A variable selection approach for generalized linear mixed models by L1-penalized estimation is provided, see Groll and Tutz (2014) <doi:10.1007/s11222-012-9359-z>. See also Groll and Tutz (2017) <doi:10.1007/s10985-016-9359-y> for discrete survival models including heterogeneity.
Version: | 1.6.2 |
Imports: | stats, minqa, Matrix, Rcpp (≥ 0.12.12), methods, GMMBoost |
LinkingTo: | Rcpp, RcppEigen |
Published: | 2022-08-23 |
Author: | Andreas Groll |
Maintainer: | Andreas Groll <groll at statistik.tu-dortmund.de> |
License: | GPL-2 |
NeedsCompilation: | yes |
CRAN checks: | glmmLasso results |
Reference manual: | glmmLasso.pdf |
Package source: | glmmLasso_1.6.2.tar.gz |
Windows binaries: | r-devel: glmmLasso_1.6.2.zip, r-release: glmmLasso_1.6.2.zip, r-oldrel: glmmLasso_1.6.2.zip |
macOS binaries: | r-release (arm64): glmmLasso_1.6.2.tgz, r-oldrel (arm64): glmmLasso_1.6.2.tgz, r-release (x86_64): glmmLasso_1.6.2.tgz, r-oldrel (x86_64): glmmLasso_1.6.2.tgz |
Old sources: | glmmLasso archive |
Reverse imports: | autoMrP |
Please use the canonical form https://CRAN.R-project.org/package=glmmLasso to link to this page.