gapplyCollect {SparkR} | R Documentation |
gapplyCollect
Groups the SparkDataFrame using the specified columns, applies the R function to each group and collects the result back to R as data.frame.
gapplyCollect(x, ...) ## S4 method for signature 'GroupedData' gapplyCollect(x, func) ## S4 method for signature 'SparkDataFrame' gapplyCollect(x, cols, func)
x |
a SparkDataFrame or GroupedData. |
... |
additional argument(s) passed to the method. |
func |
a function to be applied to each group partition specified by grouping
column of the SparkDataFrame. The function |
cols |
grouping columns. |
A data.frame.
gapplyCollect(GroupedData) since 2.0.0
gapplyCollect(SparkDataFrame) since 2.0.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
, attach
,
cache
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapply
, getNumPartitions
,
group_by
, head
,
histogram
, insertInto
,
intersect
, isLocal
,
join
, limit
,
merge
, mutate
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, take
,
union
, unpersist
,
withColumn
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.text
## Not run:
##D Computes the arithmetic mean of the second column by grouping
##D on the first and third columns. Output the grouping values and the average.
##D
##D df <- createDataFrame (
##D list(list(1L, 1, "1", 0.1), list(1L, 2, "1", 0.2), list(3L, 3, "3", 0.3)),
##D c("a", "b", "c", "d"))
##D
##D result <- gapplyCollect(
##D df,
##D c("a", "c"),
##D function(key, x) {
##D y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D colnames(y) <- c("key_a", "key_c", "mean_b")
##D y
##D })
##D
##D We can also group the data and afterwards call gapply on GroupedData.
##D For Example:
##D gdf <- group_by(df, "a", "c")
##D result <- gapplyCollect(
##D gdf,
##D function(key, x) {
##D y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D colnames(y) <- c("key_a", "key_c", "mean_b")
##D y
##D })
##D
##D Result
##D ------
##D key_a key_c mean_b
##D 3 3 3.0
##D 1 1 1.5
##D
##D Fits linear models on iris dataset by grouping on the 'Species' column and
##D using 'Sepal_Length' as a target variable, 'Sepal_Width', 'Petal_Length'
##D and 'Petal_Width' as training features.
##D
##D df <- createDataFrame (iris)
##D result <- gapplyCollect(
##D df,
##D df$"Species",
##D function(key, x) {
##D m <- suppressWarnings(lm(Sepal_Length ~
##D Sepal_Width + Petal_Length + Petal_Width, x))
##D data.frame(t(coef(m)))
##D })
##D
##D Result
##D ---------
##D Model X.Intercept. Sepal_Width Petal_Length Petal_Width
##D 1 0.699883 0.3303370 0.9455356 -0.1697527
##D 2 1.895540 0.3868576 0.9083370 -0.6792238
##D 3 2.351890 0.6548350 0.2375602 0.2521257
##D
## End(Not run)