scRNAstat: A Pipeline to Process Single Cell RNAseq Data

A pipeline that can process single or multiple Single Cell RNAseq samples primarily specializes in Clustering and Dimensionality Reduction. Meanwhile we use common cell type marker genes for T cells, B cells, Myeloid cells, Epithelial cells, and stromal cells (Fiboblast, Endothelial cells, Pericyte, Smooth muscle cells) to visualize the Seurat clusters, to facilitate labeling them by biological names. Once users named each cluster, they can evaluate the quality of them again and find the de novo marker genes also.

Version: 0.1.1
Depends: R (≥ 2.10)
Imports: Seurat, ggplot2, stringr, clustree, magrittr, Matrix, dplyr, patchwork
Published: 2021-09-22
Author: Jianming Zeng [aut], Yonghe Xia [ctb, cre], Biotrainee group [cph, fnd]
Maintainer: Yonghe Xia <xiayh17 at gmail.com>
License: AGPL (≥ 3)
NeedsCompilation: no
CRAN checks: scRNAstat results

Documentation:

Reference manual: scRNAstat.pdf

Downloads:

Package source: scRNAstat_0.1.1.tar.gz
Windows binaries: r-devel: scRNAstat_0.1.1.zip, r-release: scRNAstat_0.1.1.zip, r-oldrel: scRNAstat_0.1.1.zip
macOS binaries: r-release (arm64): scRNAstat_0.1.1.tgz, r-oldrel (arm64): scRNAstat_0.1.1.tgz, r-release (x86_64): scRNAstat_0.1.1.tgz, r-oldrel (x86_64): scRNAstat_0.1.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=scRNAstat to link to this page.