#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
>>> from pyspark.context import SparkContext
>>> sc = SparkContext('local', 'test')
>>> a = sc.accumulator(1)
>>> a.value
1
>>> a.value = 2
>>> a.value
2
>>> a += 5
>>> a.value
7
>>> sc.accumulator(1.0).value
1.0
>>> sc.accumulator(1j).value
1j
>>> rdd = sc.parallelize([1,2,3])
>>> def f(x):
... global a
... a += x
>>> rdd.foreach(f)
>>> a.value
13
>>> b = sc.accumulator(0)
>>> def g(x):
... b.add(x)
>>> rdd.foreach(g)
>>> b.value
6
>>> from pyspark.accumulators import AccumulatorParam
>>> class VectorAccumulatorParam(AccumulatorParam):
... def zero(self, value):
... return [0.0] * len(value)
... def addInPlace(self, val1, val2):
... for i in range(len(val1)):
... val1[i] += val2[i]
... return val1
>>> va = sc.accumulator([1.0, 2.0, 3.0], VectorAccumulatorParam())
>>> va.value
[1.0, 2.0, 3.0]
>>> def g(x):
... global va
... va += [x] * 3
>>> rdd.foreach(g)
>>> va.value
[7.0, 8.0, 9.0]
>>> rdd.map(lambda x: a.value).collect() # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
Py4JJavaError:...
>>> def h(x):
... global a
... a.value = 7
>>> rdd.foreach(h) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
Py4JJavaError:...
>>> sc.accumulator([1.0, 2.0, 3.0]) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TypeError:...
"""
import sys
import select
import struct
if sys.version < '3':
import SocketServer
else:
import socketserver as SocketServer
import threading
from pyspark.cloudpickle import CloudPickler
from pyspark.serializers import read_int, PickleSerializer
__all__ = ['Accumulator', 'AccumulatorParam']
pickleSer = PickleSerializer()
# Holds accumulators registered on the current machine, keyed by ID. This is then used to send
# the local accumulator updates back to the driver program at the end of a task.
_accumulatorRegistry = {}
def _deserialize_accumulator(aid, zero_value, accum_param):
from pyspark.accumulators import _accumulatorRegistry
accum = Accumulator(aid, zero_value, accum_param)
accum._deserialized = True
_accumulatorRegistry[aid] = accum
return accum
[docs]class Accumulator(object):
"""
A shared variable that can be accumulated, i.e., has a commutative and associative "add"
operation. Worker tasks on a Spark cluster can add values to an Accumulator with the C{+=}
operator, but only the driver program is allowed to access its value, using C{value}.
Updates from the workers get propagated automatically to the driver program.
While C{SparkContext} supports accumulators for primitive data types like C{int} and
C{float}, users can also define accumulators for custom types by providing a custom
L{AccumulatorParam} object. Refer to the doctest of this module for an example.
"""
def __init__(self, aid, value, accum_param):
"""Create a new Accumulator with a given initial value and AccumulatorParam object"""
from pyspark.accumulators import _accumulatorRegistry
self.aid = aid
self.accum_param = accum_param
self._value = value
self._deserialized = False
_accumulatorRegistry[aid] = self
def __reduce__(self):
"""Custom serialization; saves the zero value from our AccumulatorParam"""
param = self.accum_param
return (_deserialize_accumulator, (self.aid, param.zero(self._value), param))
@property
def value(self):
"""Get the accumulator's value; only usable in driver program"""
if self._deserialized:
raise Exception("Accumulator.value cannot be accessed inside tasks")
return self._value
@value.setter
def value(self, value):
"""Sets the accumulator's value; only usable in driver program"""
if self._deserialized:
raise Exception("Accumulator.value cannot be accessed inside tasks")
self._value = value
[docs] def add(self, term):
"""Adds a term to this accumulator's value"""
self._value = self.accum_param.addInPlace(self._value, term)
def __iadd__(self, term):
"""The += operator; adds a term to this accumulator's value"""
self.add(term)
return self
def __str__(self):
return str(self._value)
def __repr__(self):
return "Accumulator<id=%i, value=%s>" % (self.aid, self._value)
[docs]class AccumulatorParam(object):
"""
Helper object that defines how to accumulate values of a given type.
"""
[docs] def zero(self, value):
"""
Provide a "zero value" for the type, compatible in dimensions with the
provided C{value} (e.g., a zero vector)
"""
raise NotImplementedError
[docs] def addInPlace(self, value1, value2):
"""
Add two values of the accumulator's data type, returning a new value;
for efficiency, can also update C{value1} in place and return it.
"""
raise NotImplementedError
class AddingAccumulatorParam(AccumulatorParam):
"""
An AccumulatorParam that uses the + operators to add values. Designed for simple types
such as integers, floats, and lists. Requires the zero value for the underlying type
as a parameter.
"""
def __init__(self, zero_value):
self.zero_value = zero_value
def zero(self, value):
return self.zero_value
def addInPlace(self, value1, value2):
value1 += value2
return value1
# Singleton accumulator params for some standard types
INT_ACCUMULATOR_PARAM = AddingAccumulatorParam(0)
FLOAT_ACCUMULATOR_PARAM = AddingAccumulatorParam(0.0)
COMPLEX_ACCUMULATOR_PARAM = AddingAccumulatorParam(0.0j)
class _UpdateRequestHandler(SocketServer.StreamRequestHandler):
"""
This handler will keep polling updates from the same socket until the
server is shutdown.
"""
def handle(self):
from pyspark.accumulators import _accumulatorRegistry
auth_token = self.server.auth_token
def poll(func):
while not self.server.server_shutdown:
# Poll every 1 second for new data -- don't block in case of shutdown.
r, _, _ = select.select([self.rfile], [], [], 1)
if self.rfile in r:
if func():
break
def accum_updates():
num_updates = read_int(self.rfile)
for _ in range(num_updates):
(aid, update) = pickleSer._read_with_length(self.rfile)
_accumulatorRegistry[aid] += update
# Write a byte in acknowledgement
self.wfile.write(struct.pack("!b", 1))
return False
def authenticate_and_accum_updates():
received_token = self.rfile.read(len(auth_token))
if isinstance(received_token, bytes):
received_token = received_token.decode("utf-8")
if (received_token == auth_token):
accum_updates()
# we've authenticated, we can break out of the first loop now
return True
else:
raise Exception(
"The value of the provided token to the AccumulatorServer is not correct.")
# first we keep polling till we've received the authentication token
poll(authenticate_and_accum_updates)
# now we've authenticated, don't need to check for the token anymore
poll(accum_updates)
class AccumulatorServer(SocketServer.TCPServer):
def __init__(self, server_address, RequestHandlerClass, auth_token):
SocketServer.TCPServer.__init__(self, server_address, RequestHandlerClass)
self.auth_token = auth_token
"""
A simple TCP server that intercepts shutdown() in order to interrupt
our continuous polling on the handler.
"""
server_shutdown = False
def shutdown(self):
self.server_shutdown = True
SocketServer.TCPServer.shutdown(self)
self.server_close()
def _start_update_server(auth_token):
"""Start a TCP server to receive accumulator updates in a daemon thread, and returns it"""
server = AccumulatorServer(("localhost", 0), _UpdateRequestHandler, auth_token)
thread = threading.Thread(target=server.serve_forever)
thread.daemon = True
thread.start()
return server
if __name__ == "__main__":
import doctest
(failure_count, test_count) = doctest.testmod()
if failure_count:
exit(-1)