pyspark.pandas.DataFrame.sum

DataFrame.sum(axis: Union[int, str, None] = None, numeric_only: bool = None, min_count: int = 0) → Union[int, float, bool, str, bytes, decimal.Decimal, datetime.date, datetime.datetime, None, Series]

Return the sum of the values.

Parameters
axis{index (0), columns (1)}

Axis for the function to be applied on.

numeric_onlybool, default None

Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility.

min_countint, default 0
The required number of valid values to perform the operation. If fewer than

min_count non-NA values are present the result will be NA.

Returns
sumscalar for a Series, and a Series for a DataFrame.

Examples

>>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, np.nan, 0.3, np.nan]},
...                   columns=['a', 'b'])

On a DataFrame:

>>> df.sum()
a    6.0
b    0.4
dtype: float64
>>> df.sum(axis=1)
0    1.1
1    2.0
2    3.3
3    0.0
dtype: float64
>>> df.sum(min_count=3)
a    6.0
b    NaN
dtype: float64
>>> df.sum(axis=1, min_count=1)
0    1.1
1    2.0
2    3.3
3    NaN
dtype: float64

On a Series:

>>> df['a'].sum()
6.0
>>> df['a'].sum(min_count=3)
6.0
>>> df['b'].sum(min_count=3)
nan