recosystem: Recommender System using Matrix Factorization

R wrapper of the 'libmf' library <https://www.csie.ntu.edu.tw/~cjlin/libmf/> for recommender system using matrix factorization. It is typically used to approximate an incomplete matrix using the product of two matrices in a latent space. Other common names for this task include "collaborative filtering", "matrix completion", "matrix recovery", etc. High performance multi-core parallel computing is supported in this package.

Version: 0.5
Depends: R (≥ 3.3.0), methods
Imports: Rcpp (≥ 0.11.0), float
LinkingTo: Rcpp, RcppProgress
Suggests: knitr, rmarkdown, prettydoc, Matrix
Published: 2021-09-19
Author: Yixuan Qiu, David Cortes, Chih-Jen Lin, Yu-Chin Juan, Wei-Sheng Chin, Yong Zhuang, Bo-Wen Yuan, Meng-Yuan Yang, and other contributors. See file AUTHORS for details.
recosystem author details
Maintainer: Yixuan Qiu <yixuan.qiu at cos.name>
BugReports: https://github.com/yixuan/recosystem/issues
License: BSD_3_clause + file LICENSE
Copyright: see file COPYRIGHTS
URL: https://github.com/yixuan/recosystem
NeedsCompilation: yes
SystemRequirements: C++11
Materials: README NEWS
CRAN checks: recosystem results

Documentation:

Reference manual: recosystem.pdf
Vignettes: recosystem: Recommender System Using Parallel Matrix Factorization

Downloads:

Package source: recosystem_0.5.tar.gz
Windows binaries: r-devel: recosystem_0.5.zip, r-release: recosystem_0.5.zip, r-oldrel: recosystem_0.5.zip
macOS binaries: r-release (arm64): recosystem_0.5.tgz, r-oldrel (arm64): recosystem_0.5.tgz, r-release (x86_64): recosystem_0.5.tgz, r-oldrel (x86_64): recosystem_0.5.tgz
Old sources: recosystem archive

Reverse dependencies:

Reverse imports: autostats, recommenderlab
Reverse suggests: cmfrec

Linking:

Please use the canonical form https://CRAN.R-project.org/package=recosystem to link to this page.