glmmLasso: Variable Selection for Generalized Linear Mixed Models by L1-Penalized Estimation

A variable selection approach for generalized linear mixed models by L1-penalized estimation is provided, see Groll and Tutz (2014) <doi:10.1007/s11222-012-9359-z>. See also Groll and Tutz (2017) <doi:10.1007/s10985-016-9359-y> for discrete survival models including heterogeneity.

Version: 1.6.2
Imports: stats, minqa, Matrix, Rcpp (≥ 0.12.12), methods, GMMBoost
LinkingTo: Rcpp, RcppEigen
Published: 2022-08-23
Author: Andreas Groll
Maintainer: Andreas Groll <groll at statistik.tu-dortmund.de>
License: GPL-2
NeedsCompilation: yes
CRAN checks: glmmLasso results

Documentation:

Reference manual: glmmLasso.pdf

Downloads:

Package source: glmmLasso_1.6.2.tar.gz
Windows binaries: r-devel: glmmLasso_1.6.2.zip, r-release: glmmLasso_1.6.2.zip, r-oldrel: glmmLasso_1.6.2.zip
macOS binaries: r-release (arm64): glmmLasso_1.6.2.tgz, r-oldrel (arm64): glmmLasso_1.6.2.tgz, r-release (x86_64): glmmLasso_1.6.2.tgz, r-oldrel (x86_64): glmmLasso_1.6.2.tgz
Old sources: glmmLasso archive

Reverse dependencies:

Reverse imports: autoMrP

Linking:

Please use the canonical form https://CRAN.R-project.org/package=glmmLasso to link to this page.