dapply {SparkR} | R Documentation |
Apply a function to each partition of a SparkDataFrame.
dapply(x, func, schema) ## S4 method for signature 'SparkDataFrame,'function',structType' dapply(x, func, schema)
x |
A SparkDataFrame |
func |
A function to be applied to each partition of the SparkDataFrame. func should have only one parameter, to which a R data.frame corresponds to each partition will be passed. The output of func should be a R data.frame. |
schema |
The schema of the resulting SparkDataFrame after the function is applied. It must match the output of func. |
dapply since 2.0.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
, attach
,
cache
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, except
,
explain
, filter
,
first
, gapplyCollect
,
gapply
, getNumPartitions
,
group_by
, head
,
histogram
, insertInto
,
intersect
, isLocal
,
join
, limit
,
merge
, mutate
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, take
,
union
, unpersist
,
withColumn
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.text
## Not run:
##D df <- createDataFrame(iris)
##D df1 <- dapply(df, function(x) { x }, schema(df))
##D collect(df1)
##D
##D # filter and add a column
##D df <- createDataFrame(
##D list(list(1L, 1, "1"), list(2L, 2, "2"), list(3L, 3, "3")),
##D c("a", "b", "c"))
##D schema <- structType(structField("a", "integer"), structField("b", "double"),
##D structField("c", "string"), structField("d", "integer"))
##D df1 <- dapply(
##D df,
##D function(x) {
##D y <- x[x[1] > 1, ]
##D y <- cbind(y, y[1] + 1L)
##D },
##D schema)
##D collect(df1)
##D # the result
##D # a b c d
##D # 1 2 2 2 3
##D # 2 3 3 3 4
## End(Not run)