beam: Fast Bayesian Inference in Large Gaussian Graphical Models

Fast Bayesian inference of marginal and conditional independence structures from high-dimensional data. Leday and Richardson (2019), Biometrics, <doi:10.1111/biom.13064>.

Version: 2.0.2
Depends: R (≥ 3.1.0)
Imports: stats, methods, grDevices, graphics, Matrix, fdrtool, igraph, knitr, Rcpp, assertthat
LinkingTo: Rcpp, RcppArmadillo, BH
Suggests: covr, testthat
Published: 2020-05-28
Author: Gwenael G.R. Leday [cre, aut], Ilaria Speranza [aut], Harry Gray [ctb]
Maintainer: Gwenael G.R. Leday <gwenael.leday at wur.nl>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2.0)]
URL: https://github.com/gleday/beam
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: beam results

Documentation:

Reference manual: beam.pdf

Downloads:

Package source: beam_2.0.2.tar.gz
Windows binaries: r-devel: beam_2.0.2.zip, r-release: beam_2.0.2.zip, r-oldrel: beam_2.0.2.zip
macOS binaries: r-release (arm64): beam_2.0.2.tgz, r-oldrel (arm64): beam_2.0.2.tgz, r-release (x86_64): beam_2.0.2.tgz, r-oldrel (x86_64): beam_2.0.2.tgz
Old sources: beam archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=beam to link to this page.