Source code for pyspark.mllib.random

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
Python package for random data generation.
"""

import sys
from functools import wraps

from pyspark import since
from pyspark.mllib.common import callMLlibFunc


__all__ = ['RandomRDDs', ]


def toArray(f):
    @wraps(f)
    def func(sc, *a, **kw):
        rdd = f(sc, *a, **kw)
        return rdd.map(lambda vec: vec.toArray())
    return func


[docs]class RandomRDDs(object): """ Generator methods for creating RDDs comprised of i.i.d samples from some distribution. .. versionadded:: 1.1.0 """
[docs] @staticmethod @since("1.1.0") def uniformRDD(sc, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the uniform distribution U(0.0, 1.0). To transform the distribution in the generated RDD from U(0.0, 1.0) to U(a, b), use C{RandomRDDs.uniformRDD(sc, n, p, seed)\ .map(lambda v: a + (b - a) * v)} :param sc: SparkContext used to create the RDD. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ `U(0.0, 1.0)`. >>> x = RandomRDDs.uniformRDD(sc, 100).collect() >>> len(x) 100 >>> max(x) <= 1.0 and min(x) >= 0.0 True >>> RandomRDDs.uniformRDD(sc, 100, 4).getNumPartitions() 4 >>> parts = RandomRDDs.uniformRDD(sc, 100, seed=4).getNumPartitions() >>> parts == sc.defaultParallelism True """ return callMLlibFunc("uniformRDD", sc._jsc, size, numPartitions, seed)
[docs] @staticmethod @since("1.1.0") def normalRDD(sc, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the standard normal distribution. To transform the distribution in the generated RDD from standard normal to some other normal N(mean, sigma^2), use C{RandomRDDs.normal(sc, n, p, seed)\ .map(lambda v: mean + sigma * v)} :param sc: SparkContext used to create the RDD. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0). >>> x = RandomRDDs.normalRDD(sc, 1000, seed=1) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - 0.0) < 0.1 True >>> abs(stats.stdev() - 1.0) < 0.1 True """ return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed)
[docs] @staticmethod @since("1.3.0") def logNormalRDD(sc, mean, std, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the log normal distribution with the input mean and standard distribution. :param sc: SparkContext used to create the RDD. :param mean: mean for the log Normal distribution :param std: std for the log Normal distribution :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ log N(mean, std). >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - expStd) < 0.5 True """ return callMLlibFunc("logNormalRDD", sc._jsc, float(mean), float(std), size, numPartitions, seed)
[docs] @staticmethod @since("1.1.0") def poissonRDD(sc, mean, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the Poisson distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or lambda, for the Poisson distribution. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ Pois(mean). >>> mean = 100.0 >>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - sqrt(mean)) < 0.5 True """ return callMLlibFunc("poissonRDD", sc._jsc, float(mean), size, numPartitions, seed)
[docs] @staticmethod @since("1.3.0") def exponentialRDD(sc, mean, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the Exponential distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or 1 / lambda, for the Exponential distribution. :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ Exp(mean). >>> mean = 2.0 >>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - sqrt(mean)) < 0.5 True """ return callMLlibFunc("exponentialRDD", sc._jsc, float(mean), size, numPartitions, seed)
[docs] @staticmethod @since("1.3.0") def gammaRDD(sc, shape, scale, size, numPartitions=None, seed=None): """ Generates an RDD comprised of i.i.d. samples from the Gamma distribution with the input shape and scale. :param sc: SparkContext used to create the RDD. :param shape: shape (> 0) parameter for the Gamma distribution :param scale: scale (> 0) parameter for the Gamma distribution :param size: Size of the RDD. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ Gamma(shape, scale). >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2) >>> stats = x.stats() >>> stats.count() 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> abs(stats.stdev() - expStd) < 0.5 True """ return callMLlibFunc("gammaRDD", sc._jsc, float(shape), float(scale), size, numPartitions, seed)
[docs] @staticmethod @toArray @since("1.1.0") def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the uniform distribution U(0.0, 1.0). :param sc: SparkContext used to create the RDD. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD. :param seed: Seed for the RNG that generates the seed for the generator in each partition. :return: RDD of Vector with vectors containing i.i.d samples ~ `U(0.0, 1.0)`. >>> import numpy as np >>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect()) >>> mat.shape (10, 10) >>> mat.max() <= 1.0 and mat.min() >= 0.0 True >>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions() 4 """ return callMLlibFunc("uniformVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
[docs] @staticmethod @toArray @since("1.1.0") def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the standard normal distribution. :param sc: SparkContext used to create the RDD. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ `N(0.0, 1.0)`. >>> import numpy as np >>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - 0.0) < 0.1 True >>> abs(mat.std() - 1.0) < 0.1 True """ return callMLlibFunc("normalVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
[docs] @staticmethod @toArray @since("1.3.0") def logNormalVectorRDD(sc, mean, std, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the log normal distribution. :param sc: SparkContext used to create the RDD. :param mean: Mean of the log normal distribution :param std: Standard Deviation of the log normal distribution :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ log `N(mean, std)`. >>> import numpy as np >>> from math import sqrt, exp >>> mean = 0.0 >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) >>> m = RandomRDDs.logNormalVectorRDD(sc, mean, std, 100, 100, seed=1).collect() >>> mat = np.matrix(m) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 True >>> abs(mat.std() - expStd) < 0.1 True """ return callMLlibFunc("logNormalVectorRDD", sc._jsc, float(mean), float(std), numRows, numCols, numPartitions, seed)
[docs] @staticmethod @toArray @since("1.1.0") def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or lambda, for the Poisson distribution. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`) :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ Pois(mean). >>> import numpy as np >>> mean = 100.0 >>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1) >>> mat = np.mat(rdd.collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(mat.std() - sqrt(mean)) < 0.5 True """ return callMLlibFunc("poissonVectorRDD", sc._jsc, float(mean), numRows, numCols, numPartitions, seed)
[docs] @staticmethod @toArray @since("1.3.0") def exponentialVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Exponential distribution with the input mean. :param sc: SparkContext used to create the RDD. :param mean: Mean, or 1 / lambda, for the Exponential distribution. :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`) :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ Exp(mean). >>> import numpy as np >>> mean = 0.5 >>> rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1) >>> mat = np.mat(rdd.collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(mat.std() - sqrt(mean)) < 0.5 True """ return callMLlibFunc("exponentialVectorRDD", sc._jsc, float(mean), numRows, numCols, numPartitions, seed)
[docs] @staticmethod @toArray @since("1.3.0") def gammaVectorRDD(sc, shape, scale, numRows, numCols, numPartitions=None, seed=None): """ Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Gamma distribution. :param sc: SparkContext used to create the RDD. :param shape: Shape (> 0) of the Gamma distribution :param scale: Scale (> 0) of the Gamma distribution :param numRows: Number of Vectors in the RDD. :param numCols: Number of elements in each Vector. :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). :param seed: Random seed (default: a random long integer). :return: RDD of Vector with vectors containing i.i.d. samples ~ Gamma(shape, scale). >>> import numpy as np >>> from math import sqrt >>> shape = 1.0 >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) >>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 True >>> abs(mat.std() - expStd) < 0.1 True """ return callMLlibFunc("gammaVectorRDD", sc._jsc, float(shape), float(scale), numRows, numCols, numPartitions, seed)
def _test(): import doctest from pyspark.sql import SparkSession globs = globals().copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: spark = SparkSession.builder\ .master("local[2]")\ .appName("mllib.random tests")\ .getOrCreate() globs['sc'] = spark.sparkContext (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()