns the index of the input term. """
return hash(term) % self.numFeatures
@since('1.2.0')
[docs]class IDFModel(JavaVectorTransformer):
"""
Represents an IDF model that can transform term frequency vectors.
.. versionadded:: 1.2.0
"""
@since('1.2.0')
@since('1.4.0')
[docs] def idf(self):
"""
Returns the current IDF vector.
"""
return self.call('idf')
[docs]class IDF(object):
"""
.. note:: Experimental
Inverse document frequency (IDF).
The standard formulation is used: `idf = log((m + 1) / (d(t) + 1))`,
where `m` is the total number of documents and `d(t)` is the number
of documents that contain term `t`.
This implementation supports filtering out terms which do not appear
in a minimum number of documents (controlled by the variable
`minDocFreq`). For terms that are not in at least `minDocFreq`
documents, the IDF is found as 0, resulting in TF-IDFs of 0.
:param minDocFreq: minimum of documents in which a term
should appear for filtering
>>> n = 4
>>> freqs = [Vectors.sparse(n, (1, 3), (1.0, 2.0)),
... Vectors.dense([0.0, 1.0, 2.0, 3.0]),
... Vectors.sparse(n, [1], [1.0])]
>>> data = sc.parallelize(freqs)
>>> idf = IDF()
>>> model = idf.fit(data)
>>> tfidf = model.transform(data)
>>> for r in tfidf.collect(): r
SparseVector(4, {1: 0.0, 3: 0.5754})
DenseVector([0.0, 0.0, 1.3863, 0.863])
SparseVector(4, {1: 0.0})
>>> model.transform(Vectors.dense([0.0, 1.0, 2.0, 3.0]))
DenseVector([0.0, 0.0, 1.3863, 0.863])
>>> model.transform([0.0, 1.0, 2.0, 3.0])
DenseVector([0.0, 0.0, 1.3863, 0.863])
>>> model.transform(Vectors.sparse(n, (1, 3), (1.0, 2.0)))
SparseVector(4, {1: 0.0, 3: 0.5754})
.. versionadded:: 1.2.0
"""
def __init__(self, minDocFreq=0):
self.minDocFreq = minDocFreq
@since('1.2.0')
[docs] def fit(self, dataset):
"""
Computes the inverse document frequency.
:param dataset: an RDD of term frequency vectors
"""
if not isinstance(dataset, RDD):
raise TypeError("dataset should be an RDD of term frequency vectors")
jmodel = callMLlibFunc("fitIDF", self.minDocFreq, dataset.map(_convert_to_vector))
return IDFModel(jmodel)
[docs]class Word2VecModel(JavaVectorTransformer, JavaSaveable, JavaLoader):
"""
class for Word2Vec model
.. versionadded:: 1.2.0
"""
@since('1.2.0')
@since('1.2.0')
[docs] def findSynonyms(self, word, num):
"""
Find synonyms of a word
:param word: a word or a vector representation of word
:param num: number of synonyms to find
:return: array of (word, cosineSimilarity)
Note: local use only
"""
if not isinstance(word, basestring):
word = _convert_to_vector(word)
words, similarity = self.call("findSynonyms", word, num)
return zip(words, similarity)
@since('1.4.0')
[docs] def getVectors(self):
"""
Returns a map of words to their vector representations.
"""
return self.call("getVectors")
@classmethod
@since('1.5.0')
[docs] def load(cls, sc, path):
"""
Load a model from the given path.
"""
jmodel = sc._jvm.org.apache.spark.mllib.feature \
.Word2VecModel.load(sc._jsc.sc(), path)
model = sc._jvm.Word2VecModelWrapper(jmodel)
return Word2VecModel(model)
@ignore_unicode_prefix
[docs]class Word2Vec(object):
"""
Word2Vec creates vector representation of words in a text corpus.
The algorithm first constructs a vocabulary from the corpus
and then learns vector representation of words in the vocabulary.
The vector representation can be used as features in
natural language processing and machine learning algorithms.
We used skip-gram model in our implementation and hierarchical
softmax method to train the model. The variable names in the
implementation matches the original C implementation.
