PCovR: Principal Covariates Regression
Analyzing regression data with many and/or highly collinear predictor variables, by simultaneously reducing the predictor variables to a limited number of components and regressing the criterion variables on these components (de Jong S. & Kiers H. A. L. (1992) <doi:10.1016/0169-7439(92)80100-I>). Several rotation and model selection options are provided.
Version: |
2.7.1 |
Depends: |
GPArotation, ThreeWay, MASS, stats, graphics, Matrix |
Published: |
2021-01-29 |
Author: |
Marlies Vervloet [aut, cre],
Henk Kiers [aut],
Eva Ceulemans [ctb] |
Maintainer: |
Marlies Vervloet <marlies.vervloet at ppw.kuleuven.be> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
no |
Citation: |
PCovR citation info |
CRAN checks: |
PCovR results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=PCovR
to link to this page.