#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Any, Callable, TYPE_CHECKING
if TYPE_CHECKING:
from pyspark.mllib._typing import C, JavaObjectOrPickleDump
import py4j.protocol
from py4j.protocol import Py4JJavaError
from py4j.java_gateway import JavaObject
from py4j.java_collections import JavaArray, JavaList
import pyspark.core.context
from pyspark import RDD, SparkContext
from pyspark.serializers import CPickleSerializer, AutoBatchedSerializer
from pyspark.sql import DataFrame, SparkSession
# Hack for support float('inf') in Py4j
_old_smart_decode = py4j.protocol.smart_decode
_float_str_mapping = {
"nan": "NaN",
"inf": "Infinity",
"-inf": "-Infinity",
}
def _new_smart_decode(obj: Any) -> str:
if isinstance(obj, float):
s = str(obj)
return _float_str_mapping.get(s, s)
return _old_smart_decode(obj)
py4j.protocol.smart_decode = _new_smart_decode
_picklable_classes = [
"LinkedList",
"SparseVector",
"DenseVector",
"DenseMatrix",
"Rating",
"LabeledPoint",
]
# this will call the MLlib version of pythonToJava()
def _to_java_object_rdd(rdd: RDD) -> JavaObject:
"""Return a JavaRDD of Object by unpickling
It will convert each Python object into Java object by Pickle, whenever the
RDD is serialized in batch or not.
"""
rdd = rdd._reserialize(AutoBatchedSerializer(CPickleSerializer()))
assert rdd.ctx._jvm is not None
return rdd.ctx._jvm.org.apache.spark.mllib.api.python.SerDe.pythonToJava(rdd._jrdd, True)
def _py2java(sc: SparkContext, obj: Any) -> JavaObject:
"""Convert Python object into Java"""
if isinstance(obj, RDD):
obj = _to_java_object_rdd(obj)
elif isinstance(obj, DataFrame):
obj = obj._jdf
elif isinstance(obj, SparkContext):
obj = obj._jsc
elif isinstance(obj, list):
obj = [_py2java(sc, x) for x in obj]
elif isinstance(obj, JavaObject):
pass
elif isinstance(obj, (int, float, bool, bytes, str)):
pass
else:
data = bytearray(CPickleSerializer().dumps(obj))
assert sc._jvm is not None
obj = sc._jvm.org.apache.spark.mllib.api.python.SerDe.loads(data)
return obj
def _java2py(sc: SparkContext, r: "JavaObjectOrPickleDump", encoding: str = "bytes") -> Any:
if isinstance(r, JavaObject):
clsName = r.getClass().getSimpleName()
# convert RDD into JavaRDD
if clsName != "JavaRDD" and clsName.endswith("RDD"):
r = r.toJavaRDD()
clsName = "JavaRDD"
assert sc._jvm is not None
if clsName == "JavaRDD":
jrdd = sc._jvm.org.apache.spark.mllib.api.python.SerDe.javaToPython(r)
return RDD(jrdd, sc)
if clsName == "Dataset":
return DataFrame(r, SparkSession._getActiveSessionOrCreate())
if clsName in _picklable_classes:
r = sc._jvm.org.apache.spark.mllib.api.python.SerDe.dumps(r)
elif isinstance(r, (JavaArray, JavaList)):
try:
r = sc._jvm.org.apache.spark.mllib.api.python.SerDe.dumps(r)
except Py4JJavaError:
pass # not pickable
if isinstance(r, (bytearray, bytes)):
r = CPickleSerializer().loads(bytes(r), encoding=encoding)
return r
def callJavaFunc(
sc: pyspark.core.context.SparkContext, func: Callable[..., "JavaObjectOrPickleDump"], *args: Any
) -> Any:
"""Call Java Function"""
java_args = [_py2java(sc, a) for a in args]
return _java2py(sc, func(*java_args))
def callMLlibFunc(name: str, *args: Any) -> Any:
"""Call API in PythonMLLibAPI"""
sc = SparkContext.getOrCreate()
assert sc._jvm is not None
api = getattr(sc._jvm.PythonMLLibAPI(), name)
return callJavaFunc(sc, api, *args)
class JavaModelWrapper:
"""
Wrapper for the model in JVM
"""
def __init__(self, java_model: JavaObject):
self._sc = SparkContext.getOrCreate()
self._java_model = java_model
def __del__(self) -> None:
assert self._sc._gateway is not None
self._sc._gateway.detach(self._java_model)
def call(self, name: str, *a: Any) -> Any:
"""Call method of java_model"""
return callJavaFunc(self._sc, getattr(self._java_model, name), *a)
def inherit_doc(cls: "C") -> "C":
"""
A decorator that makes a class inherit documentation from its parents.
"""
for name, func in vars(cls).items():
# only inherit docstring for public functions
if name.startswith("_"):
continue
if not func.__doc__:
for parent in cls.__bases__:
parent_func = getattr(parent, name, None)
if parent_func and getattr(parent_func, "__doc__", None):
func.__doc__ = parent_func.__doc__
break
return cls