GGMnonreg: Non-Regularized Gaussian Graphical Models
Estimate non-regularized Gaussian graphical models, Ising models,
and mixed graphical models. The current methods consist of multiple regression,
a non-parametric bootstrap <doi:10.1080/00273171.2019.1575716>, and Fisher z
transformed partial correlations <doi:10.1111/bmsp.12173>. Parameter uncertainty,
predictability, and network replicability <doi:10.31234/osf.io/fb4sa> are also implemented.
Version: |
1.0.0 |
Depends: |
R (≥ 4.0.0) |
Imports: |
Rdpack, bestglm, GGally, network, sna, Matrix, poibin, parallel, doParallel, foreach, corpcor, psych, MASS, stats, methods, ggplot2, GGMncv |
Suggests: |
qgraph |
Published: |
2021-04-08 |
Author: |
Donald Williams [aut, cre] |
Maintainer: |
Donald Williams <drwwilliams at ucdavis.edu> |
License: |
GPL-2 |
NeedsCompilation: |
no |
Citation: |
GGMnonreg citation info |
Materials: |
README |
CRAN checks: |
GGMnonreg results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=GGMnonreg
to link to this page.