For original C implementation,
see https://code.google.com/p/word2vec/
For research papers, see
Efficient Estimation of Word Representations in Vector Space
and Distributed Representations of Words and Phrases and their
Compositionality.
>>> sentence = "a b " * 100 + "a c " * 10
>>> localDoc = [sentence, sentence]
>>> doc = sc.parallelize(localDoc).map(lambda line: line.split(" "))
>>> model = Word2Vec().setVectorSize(10).setSeed(42).fit(doc)
>>> syms = model.findSynonyms("a", 2)
>>> [s[0] for s in syms]
[u'b', u'c']
>>> vec = model.transform("a")
>>> syms = model.findSynonyms(vec, 2)
>>> [s[0] for s in syms]
[u'b', u'c']
>>> import os, tempfile
>>> path = tempfile.mkdtemp()
>>> model.save(sc, path)
>>> sameModel = Word2VecModel.load(sc, path)
>>> model.transform("a") == sameModel.transform("a")
True
>>> syms = sameModel.findSynonyms("a", 2)
>>> [s[0] for s in syms]
[u'b', u'c']
>>> from shutil import rmtree
>>> try:
... rmtree(path)
... except OSError:
... pass
.. versionadded:: 1.2.0
"""
def __init__(self):
"""
Construct Word2Vec instance
"""
self.vectorSize = 100
self.learningRate = 0.025
self.numPartitions = 1
self.numIterations = 1
self.seed = random.randint(0, sys.maxsize)
self.minCount = 5
@since('1.2.0')
[docs] def setVectorSize(self, vectorSize):
"""
Sets vector size (default: 100).
"""
self.vectorSize = vectorSize
return self
@since('1.2.0')
[docs] def setLearningRate(self, learningRate):
"""
Sets initial learning rate (default: 0.025).
"""
self.learningRate = learningRate
return self
@since('1.2.0')
[docs] def setNumPartitions(self, numPartitions):
"""
Sets number of partitions (default: 1). Use a small number for
accuracy.
"""
self.numPartitions = numPartitions
return self
@since('1.2.0')
[docs] def setNumIterations(self, numIterations):
"""
Sets number of iterations (default: 1), which should be smaller
than or equal to number of partitions.
"""
self.numIterations = numIterations
return self
@since('1.2.0')
[docs] def setSeed(self, seed):
"""
Sets random seed.
"""
self.seed = seed
return self
@since('1.4.0')
[docs] def setMinCount(self, minCount):
"""
Sets minCount, the minimum number of times a token must appear
to be included in the word2vec model's vocabulary (default: 5).
"""
self.minCount = minCount
return self
@since('1.2.0')
[docs] def fit(self, data):
"""
Computes the vector representation of each word in vocabulary.
:param data: training data. RDD of list of string
:return: Word2VecModel instance
"""
if not isinstance(data, RDD):
raise TypeError("data should be an RDD of list of string")
jmodel = callMLlibFunc("trainWord2VecModel", data, int(self.vectorSize),
float(self.learningRate), int(self.numPartitions),
int(self.numIterations), int(self.seed),
int(self.minCount))
return Word2VecModel(jmodel)
[docs]class ElementwiseProduct(VectorTransformer):
"""
.. note:: Experimental
Scales each column of the vector, with the supplied weight vector.
i.e the elementwise product.
>>> weight = Vectors.dense([1.0, 2.0, 3.0])
>>> eprod = ElementwiseProduct(weight)
>>> a = Vectors.dense([2.0, 1.0, 3.0])
>>> eprod.transform(a)
DenseVector([2.0, 2.0, 9.0])
>>> b = Vectors.dense([9.0, 3.0, 4.0])
>>> rdd = sc.parallelize([a, b])
>>> eprod.transform(rdd).collect()
[DenseVector([2.0, 2.0, 9.0]), DenseVector([9.0, 6.0, 12.0])]
.. versionadded:: 1.5.0
"""
def __init__(self, scalingVector):
self.scalingVector = _convert_to_vector(scalingVector)
@since('1.5.0')
def _test():
import doctest
from pyspark import SparkContext
globs = globals().copy()
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
sys.path.pop(0)
_test()